Exercise 9.1

1. Write the first terms of each of the following sequences whose \(n^{\text{th}} \) term are:

 (i) \(a_n = 3n + 2 \)

 (ii) \(a_n = (n - 2)/3 \)

 (iii) \(a_n = 3^n \)

 (iv) \(a_n = (3n - 2)/5 \)

 (v) \(a_n = (-1)^n \cdot 2^n \)

 (vi) \(a_n = n(n - 2)/2 \)

 (vii) \(a_n = n^2 - n + 1 \)

 (viii) \(a_n = n^2 - n + 1 \)

 (ix) \(a_n = (2n - 3)/6 \)

Solutions:

(i) \(a_n = 3n + 2 \)

Given sequence whose \(a_n = 3n + 2 \)

To get the first five terms of given sequence, put \(n = 1, 2, 3, 4, 5 \) and we get

\[
\begin{align*}
a_1 &= (3 \times 1) + 2 = 3 + 2 = 5 \\
a_2 &= (3 \times 2) + 2 = 6 + 2 = 8 \\
a_3 &= (3 \times 3) + 2 = 9 + 2 = 11 \\
a_4 &= (3 \times 4) + 2 = 12 + 2 = 14 \\
a_5 &= (3 \times 5) + 2 = 15 + 2 = 17
\end{align*}
\]

\(\therefore \) the required first five terms of the sequence whose \(n^{\text{th}} \) term, \(a_n = 3n + 2 \), are 5, 8, 11, 14, 17.

(ii) \(a_n = (n - 2)/3 \)

Given sequence whose \(a_n = \frac{n - 2}{3} \)

On putting \(n = 1, 2, 3, 4, 5 \) then can get the first five terms

\[
\begin{align*}
a_1 &= \frac{1 - 2}{3} = \frac{-1}{3}; \\
a_2 &= \frac{2 - 2}{3} = 0 \\
a_3 &= \frac{3 - 2}{3} = \frac{1}{3}; \\
a_4 &= \frac{4 - 2}{3} = \frac{2}{3} \\
a_5 &= \frac{5 - 2}{3} = 1
\end{align*}
\]

\(\therefore \) the required first five terms of the sequence whose \(n^{\text{th}} \) term, \(a_n = \frac{n - 2}{3} \), are \(-\frac{1}{3}, 0, \frac{1}{3}, \frac{2}{3}, 1 \).

(iii) \(a_n = 3^n \)

Given sequence whose \(a_n = 3^n \)

To get the first five terms of given sequence, put \(n = 1, 2, 3, 4, 5 \) in the above

\[
\begin{align*}
a_1 &= 3^1 = 3; \\
a_2 &= 3^2 = 9; \\
a_3 &= 27; \\
a_4 &= 3^4 = 81;
\end{align*}
\]
a_5 = 3^5 = 243.
∴ the required first five terms of the sequence whose n^{th} term, a_n = 3^n are 3, 9, 27, 81, 243.

(iv) \[a_n = \frac{(3n - 2)}{5} \]

Given sequence whose \[a_n = \frac{3n - 2}{5} \]

To get the first five terms of the sequence, put \(n = 1, 2, 3, 4, 5 \) in the above.
And, we get

\[
\begin{align*}
a_1 &= \frac{3 \times 1 - 2}{5} = \frac{1}{5} \\
a_2 &= \frac{3 \times 2 - 2}{5} = \frac{4}{5} \\
a_3 &= \frac{3 \times 3 - 2}{5} = \frac{7}{5} \\
a_4 &= \frac{3 \times 4 - 2}{5} = \frac{10}{5} \\
a_5 &= \frac{3 \times 5 - 2}{5} = \frac{13}{5}
\end{align*}
\]
∴ the required first five terms of the sequence are 1/5, 4/5, 7/5, 10/5, 13/5

(v) \[a_n = (-1)^n2^n \]

Given sequence whose \(a_n = (-1)^n2^n \)

To get first five terms of the sequence, put \(n = 1, 2, 3, 4, 5 \) in the above.

\[
\begin{align*}
a_1 &= (-1)^1 \cdot 2^1 = (-1) \cdot 2 = -2 \\
a_2 &= (-1)^2 \cdot 2^2 = (-1) \cdot 4 = 4 \\
a_3 &= (-1)^3 \cdot 2^3 = (-1) \cdot 8 = -8 \\
a_4 &= (-1)^4 \cdot 2^4 = (-1) \cdot 16 = 16 \\
a_5 &= (-1)^5 \cdot 2^5 = (-1) \cdot 32 = -32
\end{align*}
\]
∴ the first five terms of the sequence are \(-2, 4, -8, 16, -32\).

(vi) \[a_n = \frac{n(n - 2)}{2} \]

The given sequence is, \[a_n = \frac{n(n - 2)}{2} \]

To get the first five terms of the sequence, put \(n = 1, 2, 3, 4, 5 \).
And, we get
\(a_1 = \frac{1(1 - 2)}{2} = \frac{1 - 1}{2} = -\frac{1}{2} \)
\(a_2 = \frac{2(2 - 2)}{2} = \frac{2.0}{2} = 0 \)
\(a_3 = \frac{3(3 - 2)}{2} = \frac{3.1}{2} = \frac{3}{2} \)
\(a_4 = \frac{4(4 - 2)}{2} = \frac{4.2}{2} = 4 \)
\(a_5 = \frac{5(5 - 2)}{2} = \frac{5.3}{2} = \frac{15}{2} \)
\[\therefore \text{the required first five terms are -1/2, 0, 3/2, 4, 15/2} \]

(vii) \(a_n = n^2 - n + 1 \)
The given sequence whose, \(a_n = n^2 - n + 1 \)
To get the first five terms of given sequence, put \(n = 1, 2, 3, 4, 5. \)
And, we get
\(a_1 = 1^2 - 1 + 1 = 1 \)
\(a_2 = 2^2 - 2 + 1 = 3 \)
\(a_3 = 3^2 - 3 + 1 = 7 \)
\(a_4 = 4^2 - 4 + 1 = 13 \)
\(a_5 = 5^2 - 5 + 1 = 21 \)
\[\therefore \text{the required first five terms of the sequence are 1, 3, 7, 13, 21} \]

(viii) \(a_n = 2n^2 - 3n + 1 \)
The given sequence whose \(a_n = 2n^2 - 3n + 1 \)
To get the first five terms of the sequence, put \(n = 1, 2, 3, 4, 5. \)
And, we get
\(a_1 = 2.1^2 - 3.1 + 1 = 2 - 3 + 1 = 0 \)
\(a_2 = 2.2^2 - 3.2 + 1 = 8 - 6 + 1 = 3 \)
\(a_3 = 2.3^2 - 3.3 + 1 = 18 - 9 + 1 = 10 \)
\(a_4 = 2.4^2 - 3.4 + 1 = 32 - 12 + 1 = 21 \)
\(a_5 = 2.5^2 - 3.5 + 1 = 50 - 15 + 1 = 36 \)
\[\therefore \text{the required first five terms of the sequence are 0, 3, 10, 21, 36} \]

(ix) \(a_n = \frac{2n - 3}{6} \)
Given sequence whose, \(a_n = \frac{2n - 3}{6} \)
To get the first five terms of the sequence we put \(n = 1, 2, 3, 4, 5. \)
And, we get
∴ the required first five terms of the sequence are \(-\frac{1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{5}{6} \text{ and } \frac{7}{6}\)
1. Show that the sequence defined by \(a_n = 5n - 7 \) is an A.P., find its common difference.

Solution:

Given, \(a_n = 5n - 7 \)

Now putting \(n = 1, 2, 3, 4 \) we get,

\[
\begin{align*}
 a_1 &= 5(1) - 7 = 5 - 7 = -2 \\
 a_2 &= 5(2) - 7 = 10 - 7 = 3 \\
 a_3 &= 5(3) - 7 = 15 - 7 = 8 \\
 a_4 &= 5(4) - 7 = 20 - 7 = 13 \\
\end{align*}
\]

We can see that,

\[
\begin{align*}
 a_2 - a_1 &= 3 - (-2) = 5 \\
 a_3 - a_2 &= 8 - (3) = 5 \\
 a_4 - a_3 &= 13 - (8) = 5 \\
\end{align*}
\]

Since the difference between the terms is common, we can conclude that the given sequence defined by \(a_n = 5n - 7 \) is an A.P with common difference 5.

2. Show that the sequence defined by \(a_n = 3n^2 - 5 \) is not an A.P.

Solution:

Given, \(a_n = 3n^2 - 5 \)

Now putting \(n = 1, 2, 3, 4 \) we get,

\[
\begin{align*}
 a_1 &= 3(1)^2 - 5 = 3 - 5 = -2 \\
 a_2 &= 3(2)^2 - 5 = 12 - 5 = 7 \\
 a_3 &= 3(3)^2 - 5 = 27 - 5 = 22 \\
 a_4 &= 3(4)^2 - 5 = 48 - 5 = 43 \\
\end{align*}
\]

We can see that,

\[
\begin{align*}
 a_2 - a_1 &= 7 - (-2) = 9 \\
 a_3 - a_2 &= 22 - 7 = 15 \\
 a_4 - a_3 &= 43 - 22 = 21 \\
\end{align*}
\]

Since the difference between the terms is not common and varying, we can conclude that the given sequence defined by \(a_n = 3n^2 - 5 \) is not an A.P.

3. The general term of a sequence is given by \(a_n = -4n + 15 \). Is the sequence an A.P.? If so, find its 15th term and the common difference.

Solution:

Given, \(a_n = -4n + 15 \)

Now putting \(n = 1, 2, 3, 4 \) we get,

\[
\begin{align*}
 a_1 &= -4(1) + 15 = -4 + 15 = 11 \\
 a_2 &= -4(2) + 15 = -8 + 15 = 7 \\
 a_3 &= -4(3) + 15 = -12 + 15 = 3 \\
 a_4 &= -4(4) + 15 = -16 + 15 = -1 \\
\end{align*}
\]

We can see that,
a_2 - a_1 = 7 - (11) = -4
a_3 - a_2 = 3 - 7 = -4
a_4 - a_3 = -1 - 3 = -4

Since the difference between the terms is common, we can conclude that the given sequence defined by \(a_n = -4n + 15 \) is an A.P with common difference of -4.

Hence, the 15\(^{th}\) term will be
\[
a_{15} = -4(15) + 15 = -60 + 15 = -45
\]
Exercise 9.3

1. For the following arithmetic progressions write the first term a and the common difference d:
 (i) $-5, -1, 3, 7, \ldots$
 (ii) $\frac{1}{5}, \frac{3}{5}, \frac{5}{5}, \frac{7}{5}, \ldots$
 (iii) $0.3, 0.55, 0.80, 1.05, \ldots$
 (iv) $-1.1, -3.1, -5.1, -7.1, \ldots$

Solution:

We know that if a is the first term and d is the common difference, the arithmetic progression is $a, a + d, a + 2d, a + 3d, \ldots$

(i) $-5, -1, 3, 7, \ldots$
 Given arithmetic series is $-5, -1, 3, 7, \ldots$

 $a, a + d, a + 2d + a + 3d, \ldots$

 Thus, by comparing these two we get, $a = -5, a + d = 1, a + 2d = 3, a + 3d = 7$

 First term $(a) = -5$

 By subtracting second and first term, we get

 $(a + d) - (a) = d$

 $-1 - (-5) = d$

 $4 = d$

 \Rightarrow Common difference $(d) = 4.$

(ii) $\frac{1}{5}, \frac{3}{5}, \frac{5}{5}, \frac{7}{5}, \ldots$
 Given arithmetic series is $\frac{1}{5}, \frac{3}{5}, \frac{5}{5}, \frac{7}{5}, \ldots$

 It is seen that, it’s of the form of $\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \ldots a, a + d, a + 2d, a + 3d,$

 Thus, by comparing these two, we get

 $a = \frac{1}{5}, a + d = \frac{3}{5}, a + 2d = \frac{5}{5}, a + 3d = \frac{7}{5}$

 First term $(a) = \frac{1}{5}$

 By subtracting first term from second term, we get

 $d = (a + d) - (a)$

 $d = \frac{3}{5} - \frac{1}{5}$

 $d = \frac{2}{5}$

 \Rightarrow Common difference $(d) = \frac{2}{5}$

(iii) $0.3, 0.55, 0.80, 1.05, \ldots$
 Given arithmetic series is $0.3, 0.55, 0.80, 1.05, \ldots$

 It is seen that, it’s of the form of $a, a + d, a + 2d, a + 3d,$

 Thus, by comparing we get,

 $a = 0.3, a + d = 0.55, a + 2d = 0.80, a + 3d = 1.05$

 First term $(a) = 0.3.$

 By subtracting first term from second term. We get

 $d = (a + d) - (a)$

 $d = 0.55 - 0.3$

 $d = 0.25$

 \Rightarrow Common difference $(d) = 0.25$
R D Sharma Solutions For Class 10 Maths Chapter 9 - Arithmetic Progressions

(iv) \(-1.1, -3.1, -5.1, -7.1, \ldots\)
General series is \(-1.1, -3.1, -5.1, -7.1, \ldots\)
It is seen that, it’s of the form of \(a, a + d, a + 2d, a + 3d, \ldots\).
Thus, by comparing these two, we get
\(a = -1.1, a + d = -3.1, a + 2d = -5.1, a + 3d = -7.1\)
First term (\(a\)) = \(-1.1\)
Common difference (\(d\)) = \((a + d) - (a)\)
\[= -3.1 - (-1.1)\]
\[= -2\]

2. Write the arithmetic progression when first term \(a\) and common difference \(d\) are as follows:
(i) \(a = 4, d = -3\)
(ii) \(a = -1, d = 1/2\)
(iii) \(a = -1.5, d = -0.5\)
Solution:
We know that, if first term (\(a\)) = \(a\) and common difference = \(d\), then the arithmetic series is: \(a, a + d, a + 2d, a + 3d, \ldots\)
(i) \(a = 4, d = -3\)
Given, first term (\(a\)) = 4
Common difference (\(d\)) = -3
Then arithmetic progression is: \(a, a + d, a + 2d, a + 3d, \ldots\)
\[= 4, 4 - 3, 4 + 2(-3), 4 + 3(-3), \ldots\]
\[= 4, 1, -2, -5, -8 \ldots\]
(ii) \(a = -1, d = 1/2\)
Given, first term (\(a\)) = -1
Common difference (\(d\)) = 1/2
Then arithmetic progression is: \(a, a + d, a + 2d, a + 3d, \ldots\)
\[= -1, -1 + 1/2, -1, 2\frac{1}{2}, -1 + 3\frac{1}{2}, \ldots\]
\[= -1, -1/2, 0, 1/2\]
(iii) \(a = -1.5, d = -0.5\)
Given First term (\(a\)) = -1.5
Common difference (\(d\)) = -0.5
Then arithmetic progression is: \(a, a + d, a + 2d, a + 3d, \ldots\)
\[= -1.5, -1.5, -0.5, -1.5 + 2(-0.5), -1.5 + 3(-0.5)\]
\[= -1.5, -2, -2.5, -3, \ldots\]

3. In which of the following situations, the sequence of numbers formed will form an A.P.?
(i) The cost of digging a well for the first metre is Rs 150 and rises by Rs 20 for each succeeding metre.
(ii) The amount of air present in the cylinder when a vacuum pump removes each time 1/4 of their remaining in the cylinder.
(iii) Divya deposited Rs 1000 at compound interest at the rate of 10% per annum. The amount at
the end of first year, second year, third year, ..., and so on.

Solution:

(i) Given,
Cost of digging a well for the first meter \(c_1\) = Rs.150.
And, the cost rises by Rs.20 for each succeeding meter
Then,
Cost of digging for the second meter \(c_2\) = Rs.150 + Rs 20 = Rs 170
Cost of digging for the third meter \(c_3\) = Rs.170 + Rs 20 = Rs 210
Hence, it's clearly seen that the costs of digging a well for different lengths are 150, 170, 190, 210,
Evidently, this series is in A.P.
With first term \((a) = 150\), common difference \((d) = 20\)

(ii) Given,
Let the initial volume of air in a cylinder be \(V\) liters each time \(3^\text{rd}/4\) of air in a remaining i.e 1 -1/4
First time, the air in cylinder is \(V\).
Second time, the air in cylinder is \(3/4 V\).
Third time, the air in cylinder is \((3/4)^2 V\).
Thus, series is \(V, 3/4 V, (3/4)^2 V,(3/4)^3 V, \ldots\)
Hence, the above series is not a A.P.

(iii) Given,
Divya deposited Rs 1000 at compound interest of 10% p.a
So, the amount at the end of first year is = 1000 + 0.1(1000) = Rs 1100
And, the amount at the end of second year is = 1100 + 0.1(1100) = Rs 1210
And, the amount at the end of third year is = 1210 + 0.1(1210) = Rs 1331
Clearly, these amounts 1100, 1210 and 1331 are not in an A.P since the difference between them is not the same.
Exercise 9.4

1. Find:
 (i) 10th term of the AP 1, 4, 7, 10,
 (ii) 18th term of the AP √2, 3√2, 5√2,
 (iii) nth term of the AP 13, 8, 3, -2,
 (iv) 10th term of the AP -40, -15, 10, 35,
 (v) 8th term of the AP 11, 104, 91, 78,
 (vi) 11th tenor of the AP 10.0, 10.5, 11.0, 11.2,
 (vii) 9th term of the AP 3/4, 5/4, 7/4 + 9/4,

Solution:

(i) Given A.P. is 1, 4, 7, 10,
First term (a) = 1
Common difference (d) = Second term - First term
= 4 - 1 = 3.

We know that, nth term in an A.P = a + (n - 1)d
Then, 10th term in the A.P is 1 + (10 - 1)3
= 1 + 9 x 3
= 1 + 27
= 28
∴ 10th term of A. P. is 28

(ii) Given A.P. is √2, 3√2, 5√2,
First term (a) = √2
Common difference = Second term – First term
= 3√2 - √2
⇒ d = 2√2

We know that, nth term in an A. P. = a + (n - 1)d
Then, 18th term of A. P. = √2 + (18 - 1)2√2
= √2 + 17.2√2
= √2 (1+34)
= 35√2
∴ 18th term of A. P. is 35√2

(iii) Given A. P. is 13, 8, 3, -2,
First term (a) = 13
Common difference (d) = Second term first term
= 8 - 13 = -5

We know that, nth term of an A.P. a_n = a + (n - 1)d
= 13 + (n - 1) - 5
= 13 - 5n + 5
∴ nth term of the A.P is a_n = 18 - 5n

(iv) Given A. P. is -40, -15, 10, 35,
First term (a) = -40
Common difference (d) = Second term - fast term
= -15 - (-40)
= 40 - 15
= 25

We know that, \(n^{th} \) term of an A.P. \(a_n = a + (n - 1)d \)
Then, 10\(^{th} \) term of A. P. \(a_{10} = -40 + (10 - 1)25 \)
= -40 + 9.25
= -40 + 225
= 185
\(\therefore \) 10\(^{th} \) term of the A. P. is 185

(v) Given sequence is 117, 104, 91, 78,
First term (a) = 117
Common difference (d) = Second term - first term
= 104 - 117
= -13

We know that, \(n^{th} \) term = \(a + (n - 1)d \)
Then, 8\(^{th} \) term = \(a + (8 - 1)d \)
= 117 + 7(-13)
= 117 - 91
= 26
\(\therefore \) 8\(^{th} \) term of the A. P. is 26

(vi) Given A. P is 10.0, 10.5, 11.0, 11.5,
First term (a) = 10.0
Common difference (d) = Second term - first term
= 10.5 - 10.0 = 0.5

We know that, \(n^{th} \) term \(a_n = a + (n - 1)d \)
Then, 11\(^{th} \) term \(a_{11} = 10.0 + (11 - 1)0.5 \)
= 10.0 + 10 x 0.5
= 10.0 + 5
=15.0
\(\therefore \) 11\(^{th} \) term of the A. P. is 15.0

(vii) Given A. P is 3/4, 5/4, 7/4, 9/4,
First term (a) = 3/4
Common difference (d) = Second term - first term
= 5/4 - 3/4
= 2/4

We know that, \(n^{th} \) term \(a_n = a + (n - 1)d \)
Then, 9\(^{th} \) term \(a_{9} = a + (9 - 1)d \)
\[\frac{3}{4} + \frac{2}{4} = \frac{3 + 16}{4} = \frac{19}{4} \]

\[\therefore \text{9th term of the A. P. is } \frac{19}{4}. \]

2. (i) Which term of the AP 3, 8, 13, … is 248?
(ii) Which term of the AP 84, 80, 76, … is 0?
(iii) Which term of the AP 4, 9, 14, … is 254?
(iv) Which term of the AP 21, 42, 63, 84, … is 120?
(v) Which term of the AP 121, 117, 113, … is its first negative term?

Solution:

(i) Given A.P. is 3, 8, 13, ……
First term \((a) = 3\)
Common difference \((d) = \text{Second term} - \text{first term} = 8 - 3 = 5\)

We know that, \(n^{th} \text{ term } (a_n) = a + (n - 1)d\)
And, given \(n^{th} \text{ term } a_n = 248\)

\[248 = 3 + (n - 1)5\]
\[248 = -2 + 5n\]
\[5n = 250\]
\[n = \frac{250}{5} = 50\]

\[\therefore 50^{th} \text{ term in the A.P is 248.} \]

(ii) Given A. P is 84, 80, 76, ……..
First term \((a) = 84\)
Common difference \((d) = a_2 - a = 80 - 84 = -4\)

We know that, \(n^{th} \text{ term } (a_n) = a + (n - 1)d\)
And, given nth term is 0

\[0 = 84 + (n - 1) - 4\]
\[84 = +4(n - 1)\]
\[n - 1 = \frac{84}{4} = 21\]
\[n = 21 + 1 = 22\]

\[\therefore 22^{nd} \text{ term in the A.P is 0.} \]

(iii) Given A. P 4, 9, 14, ……..
First term (a) = 4
Common difference (d) = a₂ - a₁
= 9 - 4
= 5
We know that, nth term (aₙ) = a + (n - 1)d
And, given nth term is 254
4 + (n - 1)5 = 254
(n - 1)5 = 250
n - 1 = 250/5 = 50
n = 51
∴ 51th term in the A.P is 254.

(iv) Given A. P 21, 42, 63, 84,
a = 21, d = a₂ - a₁
= 42 - 21
= 21
We know that, nth term (aₙ) = a + (n - 1)d
And, given nth term = 420
21 + (n - 1)21 = 420
(n - 1)21 = 399
n - 1 = 399/21 = 19
n = 20
∴ 20th term is 420.

(v) Given A.P is 121, 117, 113,
Fiati term (a) = 121
Common difference (d) = 117 - 121
= - 4
We know that, nth term aₙ = a + (n - 1)d
And, for some nth term is negative i.e., aₙ < 0
121 + (n - 1) - 4 < 0
121 + 4 - 4n < 0
125 - 4n < 0
4n > 125
n > 125/4
n > 31.25
The integer which comes after 31.25 is 32.
∴ 32nd term in the A.P will be the first negative term.

3.(i) Is 68 a term of the A.P. 7, 10, 13,... ?
(ii) Is 302 a term of the A.P. 3, 8, 13, ?
(iii) Is -150 a term of the A.P. 11, 8, 5, 2, ... ?

Solutions:
(i) Given, A.P. 7, 10, 13,...
Here, a = 7 and d = a₂ - a₁ = 10 - 7 = 3
We know that, n^{th} term $a_n = a + (n - 1)d$

Required to check n^{th} term $a_n = 68$

$a + (n - 1)d = 68$

$7 + (n - 1)3 = 68$

$7 + 3n - 3 = 68$

$3n + 4 = 68$

$3n = 64$

$\Rightarrow n = 64/3$, which is not a whole number.
Therefore, 68 is not a term in the A.P.

(ii) Given, A.P. 3, 8, 13,...

Here, $a = 3$ and $d = a_2 - a_1 = 8 - 3 = 5$

We know that, n^{th} term $a_n = a + (n - 1)d$

Required to check n^{th} term $a_n = 302$

$a + (n - 1)d = 302$

$3 + (n - 1)5 = 302$

$3 + 5n - 5 = 302$

$5n - 2 = 302$

$5n = 304$

$\Rightarrow n = 304/5$, which is not a whole number.
Therefore, 302 is not a term in the A.P.

(iii) Given, A.P. 11, 8, 5, 2, ...

Here, $a = 11$ and $d = a_2 - a_1 = 8 - 11 = -3$

We know that, n^{th} term $a_n = a + (n - 1)d$

Required to check n^{th} term $a_n = -150$

$a + (n - 1)d = -150$

$11 + (n - 1)(-3) = -150$

$11 - 3n + 3 = -150$

$3n = 150 + 14$

$3n = 164$

$\Rightarrow n = 164/3$, which is not a whole number.
Therefore, -150 is not a term in the A.P.

4. How many terms are there in the A.P.?

(i) 7, 10, 13, ..., 43

(ii) -1, -5/6, -2/3, -1/2, ..., 10/3

(iii) 7, 13, 19, ..., 205

(iv) 18, 15½, 13, ..., -47

Solution:

(i) Given, A.P. 7, 10, 13, ..., 43

Here, $a = 7$ and $d = a_2 - a_1 = 10 - 7 = 3$

We know that, n^{th} term $a_n = a + (n - 1)d$

And, given n^{th} term $a_n = 43$
(i) Given, A.P.: -1, -5/6, -2/3, -1/2, ..., 10/3
Here, \(a = -1\) and \(d = a_2 - a_1 = -5/6 - (-1) = 1/6\)
We know that, \(n^{th}\) term \(a_n = a + (n - 1)d\)
And, given \(n^{th}\) term \(a_n = 10/3\)
\[a + (n - 1)d = 10/3\]
\[-1 + (n - 1)(1/6) = 10/3\]
\[-1 + n/6 - 1/6 = 10/3\]
\[n/6 = 10/3 + 1 + 1/6\]
\[n = (20 + 6 + 1)/6\]
\(\Rightarrow n = 27\)
Therefore, there are 27 terms in the given A.P.

(ii) Given, A.P.: 7, 13, 19, ..., 205
Here, \(a = 7\) and \(d = a_2 - a_1 = 13 - 7 = 6\)
We know that, \(n^{th}\) term \(a_n = a + (n - 1)d\)
And, given \(n^{th}\) term \(a_n = 205\)
\[a + (n - 1)d = 205\]
\[7 + (n - 1)(6) = 205\]
\[7 + 6n - 6 = 205\]
\[6n = 205 - 1\]
\[n = 204/6\]
\(\Rightarrow n = 34\)
Therefore, there are 34 terms in the given A.P.

(iii) Given, A.P.: 18, 15½, 13, ..., -47
Here, \(a = 7\) and \(d = a_2 - a_1 = 15½ - 18 = 5/2\)
We know that, \(n^{th}\) term \(a_n = a + (n - 1)d\)
And, given \(n^{th}\) term \(a_n = -47\)
\[a + (n - 1)d = -47\]
\[18 + (n - 1)(-5/2) = -47\]
\[18 - 5n/2 + 5/2 = -47\]
\[36 - 5n + 5 = -94\]
\[5n = 94 + 36 + 5\]
\[5n = 135\]
\(\Rightarrow n = 27\)
Therefore, there are 27 terms in the given A.P.
5. The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.

Solution:

Given,

\[a = 5 \text{ and } d = 3 \]

We know that, \(n^{th} \) term \(a_n = a + (n - 1)d \)

So, for the given A.P. \(a_n = 5 + (n - 1)3 = 3n + 2 \)

Also given, last term = 80

\[3n + 2 = 80 \]

\[3n = 78 \]

\[n = 78/3 = 26 \]

Therefore, there are 26 terms in the A.P.

6. The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.

Solution:

Given,

\[a_6 = 19 \text{ and } a_{17} = 41 \]

We know that, \(n^{th} \) term \(a_n = a + (n - 1)d \)

So,

\[a_6 = a + (6-1)d \]

\[\Rightarrow a + 5d = 19 \text{ (i)} \]

Similarity,

\[a_{17} = a + (17 - 1)d \]

\[\Rightarrow a + 16d = 41 \text{ (ii)} \]

Solving (i) and (ii),

(ii) − (i) \[\Rightarrow a + 16d − (a + 5d) = 41 − 19 \]

\[11d = 22 \]

\[\Rightarrow d = 2 \]

Using \(d \) in (i), we get

\[a + 5(2) = 19 \]

\[a = 19 − 10 = 9 \]

Now, the 40th term is given by \(a_{40} = 9 + (40 - 1)2 = 9 + 78 = 87 \)

Therefore the 40th term is 87.

7. If 9th term of an A.P. is zero, prove its 29th term is double the 19th term.

Solution:

Given,

\[a_9 = 0 \]

We know that, \(n^{th} \) term \(a_n = a + (n - 1)d \)

So, \(a + (9 - 1)d = 0 \Rightarrow a + 8d = 0 \text{(i)} \)

Now,
29th term is given by \(a_{29} = a + (29 - 1)d \)
\[\Rightarrow a_{29} = a + 28d \]
And, \(a_{29} = (a + 8d) + 20d \) \[\text{using (i)} \]
\[\Rightarrow a_{29} = 20d \ldots (ii) \]

Similarly, 19th term is given by \(a_{19} = a + (19 - 1)d \)
\[\Rightarrow a_{19} = a + 18d \]
And, \(a_{19} = (a + 8d) + 10d \) \[\text{using (i)} \]
\[\Rightarrow a_{19} = 10d \ldots (iii) \]

On comparing (ii) and (iii), it’s clearly seen that
\[a_{29} = 2(a_{19}) \]

Therefore, 29th term is double the 19th term.

8. If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.

Solution:

Given,
10 times the 10th term of an A.P. is equal to 15 times the 15th term.
We know that, \(n^{\text{th}} \) term \(a_n = a + (n - 1)d \)
\[\Rightarrow 10(a_{10}) = 15(a_{15}) \]
\[10(a + (10 - 1)d) = 15(a + (15 - 1)d) \]
\[10(a + 9d) = 15(a + 14d) \]
\[10a + 90d = 15a + 210d \]
\[5a + 120d = 0 \]
\[5(a + 24d) = 0 \]
\[a + 24d = 0 \]
a + (25 - 1)d = 0
\[\Rightarrow a_{25} = 0 \]
Therefore, the 25th term of the A.P. is zero.

9. The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.

Solution:

Given,
\(A_{10} = 41 \) and \(a_{18} = 73 \)
We know that, \(n^{\text{th}} \) term \(a_n = a + (n - 1)d \)

So,
\[a_{10} = a + (10 - 1)d \]
\[\Rightarrow a + 9d = 41 \ldots (i) \]

Similarity,
\[a_{18} = a + (18 - 1)d \]
\[\Rightarrow a + 17d = 73 \ldots (ii) \]
Solving (i) and (ii),
(ii) - (i) \Rightarrow
a + 17d - (a + 9d) = 73 - 41
8d = 32
\Rightarrow d = 4
Using d in (i), we get
a + 9(4) = 41
a = 41 - 36 = 5

Now, the 26th term is given by
\[a_{26} = 5 + (26 - 1)4 = 5 + 100 = 105 \]
Therefore the 26th term is 105.

10. In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
Solution:

Given,
24th term is twice the 10th term.
We know that, \(n^{th} \) term \(a_n = a + (n - 1)d \)
\[a_{24} = 2(a_{10}) \]
\[a + (24 - 1)d = 2(a + (10 - 1)d) \]
\[a + 23d = 2(a + 9d) \]
\[a + 23d = 2a + 18d \]
\[a = 5d \ldots (1) \]

Now, the 72nd term can be expressed as
\[a_{72} = a + (72 - 1)d \]
\[= a + 71d \]
\[= a + 5d + 66d \]
\[= a + a + 66d \] [using (1)]
\[= 2(a + 33d) \]
\[= 2(a + (34 - 1)d) \]
\[= 2(a_{34}) \]
\[\Rightarrow a_{72} = 2(a_{34}) \]
Hence, the 72nd term is twice the 34th term of the given A.P.

11. The 26th, 11th and the last term of an A.P. are 0, 3 and -1/5, respectively. Find the common difference and the number of terms.
Solution:

Given,
a_{26} = 0, a_{11} = 3 and a_n (last term) = -1/5 of an A.P.
We know that, \(n^{th} \) term \(a_n = a + (n - 1)d \)
Then,
a_{26} = a + (26 - 1)d
\[\Rightarrow a + 25d = 0 \ldots (1) \]
And,
\[a_{11} = a + (11 - 1)d \]
\[\Rightarrow a + 10d = 3 \quad \ldots \quad (2) \]

Solving (1) and (2),
\[(1) - (2) \Rightarrow a + 25d - (a + 10d) = 0 - 3 \]
\[15d = -3 \]
\[\Rightarrow d = -\frac{1}{5} \]

Using \(d \) in (1), we get
\[a + 25\left(-\frac{1}{5}\right) = 0 \]
\[a = 5 \]

Now, given that the last term \(a_n = -\frac{1}{5} \)
\[\Rightarrow 5 + (n - 1)(-\frac{1}{5}) = -\frac{1}{5} \]
\[5 - \frac{n}{5} + 1 = -1 \]
\[n = 27 \]
Therefore, the A.P has 27 terms and its common difference is \(-\frac{1}{5}\).

12. If the \(n \)th term of the A.P. 9, 7, 5, …. is same as the \(n \)th term of the A.P. 15, 12, 9, … find \(n \).
Solution:

Given,
A.P\(_1\) = 9, 7, 5, …. and A.P\(_2\) = 15, 12, 9, …
And, we know that, \(n \)th term \(a_n = a + (n - 1)d \)

For A.P\(_1\),
\[a = 9, \quad d = \text{Second term} - \text{first term} = 9 - 7 = -2 \]
And, its \(n \)th term \(a_n = 9 + (n - 1)(-2) = 9 - 2n + 2 \]
\[a_n = 11 - 2n \quad \ldots (i) \]

Similarly, for A.P\(_2\)
\[a = 15, \quad d = \text{Second term} - \text{first term} = 12 - 15 = -3 \]
And, its \(n \)th term \(a_n = 15 + (n - 1)(-3) = 15 - 3n + 3 \]
\[a_n = 18 - 3n \quad \ldots (ii) \]

According to the question, it’s given that
\(n \)th term of the A.P\(_1\) = \(n \)th term of the A.P\(_2\)
\[11 - 2n = 18 - 3n \]
\[n = 7 \]
Therefore, the 7th term of the both the A.Ps are equal.

13. Find the 12th term from the end of the following arithmetic progressions:
(i) 3, 5, 7, 9, …. 201
(ii) 3, 8, 13, … , 253
(iii) 1, 4, 7, 10, … , 88
Solution:

In order to find the 12^{th} term for the end of an A.P. which has n terms, it's done by simply finding the $((n - 12) + 1)^{th}$ of the A.P.
And we know, n^{th} term $a_n = a + (n - 1)d$

(i) Given A.P = 3, 5, 7, 9, 201
Here, $a = 3$ and $d = (5 - 3) = 2$
Now, find the number of terms when the last term is known i.e, 201

\[
a_n = a + (n - 1)d = 201
\]
\[
3 + 2n - 2 = 201
\]
\[
2n = 200
\]
\[
n = 100
\]
Hence, the A.P has 100 terms.

So, the 12^{th} term from the end is same as $(100 - 12 + 1)^{th}$ of the A.P which is the 89th term.

\[
a_{89} = 3 + (89 - 1)2
\]
\[
= 3 + 176
\]
\[
= 179
\]
Therefore, the 12^{th} term from the end of the A.P is 179.

(ii) Given A.P = 3, 8, 13, ... , 253
Here, $a = 3$ and $d = (8 - 3) = 5$
Now, find the number of terms when the last term is known i.e, 253

\[
a_n = a + (n - 1)d = 253
\]
\[
3 + 5n - 5 = 253
\]
\[
5n = 255
\]
\[
n = 51
\]
Hence, the A.P has 51 terms.

So, the 12^{th} term from the end is same as $(51 - 12 + 1)^{th}$ of the A.P which is the 40th term.

\[
a_{40} = 3 + (40 - 1)5
\]
\[
= 3 + 195
\]
\[
= 198
\]
Therefore, the 12^{th} term from the end of the A.P is 198.

(iii) Given A.P = 1, 4, 7, 10, , 88
Here, $a = 1$ and $d = (4 - 1) = 3$
Now, find the number of terms when the last term is known i.e, 88

\[
a_n = a + (n - 1)d = 88
\]
\[
1 + 3n - 3 = 88
\]
\[
3n = 90
\]
\[
n = 30
\]
Hence, the A.P has 30 terms.

So, the 12th term from the end is same as (30 – 12 + 1)th of the A.P which is the 19th term.

\[a_{19} = 1 + (19 - 1)3 \]
\[= 1 + 18(3) \]
\[= 1 + 54 \]
\[= 55 \]

Therefore, the 12th term from the end of the A.P is 55.

14. The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.

Solution:

Let’s consider the first term and the common difference of the A.P to be \(a \) and \(d \) respectively.

Then, we know that \(a_n = a + (n - 1)d \)

Given conditions,

4th term of an A.P. is three times the first

Expressing this by equation we have,

\[a_4 = 3(a) \]
\[a + (4 - 1)d = 3a \]
\[3d = 2a \]
\[\Rightarrow a = \frac{3d}{2} \] \(\text{(i)} \)

And,

7th term exceeds twice the third term by 1

\[a_7 = 2(a_3) + 1 \]
\[a + (7 - 1)d = 2(a + (3-1)d) + 1 \]
\[a + 6d = 2a + 4d + 1 \]
\[a = 2d +1 = 0 \] \(\text{(ii)} \)

Using (i) in (ii), we have

\[3d/2 - 2d + 1 = 0 \]
\[3d - 4d + 2 = 0 \]
\[d = 2 \]

So, putting \(d = 2 \) in (i), we get \(a \)

\[\Rightarrow a = 3 \]

Therefore, the first term is 3 and the common difference is 2.

15. Find the second term and the \(n \)th term of an A.P. whose 6th term is 12 and the 8th term is 22.

Solution:

Given, in an A.P

\(a_6 = 12 \) and \(a_8 = 22 \)

We know that \(a_n = a + (n - 1)d \)

So,

\[a_6 = a + (6-1)d = a + 5d = 12 \] \(\text{(i)} \)

And,
a_8 = a + (8-1)d = a + 7d = 22 \ldots \text{(ii)}

Solving (i) and (ii), we have
(ii) - (i) \Rightarrow
a + 7d - (a + 5d) = 22 - 12
2d = 10
\Rightarrow d = 5

Putting d in (i) we get,
a + 5(5) = 12
a = 12 - 25
a = -13

Thus, for the A.P: a = -13 and d = 5
So, the n^{th} term is given by a_n = a + (n-1)d
a_n = -13 + (n-1)5 = -13 + 5n - 5
\Rightarrow a_n = 5n - 18

Hence, the second term is given by a_2 = 5(2) - 18 = 10 - 18 = -8

16. How many numbers of two digit are divisible by 3?
Solution:

The first 2 digit number divisible by 3 is 12. And, the last 2 digit number divisible by 3 is 99.
So, this forms an A.P.
12, 15, 18, 21, \ldots, 99
Where, a = 12 and d = 3
Finding the number of terms in this A.P
\Rightarrow 99 = 12 + (n-1)3
99 = 12 + 3n - 3
90 = 3n
n = 90/3 = 30

Therefore, there are 30 two digit numbers divisible by 3.

17. An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32^{nd} term.
Solution:

Given, an A.P of 60 terms
And, a = 7 and a_{60} = 125
We know that a_n = a + (n - 1)d
\Rightarrow a_{60} = 7 + (60 - 1)d = 125
7 + 59d = 125
59d = 118
\Rightarrow d = 2

So, the 32^{nd} term is given by
a_{32} = 7 + (32 -1)2 = 7 + 62 = 69
18. The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.

Solution:

Given, in an A.P

The sum of 4th and 8th terms of an A.P. is 24
⇒ a_4 + a_8 = 24
And, we know that a_n = a + (n - 1)d

\[a + (4-1)d + [a + (8-1)d] = 24 \]

\[2a + 10d = 24 \]

\[a + 5d = 12 \] …. (i)

Also given that,
the sum of the 6th and 10th terms is 34
⇒ a_6 + a_10 = 34

\[[a + 5d] + [a + 9d] = 34 \]

\[2a + 14d = 34 \]

\[a + 7d = 17 \] …… (ii)

Subtracting (i) form (ii), we have

\[a + 7d - (a + 5d) = 17 - 12 \]

\[2d = 5 \]

\[d = \frac{5}{2} \]

Using d in (i) we get,

\[a + 5(\frac{5}{2}) = 12 \]

\[a = 12 - 25/2 \]

\[a = -\frac{1}{2} \]

Therefore, the first term is \(-\frac{1}{2}\) and the common difference is \(5/2\).

19. The first term of an A.P. is 5 and its 100th term is -292. Find the 50th term of this A.P.

Solution:

Given, an A.P whose

\[a = 5 \] and \[a_{100} = -292 \]

We know that \[a_n = a + (n - 1)d \]

\[a_{100} = 5 + 99d = -292 \]

\[99d = -297 \]

\[d = -3 \]

Hence, the 50th term is

\[a_{50} = a + 49d = 5 + 49(-3) = 5 - 147 = -142 \]
20. Find \(a_{30} - a_{20}\) for the A.P.
(i) -9, -14, -19, -24
(ii) \(a, a+d, a+2d, a+3d, \ldots\)

Solution:

We know that \(a_n = a + (n - 1)d\)
So, \(a_{30} - a_{20} = (a + 29d) - (a + 19d) = 10d\)

(i) Given A.P. -9, -14, -19, -24
Here, \(a = -9\) and \(d = -14 - (-9) = -5\)
So, \(a_{30} - a_{20} = 10(-5) = -50\)

(ii) Given A.P. \(a, a+d, a+2d, a+3d, \ldots\)
So, \(a_{30} - a_{20} = (a + 29d) - (a + 19d) = 10d\)

21. Write the expression \(a_n - a_k\) for the A.P. \(a, a+d, a+2d, \ldots\)
Hence, find the common difference of the A.P. for which
(i) 11th term is 5 and 13th term is 79.
(ii) \(a_{10} - a_5 = 200\)
(iii) 20th term is 10 more than the 18th term.

Solution:

Given A.P. \(a, a+d, a+2d, \ldots\)
So, \(a_n = a + (n-1)d = a + nd - d\)
And, \(a_k = a + (k-1)d = a + kd - d\)
\(a_n - a_k = (a + nd - d) - (a + kd - d) = (n - k)d\)

(i) Given 11th term is 5 and 13th term is 79.
Here \(n = 13\) and \(k = 11\),
\(a_{13} - a_{11} = (13 - 11)d = 2d\)
\(\Rightarrow 79 - 5 = 2d\)
\(d = 37\)

(ii) Given, \(a_{10} - a_5 = 200\)
\(\Rightarrow (10 - 5)d = 200\)
\(5d = 200\)
\(d = 40\)

(iii) Given, 20th term is 10 more than the 18th term.
\(\Rightarrow a_{20} - a_{18} = 10\)
\((20 - 18)d = 10\)
\(2d = 10\)
\(d = 5\)
22. Find \(n \) if the given value of \(x \) is the \(n^{th} \) term of the given A.P.
(i) 25, 50, 75, 100, …; \(x = 1000 \)
(ii) -1, -3, -5, -7, …; \(x = -151 \)
(iii) 5½, 11, 16½, 22, …; \(x = 550 \)
(iv) 1, 21/11, 31/11, 41/11, …; \(x = 171/11 \)

Solution:

(i) Given A.P. 25, 50, 75, 100, …, 1000
Here, \(a = 25 \) \(d = 50 - 25 = 25 \)
Last term \((n^{th} \) term) = 1000
We know that \(a_n = a + (n - 1)d \)
\(\Rightarrow 1000 = 25 + (n - 1)25 \)
1000 = 25 + 25n - 25
\(n = 1000/25 \)
\(n = 40 \)

(ii) Given A.P. -1, -3, -5, -7, …, -151
Here, \(a = -1 \) \(d = -3 - (-1) = -2 \)
Last term \((n^{th} \) term) = -151
We know that \(a_n = a + (n - 1)d \)
\(\Rightarrow -151 = -1 + (n - 1)(-2) \)
-151 = -1 - 2n + 2
\(n = 152/2 \)
\(n = 76 \)

(iii) Given A.P. 5½, 11, 16½, 22, …, 550
Here, \(a = 5½ \) \(d = 11 - (5½) = 5½ = 11/2 \)
Last term \((n^{th} \) term) = 550
We know that \(a_n = a + (n - 1)d \)
\(\Rightarrow 550 = 5½ + (n - 1)(11/2) \)
550 x 2 = 11 + 11n - 11
1100 = 11n
\(n = 100 \)

(iv) Given A.P. 1, 21/11, 31/11, 41/11, 171/11
Here, \(a = 1 \) \(d = 21/11 - 1 = 10/11 \)
Last term \((n^{th} \) term) = 171/11
We know that \(a_n = a + (n - 1)d \)
\(\Rightarrow 171/11 = 1 + (n - 1)10/11 \)
171 = 11 + 10n - 10
\(n = 170/10 \)
\(n = 17 \)

23. The eighth term of an A.P is half of its second term and the eleventh term exceeds one third of its fourth term by 1. Find the 15th term.
Solution:

Given, an A.P in which,
24. Find the arithmetic progression whose third term is 16 and the seventh term exceeds its fifth term by 12.
Solution:

Given, in an A.P
\[a_3 = 16 \text{ and } a_7 = a_5 + 12 \]
We know that \(a_n = a + (n - 1)d \)
\[\Rightarrow a + 2d = 16 \ldots \text{(i)} \]
And,
\[a + 6d = a + 4d + 12 \]
\[2d = 12 \]
\[\Rightarrow d = 6 \]
Using \(d \) in (i), we have
\[a + 2(6) = 16 \]
\[a = 16 - 12 = 4 \]
Hence, the A.P is 4, 10, 16, 22,

25. The 7th term of an A.P. is 32 and its 13th term is 62. Find the A.P.
Solution:

Given,
\[a_7 = 32 \text{ and } a_{13} = 62 \]
From $a_n - a_k = (a + nd - d) - (a + kd - d)$

$= (n - k)d$

$a_{13} - a_7 = (13 - 7)d = 62 - 32 = 30$
$6d = 30$
$d = 5$

Now,
$a_7 = a + (7 - 1)d = 32$
$a + 30 = 32$
$a = 2$

Hence, the A.P is 2, 7, 12, 17, …

26. Which term of the A.P. 3, 10, 17, … will be 84 more than its 13th term?
Solution:

Given, A.P. 3, 10, 17, ….
Here, $a = 3$ and $d = 10 - 3 = 7$
According the question,$a_n = a_{13} + 84$
Using $a_n = a + (n - 1)d$,
$3 + (n - 1)7 = 3 + (13 - 1)7 + 84$
$3 + 7n - 7 = 3 + 84 + 84$
$7n = 168 + 7$
$n = 175/7$
$n = 25$

Therefore, it the 25th term which is 84 more than its 13th term.

27. Two arithmetic progressions have the same common difference. The difference between their 100th terms is 100, what is the difference between their 1000th terms?
Solution:

Let the two A.Ps be A.P1 and A.P2
For A.P1 the first term = a and the common difference = d
And for A.P2 the first term = b and the common difference = d
So, from the question we have
$a_{100} - b_{100} = 100$
$(a + 99d) - (b + 99d) = 100$
$a - b = 100$

Now, the difference between their 1000th terms is,
$(a + 999d) - (b + 999d) = a - b = 100$

Therefore, the difference between their 1000th terms is also 100.
1. Find the value of x for which (8x + 4), (6x – 2) and (2x + 7) are in A.P.
Solution:

Given,
(8x + 4), (6x – 2) and (2x + 7) are in A.P.
So, the common difference between the consecutive terms should be the same.

(6x – 2) – (8x + 4) = (2x + 7) – (6x – 2)
⇒ 6x – 2 – 8x – 4 = 2x + 7 – 6x + 2
⇒ -2x – 6 = -4x + 9
⇒ -2x + 4x = 9 + 6
⇒ 2x = 15
Therefore, x = 15/2

2. If x + 1, 3x and 4x + 2 are in A.P., find the value of x.
Solution:

Given,
x + 1, 3x and 4x + 2 are in A.P.
So, the common difference between the consecutive terms should be the same.

3x – x – 1 = 4x + 2 – 3x
⇒ 2x – 1 = x + 2
⇒ 2x – x = 2 + 1
⇒ x = 3
Therefore, x = 3

3. Show that (a – b)^2, (a^2 + b^2) and (a + b)^2 are in A.P.
Solution:

If (a – b)^2, (a^2 + b^2) and (a + b)^2 have to be in A.P. then,
It should satisfy the condition,
2b = a + c [for a, b, c are in A.P]
Thus,
2 (a^2 + b^2) = (a – b)^2 + (a + b)^2
2 (a^2 + b^2) = a^2 + b^2 – 2ab + a^2 + b^2 + 2ab
2 (a^2 + b^2) = 2a^2 + 2b^2 = 2 (a^2 + b^2)
LHS = RHS
Hence proved.

4. The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
Solution:

Let’s consider the three terms of the A.P. to be a – d, a, a + d
so, the sum of three terms = 21
⇒ \(a - d + a + a + d = 21\)
⇒ \(3a = 21\)
⇒ \(a = 7\)

And, product of the first and 3rd = 2nd term + 6
⇒ \((a - d)(a + d) = a + 6\)
a² - d² = a + 6
⇒ \((7)^2 - d^2 = 7 + 6\)
⇒ \(49 - d^2 = 13\)
⇒ \(d^2 = 49 - 13 = 36\)
⇒ \(d^2 = (6)^2\)
⇒ \(d = 6\)

Hence, the terms are \(7 - 6, 7, 7 + 6 \Rightarrow 1, 7, 13\)

5. Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
Solution:

Let the three numbers of the A.P. be \(a - d, a, a + d\)
From the question,
Sum of these numbers = 27
\(a - d + a + a + d = 27\)
⇒ \(3a = 27\)
a = \(27/3 = 9\)

Now, product of these numbers = 648
\((a - d)(a)(a + d) = 648\)
a(a² - d²) = 648
a² - 648/a = d²
9² - (648/9) = d²
9³ - 648 = 9d²
\(729 - 648 = 9d²\)
81 = 9d²
d² = 9
\(d = 3 \text{ or } -3\)

Hence, the terms are \(9-3, 9 \text{ and } 9+3 \Rightarrow 6, 9, 12 \text{ or } 12, 9, 6 \text{ (for } d = -3\)
\[
\Rightarrow (a - 3d) + (a - d) + (a + d) + (a + 3d) = 50 \\
\Rightarrow a - 3d + a - d + a + d + a + 3d = 50 \\
\Rightarrow 4a = 50 \\
\Rightarrow a = 50/4 = 25/2 \\
\]

And, also given that the greatest number = 4 \times \text{least number} \\
\Rightarrow a + 3d = 4(a - 3d) \\
\Rightarrow a + 3d = 4a - 12d \\
\Rightarrow 4a = a = 3d + 12d \\
\Rightarrow 3a = 15d \\
\Rightarrow a = 5d \\

Using the value of a in the above equation, we have \\
\Rightarrow 25/2 = 5d \\
\Rightarrow d = 5/2 \\

So, the terms will be: \\
(a - 3d) = (25/2 - 3(5/2)), (a - d) = (25/2 - 5/2), (25/2 + 5/2) and (25/2 + 3(5/2)). \\
\Rightarrow 5, 10, 15, 20
Exercise 9.6

1. Find the sum of the following arithmetic progressions:
 (i) 50, 46, 42, ... to 10 terms
 (ii) 1, 3, 5, 7, ... to 12 terms
 (iii) 3, 9/2, 6, 15/2, ... to 25 terms
 (iv) 41, 36, 31, ... to 12 terms
 (v) a + b, a - b, a - 3b, ... to 22 terms
 (vi) (x - y)^2, (x^2 + y^2), (x + y)^2, to 22 terms
 (vii) \(\frac{x - y}{x + y}, \frac{3x - 2y}{x + y'}, \frac{5x - 3y}{x + y}, \) to n terms
 (viii) –26, –24, –22, to 36 terms

Solution:

In an A.P if the first term = a, common difference = d, and if there are n terms. Then, sum of n terms is given by:

\[S_n = \frac{n}{2} [2a + (n - 1)d] \]

(i) Given A.P is 50, 46, 42 to 10 terms.
 First term \((a) = 50 \)
 Common difference \((d) = 46 - 50 = -4 \)
 \(n^{th} \) term \((n) = 10 \)

 Then \(S_{10} = \frac{10}{2} \{2.50 + (10 - 1) - 4\} \)

 \[= 5 \{100 - 9.4}\]

 \[= 5 \{100 - 36\}\]

 \[= S \times 64\]

 \[\therefore S_{10} = 320\]

(ii) Given A.P is, 1, 3, 5, 7,to 12 terms.
 First term \((a) = 1 \)
 Common difference \((d) = 3 - 1 = 2 \)
 \(n^{th} \) term \((n) = 12 \)

 Sum of \(n^{th} \) terms \(S_{12} = \frac{12}{2} \times \{2.1 + (12 - 1).2\} \)

 \[= 6 \times \{2 + 22\} = 6.24\]

 \[\therefore S_{12} = 144\]

(iii) Given A.P. is 3, 9/2, 6, 15/2, ... to 25 terms
 First term \((a) = 3 \)
 Common difference \((d) = \frac{9}{2} - 3 = \frac{3}{2} \)
 Sum of n terms \(S_n \), given \(n = 25 \)
Given expression is 41, 36, 31, …… to 12 terms.
First term (a) = 41
Common difference (d) = 36 - 41 = -5
Sum of n terms \(S_n \), given \(n = 12 \)
\[
S_{12} = \frac{n}{2}(2a + (n - 1)d)
\]
\[
S_{12} = \frac{12}{6}(2 \cdot 41 + 12 - 1) \times -5
\]
\[
= 6(82 + 11 \times (-5))
\]
\[
= 6 \times 27
\]
\[
= 162
\]
\[\therefore S_{12} = 162.\]

(v) \(a + b, a - b, a - 3b, \ldots \) to 22 terms
First term (a) = \(a + b \)
Common difference (d) = \(a - b - a - b = -2b \)
Sum of n terms \(S_n = n/2 \{ 2a(n - 1) \cdot d \} \)
Here \(n = 22 \)
\[
S_{22} = 22/2 \{ 2(a + b) + (22 - 1) \cdot -2b \}
\]
\[
= 11 \{ 2(a + b) - 22b \}
\]
\[
= 11 \{ 2a - 20b \}
\[= 22a - 440b \]
\[\therefore S_{22} = 22a - 440b \]

(vi) \((x - y)^2, (x^2 + y^2), (x + y)^2, \ldots \) to \(n \) terms
First term \((a) = (x - y)^2 \)
Common difference \((d) = x^2 + y^2 - (x - y)^2 \)
\[= x^2 + y^2 - (x^2 + y^2 - 2xy) \]
\[= x^2 + y^2 - x^2 + y^2 + 2xy \]
\[= 2xy \]
Sum of \(n^{th} \) terms \(S_n = \frac{n}{2} \{2a(n - 1). d\} \)
\[= \frac{n}{2} \{2(x - y)^2 + (n - 1). 2xy\} \]
\[= n \{(x - y)^2 + (n - 1)xy\} \]
\[\therefore S_n = n \{(x - y)^2 + (n - 1). xy\} \]

(vii) \(\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}, \ldots \ldots \) to \(n \) terms
First term \((a) = \frac{x - y}{x + y} \)
Common difference \((d) = \frac{3x - 2y}{x + y} - \frac{x - y}{x + y} \)
\[= \frac{3x - 2y - x - y}{x + y} \]
\[= \frac{2x - y}{x + y} \]
Sum of \(n \) terms \(S_n = \frac{n}{2} (2a + (n - 1). d) \)
\[= \frac{n}{2} \left[2 \cdot \frac{x - y}{x + y} + (n - 1) \cdot 2 - \frac{2x - y}{x + y} \right] \]
(viii) Given expression -26, -24, -22, to 36 terms
First term (a) = -26
Common difference (d) = -24 - (-26)
= -24 + 26 = 2
Sum of n terms, \(S_n = \frac{n}{2} \{2a + (n - 1)d\} \) for \(n = 36 \)
\[S_n = \frac{36}{2} \{2(-26) + (36 - 1)2\} \]
= 18[-52 + 70]
= 18x18
= 324
∴ \(S_n = 324 \)

2. Find the sum to \(n \) terms of the A.P. 5, 2, -1, -4, -7, ...
Solution:

Given AP is 5, 2, -1, -4, -7,
Here, \(a = 5 \), \(d = 2 - 5 = -3 \)
We know that,
\(S_n = \frac{n}{2} \{2a + (n - 1)d\} \)
= \(\frac{n}{2} \{2.5 + (n - 1)(-3)\} \)
= \(\frac{n}{2} \{13 - 3n\} \)
∴ \(S_n = \frac{n}{2}(13 - 3n) \)

3. Find the sum of \(n \) terms of an A.P. whose the terms is given by \(a_n = 5 - 6n \).
Solution:

Given nth term of the A.P as \(a_n = 5 - 6n \)
Put \(n = 1 \), we get
\(a_1 = 5 - 6.1 = -1 \)
So, first term (a) = -1
Last term (\(a_n \)) = 5 - 6n = 1
Then, \(S_n = \frac{n}{2}(-1 + 5 - 6n) \)
4. Find the sum of last ten terms of the A.P. : 8, 10, 12, 14, .. , 126
Solution:

Given A.P. 8, 10, 12, 14, .. , 126
Here, \(a = 8\) , \(d = 10 - 8 = 2\)
We know that, \(a_n = a + (n - 1)d\)
So, to find the number of terms
\[126 = 8 + (n - 1)2\]
\[126 = 8 + 2n - 2\]
\[2n = 120\]
\[n = 60\]

Next, let’s find the 51st term
\[a_{51} = 8 + 50(2) = 108\]

So, the sum of last ten terms is the sum of \(a_{51} + a_{52} + a_{53} + \ldots.. + a_{60}\)
Here, \(n = 10\), \(a = 108\) and \(l = 126\)
\[S = \frac{10}{2} [108 + 126]\]
\[= 5(234)\]
\[= 1170\]
Hence, the sum of last ten terms of the A.P is 1170.

5. Find the sum of first 15 terms of each of the following sequences having \(nth\) term as:
(i) \(a_n = 3 + 4n\)
(ii) \(b_n = 5 + 2n\)
(iii) \(x_n = 6 - n\)
(iv) \(y_n = 9 - 5n\)
Solution:

(i) Given an A.P. whose \(nth\) term is given by \(a_n = 3 + 4n\)
To find the sum of the n terms of the given A.P., using the formula,
\[S_n = \frac{n(a + l)}{2}\]
Where, \(a = \) the first term \(l = \) the last term.
Putting \(n = 1\) in the given \(a_n\), we get
\(a = 3 + 4(1) = 3 + 4 = 7\)
For the last term (l), here \(n = 15\)
\(a_{15} = 3 + 4(15) = 63\)

So, \(S_n = \frac{15(7 + 63)}{2}\)
\[= 15 \times 35\]
\[= 525\]
Therefore, the sum of the 15 terms of the given A.P. is \(S_{15} = 525\)

(ii) Given an A.P. whose \(nth\) term is given by \(b_n = 5 + 2n\)
To find the sum of the n terms of the given A.P., using the formula,
\[S_n = \frac{n(a + l)}{2} \]
Where, \(a \) = the first term \(l \) = the last term.

Putting \(n = 1 \) in the given \(b_n \), we get
\[a = 5 + 2(1) = 5 + 2 = 7 \]
For the last term \(l \), here \(n = 15 \)
\[a_{15} = 5 + 2(15) = 35 \]

So,
\[S_n = \frac{15(7 + 35)}{2} \]
\[= 15 \times 21 \]
\[= 315 \]
Therefore, the sum of the 15 terms of the given A.P. is \(S_{15} = 315 \)

(iii) Given an A.P. whose \(n^{th} \) term is given by \(x_n = 6 - n \)
To find the sum of the n terms of the given A.P., using the formula,
\[S_n = \frac{n(a + l)}{2} \]
Where, \(a \) = the first term \(l \) = the last term.

Putting \(n = 1 \) in the given \(x_n \), we get
\[a = 6 - 1 = 5 \]
For the last term \(l \), here \(n = 15 \)
\[a_{15} = 6 - 15 = -9 \]

So,
\[S_n = \frac{15(5 - 9)}{2} \]
\[= 15 \times (-2) \]
\[= -30 \]
Therefore, the sum of the 15 terms of the given A.P. is \(S_{15} = -30 \)

(iv) Given an A.P. whose \(n^{th} \) term is given by \(y_n = 9 - 5n \)
To find the sum of the n terms of the given A.P., using the formula,
\[S_n = \frac{n(a + l)}{2} \]
Where, \(a \) = the first term \(l \) = the last term.

Putting \(n = 1 \) in the given \(y_n \), we get
\[a = 9 - 5(1) = 9 - 5 = 4 \]
For the last term \(l \), here \(n = 15 \)
\[a_{15} = 9 - 5(15) = -66 \]

So,
\[S_n = \frac{15(4 - 66)}{2} \]
\[= 15 \times (-31) \]
\[= -465 \]
Therefore, the sum of the 15 terms of the given A.P. is \(S_{15} = -465 \)

6. Find the sum of first 20 terms the sequence whose \(n^{th} \) term is \(a_n = An + B \).
Solution:
Given an A.P. whose nth term is given by, \(a_n = An + B \)
We need to find the sum of first 20 terms.
To find the sum of the n terms of the given A.P., we use the formula,
\[S_n = \frac{n(a + l)}{2} \]
Where, \(a\) = the first term \(l\) = the last term,
Putting \(n = 1\) in the given \(a_n\), we get
\[a = A(1) + B = A + B \]
For the last term \((l)\), here \(n = 20\)
\[A_{20} = A(20) + B = 20A + B \]
\[S_{20} = \frac{20}{2}[(A + B) + 20A + B) \]
\[= 10[21A + 2B] \]
\[= 210A + 20B \]
Therefore, the sum of the first 20 terms of the given A.P. is 210A + 20B

7. Find the sum of first 25 terms of an A.P whose \(n^{th}\) term is given by \(a_n = 2 - 3n\).
Solution:

Given an A.P. whose \(n^{th}\) term is given by \(a_n = 2 - 3n\)
To find the sum of the \(n\) terms of the given A.P., we use the formula,
\[S_n = \frac{n(a + l)}{2} \]
Where, \(a\) = the first term \(l\) = the last term.
Putting \(n = 1\) in the given \(a_n\), we get
\[a = 2 - 3(1) = -1 \]
For the last term \((l)\), here \(n = 25\)
\[a_{25} = 2 - 3(25) = -73 \]
So,
\[S_n = \frac{25(-1 - 73)/2}{2} \]
\[= 25 \times (-37) \]
\[= -925 \]
Therefore, the sum of the 25 terms of the given A.P. is \(S_{25} = -925\)

8. Find the sum of first 25 terms of an A.P whose \(n^{th}\) term is given by \(a_n = 7 - 3n\).
Solution:

Given an A.P. whose \(n^{th}\) term is given by \(a_n = 7 - 3n\)
To find the sum of the \(n\) terms of the given A.P., we use the formula,
\[S_n = \frac{n(a + l)}{2} \]
Where, \(a\) = the first term \(l\) = the last term.
Putting \(n = 1\) in the given \(a_n\), we get
\[a = 7 - 3(1) = 7 - 3 = 4 \]
For the last term \((l)\), here \(n = 25\)
\[a_{15} = 7 - 3(25) = -68 \]
So,
\[S_n = \frac{25(4 - 68)/2}{2} \]
\[= 25 \times (-32) \]
\[= -800 \]
Therefore, the sum of the 15 terms of the given A.P. is \(S_{25} = -80\)
9. If the sum of a certain number of terms starting from first term of an A.P. is 25, 22, 19, . . ., is 116. Find the last term.

Solution:

Given the sum of the certain number of terms of an A.P. = 116
We know that, \(S_n = \frac{n}{2}[2a + (n − 1)d] \)
Where;
- \(a \) = first term for the given A.P.
- \(d \) = common difference of the given A.P.
- \(n \) = number of terms
So for the given A.P.(25, 22, 19,...)

Here we have, the first term (\(a \)) = 25
The sum of \(n \) terms \(S_n = 116 \)
Common difference of the A.P. \((d) = a_2 - a_1 = 22 - 25 = -3 \)

Now, substituting values in \(S_n \)
\[n = \frac{116}{\frac{1}{2}[50 + (n − 1)(−3)]} \]
\[n = \frac{116}{\frac{1}{2}[53 - 3n]} \]
\[53n - 3n^2 = 116 \times 2 \]
Thus, we get the following quadratic equation,
\[3n^2 - 53n + 232 = 0 \]
By factorization method of solving, we have
\[3n^2 - 24n - 29n + 232 = 0 \]
\[3n(n - 8) - 29(n - 8) = 0 \]
\[(3n - 29)(n - 8) = 0 \]
So, \(3n - 29 = 0 \)
\[n = \frac{29}{3} \]
Also, \(n - 8 = 0 \)
\[n = 8 \]
Since, \(n \) cannot be a fraction, so the number of terms is taken as 8.
So, the term is:
\[a + 7d = 25 + 7(-3) = 25 - 21 = 4 \]
Hence, the last term of the given A.P. such that the sum of the terms is 116 is 4.

10. (i) How many terms of the sequence 18, 16, 14... should be taken so that their sum is zero.
 (ii) How many terms are there in the A.P. whose first and fifth terms are -14 and 2 respectively and the sum of the terms is 40?
 (iii) How many terms of the A.P. 9, 17, 25,... must be taken so that their sum is 636?
 (iv) How many terms of the A.P. 63, 60, 57,... must be taken so that their sum is 693?
 (v) How many terms of the A.P. is 27, 24, 21,... should be taken that their sum is zero?

Solution:

(i) Given AP. is 18, 16, 14, ...
We know that,
\[S_n = \frac{n}{2}[2a + (n − 1)d] \]
Here,
The first term (\(a \)) = 18
The sum of \(n \) terms (\(S_n \)) = 0 (given)
Common difference of the A.P.
\((d) = a_2 - a_1 = 16 - 18 = -2\)
So, on substituting the values in \(S_n\)
\[
0 = \frac{n}{2}[2(18) + (n - 1)(-2)]
\Rightarrow 0 = \frac{n}{2}[36 + (-2n + 2)]
\Rightarrow 0 = \frac{n}{2}[38 - 2n]
\Rightarrow n = 0 \text{ Or, } 38 - 2n = 0
\Rightarrow 2n = 38
\Rightarrow n = 19
\]
Since, the number of terms cannot be zero, hence the number of terms \((n)\) should be 19.

(ii) Given, the first term \((a) = -14\), Fifth term \((a_5) = 2\), Sum of terms \((S_n) = 40\) of the A.P.
If the common difference is taken as \(d\).
Then, \(a_5 = a + 4d\)
\[
\Rightarrow 2 = -14 + 4d
\Rightarrow 2 + 14 = 4d
\Rightarrow 4d = 16
\Rightarrow d = 4
\]
Next, we know that \(S_n = \frac{n}{2}[2a + (n - 1)d]\)
Where; \(a = \) first term for the given A.P.
\(d = \) common difference of the given A.P.
\(n = \) number of terms
Now, on substituting the values in \(S_n\)
\[
\Rightarrow 40 = \frac{n}{2}[2(-14) + (n - 1)(4)]
\Rightarrow 40 = \frac{n}{2}[-28 + (4n - 4)]
\Rightarrow 40 = \frac{n}{2}[-32 + 4n]
\Rightarrow 40(2) = -32n + 4n^2
\]
So, we get the following quadratic equation,
\[
4n^2 - 32n - 80 = 0
\Rightarrow n^2 - 8n + 20 = 0
\]
On solving by factorization method, we get
\[
4n^2 - 10n + 2n + 20 = 0
\Rightarrow n(n - 10) + 2(n - 10) = 0
\Rightarrow (n + 2)(n - 10) = 0
Either, \(n + 2 = 0\)
\Rightarrow n = -2
Or, \(n - 10 = 0\)
\Rightarrow n = 10
Since the number of terms cannot be negative. Therefore, the number of terms \((n)\) is 10.

(iii) Given AP is 9, 17, 25,...
We know that,
\[
S_n = \frac{n}{2}[2a + (n - 1)d]
\]
Here we have,
The first term \((a) = 9\) and the sum of \(n\) terms \((S_n) = 636\)
Common difference of the A.P. \((d) = a_2 - a_1 = 17 - 9 = 8\)
Substituting the values in \(S_n\), we get

\[
636 = \frac{n}{2}[2(9) + (n - 1)(8)]
\]

\[
636 = \frac{n}{2}[18 + 8n - 8]
\]

\[
636(2) = (n)[10 + 8n]
\]

\[
1271 = 10n + 8n^2
\]

Now, we get the following quadratic equation,

\[
8n^2 + 10n - 1272 = 0
\]

On solving by factorisation method, we have

\[
4n^2 - 48n + 53n - 636 = 0
\]

\[
4n(n - 12) - 53(n - 12) = 0
\]

Either \(4n - 53 = 0 \Rightarrow n = 534\)
Or, \(n - 12 = 0 \Rightarrow n = 12\)

Since, the number of terms cannot be a fraction.
Therefore, the number of terms \((n)\) is 12.

(iv) Given A.P. is 63, 60, 57,...
We know that,
\[S_n = \frac{n}{2}[2a + (n - 1)d]\]
Here we have,
the first term \((a) = 63\)
The sum of \(n\) terms \((S_n) = 693\)
Common difference of the A.P. \((d) = a_2 - a_1 = 60 - 63 = -3\)
On substituting the values in \(S_n\) we get

\[
693 = \frac{n}{2}[2(63) + (n - 1)(-3)]
\]

\[
693 = \frac{n}{2}[163 + (-3n + 3)]
\]

\[
693 = \frac{n}{2}[129 - 3n]
\]

\[
693(2) = 129n - 3n^2
\]

Now, we get the following quadratic equation.

\[
3n^2 - 129n + 1386 = 0
\]

\[
n^2 - 43n + 462
\]

Solving by factorisation method, we have

\[
n^2 - 22n - 21n + 462 = 0
\]

\[
n(n - 22) -21(n - 22) = 0
\]

\[
(n - 22) (n - 21) = 0
\]

Either, \(n - 22 = 0 \Rightarrow n = 22\)
Or, \(n - 21 = 0 \Rightarrow n = 21\)
Now, the 22nd term will be \(a_{22} = a_1 + 21d = 63 + 21(-3) = 63 - 63 = 0\)
So, the sum of 22 as well as 21 terms is 693.
Therefore, the number of terms \((n)\) is 21 or 22.
(v) Given A.P. is 27, 24, 21 . . .
We know that,
\[S_n = \frac{n}{2}[2a + (n - 1)d]\]
Here we have, the first term \((a) = 27\)
The sum of \(n\) terms \((S_n) = 0\)
Common difference of the A.P. \((d) = a_2 - a_1 = 24 - 27 = -3\)
On substituting the values in \(S_n\), we get
\[0 = \frac{n}{2}[2(27) + (n - 1)(-3)]\]
\[\Rightarrow 0 = (n)[54 + (n - 1)(-3)]\]
\[\Rightarrow 0 = (n)[54 - 3n + 3]\]
\[\Rightarrow 0 = n[57 - 3n]\]
Further we have, \(n = 0\) Or, \(57 - 3n = 0\)
\[\Rightarrow 3n = 57\]
\[\Rightarrow n = 19\]
The number of terms cannot be zero,
Hence, the numbers of terms \((n)\) is 19.

11. Find the sum of the first
(i) 11 terms of the A.P. : 2, 6, 10, 14, . . .
(ii) 13 terms of the A.P. : -6, 0, 6, 12, . . .
(iii) 51 terms of the A.P. : whose second term is 2 and fourth term is 8.
Solution:

We know that the sum of terms for different arithmetic progressions is given by
\[S_n = \frac{n}{2}[2a + (n - 1)d]\]
Where; \(a\) = first term for the given A.P. \(d\) = common difference of the given A.P. \(n\) = number of terms

(i) Given A.P 2, 6, 10, 14,... to 11 terms.
Common difference \((d) = a_2 - a_1 = 10 - 6 = 4\)
Number of terms \((n) = 11\)
First term for the given A.P. \((a) = 2\)
So,
\[S_{11} = \frac{11}{2}[2(2) + (11 - 1)4]\]
\[= \frac{11}{2}[2(2) + (10)4]\]
\[= \frac{11}{2}[4 + 40]\]
\[= 11 \times 22\]
\[= 242\]
Hence, the sum of first 11 terms for the given A.P. is 242

(ii) Given A.P. -6, 0, 6, 12, ... to 13 terms.
Common difference \((d) = a_2 - a_1 = 6 - 0 = 6\)
Number of terms \((n) = 13\)
First term \((a) = -6\)
So,
\[S_{13} = \frac{13}{2}[2(-6) + (13 -1)6]\]
\[= \frac{13}{2}[-12 + (12)6]\]
\[= \frac{13}{2}[60] = 390\]
Hence, the sum of first 13 terms for the given A.P. is 390

(iii) 51 terms of an AP whose \(a_2 = 2 \) and \(a_4 = 8 \)

We know that, \(a_2 = a + d \)

\[2 = a + d \] ...(2)

Also, \(a_4 = a + 3d \)

\[8 = a + 3d \] ...(2)

Subtracting (1) from (2), we have

\[2d = 6 \]

\[d = 3 \]

Substituting \(d = 3 \) in (1), we get

\[2 = a + 3 \]

\[\Rightarrow a = -1 \]

Given that the number of terms \((n) = 51 \)

First term \((a) = -1 \)

So,

\[S_n = \frac{n}{2}[2a + (n - 1)d] \]

Where; \(a = \) first term for the given A.P. \(d = \) common difference of the given A.P. \(n = \) number of terms

(i) Given, first 15 multiples of 8.

These multiples form an A.P. 8, 16, 24, …… , 120

Here, \(a = 8 \), \(d = 61 - 8 = 53 \) and the number of terms \((n) = 15 \)

Now, finding the sum of 15 terms, we have

\[S_n = \frac{n}{2}[2a + (n - 1)d] \]

\[= \frac{15}{2}[2(8) + (15 - 1)53] \]

\[= \frac{15}{2}[16 + 758] \]

\[= \frac{15}{2}[774] \]

\[= 3774 \]

Hence, the sum of first 51 terms for the A.P. is 3774.

12. Find the sum of

(i) the first 15 multiples of 8

(ii) the first 40 positive integers divisible by (a) 3 (b) 5 (c) 6.

(iii) all 3-digit natural numbers which are divisible by 13.

(iv) all 3-digit natural numbers which are multiples of 11.

Solution:

We know that the sum of terms for an A.P is given by

\[S_n = \frac{n}{2}[2a + (n - 1)d] \]

Where; \(a = \) first term for the given A.P. \(d = \) common difference of the given A.P. \(n = \) number of terms

(i) Given, first 15 multiples of 8.

These multiples form an A.P. 8, 16, 24, …… , 120

Here, \(a = 8 \), \(d = 61 - 8 = 53 \) and the number of terms \((n) = 15 \)

Now, finding the sum of 15 terms, we have
(ii)(a) First 40 positive integers divisible by 3.
Hence, the first multiple is 3 and the 40th multiple is 120.
And, these terms will form an A.P. with the common difference of 3.
Here, First term (a) = 3
Number of terms (n) = 40
Common difference (d) = 3
So, the sum of 40 terms
\[S_{40} = \frac{40}{2} \left[2(3) + (40 - 1)3 \right] \]
\[= 20[6 + (39)3] \]
\[= 20(6 + 117) \]
\[= 20(123) = 2460 \]
Thus, the sum of first 40 multiples of 3 is 2460.

(b) First 40 positive integers divisible by 5
Hence, the first multiple is 5 and the 40th multiple is 200.
And, these terms will form an A.P. with the common difference of 5.
Here, First term (a) = 5
Number of terms (n) = 40
Common difference (d) = 5
So, the sum of 40 terms
\[S_{40} = \frac{40}{2} \left[2(5) + (40 - 1)5 \right] \]
\[= 20[10 + (39)5] \]
\[= 20(10 + 195) \]
\[= 20(205) = 4100 \]
Hence, the sum of first 40 multiples of 5 is 4100.

(c) First 40 positive integers divisible by 6
Hence, the first multiple is 6 and the 40th multiple is 240.
And, these terms will form an A.P. with the common difference of 6.
Here, First term (a) = 6
Number of terms (n) = 40
Common difference (d) = 6
So, the sum of 40 terms
\[
S_{40} = \frac{40}{2}[2(6) + (40 - 1)6] \\
= 20[12 + (39)6] \\
= 20(12 + 234) \\
= 20(246) = 4920
\]
Hence, the sum of first 40 multiples of 6 is 4920.

(iii) All 3 digit natural number which are divisible by 13.
So, we know that the first 3 digit multiple of 13 is 104 and the last 3 digit multiple of 13 is 988.
And, these terms form an A.P. with the common difference of 13.
Here, first term (a) = 104 and the last term (l) = 988
Common difference (d) = 13
Finding the number of terms in the A.P. by, \(a_n = a + (n - 1)d \)
We have,
\[
988 = 104 + (n - 1)13 \\
\Rightarrow 988 = 104 + 13n - 13 \\
\Rightarrow 988 = 91 + 13n \\
\Rightarrow 13n = 897 \\
\Rightarrow n = 69
\]
Now, using the formula for the sum of n terms, we get
\[
S_{69} = \frac{69}{2}[2(104) + (69 - 1)13] \\
= \frac{69}{2}[208 + 884] \\
= \frac{69}{2}[1092] \\
= 69(546) \\
= 37674
\]
Hence, the sum of all 3 digit multiples of 13 is 37674.

(iv) All 3 digit natural number which are multiples of 11.
So, we know that the first 3 digit multiple of 11 is 110 and the last 3 digit multiple of 11 is 990.
And, these terms form an A.P. with the common difference of 11.
Here, first term (a) = 110 and the last term (l) = 990
Common difference (d) = 11
Finding the number of terms in the A.P. by, \(a_n = a + (n - 1)d \)
We get,
\[
990 = 110 + (n - 1)11 \\
\Rightarrow 990 = 110 + 11n - 11 \\
\Rightarrow 990 = 99 + 11n \\
\Rightarrow 11n = 891 \\
\Rightarrow n = 81
\]
Now, using the formula for the sum of n terms, we get
\[
S_{81} = \frac{81}{2}[2(110) + (81 - 1)11]
\]
Hence, the sum of all 3 digit multiples of 11 is 44550.

12. Find the sum:
(i) \(2 + 4 + 6 + \ldots + 200\)
(ii) \(3 + 11 + 19 + \ldots + 803\)
(iii) \((-5) + (-8) + (-11) + \ldots + (-230)\)
(iv) \(1 + 3 + 5 + 7 + \ldots + 199\)
(v) \(\frac{7}{2} + 14 + \ldots + 84\)
(vi) \(34 + 32 + 30 + \ldots + 10\)
(vii) \(25 + 28 + 31 + \ldots + 100\)

Solution:

We know that the sum of terms for an A.P is given by
\[S_n = \frac{n}{2}[2a + (n - 1)d]\]
Where; \(a\) = first term for the given A.P. \(d\) = common difference of the given A.P. \(n\) = number of terms
Or \(S_n = \frac{n}{2}[a + l]\)
Where; \(a\) = first term for the given A.P. \(l\) = last term for the given A.P

(i)
Given series. \(2 + 4 + 6 + \ldots + 200\) which is an A.P
Where, \(a = 2, d = 4 - 2 = 2\) and last term \((a_n = l) = 200\)
We know that, \(a_n = a + (n - 1)d\)
So,
\[200 = 2 + (n - 1)2\]
\[200 = 2 + 2n - 2\]
\[n = 200/2 = 100\]

Now, for the sum of these 100 terms
\[S_{100} = \frac{100}{2}[2 + 200]\]
\[= 50(202)\]
\[= 10100\]
Hence, the sum of terms of the given series is 10100.

(ii)
Given series. \(3 + 11 + 19 + \ldots + 803\) which is an A.P
Where, \(a = 3, d = 11 - 3 = 8\) and last term \((a_n = l) = 803\)
We know that, \(a_n = a + (n - 1)d\)
So,
\[803 = 3 + (n - 1)8\]
\[803 = 3 + 8n - 8\]
\[n = 808/8 = 101\]
Now, for the sum of these 101 terms
\[S_{101} = \frac{101}{2} [3 + 803] \]
\[= 101(806)/2 \]
\[= 101 \times 403 \]
\[= 40703 \]
Hence, the sum of terms of the given series is 40703.

(iii) Given series \((-5) + (-8) + (-11) + \ldots + (-230)\) which is an A.P
Where, \(a = -5, d = -8 - (-5) = -3\) and last term \((a_n = 1) = -230\)
We know that, \(a_n = a + (n - 1)d\)
So,
\[-230 = -5 + (n - 1)(-3)\]
\[-230 = -5 - 3n + 3\]
\[3n = -2 + 230\]
\[n = 228/3 = 76\]
Now, for the sum of these 76 terms
\[S_{76} = \frac{76}{2} [-5 + (-230)] \]
\[= 38 \times (-235) \]
\[= -8930 \]
Hence, the sum of terms of the given series is -8930.

(iv) Given series \(. 1 + 3 + 5 + 7 + \ldots + 199\) which is an A.P
Where, \(a = 1, d = 3 - 1 = 2\) and last term \((a_n = 1) = 199\)
We know that, \(a_n = a + (n - 1)d\)
So,
\[199 = 1 + (n - 1)2\]
\[199 = 1 + 2n - 2\]
\[n = 200/2 = 100\]
Now, for the sum of these 100 terms
\[S_{100} = \frac{100}{2} [1 + 199] \]
\[= 50(200) \]
\[= 10000 \]
Hence, the sum of terms of the given series is 10000.

(v) Given series \(. 7 + 10 \frac{1}{2} + 14 + \ldots + 84\) which is an A.P
Where, \(a = 7, d = 10 \frac{1}{2} - 7 = (21 - 14)/2 = 7/2\) and last term \((a_n = 1) = 84\)
We know that, \(a_n = a + (n - 1)d\)
So,
\[84 = 7 + (n - 1)(7/2)\]
\[168 = 14 + 7n - 7\]
\[n = (168 - 7)/7 = 161/7 = 23\]
Now, for the sum of these 23 terms
\[S_{23} = 23/2 \times [7 + 84] \]
\[= 23(91)/2 \]
\[= 2093/2 \]
Hence, the sum of terms of the given series is 2093/2.

(vi) Given series, 34 + 32 + 30 + \ldots + 10 which is an A.P
Where, \(a = 34 \), \(d = 32 - 34 = -2 \) and last term (\(a_n = l \)) = 10
We know that, \(a_n = a + (n - 1)d \)
So,
\[10 = 34 + (n - 1)(-2) \]
\[10 = 34 - 2n + 2 \]
\[n = (36 - 10)/2 = 13 \]
Now, for the sum of these 13 terms
\[S_{13} = 13/2 \times [34 + 10] \]
\[= 13(44)/2 \]
\[= 13 \times 22 \]
\[= 286 \]
Hence, the sum of terms of the given series is 286.

(vii) Given series, 25 + 28 + 31 + \ldots + 100 which is an A.P
Where, \(a = 25 \), \(d = 28 - 25 = 3 \) and last term (\(a_n = l \)) = 100
We know that, \(a_n = a + (n - 1)d \)
So,
\[100 = 25 + (n - 1)(3) \]
\[100 = 25 + 3n - 3 \]
\[n = (100 - 22)/3 = 26 \]
Now, for the sum of these 26 terms
\[S_{100} = 26/2 \times [24 + 100] \]
\[= 13(124) \]
\[= 1625 \]
Hence, the sum of terms of the given series is 1625.

14. The first and the last terms of an A.P. are 17 and 350 respectively. If the common difference is 9, how many terms are there and what is their sum?
Solution:

Given, the first term of the A.P (\(a \)) = 17
The last term of the A.P (\(l \)) = 350
The common difference (\(d \)) of the A.P. = 9
Let the number of terms be \(n \). And, we know that; \(l = a + (n - 1)d \)
So, \(350 = 17 + (n - 1)9 \)
\[\Rightarrow 350 = 17 + 9n - 9 \]
\[\Rightarrow 350 = 8 + 9n \]
⇒ 350 - 8 = 9n
Thus we get, n = 38
Now, finding the sum of terms
\[S_n = \frac{n}{2}[a + l] \]
\[= \frac{38}{2}(17 + 350) \]
\[= 19 \times 367 \]
\[= 6973 \]
Hence, the number of terms is of the A.P is 38 and their sum is 6973.

15. The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
Solution:

Let’s consider the first term as a and the common difference as d.
Given,
\[a_3 = 7 \quad \text{.... (1)} \]
\[a_7 = 3a_3 + 2 \quad \text{.... (2)} \]
So, using (1) in (2), we get,
\[a_7 = 3(7) + 2 = 21 + 2 = 23 \quad \text{.... (3)} \]
Also, we know that
\[a_n = a + (n - 1)d \]
So, the 3rd term (for n = 3),
\[a_3 = a + (3 - 1)d \]
\[\Rightarrow 7 = a + 2d \quad \text{(Using 1)} \]
\[\Rightarrow a = 7 - 2d \quad \text{.... (4)} \]
Similarly, for the 7th term (n = 7),
\[a_7 = a + (7 - 1)d = 24 = a + 6d = 23 \quad \text{(Using 3)} \]
\[a = 23 - 6d \quad \text{.... (5)} \]
Subtracting (4) from (5), we get,
\[a - a = (23 - 6d) - (7 - 2d) \]
\[\Rightarrow 0 = 23 - 6d - 7 + 2d \]
\[\Rightarrow 0 = 16 - 4d \]
\[\Rightarrow 4d = 16 \]
\[\Rightarrow d = 4 \]
Now, to find a, we substitute the value of d in (4),
\[a = 7 - 2(4) \]
\[\Rightarrow a = 7 - 8 \]
a = -1
Hence, for the A.P. a = -1 and d = 4
For finding the sum, we know that
\[S_n = \frac{n}{2}[2a + (n - 1)d] \]
\[S_{20} = 20/2[2(-1) + (20 - 1)(4)] \]
\[= 10[-2 + (19)(4)] \]
\[= 10[-2 + 76] \]
\[= 10[74] \]
\[= 740 \]
Hence, the sum of first 20 terms for the given A.P. is 740.
16. The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
Solution:

Given,
The first term of the A.P (a) = 2
The last term of the A.P (l) = 50
Sum of all the terms \(S_n = 442\)
So, let the common difference of the A.P. be \(d\).
The sum of all the terms is given as,
\[442 = \left(\frac{n}{2}\right)(2 + 50)\]
\[\Rightarrow 442 = \left(\frac{n}{2}\right)(52)\]
\[\Rightarrow 26n = 442\]
\[\Rightarrow n = 17\]
Now, the last term is expressed as
\[50 = 2 + (17 - 1)d\]
\[\Rightarrow 50 = 2 + 16d\]
\[\Rightarrow 16d = 48\]
\[\Rightarrow d = 3\]
Thus, the common difference of the A.P. is \(d = 3\).

17. If 12\(^{th}\) term of an A.P. is -13 and the sum of the first four terms is 24, what is the sum of first 10 terms?
Solution:

Let us take the first term as \(a\) and the common difference as \(d\).
Given,
\(a_{12} = -13\)
\(S_4 = 24\)
Also, we know that \(a_n = a + (n - 1)d\)
So, for the 12th term
\[a_{12} = a + (12 - 1)d = -13\]
\[\Rightarrow a + 11d = -13\]
\[a = -13 - 11d \quad \ldots \ (1)\]
And we that for sum of terms
\[S_n = \frac{n}{2}[2a + (n - 1)d]\]
Here, \(n = 4\)
\[S_4 = \frac{4}{2}[2(a) + (4 - 1)d]\]
\[\Rightarrow 24 = (2)[2a + (3)(d)]\]
\[\Rightarrow 24 = 4a + 6d\]
\[\Rightarrow 4a = 24 - 6d\]
\[\Rightarrow a = 6 - \frac{6}{4}d \quad \ldots \ (2)\]
Subtracting (1) from (2), we have
Further simplifying for \(d \), we get,

\[0 = 19 + \frac{44d - 6d}{4s} \]

Further simplifying for \(d \), we get,

\[0 = 19 + \frac{38}{4}d \]

\[\Rightarrow -19 = \frac{19}{2} \cdot 2 \]
\[\Rightarrow -19 \times 2 = 19d \]
\[\Rightarrow d = -2 \]

On substituting the value of \(d \) in (1), we find \(a \)

\[a = -13 - 11(-2) \]
\[a = -13 + 22 \]
\[a = 9 \]

Next, the sum of 10 terms is given by

\[S_{10} = \frac{10}{2}[2(9) + (10 - 1)(-2)] \]
\[= (5)[19 + (9)(-2)] \]
\[= (5)(18 - 18) = 0 \]

Thus, the sum of first 10 terms for the given A.P. is \(S_{10} = 0 \).

18. Find the sum of first 22 terms of an A.P. in which \(d = 22 \) and \(a_{22} = 149 \).

Solution:

Let the first term be taken as \(a \).

Given,

\(a_{22} = 149 \) and the common difference \(d = 22 \)

Also, we know that

\[a_n = a + (n - 1)d \]

So, the 22nd term is given by

\[a_{22} = a + (22 - 1)d \]
\[149 = a + (21)(22) \]
\[a = 149 - 462 \]
\[a = -313 \]

Now, for the sum of term

\[S_n = \frac{n}{2}[2a + (n - 1)d] \]

Here, \(n = 22 \)

\[S_{22} = \frac{22}{2}[2(-313) + (22 - 1)(22)] \]
= (11) \(-62 + 462\)
= (11) \(-164\)
= \(-1804\)

Hence, the sum of first 22 terms for the given A.P. is \(S_{22} = -1804\)

19. In an A.P., if the first term is 22, the common difference is \(-4\) and the sum to \(n\) terms is 64, find \(n\).

Solution:

Given that,
\(a = 22\), \(d = -4\) and \(S_n = 64\)

Let us consider the number of terms as \(n\).

For sum of terms in an A.P, we know that
\(S_n = \frac{n}{2}[2a + (n - 1)d]\)

Where; \(a = \text{first term for the given A.P.}\) \(d = \text{common difference of the given A.P.}\) \(n = \text{number of terms}\)

So,
\[S_n = \frac{n}{2}[2(22) + (n - 1)(-4)]\]
\[\Rightarrow 64 = \frac{n}{2}[2(22) + (n - 1)(-4)]\]
\[\Rightarrow 64(2) = n(48 - 4n)\]
\[\Rightarrow 128 = 48n - 4n^2\]

After rearranging the terms, we have a quadratic equation
\[4n^2 - 48n + 128 = 0\]
\[n^2 - 12n + 32 = 0\] [dividing by 4 on both sides]

Solving by factorisation method,
\[n^2 - 8n - 4n + 32 = 0\]
\[n(n - 8) - 4(n - 8) = 0\]
\[(n - 8)(n - 4) = 0\]

So, we get \(n - 8 = 0\) \(\Rightarrow n = 8\)
Or, \(n - 4 = 0\) \(\Rightarrow n = 4\)

Hence, the number of terms can be either \(n = 4\) or 8.

20. In an A.P., if the 5th and 12th terms are 30 and 65 respectively, what is the sum of first 20 terms?

Solution:

Let’s take the first term as \(a\) and the common difference to be \(d\)

Given that,
\(a_5 = 30\) and \(a_{12} = 65\)

And, we know that \(a_n = a + (n - 1)d\)

So,
\[a_5 = a + (5 - 1)d\]
\[30 = a + 4d\]
\[a = 30 - 4d\] (i)
Similarly, \(a_{12} = a + (12 - 1) d \)
\[
65 = a + 11d
\]
\[
a = 65 - 11d (ii)
\]

Subtracting (i) from (ii), we have
\[
a - a = (65 - 11d) - (30 - 4d)
\]
\[
0 = 65 - 11d - 30 + 4d
\]
\[
0 = 35 - 7d
\]
\[
d = 5
\]

Putting \(d \) in (i), we get
\[
a = 30 - 4(5)
\]
\[
a = 10
\]

Thus for the A.P; \(d = 5 \) and \(a = 10 \)

Next, to find the sum of first 20 terms of this A.P., we use the following formula for the sum of \(n \) terms of an A.P.,
\[
S_n = \frac{n}{2}[2a + (n − 1)d]
\]
Where;
\(a = \) first term of the given A.P.
\(d = \) common difference of the given A.P.
\(n = \) number of terms

Here \(n = 20 \), so we have
\[
S_{20} = \frac{20}{2}[2(10) + (20 − 1)(5)]
\]
\[
= (10)\left[20 + (19)(5)\right]
\]
\[
= (10)[20 + 95]
\]
\[
= (10)[115]
\]
\[
= 1150
\]

Hence, the sum of first 20 terms for the given A.P. is 1150

21. Find the sum of first 51 terms of an A.P. whose second and third terms are 14 and 18 respectively.

Solution:

Let’s take the first term as \(a \) and the common difference as \(d \).

Given that,
\(a_2 = 14 \) and \(a_3 = 18 \)

And, we know that \(a_n = a + (n - 1)d \)

So,
\(a_2 = a + (2 - 1)d \)
\(\Rightarrow 14 = a + d \)
\(\Rightarrow a = 14 - d (i) \)

Similarly,
\(a_3 = a + (3 - 1)d \)
\(\Rightarrow 18 = a + 2d \)
\(\Rightarrow a = 18 - 2d (ii) \)
Subtracting (i) from (ii), we have
\[a - a = (18 - 2d) - (14 - d)\]
\[0 = 18 - 2d - 14 + d\]
\[0 = 4 - d\]
\[d = 4\]

Putting \(d\) in (i), to find \(a\)
\[a = 14 - 4\]
\[a = 10\]

Thus, for the A.P. \(d = 4\) and \(a = 10\)

Now, to find sum of terms
\[S_n = \frac{n}{2}[2a + (n - 1)d]\]
Where,
- \(a\) = the first term of the A.P.
- \(d\) = common difference of the A.P.
- \(n\) = number of terms

So, using the formula for \(n = 51\),
\[S_{51} = \frac{51}{2}[2(10) + (51 - 1)(4)]\]
\[= \frac{51}{2}[20 + 40(4)]\]
\[= \frac{51}{2}[220]\]
\[= 51(110)\]
\[= 5610\]

Hence, the sum of the first 51 terms of the given A.P. is 5610.

22. If the sum of 7 terms of an A.P. is 49 and that of 17 terms is 289, find the sum of \(n\) terms.

Solution:

Given,
- Sum of 7 terms of an A.P. is 49
 \[\Rightarrow S_7 = 49\]
- And, sum of 17 terms of an A.P. is 289
 \[\Rightarrow S_{17} = 289\]

Let the first term of the A.P be \(a\) and common difference as \(d\).

And, we know that the sum of \(n\) terms of an A.P is
\[S_n = \frac{n}{2}[2a + (n - 1)d]\]

So,
\[S_7 = 49 = \frac{7}{2}[2a + (7 - 1)d]\]
\[= \frac{7}{2}[2a + 6d]\]
\[= 7[a + 3d]\]
\[\Rightarrow 7a + 21d = 49\]
\[a + 3d = 7 \quad \text{..... (i)}\]

Similarly,
\[S_{17} = \frac{17}{2}[2a + (17 - 1)d]\]
\[= \frac{17}{2}[2a + 16d]\]
\[= 17[a + 8d]\]
\[\Rightarrow 17[a + 8d] = 289\]
R D Sharma Solutions For Class 10 Maths Chapter 9 - Arithmetic Progressions

\[a + 8d = 17 \quad \ldots \quad (ii) \]

Now, subtracting (i) from (ii), we have
\[
a + 8d - (a + 3d) = 17 - 7
\]

\[5d = 10 \]

\[d = 2 \]

Putting \(d \) in (i), we find \(a \)
\[
a + 3(2) = 7
\]

\[a = 7 - 6 = 1 \]

So, for the A.P: \(a = 1 \) and \(d = 2 \)

For the sum of \(n \) terms is given by,
\[
S_n = \frac{n}{2}[2(1) + (n - 1)(2)]
\]

\[
S_n = \frac{n}{2}[2 + 2n - 2]
\]

\[
S_n = \frac{n}{2}[2n]
\]

\[
S_n = n^2
\]

Therefore, the sum of \(n \) terms of the A.P is given by \(n^2 \).

23. The first term of an A.P. is 5, the last term is 45 and the sum is 400. Find the number of terms and the common difference.

Solution:

Sum of first \(n \) terms of an A.P is given by \(S_n = \frac{n}{2}(2a + (n - 1)d) \)

Given,
First term (\(a \)) = 5, last term (\(a_n \)) = 45 and sum of \(n \) terms (\(S_n \)) = 400

Now, we know that
\[
a_n = a + (n - 1)d
\]

\[
\Rightarrow 45 = 5 + (n - 1)d
\]

\[
\Rightarrow 40 = nd - d
\]

\[
\Rightarrow nd - d = 40 \quad \ldots \quad (1)
\]

Also,
\[
S_n = \frac{n}{2}(2(a) + (n - 1)d)
\]

\[
400 = \frac{n}{2}(2(5) + (n - 1)d)
\]

\[
800 = n(10 + nd - d)
\]

\[
800 = n(10 + 40) \quad [\text{using (1)}]
\]

\[\Rightarrow n = 16 \]

Putting \(n \) in (1), we find \(d \)
\[
d - d = 40
\]

\[
16d - d = 40
\]

\[
15d = 40
\]

\[d = \frac{8}{3} \]

Therefore, the common difference of the given A.P. is \(\frac{8}{3} \).

24. In an A.P. the first term is 8, \(n^{th} \) term is 33 and the sum of first \(n \) term is 123. Find \(n \) and the \(d \), the common difference.
Solution:

Given,
The first term of the A.P (a) = 8
The nth term of the A.P (l) = 33
And, the sum of all the terms $S_n = 123$
Let the common difference of the A.P. be d.

So, find the number of terms by

$$123 = \frac{n}{2}(8 + 33)$$
$$123 = \frac{n}{2}(41)$$
$$n = \frac{123 \times 2}{41}$$
$$n = \frac{246}{41}$$
$$n = 6$$

Next, to find the common difference of the A.P. we know that

$$l = a + (n-1)d$$
$$33 = 8 + (6-1)d$$
$$33 = 8 + 5d$$
$$5d = 25$$
$$d = 5$$

Thus, the number of terms is $n = 6$ and the common difference of the A.P. is $d = 5$.

25. In an A.P. the first term is 22, n^{th} term is -11 and the sum of first n term is 66. Find n and the d, the common difference.

Solution:

Given,
The first term of the A.P (a) = 22
The nth term of the A.P (l) = -11
And, sum of all the terms $S_n = 66$
Let the common difference of the A.P. be d.

So, finding the number of terms by

$$66 = \frac{n}{2}[22 + (-11)]$$
$$66 = \frac{n}{2}[22 - 11]$$
$$(66)(2) = n(11)$$
$$6 \times 2 = n$$
$$n = 12$$

Now, for finding d
We know that, $l = a + (n - 1)d$
$$-11 = 22 + (12 - 1)d$$
$$-11 = 22 + 11d$$
$$11d = -33$$
$$d = -3$$

Hence, the number of terms is $n = 12$ and the common difference $d = -3$

26. The first and the last terms of an A.P. are 7 and 49 respectively. If sum of all its terms is 420, find the common difference.
Solution:

Given, First term \((a) = 7\), last term \((a_n) = 49\) and sum of \(n\) terms \((S_n) = 420\)

Now, we know that
\[a_n = a + (n - 1)d\]
\[49 = 7 + (n - 1)d\]
\[43 = nd - d\]
\[nd - d = 42 \quad \text{..... (1)}\]

Next,
\[S_n = \frac{n}{2}[2(7) + (n − 1)d]\]
\[840 = n[14 + nd - d]\]
\[840 = n[14 + 42] \quad \text{[using (1)]}\]
\[840 = 54n\]
\[n = 15 \quad \text{..... (2)}\]

So, by substituting (2) in (1), we have
\[nd - d = 42\]
\[15d - d = 42\]
\[14d = 42\]
\[d = 3\]

Therefore, the common difference of the given A.P. is 3.

27. The first and the last terms of an A.P are 5 and 45 respectively. If the sum of all its terms is 400, find its common difference.

Solution:

Given, First term \((a) = 5\) and the last term \((l) = 45\)
Also, \(S_n = 400\)

We know that, \[a_n = a + (n - 1)d\]
\[45 = 5 + (n - 1)d\]
\[40 = nd - d\]
\[nd - d = 40 \quad \text{..... (1)}\]

Next,
\[S_n = \frac{n}{2}[2(5) + (n − 1)d]\]
\[400 = n[10 + nd - d]\]
\[800 = n[10 + 40] \quad \text{[using (1)]}\]
\[800 = 50n\]
\[n = 16 \quad \text{..... (2)}\]

So, by substituting (2) in (1), we have
\[nd - d = 40\]
\[16d - d = 40\]
\[15d = 40\]
\[d = 8/3\]
Therefore, the common difference of the given A.P. is \(8/3\).

28. The sum of first \(q\) terms of an A.P. is 162. The ratio of its 6\(^{th}\) term to its 13\(^{th}\) term is 1: 2. Find the first and 15\(^{th}\) term of the A.P.

Solution:

Let \(a\) be the first term and \(d\) be the common difference.
And we know that, sum of first \(n\) terms is:
\[S_n = \frac{n}{2}(2a + (n - 1)d)\]
Also, \(n\)th term is given by:
\[a_n = a + (n - 1)d\]

From the question, we have
\[S_q = 162\] and \(a_6 : a_{13} = 1 : 2\)
So,
\[2a_6 = a_{13}\]
\[\Rightarrow 2[a + (6 - 1)d] = a + (13 - 1)d\]
\[\Rightarrow 2a + 10d = a + 12d\]
\[\Rightarrow a = 2d \quad \ldots (1)\]
And,
\[S_9 = 162\]
\[\Rightarrow S_9 = \frac{9}{2}(2a + 9d)\]
\[\Rightarrow 162 = 9/2(2a + 9d)\]
\[\Rightarrow 162 \times 2 = 9[4d + 8d] \quad \text{[from (1)]}\]
\[\Rightarrow 324 = 9 \times 12d\]
\[\Rightarrow d = 3\]
\[\Rightarrow a = 2(3) \quad \text{[from (1)]}\]
\[\Rightarrow a = 6\]
Hence, the first term of the A.P. is 6
For the 15\(^{th}\) term, \(a_{15} = a + 14d = 6 + 14 \times 3 = 6 + 42\)
Therefore, \(a_{15} = 48\)

29. If the 10\(^{th}\) term of an A.P. is 21 and the sum of its first 10 terms is 120, find its \(n\)th term.

Solution:

Let’s consider \(a\) to be the first term and \(d\) be the common difference.
And we know that, sum of first \(n\) terms is:
\[S_n = \frac{n}{2}(2a + (n - 1)d)\]
\[\text{and } a_n = a + (n - 1)d\]

Now, from the question we have
\[S_{10} = 120\]
\[\Rightarrow 120 = 10/2(2a + (10 - 1)d)\]
\[\Rightarrow 120 = 5(2a + 9d)\]
\[\Rightarrow 24 = 2a + 9d \quad \ldots (1)\]
Also given that, \(a_{10} = 21\)
\[\Rightarrow 21 = a + (10 - 1)d\]
\[\Rightarrow 21 = a + 9d \quad \ldots (2)\]
Subtracting (2) from (1), we get
24 - 21 = 2a + 9d - a - 9d
\[\Rightarrow a = 3\]

Now, on putting \(a = 3\) in equation (2), we get
\[3 + 9d = 21\]
\[9d = 18\]
\[d = 2\]

Thus, we have the first term \((a) = 3\) and the common difference \((d) = 2\)

Therefore, the \(n^{th}\) term is given by
\[a_n = a + (n - 1)d = 3 + (n - 1)2\]
\[= 3 + 2n - 2\]
\[= 2n + 1\]

Hence, the \(n^{th}\) term of the A.P is \((a_n) = 2n + 1\).

30. The sum of first 7 terms of an A.P. is 63 and the sum of its next 7 terms is 161. Find the 28th term of this A.P.

Solution:

Let’s take \(a\) to be the first term and \(d\) to be the common difference.

And we know that, sum of first \(n\) terms
\[S_n = \frac{n}{2}(2a + (n - 1)d)\]

Given that sum of the first 7 terms of an A.P. is 63.
\[S_7 = 63\]

And sum of next 7 terms is 161.

So, the sum of first 14 terms = Sum of first 7 terms + sum of next 7 terms
\[S_{14} = 63 + 161 = 224\]

Now, having
\[S_7 = \frac{7}{2}(2a + (7 - 1)d)\]
\[\Rightarrow 63(2) = 7(2a + 6d)\]
\[\Rightarrow 9 \times 2 = 2a + 6d\]
\[\Rightarrow 2a + 6d = 18 \ldots \ldots (1)\]

And,
\[S_{14} = \frac{14}{2}(2a + (14 - 1)d)\]
\[\Rightarrow 224 = 7(2a + 13d)\]
\[\Rightarrow 32 = 2a + 13d \ldots \ldots (2)\]

Now, subtracting (1) from (2), we get
\[\Rightarrow 13d - 6d = 32 - 18\]
\[\Rightarrow 7d = 14\]
\[\Rightarrow d = 2\]

Using \(d\) in (1), we have
\[2a + 6(2) = 18\]
\[2a = 18 - 12\]
\[a = 3\]

Thus, from \(n^{th}\) term
\[\Rightarrow a_{28} = a + (28 - 1)d\]
\[= 3 + 27(2)\]
\[= 3 + 54 = 57\]
Therefore, the 28th term is 57.

31. The sum of first seven terms of an A.P. is 182. If its 4th and 17th terms are in ratio 1: 5, find the A.P.

Solution:

Given that,
\[S_{17} = 182 \]
And, we know that the sum of first \(n \) term is:
\[S_n = \frac{n}{2}(2a + (n - 1)d) \]
So,
\[S_7 = \frac{7}{2}(2a + (7 - 1)d) \]
\[182 \times 2 = 7(2a + 6d) \]
\[364 = 14a + 42d \]
\[26 = a + 3d \]
\[a = 26 - 3d \] ... (1)

Also, it’s given that 4th term and 17th term are in a ratio of 1: 5. So, we have
\[\Rightarrow 5(a_4) = 1(a_{17}) \]
\[\Rightarrow 5(a + 3d) = 1(a + 16d) \]
\[\Rightarrow 5a + 15d = a + 16d \]
\[\Rightarrow 4a = d \] ... (2)

Now, substituting (2) in (1), we get
\[\Rightarrow 4(26 - 3d) = d \]
\[\Rightarrow 104 - 12d = d \]
\[\Rightarrow 104 = 13d \]
\[\Rightarrow d = 8 \]

Putting d in (2), we get
\[\Rightarrow 4a = d \]
\[\Rightarrow 4a = 8 \]
\[\Rightarrow a = 2 \]

Therefore, the first term is 2 and the common difference is 8. So, the A.P. is 2, 10, 18, 26, ...

32. The \(n \)th term of an A.P is given by \((-4n + 15)\). Find the sum of first 20 terms of this A.P.

Solution:

Given,
The \(n \)th term of the A.P = \((-4n + 15)\)
So, by putting \(n = 1 \) and \(n = 20 \) we can find the first ans 20th term of the A.P
\[a = (-4(1) + 15) = 11 \]
And,
\[a_{20} = (-4(20) + 15) = -65 \]
Now, for find the sum of 20 terms of this A.P we have the first and last term.
So, using the formula
\[S_n = \frac{n}{2}(a + 1) \]
\[S_{20} = \frac{20}{2}(11 + (-65)) \]
\[= 10(-54) \]
Therefore, the sum of first 20 terms of this A.P. is -540.

33. In an A.P. the sum of first ten terms is -150 and the sum of its next 10 term is -550. Find the A.P.
Solution:

Let’s take a to be the first term and d to be the common difference.

And we know that, sum of first n terms

$$S_n = \frac{n}{2}(2a + (n - 1)d)$$

Given that sum of the first 10 terms of an A.P. is -150.

$$S_{10} = -150$$

And the sum of next 10 terms is -550.

So, the sum of first 20 terms = Sum of first 10 terms + sum of next 10 terms

$$S_{20} = -150 + -550 = -700$$

Now, having

$$S_{10} = \frac{10}{2}(2a + (10 - 1)d)$$

$$\Rightarrow -150 = 5(2a + 9d)$$

$$\Rightarrow -30 = 2a + 9d$$

$$\Rightarrow 2a + 9d = -30 \text{ ... (1)}$$

And,

$$S_{20} = \frac{20}{2}(2a + (20 - 1)d)$$

$$\Rightarrow -700 = 10(2a + 19d)$$

$$\Rightarrow -70 = 2a + 19d \text{ (2)}$$

Now, subtracting (1) from (2), we get

$$\Rightarrow 19d - 9d = -70 - (-30)$$

$$\Rightarrow 10d = -40$$

$$\Rightarrow d = -4$$

Using d in (1), we have

$$2a + 9(-4) = -30$$

$$2a = -30 + 36$$

$$a = 6/2 = 3$$

Hence, we have $a = 3$ and $d = -4$

So, the A.P is 3, -1, -5, -9, -13,.....

34. Sum of the first 14 terms of an A.P. is 1505 and its first term is 10. Find its 25th term.
Solution

Given,

First term of the A.P is 1505 and

$$S_{14} = 1505$$

We know that, the sum of first n terms is

$$S_n = \frac{n}{2}(2a + (n - 1)d)$$

So,

$$S_{14} = 14/2(2(10) + (14 - 1)d) = 1505$$

$$7(20 + 13d) = 1505$$
20 + 13d = 215
13d = 215 – 20
d = 195/13
d = 15

Thus, the 25th term is given by
\[a_{25} = 10 + (25 - 1)15 \]
\[= 10 + (24)15 \]
\[= 10 + 360 \]
\[= 370 \]

Therefore, the 25th term of the A.P is 370.

35. In an A.P., the first term is 2, the last term is 29 and the sum of the terms is 155. Find the common difference of the A.P.

Solution:

Given,

The first term of the A.P. (a) = 2
The last term of the A.P. (l) = 29
And, sum of all the terms \((S_n) = 155 \)

Let the common difference of the A.P. be d.

So, find the number of terms by sum of terms formula

\[S_n = \frac{n}{2} (a + l) \]
\[155 = \frac{n}{2} (2 + 29) \]
\[155(2) = n(31) \]
\[31n = 310 \]
\[n = 10 \]

Using n for the last term, we have

\[1 = a + (n - 1)d \]
\[29 = 2 + (10 - 1)d \]
\[29 = 2 + (9)d \]
\[29 - 2 = 9d \]
\[9d = 27 \]
\[d = 3 \]

Hence, the common difference of the A.P is d = 3.

36. The first and the last term of an A.P are 17 and 350 respectively. If the common difference is 9, how many terms are there and what is their sum?

Solution:

Given,

In an A.P first term (a) = 17 and the last term (l) = 350
And, the common difference (d) = 9

We know that,
\[a_n = a + (n - 1)d \]
so,
\[a_n = 1 = 17 + (n - 1)9 = 350 \]
\[17 + 9n - 9 = 350 \]
\[9n = 350 - 8 \]
\[n = 342/9 \]
\[n = 38 \]

So, the sum of all the term of the A.P is given by
\[S_n = \frac{n}{2} (a + l) \]
\[= \frac{38}{2} (17 + 350) \]
\[= 19 (367) \]
\[= 6973 \]

Therefore, the sum of terms of the A.P is 6973.

37. Find the number of terms of the A.P. \(-12, -9, -6, \ldots, 21\). If 1 is added to each term of this A.P., then find the sum of all terms of the A.P. thus obtained.

Solution:

Given,
First term, \(a = -12\)
Common difference, \(d = a_2 - a_1 = -9 - (-12)\)
\(\Rightarrow d = 3\)
And, we know that \(n^{th}\) term = \(a_n = a + (n - 1)d\)
\(\Rightarrow 21 = -12 + (n - 1)3\)
\(\Rightarrow 21 = -12 + 3n - 3\)
\(\Rightarrow 21 = 3n - 15\)
\(\Rightarrow 36 = 3n\)
\(\Rightarrow n = 12\)
Thus, the number of terms is 12.

Now, if 1 is added to each of the 12 terms, the sum will increase by 12.

Hence, the sum of all the terms of the A.P. so obtained is
\(\Rightarrow S_{12} + 12 = \frac{12}{2}[a + l] + 12\)
\(= 6[-12 + 21] + 12\)
\(= 6 \times 9 + 12\)
\(= 66\)

Therefore, the sum after adding 1 to each of the terms in the A.P is 66.