
“It seems that if one is working from the point of 
view of getting beauty in one’s equation, 

and if one has really a sound insight, one is on a sure line of progress.”
- Paul Dirac

Chapter

3 Theory of Equations

3.1 Introduction
	 One	of	the	oldest	problems	in	mathematics	is	solving	algebraic	equations,	in	particular,	finding	
the roots of polynomial equations. Starting from Sumerian and Babylonians around 2000 BC (BCE), 
mathematicians and philosophers of Egypt, Greece, India, Arabia, China, and almost all parts of the 
world attempted to solve polynomial equations.

 The ancient mathematicians stated the problems and their solutions entirely 
in terms of words. They attempted particular problems and there was no generality.  
Brahmagupta	was	the	first	to	solve	quadratic	equations	involving	negative	numbers.	
Euclid,	Diophantus,	Brahmagupta,	Omar	Khayyam,	Fibonacci,	Descartes,	and	Ruffini	
were	a	few	among	the	mathematicians	who	worked	on	polynomial	equations.	Ruffini	
claimed	 that	 there	 was	 no	 algebraic	 formula	 to	 find	 the	 solutions	 to	 fifth	 degree	
equations	by	giving	a	lengthy	argument	which	was	difficult	to	follow;	finally	in	1823,	
Norwegian mathematician Abel proved it.

         Suppose that a manufacturing company wants to pack its product into rectangular 
boxes.  It plans to construct the boxes so that the length of the base is six units more 
than the breadth, and the height of the box is to be the average of the length and the 
breadth of the base. The company wants to know all possible measurements of the 
sides	of	the	box	when	the	volume	is	fixed.

 If we let the breadth of the base as x , then the length is x + 6  and its height is x + 3 . Hence the 
volume of the box is x x x( )( )+ +3 6 .	Suppose	the	volume	is	2618	cubic	units,	 then	we	must	have	
x x x3 29 18 2618+ + = .	If	we	are	able	to	find	an	 x satisfying the above equation, then we can construct 
a box of the required dimension.

 We know a circle and a straight line cannot intersect at more than two points.  But how can we 
prove this?  Mathematical equations help us to prove such statements. The circle with centre at origin 
and radius r is represented by the equation x y r2 2 2+ = , in the xy -plane. We further know that a line, 
in the same plane, is given by the equation ax by c+ + = 0 . The points of intersection of the circle and 
the straight line are the points which satisfy both equations. In other words, the solutions of the 
simultaneous equations

x y r2 2 2+ =  and ax by c+ + = 0  

give the points of intersection.  Solving the above system of equations, we can conclude whether they 
touch each other, intersect at two points or do not intersect each other.

Abel
(1802-1829)
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98XII - Mathematics

 There are some ancient problems on constructing geometrical objects using only a compass and 
a ruler (straight edge without units marking).  For instance, a regular hexagon and a regular polygon 
of	17	sides	are	constructible	whereas	a	regular	heptagon	and	a	regular	polygon	of	18	sides	are	not	
constructible. Using only a compass and a ruler certain geometrical constructions, particularly the 
following three, are not possible to construct: 

 • Trisecting an angle (dividing a given angle into three equal angles).

 • Squaring a circle (constructing a square with area of a given circle). [Srinivasa Ramanujan 
has given an approximate solution in his “Note Book”]

 • Doubling a cube (constructing a cube with twice the volume of a given cube).

 These ancient problems are settled only after converting these geometrical problems into 
problems	on	polynomials;	in	fact	these constructions are impossible. Mathematics is a very nice 
tool to prove impossibilities.

When solving a real life problem, mathematicians convert the problem into a mathematical 
problem, solve the mathematical problem using known mathematical techniques, and then convert 
the mathematical solution into a solution of the real life problem. Most of the real life problems, when 
converting into a mathematical problem, end up with a mathematical equation. While discussing the 
problems of deciding the dimension of a box, proving certain geometrical results and proving some 
constructions impossible, we end up with polynomial equations.

In this chapter we learn some theory about equations, particularly about polynomial equations, 
and	 their	 solutions;	we	 study	 some	 properties	 of	 polynomial	 equations,	 formation	 of	 polynomial	
equations with given roots, the fundamental theorem of algebra, and to know about the number of 
positive and negative roots of a polynomial equation. Using these ideas we reach our goal of solving 
polynomial equations of certain types. We also learn to solve some non–polynomial equations using 
techniques developed for polynomial equations.

Learning Objectives

 Upon completion of this chapter, the students will be able to
	 ●	 form polynomial equations satisfying given conditions on roots.
	 ●	 demonstrate the techniques to solve polynomial equations of higher degree.
	 ●	 solve equations of higher degree when some roots are known to be complex or surd, irrational, 

and rational.
	 ●	 find	solutions	to	some	non-polynomial	equations	using	techniques	developed	for	polynomial	

equations.
	 ●	 identify and solve reciprocal equations.
	 ●	 determine the number of positive and negative roots of a polynomial equation using Descartes 

Rule.

Chapter 3 Theory of Equation.indd   98 10-05-2019   16:39:22
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3.2 Basics of Polynomial Equations
3.2.1 Different types of Polynomial Equations
 We already know that, for any non–negative integer n , a polynomial of degree n in one variable 
x is an expression given by

 P ≡ P(x)= a x a x a x an
n

n
n+ + + +−

−
1

1
1 0 	 ...	(1)

where ar ∈  are constants, r n= 0 1 2, , , ,  with an ¹ 0 . The variable x  is real or complex.

 When	all	 the	coefficients	of	 a	polynomial	P are real, we say “P is a polynomial over  ”. 
Similarly we use terminologies like “P is a polynomial over  ”, “P is a polynomial over  ”, and 
P is a polynomial over  ”.

 The function P	defined	by	P x a x a x a x an
n

n
n( ) = + + + +−

−
1

1
1 0   is called a polynomial function. 

The equation

 a x a x a x an
n

n
n+ + + + =−

−
1

1
1 0 0  ... (2)

is called a polynomial equation. 

 If  a c a c a c an
n

n
n+ + + + =−

−
1

1
1 0 0 for some c∈ , then c is called a zero of the polynomial (1)	

and root or solution of the polynomial equation (2).

 If c is a root of an equation in one variable x, we write it as“ x c=  is a root”. The constants ar are 

called coefficients. The	coefficient an is called the leading coefficient and the term a xn
n  is called the 

leading term. The	coefficients	may	be	any	number,	real	or	complex.		The	only	restriction	we	made	is	
that	 the	 leading	 coefficient an is	 nonzero.	A	polynomial	with	 the	 leading	 coefficient	 1	 is	 called	 a	

monic polynomial.

Remark: 
 We note the following:
 •	 Polynomial	functions	are	defined	for	all	values	of x .

 • Every nonzero constant is a polynomial of degree 0 .

 • The constant 0 is also a polynomial called the zero polynomial;	its	degree	is	not	defined.

 • The degree of a polynomial is a nonnegative integer.

 •	 The	zero	polynomial	is	the	only	polynomial	with	leading	coefficient0 .

 • Polynomials of degree two are called quadratic polynomials.

 • Polynomials of degree three are called cubic polynomials.
 • Polynomial of degree four are called quartic polynomials.

 It is customary to write polynomials in descending powers of x . That is, we write polynomials 

having	the	term	of	highest	power	(leading	term)	as	the	first	term	and	the	constant	term	as	the	last	term.  

 For instance, 2 3 4 5x y z+ + =  and 6 7 8 92 2 3x x y z+ + =  are equations in three variables  
x , y , z ;	 x x2 4 5 0− + =  is an equation in one variable x. In the earlier classes we have solved 
trigonometric equations, system of linear equations, and some polynomial equations.
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	 We	know	that	3	is	a		zero	of	the	polynomial	 x x2 5 6− + 	and	3	is	a	root	or	solution	of	the	equation	

x x2 5 6 0− + = . We note that cos sinx x=  and cos sinx x+ =1  are also equations in one variable x. 
However, cos sinx x−  and cos sinx x+ −1  are not polynomials and hence cos sinx x=  and 
cos sinx x+ =1  are not “polynomial equations”. We are going to consider only “polynomial equations” 

and equations which can be solved using polynomial equations in one variable.

 We  recall that sin cos2 2 1x x+ =  is an identity on  , while sin cosx x+ =1  and sin cos3 3 1x x+ =  

are equations.

	 It	is	important	to	note	that	the	coefficients	of	a	polynomial	can	be	real	or	complex	numbers,	but	

the exponents must be nonnegative integers. For instance, the expressions 3 12x− +  and 5 1
1
2x +  are 

not polynomials. We already learnt about polynomials and polynomial equations, particularly about 
quadratic equations.  In this section let us quickly recall them and see some more concepts.

3.2.2  Quadratic Equations
 For the quadratic equation ax bx c2 + + =0, b ac2 4-  is called the discriminant and it is usually 

denoted by D . We know that − +b
a

∆
2

and − −b
a

∆
2

are roots of the ax bx c2 0+ + = . The two roots 

together are usually written as − ± −b b ac
a

2 4
2

. It is unnecessary to emphasize that a ¹ 0 , since by 

saying that ax bx c2 + +  is a quadratic polynomial, it is implied that a ¹ 0 .

 We also learnt that ∆ = 0  if, and only if, the roots are equal. When a b c, ,  are real, we know
 • ∆ > 0 if, and only if, the roots are real and distinct

 • ∆ < 0 if, and only if, the quadratic equation has no real roots. 

3.3 Vieta’s  Formulae and Formation of Polynomial Equations
 Vieta's	formulae	relate	the	coefficients	of	a	polynomial	to	sums	and	products	of	its	roots.	Vieta	
was a French mathematician whose work on polynomials paved the way for modern algebra.

3.3.1 Vieta’s formula for Quadratic Equations
Let α  and β  be the roots of the quadratic equation ax bx c2 0+ + = . Then

ax bx c2 + + = a x x ax a x a−( ) −( ) = − +( ) + ( ) =α β α β αβ2 0 .

Equating	the	coefficients	of	like	powers,	we	see	that

α β+ =
−b
a

 and αβ =
c
a

.

 
Soa quadratic equation whose roots are α  and β is x x2 0− + + =( )α β αβ ;	that	is, a quadratic 

equation with given roots is, 

  x2  −	(sum	of	the	roots) x +  product	of	the	roots	=	0.	 ...	(1)
Note
 The	indefinite	article	a  is used in the above statement. In fact, if P x( ) = 0  is a quadratic equation 
whose roots are α and β , then cP x( )  is also a quadratic equation with roots α  and β  for any  
non-zero constant c.
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 In	 earlier	 classes,	 using	 the	 above	 relations	between	 roots	 and	 coefficients	we	 constructed	 a	
quadratic equation, having α and β as	roots.	In	fact,	such	an	equation	is	given	by	(1).	For	instance,	a 
quadratic	equation	whose	roots	are	3	and	4	is	given	by	 x x2 7 12 0− + = .
 Further we construct new polynomial equations whose roots are functions of the roots of a given 
polynomial	equation;	in	this	process	we	form	a	new	polynomial	equation	without	finding	the	roots	of	
the given polynomial equation.  For instance, we construct a polynomial equation by increasing the 
roots of a given polynomial equation by two as given below.
Example 3.1
 If α  and β  are the roots of the quadratic equation17 43 73 02x x+ − = , construct a quadratic 
equation whose roots are α + 2and β + 2 . 
Solution
 Since α and β  are the roots of 17 43 73 02x x+ − = , we have α β+ =

−43
17

 and αβ =
−73
17

.

 We wish to construct a quadratic equation with roots areα + 2and β + 2 .Thus, to construct such 

a quadratic equation, calculate, 
   the sum of the roots = α β+ + 4  = − +

43
17

4  = 25
17

      and 

   the product of the roots = αβ α β+ + +2 4( )  = −
+

−





 +

73
17

2 43
17

4  = −91
17

. 

 Hence a quadratic equation with required roots is x x2 25
17

91
17

− −  =  0 .

	 Multiplying	this	equation	by	17,	gives	17 25 912x x− −  =  0

which is also a quadratic equation having roots α + 2and β + 2 .

Example 3.2
 If α  and β  are the roots of the quadratic equation 2 7 13 02x x− + = , construct a quadratic 

equation whose roots are α 2 and β 2 .

Solution
 Since α  and β  are the roots of the quadratic equation, we have α β+  =  7

2
 and αβ =

13
2

.

 
Thus, to construct a new quadratic equation,

   Sum of the roots =  α β α β αβ2 2 2 2 3
4

+ = + − =
−( ) .

   Product of the roots =  α β αβ2 2 2 169
4

= ( ) =  

  Thus a required quadratic equation is x x2 3
4

169
4

0+ + = . From this we see that

 4 3 1692x x+ +  =  0

 is a quadratic equation with roots α 2 and β 2 .

Remark
	 In	Examples	3.1	and	3.2,	we	have	computed	 the	sum	and	 the	product	of	 the	 roots	using	 the	
known α β+ and αβ . In this way we can construct quadratic equation with desired roots, provided 
the sum and the product of the roots of a new quadratic equation can be written using the sum and the 
product of the roots of the given quadratic equation. We note that we have not solved the given 
equation;	we	do	not	know	the	values	of	α  and β  even after completing the task.
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3.3.2 Vieta’s formula for Polynomial Equations
 What we have learnt for quadratic polynomial, can be extended to polynomials of higher degree. 
In	this	section	we	study	the	relations	of	the	zeros	of	a	polynomial	of	higher	degree	with	its	coefficients.	
We also learn how to form polynomials of higher degree when some information about the zeros 
are known. In this chapter, we use either zeros of a polynomial of degree n or roots of polynomial 
equation of degree n .

3.3.2 (a) The Fundamental Theorem of Algebra
 If a  is a root of a polynomial equationP x( ) = 0 , then ( )x a−  is a factor ofP x( ) . So,  

deg ( ( ))P x ≥1 . If a and b  are roots of P x( ) = 0  then ( ) ( )x a x b− −  is a factor of P x( ) and hence deg

( ( ))P x ≥ 2 . Similarly if P x( ) = 0  has n roots, then its degree must be greater than or equal to n. In 
other words, a polynomial equation of degree n cannot have more than n  roots.

 In earlier classes we have learnt about “multiplicity”. Let us recall what we mean by “multiplicity”. 
We know if ( )x a k−  is a factor of a polynomial equation P x( ) = 0  and ( )x a k− +1 is not a factor of the 

polynomial equation, P x( ) = 0 , then a  is called a root of multiplicity k .	For	instance,	3	is	a	root	of	

multiplicity 2 for the equation x x2 6 9 0− + = and x x x3 27 159 9 0− + − = . Though we are not going to 

use	complex	numbers	as	coefficients,	it	is	worthwhile	to	mention	that	the	imaginary	number	 2+ i  is 

a root of multiplicity 2 for the polynomials x i x i2 4 2 3 4 0− + + + =( ) and x x x x4 3 28 26 40 25 0− + − + = .

If a  is a root of multiplicity 1 for a polynomial equation, then a  is called a simple root of the 
polynomial equation.

 If P x( ) = 0  has n roots counted with multiplicity, then also, we see that its degree must be 

greater than or equal to n . In other words, “a polynomial equation of degree n  cannot have more than 

n  roots, even if the roots are counted with their multiplicities”. 

 One of the important theorems in the theory of equations is the fundamental theorem of algebra. 
As the proof is beyond the scope of the Course, we state it without proof.

Theorem 3.1 (The Fundamental Theorem of Algebra)
 Every polynomial equation of degree n ≥ 1  has at least one root in  .

 Using this, we can prove that a polynomial equation of degree n  has at least n   roots in   when the 
roots are counted with their multiplicities. This statement together with our discussion above says that 

a polynomial equation of degree n  has exactly n  roots in   
when the roots are counted with their multiplicities.

  Some authors state this statement as the fundamental theorem of algebra. 

3.3.2(b) Vieta’s Formula 
(i) Vieta’s Formula for Polynomial equation of degree 3
 Now we obtain these types of relations to higher degree polynomials. Let us consider a general 
cubic equation
   ax bx cx d3 2+ + +  =  0 .
 By the fundamental theorem of algebra, it has three roots. Let α , β , and γ be the roots. Thus we 

have
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Theory of Equations103

   ax bx cx d3 2+ + +  =  a x x x( )( )( )− − −α β γ  

 Expanding the right hand side, gives

ax a x a x a3 2− + + + + + −( ) ( ) ( )α β γ αβ βγ γα αβγ .

 Comparing	the	coefficients	of	like	powers,	we	obtain

   α β γ+ +  =  −b
a

,  αβ βγ γα+ + =
c
a

 and αβγ =
−d
a

.

	 Since	 the	degree	of	 the	polynomial	equation	 is	3,	we	have	 a ¹ 0  and hence division by a is 

meaningful. If a monic cubic polynomial has roots α , β ,  and γ , then

	 coefficient	of		 x2 =  − + +( )α β γ ,

	 coefficient	of	 x  =  αβ βγ γα+ + , and 

 constant term =  −αβγ .

(ii) Vieta’s Formula for Polynomial equation of degree n > 3
 The same is true for higher degree monic polynomial equations as well. If a monic polynomial 
equation  of degree n has roots α α α1 2, ,..., n , then

coefficient	of xn−1  =  
1å  =  −∑α1

coefficient	of xn−2  = 
2å  = α α1 2∑

coefficient	of xn−3  =  
3å  =  −∑α α α1 2 3

coefficient	of x  =  ∑ −n 1  =  −( ) −
−∑1 1

1 2 1
n

nα α α...

coefficient	of x0 =  constant term =  
nå  =  −( )1 1 2

n
nα α α...

where α∑ 1
 denotes the sum of all roots, α α∑ 1 2  denotes the sum of product of all roots taken two at 

a time, α α α∑ 1 2 3  denotes the sum of product of all roots taken three at a time, and so on. If  α β γ, , ,

and δ  are the roots of a quartic equation, then α∑ 1
is written as  α∑ , α α∑ 1 2  is written as αβ∑

and so on. Thus we have,

α α β γ δ

αβ αβ αγ αδ βγ βδ γδ

αβγ αβγ αβδ αγδ βγδ

αβγδ α

∑
∑
∑
∑

= + + +

= + + + + +

= + + +

= ββγδ
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 When the roots are available in explicit numeric form, then also we use these convenient 
notations. We have to be careful when handling roots of higher multiplicity.  For instance, if the roots 
of a cubic	equation	are	1,	2,	2,	then	 α∑ = 5 and αβ = × + × + × =∑ ( ) ( ) ( )1 2 1 2 2 2 8 .

 From the above discussion, we note that for a monic polynomial equation, the sum of the roots 
is	the	coefficient	of	 xn−1 multiplied by −( )1  and the product of the roots is the constant term multiplied 

by −( )1 n .

Example 3.3
 If α , β, and γ  are the roots of the equation x px qx r3 2 0+ + + = ,	find	the	value	of	 1

βγ∑  in 

terms	of	the	coefficients.

Solution
 Since α , β , and γ  are the roots of the equation x px qx r3 2 0+ + + = , we have

   1å α β γ+ +  =  − p  and  3å αβγ = −r .
 Now

   1
βγ∑   =  1 1 1

βγ γα αβ
α β γ

αβγ
+ + =

+ +
=

−
−

=
p
r

p
r

 .

3.3.2 (c) Formation of Polynomial Equations with given Roots

 We have constructed quadratic equations when the roots are known.  Now we learn how to form 
polynomial	equations	of	higher	degree	when	roots	are	known.	How	do	we	find	a	polynomial	equation	
of degree n  with roots α α α1 2, , , n ? One way of writing a polynomial equation is multiplication of 
the factors. That is

x x x x n−( ) −( ) −( ) −( ) =α α α α1 2 3 0

is a polynomial equation with roots α α α1 2, , , n .  But it is not the usual way of writing a polynomial 
equation.  We have to write the polynomial equation in the standard form which involves more 
computations.	But	by	using	the	relations	between	roots	and	coefficients,	we	can	write	the	polynomial	
equation	directly;	moreover,	it	is	possible	to	write	the	coefficient	of	any	particular	power	of	 x without 
finding	the	entire	polynomial	equation.

 A cubic polynomial equation whose roots are α , β , and γ is

x x x3 2 0− + +( ) + + +( ) − =α β γ αβ βγ γα αβγ .

A polynomial equation of degree n with roots α α α1 2, , , n is given by

x x x xn n n n n
n− ( ) + ( ) − ( ) + + −( ) =∑ ∑ ∑− − −α α α α α α α α α1

1
1 2

2
1 2 3

3
1 21 0 

where, α α α α α α1 1 2 1 2 3∑ ∑ ∑, , , 	are	as	defined	earlier.

			For	instance,	a	polynomial	equation	with	roots	1,	−2 ,	and	3	is	given	by

x x x3 21 2 3 1 2 2 3 3 1 1 2 3 0− − +( ) + × −( ) + −( )× + ×( ) − × −( )× =

which,	on	simplification,	becomes	 x x x3 22 5 6 0− − + = . It is interesting to verify that the expansion 

of x x x−( ) +( ) −( ) =1 2 3 0 is x x x3 22 5 6 0− − + = .
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Example 3.4
 Find the sum of the squares of the roots of ax bx cx dx e4 3 2+ + + +  =  0 , a ≠ 0  

Solution
 Let  α β γ, , ,  and δ  be the roots of  ax bx cx dx e4 3 2+ + + +  =  0 .

Then, we get 
  å1  =  α β γ δ+ + + = −

b
a

, 

  å2  =  αβ αγ αδ βγ βδ γδ+ + + + + =
c
a

,

  å3  =  αβγ αβδ αγδ βγδ+ + + = −
d
a

,

  å4  =  αβγδ =
e
a

.

 We have to find  α β γ δ2 2 2 2+ + +  .

 Applying the algebraic identity

  ( ) ( )a b c d a b c d ab ac ad bc bd cd+ + + ≡ + + + + + + + + +2 2 2 2 2 2 ,

we get   
  α β γ δ2 2 2 2+ + +  =  ( ) ( )α β γ δ αβ αγ αδ βγ βδ γδ+ + + − + + + + +2 2

   =  −





 − 








b
a

c
a

2

2

   =  
b ac
a

2

2

2−
.

Example 3.5  
Find the condition that the roots of  cubic equation x ax bx c3 2+ + +  = 0  are in the ratio p q r: :  . 

Solution 
 Since roots are in the ratio p q r: : , we can assume the roots as p qλ λ,  and rλ . 

 Then, we get  
  å1  =  p q rλ λ λ+ + = −a ,	 	….(1)

  å2  =  ( )( ) ( )( ) ( )( )p q q r r pλ λ λ λ λ λ+ + = b ,                             ….(2)

  å3  =  ( )( )( )p q rλ λ λ = −c ,	 																																																							….(3)

Now, we get 
                         ( )1  ⇒ λ =  −

+ +
a

p q r
	 																																																																						….(4)																																												

                         ( )3 ⇒ λ3 = −
c
pqr

                                                                              …..(5)

Substituting	(4)	in	(5),	we	get	

                                        −
+ +











a
p q r

3

= −
c
pqr

⇒ pqra3 = c p q r( )+ + 3 .

Example 3.6
 Form the equation whose roots are the squares of the roots of the cubic equation  
 x ax bx c3 2+ + +  =  0 .  
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Solution 
 Let  α β, , and γ  be the roots of  x ax bx c3 2+ + +  =  0 .

 Then, we get 
  å1  =  α β γ+ + = −a ,		 ….(1)

  å2  =  αβ βγ γα+ + = b , ….(2)

  å3  =  αβγ = −c .	 ….(3)

We have to form the equation whose roots are α β2 2, , and γ 2 . 
Using	(1),	(2)	and	(3),	we	find	the	following:
                    å1  =  α β γ2 2 2+ + = ( ) ( )α β γ αβ βγ γα+ + − + +2 2 = ( ) ( )− −a b2 2  = a b2 2− ,

  å2  =  α β β γ γ α2 2 2 2 2 2+ +  = ( ) (( )( ) ( )( ) ( )( ))αβ βγ γα αβ βγ βγ γα γα αβ+ + − + +2 2

   =  ( ) ( )αβ βγ γα αβγ β γ α+ + − + +2 2 = ( ) ( )( )b c a2 2− − − = b ca2 2−

  å3  =  α β γ2 2 2 = ( )αβγ 2 = ( )−c 2 = c2 .

 Hence, the required equation is  

 x x x3 2 2 2 2 2 2 2 2 2 2 2 2 2− + +( ) + + +( ) −α β γ α β β γ γ α α β γ  =0.

 That is,  x a b x b ca x c3 2 2 2 22 2− −( ) + −( ) − =0.

Example 3.7
 If p is real, discuss the nature of the roots of the equation 4 4 2 02x px p+ + + = , in terms of p .
Solution
 The discriminant ∆ =( ) − ( ) +( ) = − −( ) = +( ) −( )4 4 4 2 16 2 16 1 22 2p p p p p p . So, we get

   ∆ < 0  if − < <1 2p

   ∆ = 0  if p = −1 or p = 2

   ∆ > 0  if −∞ < < −p 1 or 2 < < ∞p
Thus the given polynomial has 
   imaginary roots if  − < <1 2p ;	
   equal real roots  if p = −1 or p = 2 ;	
   distinct real roots  if −∞ < < −p 1 or  2 < < ∞p  .    

EXERCISE 3.1
	 1.	 If	the	sides	of	a	cubic	box	are	increased	by	1,	2,	3	units	respectively	to	form	a	cuboid,	then	

the volume is increased by 52 cubic units. Find the volume of the cuboid.

 2. Construct a cubic equation with roots
   (i) 1, 2 , and 3  (ii) 1,1, and −2  (iii) 2 1

2
, and 1.

	 3. If α , β  and γ  are the roots of the cubic equation x x x3 22 3 4 0+ + + = , form a cubic equation 

whose roots are
   (i) 2α , 2β , 2γ  (ii) 1

α
, 1
β

, 1
γ

 (iii) −α , −β , −γ

	 4. Solve the equation 3 16 23 6 03 2x x x− + − = 	if	the	product	of	two	roots	is	1.	

 5. Find the sum of squares of roots of the equation 2 8 6 3 04 3 2x x x− + − = . 
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 6. Solve the equation x x x3 29 14 24 0− + + =  if it is given that two of its roots are in the  
ratio 3 2: .

	 7. If α β, , and γ are the roots of the polynomial equation ax bx cx d3 2 0+ + + = ,	find	the	

value of α
βγ∑ 	in	terms	of	the	coefficients.

	 8. If α β γ, , , and δ  are the roots of the polynomial equation 2 5 7 8 04 3 2x x x+ − + = 	,	find	a	

quadratic equation	with	integer	coefficients	whose	roots	are	α β γ δ+ + +   and αβγδ .

 9. If p and q are the roots of the equation lx nx n2 0+ + = , show that 
p
q

q
p

n
l

+ + = 0 . 

	 10. If  the equations x px q2 0+ + =   and x p x q2 0+ ′ + ′ = have a common root, show that it must 

be equal to pq p q
q q
′ ′

′
−
−

  or    q q
p p

−
−

′
′

.

	 	11.	Formalate	into	a	mathematical	problem	to	find	a	number	such	that	when	its	cube	root	is	added	
to it, the result is 6 .

	 12.	 	A	12	metre	tall	tree	was	broken	into	two	parts.	It	was	found	that	the	height	of	the	part	which	
was left standing was the cube root of the length of the part that was cut away. Formulate this 
into	a	mathematical	problem	to	find	the	height	of	the	part	which	was	cut	away.

3.4  Nature of Roots and Nature of Coefficients of Polynomial Equations
3.4.1 Imaginary Roots
	 For	a	quadratic	equation	with	real	coefficients,	if	α β+ i  is a root, then α β− i is also a root. In 
this section we shall prove that this is true for higher degree polynomials as well. 
 We now prove one of the very important theorems in the theory of equations.

Theorem 3.2 (Complex Conjugate Root Theorem)

 If a complex number z0 	is	a	root	of	a	polynomial	equation	with	real	coefficients,	then	its	complex 

conjugate z0 is also a root. 

Proof
 Let P x a x a x a x an

n
n

n
o( ) = + + + + =−

−
1

1
1 0 	 be	 a	 polynomial	 equation	with	 real	 coefficients.  

Let z0 be a root of this polynomial equation. So, P( z0 ) = 0. Now

 P z0( )  =  a z a z a z an
n

n
n

0 1 0
1

1 0 0+ + + +−
−


  =  a z a z a z an
n

n
n

0 1 0
1

1 0 0+ + + +−
−


  =  a z a z a z an
n

n
n

0 1 0
1

1 0 0+ + + +−
−


 ( a ar r=  as ar  is real for all r )

  =  a z a z a z an
n

n
n

0 1 0
1

1 0 0+ + + +−
−


  =  a z a z a z an
n

n
n

0 1 0
1

1 0 0+ + + +−
−


 = P z( )0 0 0= = .

 That is P z( )0 0= ;	this	implies	that	whenever	 z0 is a root (i.e. P( z0 )=0), its conjugate z0  is also 

a root .
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 If one asks whether 2 is a complex number, many students hesitate to say “yes”. As every integer 
is a rational number, we know that every real number is also a complex number. So to clearly specify 
a complex number that is not a real number, that is to specify numbers of form α β+ i  with β ≠ 0 , 
we use the term “non-real complex number”. Some authors call such a number an imaginary 
number.  
Remark 1

Let z i0 = +α β  with β ≠ 0 . Then z i0 = −α β . If α β+ i  is a root of a polynomial equationP x( ) = 0

with	real	coefficients,	then	by	Complex	Conjugate	Root	Theorem,	α β− i  is also a root of P x( ) = 0 . 

Usually the above statement will be stated as complex roots occur in pairs; but actually it means that 
non-real complex roots or imaginary roots occur as conjugate pairs, being the coefficients of the 
polynomial equation are real.
Remark 2

	 From	this	we	see	that	any	odd	degree	polynomial	equation	with	real	coefficients	has	at	least	one	
real	root;	in	fact,	the	number	of	real	roots	of	an	odd	degree	polynomial	equation	with	real	coefficients	
is always an odd number. Similarly the number of real roots of an even degree polynomial equation 
with	real	coefficients	is	always	an	even	number.

Example 3.8
 Find	the	monic	polynomial	equation	of	minimum	degree	with	real	coefficients	having	 2 3− i  

as a root.

Solution
 Since 2 3− i is	a	root	of	the	required	polynomial	equation	with	real	coefficients,	2 3+ i  is also 

a root. Hence the sum of the roots is 4 and the product of the roots is 7 . Thus x x2 4 7 0− + =  is the 

required monic polynomial equation.

3.4.2 Irrational Roots
	 If	we	further	restrict	the	coefficients	of	the	quadratic	equation	ax bx c a2 0 0+ + = ≠, to be rational, we get 

some interesting results. Let us consider a quadratic equation ax bx c2 0+ + = with a , b, and c  

rational.  As usual let ∆ = −b ac2 4  and let r1 and r2 be the roots. In this case,  when ∆ = 0 , we have 

r r1 2= ;	this	root	is	not	only	real,	it	is	in	fact	a	rational	number.	

 When D  is positive, then no doubt that D  exists in   and we get two distinct real roots. But 
D  will be a rational number for certain values of  a b, , and  c , and it is an irrational number for 

other values of a b, , and  c .  
 If D  is rational, then both r1 and r2 are rational.  

 If D  is irrational, then both r1  and r2 are irrational.

 Immediately we have a question. If ∆ > 0 , when will D  be rational and when will it be 

irrational?	To	answer	this	question,	first	we	observe	that	D 	is	rational,	as	the	coefficients	are	rational	

numbers. So ∆ =
m
n

for some positive integers m  and n  with m n,( ) =1  where m n,( )  denotes the 
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greatest common divisor of m and n . It is now easy to understand that D  is rational if and only if 

both m  and n  are perfect squares. Also, D  is irrational if and only if at least one of m  and n  is not 

a perfect square.

 We are familiar with irrational numbers of the type p q+  where p  and q  are rational numbers 

and q  is irrational. Such numbers are called surds. As in the case of imaginary roots, we can prove 

that if p q+  is a root of a polynomial, then p q−  is also a root of the same polynomial equation, 

when	all	the	coefficients	are	rational	numbers.	Though	this	is	true	for	polynomial	equation	of	any	
degree and can be proved using the technique used in the proof of imaginary roots, we state and prove 
this	only	for	a	quadratic	equation	in	Theorem	3.3.

 Before proving the theorem, we recall that if a and b are rational numbers and c is an irrational 
number such that a bc+ is a rational number, then b must be 0 ;	further	if	 a bc+ = 0 , then a  and b  
must be 0 .

 For instance, if a b+ ∈2  , then b must be 0 , and if a b+ =2 0  then a b= = 0 . Now we 

state and prove a general result as given below.

Theorem 3.3
 Let p  and q  be rational numbers such that q  is irrational. If p q+  is a root of a quadratic 

equation	with	rational	coefficients,	then	 p q−  is also a root of the same equation.

Proof
 We prove the theorem by assuming that the quadratic equation is a monic polynomial equation. 
The result for non-monic polynomial equation can be proved in a similar way.

 Let p and q be rational numbers such that q  is irrational. Let p q+  be a root of the equation

x bx c2 0+ + =  where b  and c are rational numbers.

 Let α  be the other root. Computing the sum of the roots, we get 

   α + +p q  =  −b

and hence α + = − − ∈q b p  . Taking − −b p  as  s ,  we have α + =q s  .               

 This implies that 
   α  =  s q− .
 Computing the product of the roots, gives

   ( )( )s q p q− +  =  c

and hence ( ) ( )sp q s p q c− + − = ∈ . Thus s p− = 0 . This implies that s p= and hence we get

α = −p q . So, the other root is p q− .  

Remark
	 The	statement	of	Theorem	3.3	may	seem	to	be	a	little	bit	complicated.	We	should	not	be	in	a	
hurry to make the theorem short by writing “for a polynomial equation with rational coefficients, 
irrational roots occur in pairs”. This is not true. 
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 For instance, the equation x3 2 0− =  has only one irrational root, namely 23 . Of course, the 
other two roots are imaginary numbers (What are they?).
Example 3.9
 Find	a	polynomial	equation	of	minimum	degree	with	rational	coefficients,	having	 2 3− as a 
root.

Solution
 Since 2 3− is	a	root	and	the	coefficients	are	rational	numbers,	2 3+  is also a root. A required 
polynomial equation is given by

x2 − (Sum of the roots) x + Product of the roots = 0 
and hence

x x2 4 1 0− + =   
is a required equation. 

Note 
 We	note	that	the	term	“rational	coefficients”	is	very	important;	otherwise, x − − =( )2 3 0 will 
be a polynomial equation which has 2 3- as a root but not 2 3+ . We state the following result 
without proof.

Theorem 3.4

 Let p  and q  be rational numbers so that p  and q 	 are	 irrational	numbers;	 further	 let	one	 

of p   and q be not a rational multiple of the other. If p q++  is a root of a polynomial equation 

with	 rational	 coefficients,	 then	 p q p q− − +, , and − −p q  are also roots of the same 

polynomial equation.

Example 3.10

 Form	a	polynomial	equation	with	integer	coefficients	with 2
3

as a  root.

Solution

 Since 2
3

is a root, x − 2
3

 is a factor. To remove the outermost square root, we take 

x + 2
3
as	another	factor	and	find	their	product	

   x x+












−












2
3

2
3

 =  x2 2
3

−  .

 Still we didn’t achieve our goal. So we include another factor x2 2
3

+  and get the product

   x x2 22
3

2
3

−








 +








  =  x4 2

3
−  .

 So, 3 2 04x − = 	is	a	required	polynomial	equation	with	the	integer	coefficients.

 Now we identify the nature of roots of the given equation without solving the equation. The idea 

comes from the negativity, equality to 0, positivity of ∆ = −b ac2 4 . 
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3.4.3 Rational Roots
 If	all	the	coefficients	of	a	quadratic	equation	are	integers,	then	D  is an integer, and when it is 
positive, we have, D  is rational if, and only if, D  is a perfect square. In other words, the equation

ax bx c2 0+ + = 	with	integer	coefficients	has	rational	roots,	if,	and	only	if,	D  is a perfect square.

What	we	discussed	so	far	on	polynomial	equations	of	rational	coefficients	holds	for	polynomial	
equations	with	integer	coefficients	as	well.	In	fact,	multiplying	the	polynomial	equation	with	rational	
coefficients,	 by	 a	 common	multiple	of	 the	denominators	of	 the	 coefficients,	we	get	 a	 polynomial	
equation	of	integer	coefficients	having	the	same	roots.	Of	course,	we	have	to	handle	this	situation	
carefully.	For	instance,	there	is	a	monic	polynomial	equation	of	degree	1	with	rational	coefficients	

having 1
2

as a root, whereas there is no monic polynomial equation of any degree with integer 

coefficients	having	 1
2

as a root. 

Example 3.11
 Show that the equation 2 6 7 02x x− + = 	cannot	be	satisfied	by	any	real	values	of	x.
Solution
 ∆= − =− <b ac2 4 20 0 . The roots are imaginary numbers.

Example 3.12
 If x k x k2 2 2 9 0+ +( ) + = 	has	equal	roots,	find	k.

Solution
 Here ∆ = − =b ac2 4 0  for equal roots. This implies 4 2 4 92k k+( ) = ( ) �.This implies k = 4� or 1.  

Example 3.13
 Show that, if  p q r, ,  are rational, the roots of the equation x px p q qr r2 2 2 22 2 0− + − + − =  are 
rational.
Solution
 The roots are rational if ∆ = − = −( ) − − + −( )b ac p p q qr r2 2 2 2 24 2 4 2 .

 But this expression reduces to 4 22 2q qr r− +( ) or 4 2q r−( )  which is a perfect square.  Hence the 

roots are rational.

3.5 Applications of Polynomial Equation in  Geometry
 Certain geometrical properties are proved using polynomial equations. We discuss a few 
geometric properties here.

Example 3.14
 Prove that a line cannot intersect a circle at more than two points.

Solution

 By choosing the coordinate axes suitably, we take the equation of the circle as x y r2 2 2+ =  and 

the equation of the straight line as y mx c= + . We know that the points of intersections of the circle 

and the straight line are the points which satisfy the simultaneous equations

   x y2 2+  =  r 2 		 	 ...	(1)
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   y  =  mx c+   ... (2)

 If we substitute mx c+ for y 	in	(1),	we	get

   x mx c r2 2 2+ + −( )  =  0  

which is same as the quadratic equation

   ( ) ( )1 22 2 2 2+ + + −m x mcx c r  =  0 .   ...	(3)	

 This equation cannot have more than two solutions, and hence a line and a circle cannot intersect 
at more than two points.

 It is interesting to note that a substitution makes the problem of solving a system of two equations 
in two variables into a problem of solving a quadratic equation.

	 Further	we	note	that	as	the	coefficients	of	the	reduced	quadratic	polynomial	are	real,	either	both	roots	
are real or both imaginary. If both roots are imaginary numbers, we conclude that the circle and the straight 
line do not intersect. In the case of real roots, either they are distinct or multiple roots of the polynomial. If 
they are distinct, substituting in (2), we get two values for y  and hence two points of intersection. If we 
have	equal	roots,	we	say	the	straight	line	touches	the	circle	as	a	tangent.	As	the	polynomial	(3)	cannot	have	
only one simple real root, a line cannot cut a circle at only one point.
Note
	 A	technique	similar	to	the	one	used	in	example	3.14	may	be	adopted	to	prove	
 • two circles cannot intersect at more than two points.
 • a circle and an ellipse cannot intersect at more than four points.

EXERCISE 3.2
	 1. If k  is real, discuss the nature of the roots of the polynomial equation 2 02x kx k+ + = , in 

terms of k .

 2.	Find	a	polynomial	equation	of	minimum	degree	with	rational	coefficients,	having	 2 3+ i  as 
a root.

	 3.	Find	a	polynomial	equation	of	minimum	degree	with	rational	coefficients,	having	2 3i +  as a 
root.

	 4.	Find	a	polynomial	equation	of	minimum	degree	with	rational	coefficients,	having	 5 3−  as 
a root.

 5.   Prove that a straight line and parabola cannot intersect at more than two points. 

3.6 Roots of Higher Degree Polynomial Equations
 We know that the equation P x( ) = 0  is called a polynomial equation. The root or zero of a 
polynomial equation and the solution of the corresponding polynomial equation are the same. So we 
use both the terminologies.

 We know that it is easy to verify whether a number is a root of a polynomial equation or not, just 
by	substitution.	But	when	finding	the	roots,	the	problem	is	simple	if	the	equation	is	quadratic	and	it	is	
in general not so easy for a polynomial equation of higher degree.
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	 A	solution	of	a	polynomial	equation	written	only	using	its	coefficients,	the	
four basic arithmetic operators (addition, multiplication, subtraction and division), 
and rational exponentiation (power to a rational number, such as square, cube, 
square roots, cube roots and so on) is called a radical solution. Abel proved that it 
is impossible to write a radical solution for general polynomial equation of degree 
five	or	more.
 We state a few results about polynomial equations that are useful in solving higher degree 
polynomial equations.

 • Every polynomial in one variable is a continuous function from  to  .

 • For a polynomial equationP x( ) = 0 of even degree, P x( )→∞∞	as P x( )→±∞±∞. Thus the graph 
of an even degree polynomial start from left top and ends at right top.

 • All results discussed on “graphing functions” in Volume I of eleventh standard textbook can 
be applied to the graphs of polynomials. For instance, a change in the constant term of a 
polynomial moves its graph up or down only.

 • Every polynomial is differentiable any number of times.

 • The real roots of a polynomial equationP x( ) = 0  are the points on the x -axis where the 
graph of P x( ) = 0cuts the x -axis.

 • If a  and b  are two real numbers such that P a( )  and P b( )  are of opposite signs, then 

  - there is a point c on the real line for which P c( ) = 0 .

  - that is, there is a root between a  and b .

	 	 -	 it	is	not	necessary	that	there	is	only	one	root	between	such	points;	there	may	be	3 5 7, , ,...  
roots;	that	is	the	number	of	real	roots	between	a  and b is odd and not even.

	 However,	if	some	information	about	the	roots	are	known,	then	we	can	try	to	find	the	other	roots.	
For instance, if it is known that two of the roots of a polynomial equation of degree 6 with rational 
coefficients	are	 2 3+ i  and 4 5− , then we can immediately conclude that 2 3− i  and 4 5+  are 
also roots of the polynomial equation. So dividing by the corresponding factors, we can reduce the 
problems into a problem of solving a second degree equation. In this section we learn some ways of 
finding	roots	of	higher	degree	polynomials	when	we	have	some	information.

3.7 Polynomials with Additional Information
 Now we discuss a few additional information with which we can solve higher degree polynomials. 
Sometimes the additional information will directly be given, like, one root is 2 3+ i . Sometimes the 
additional	information	like,	sum	of	the	coefficients	is	zero,	have	to	be	found	by	observation	of	the	
polynomial.

3.7.1  Imaginary or Surds Roots
 If α β+ i 	is	an	imaginary	root	of	a	quartic	polynomial	with	real	coefficients,	then	α β− i is also 

a	root;	 thus	 ( ( ))x i− +α β  and ( ( ))x i− −α β are	factors	of	the	polynomial;	hence	their	product	is	a	

factor;	in	other	words,	 x x2 2 22− + +α α β is	a	factor;	we	can	divide	the	polynomial	with	this	factor	

and	get	the	second	degree	quotient	which	can	be	solved	by	known	techniques;	using	this	we	can	find	
all the roots of the polynomial.
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 If 2 3+ 	is	a	root	of	a	quadric	polynomial	equation	with	rational	coefficients,	then	 2 3−  is 

also	a	root;	thus	their	product	 ( ( )) ( ( ))x x− + − −2 3 2 3 	is	a	factor;	that	is	 x x2 4 1− + 	is	a	factor;	we	

can divide the polynomial with this factor and get the quotient as a second degree factor which can be 
solved by known	 techniques.	Using	 this,	we	 can	 find	 all	 the	 roots	 of	 the	 quadric	 equation.	This	

technique is applicable for all surds taken in place of 2 3+ .
If	an	 imaginary	root	and	a	surd	root	of	a	sixth	degree	polynomial	with	rational	coefficient	are	

known, then step by step we may reduce the problem of solving the sixth degree polynomial equation 
into a problem of solving a quadratic equation.

Example 3.15
 If 2+ i  and 3 2−  are roots of the equation

x x x x x x6 5 4 3 213 62 126 65 127 140 0− + − + + − = , 
	 find	all	roots.

Solution
 Since	the	coefficient	of	the	equations	are	all	rational	numbers,	and	2+ i and3 2−  are roots, we 

get 2− i  and 3 2+   are also roots of the given equation. Thus ( ( )),x i− +2 ( ( )), ( ( ))x i x− − − −2 3 2  

and ( ( ))x − +3 2  are factors.  Thus their product

(( ( )) ( ( )) ( ( )) ( ( ))x i x i x x− + − − − − − +2 2 3 2 3 2
is a factor of the given polynomial equation. That is, 

( ) ( )x x x x2 24 5 6 7− + − +

is a factor. Dividing the given polynomial equation by this factor, we get the other factor as ( )x x2 3 4− −  
which implies that 4  and −1 are the other two roots. Thus 

2 2 3 2 3 2 1+ − + − −i i, , , , , and 4

are the roots of the given polynomial equation.

3.7.2 Polynomial equations with Even Powers Only
 If P x( )  is a polynomial equation of degree 2n , having only even powers of x , (that is, 

coefficients	of	odd	powers	are	 0 ) then by replacing x2  by y ,  we get a polynomial equation with 

degree n  in y;  let y y yn1 2, ,  be the roots of this polynomial equation. Then considering the n  

equations x yr
2 = , 	we	can	find	two	values	for	 x  for each yr 	;	these	2n  numbers are the roots of the 

given polynomial equation in x .

Example 3.16
 Solve the equation x x4 29 20 0− + = .

Solution
 The given equation is 

x x4 29 20 0− + = .

 This is a fourth degree equation. If we replace x2 by y , then we get the quadratic equation

y y2 9 20 0− + = .
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 It is easy to see that 4  and 5  as solutions for y y2 9 20 0− + = . Now taking x2 4= and x2 5= , 

we get 2 2 5 5, , ,− −  as solutions of the given equation.

 We note that the technique adopted above can be applied to polynomial equations like 
x x6 317 30 0− + = , ax bx ck k2 0+ + =  and in general polynomial equations of the form 
a x a x a x an

kn
n

k n k+ + + + =−
−

1
1

1 0 0( )
  where k  is any positive integer.

3.7.3 Zero Sum of all Coefficients

 Let P x( ) = 0be	a	polynomial	equation	such	that	the	sum	of	the	coefficients	is	zero.	What	actually 

the	sum	of	coefficients	is?	The	sum	of	coefficients	is	nothing	but	 P( ).1 	The	sum	of	all	coefficients	is	

zero means that P( )1 0=  which says that 1 is a root of P x( ) . The rest of the problem of solving the 

equation is easy.
Example 3.17
 Solve the equation x x x3 23 33 35 0− − + = .

Solution
 The	sum	of	the	coefficients	of	the	polynomial	is	0.  Hence 1	is	a	root	of	the	polynomial.	To	find	

other roots, we divide x x x3 23 33 35− − +  by x −1 and get x x2 2 35− −  as the quotient. Solving this 

we get 7  and −5  as roots. Thus 1 7 5, ,−  form the solution set of the given equation.

3.7.4  Equal Sums of Coefficients of Odd and Even Powers 
 Let P x( ) = 0be	a	polynomial	equation	such	that	the	sum	of	the	coefficients	of	the	odd	powers 

and that of the even powers are equal.  What does actually this mean?  If a 	is	the	coefficient	of	an	odd	

degree in P x( ) = 0 ,	then	the	coefficient	of	the	same	odd	degree	in	P x−( ) = 0  is −a .	The	coefficients	

of even degree terms of both P x( ) = 0  and P x( )− = 0  are same. Thus the given condition implies that 

the	sum	of	all	coefficients	of		 P x( )− = 0 	is	zero	and	hence	1	is	a	root	of	 P x( )− = 0  which says that 

−1 is a root of P x( ) = 0 . The rest of the problem of solving the equation is easy.

Example 3.18
 Solve the equation 2 11 9 18 03 2x x x+ − − = .

Solution
 We	observe	that	the	sum	of	the	coefficients	of	the	odd	powers	and	that	of	the	even	powers	are	

equal. Hence −1	is	a	root	of	the	equation.	To	find	other	roots,	we	divide		2 11 9 183 2x x x+ − −  by x +1  

and get 2 9 182x x+ −  as the quotient. Solving this we get 3
2

 and −6  as roots. Thus − −6 1 3
2

, ,  are the 

roots or solutions of the given equation.

3.7.5 Roots in Progressions
 As already noted to solve higher degree polynomial equations, we need some information about 
the solutions of the equation or about the polynomial. “The roots are in arithmetic progression” and 
“the roots are in geometric progression” are some of such information. Let us discuss an equation of 
this type.
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Example 3.19
 Obtain the condition that the roots of x px qx r3 2 0+ + + =  are in A.P.

Solution
 Let the roots be in A.P. Then, we can assume them in the form α α α− +d d, , . 

 Applying the Vieta’s formula  ( ) ( )α α α− + + +d d = −
p
1
= p ⇒ 3α = − p ⇒ α = −

p
3

.

 But, we note that α is a root of the given equation. Therefore, we get 

                              −





 + −






 + −






 + =

p p p q p r
3 3 3

0
3 2

⇒ 9 2 273pq p r= + .

Example 3.20
 Find the condition that the roots of ax bx cx d3 2 0+ + + =  are in geometric progression.  Assume 
a b c d, , , ¹ 0

Solution
 Let the roots be in G.P. 

 Then, we can assume them in the form α
λ

α αλ, , . 

 Applying the Vieta’s formula, we get 

  å1  = α
λ

λ
1 1+ +






  =  − b

a
 …	(1)

  å2  =  α
λ

λ2 1 1+ +





  =  c

a
 … (2)

  å3  =  α 3  =  − d
a
.	 …	(3)

 Dividing	(2)	by	(1),	we	get		

                                                  α  =  − c
b

 …	(4)

	 Substituting	(4)	in	(3),	we	get		 −






c
b

3

= −
d
a
⇒ ac db3 3= .

Example 3.21
 If the roots of  x px qx r3 2 0+ + + =  are in H.P. ,  prove that 9 27 23pqr r p= + . 
Assume  p, q, r ≠ 0

Solution
 Let the roots be in H.P. Then, their reciprocals are in A.P. and roots of the equation 

                                1 1 1 0 1 0
3 2

3 2

x
p
x

q
x

r rx qx px





 + 






 + 






 + = ⇔ + + + =  .													 …	(1)

	 Since	the	roots	of	(1)	are	in	A.P.,	we	can	assume	them		as	α α α− +d d, , . 

 Applying the Vieta’s formula, we get 

         å1 = ( ) ( )α α α− + + +d d = −
q
r
⇒ 3α = −

q
r
⇒ α = −

q
r3

.

Chapter 3 Theory of Equation.indd   116 10-05-2019   16:43:35



Theory of Equations117

 But, we note that α is	a	root	of	(1).	Therefore,	we	get	                          

 r q
r

q q
r

p q
r

q q pqr r−





 + −






 + −






 + = ⇒ − + − +

3 3 3
1 0 3 9 27

3 2
3 3 22 3 20 9 2 27= ⇒ = +pqr q r .

Example 3.22
 It is known that the roots of the equation x x x3 26 4 24 0− − + =  are in arithmetic progression. 

Find its roots.

Solution
 Let the roots be a d a a d− +, , . Then the sum of the roots is 3a  which is equal to 6  from the 

given equation. Thus 3 6a =  and hence a = 2 . The product of the roots is a ad3 2−  which is equal to 

−24  from the given equation. Substituting the value of a , we get 8 2 242− = −d  and hence d = ±4 . 

If we take d = 4  we get −2 2 6, , as roots and if we take d = −4,  we get 6 2 2, ,−  as roots (same roots 
given in reverse order) of the equation.

EXERCISE 3.3
	 1. Solve the cubic equation : 2 18 9 03 2x x x− − + = �  if sum of two of its roots vanishes.

 2. Solve the equation 9 36 44 16 03 2x x x− + − =  if the roots form an arithmetic progression.

	 3. Solve the equation 3 26 52 24 03 2x x x− + − =  if its roots form a geometric progression.

	 4. Determine k  and solve the equation 2 6 3 03 2x x x k− + + =  if one of its roots is twice the sum 
of the other two roots.

 5. Find all zeros of the polynomial x x x x x x6 5 4 3 23 5 22 39 39 135− − + − − + , if it is known that 

1 2+ i  and 3  are two of its zeros.
 6. Solve the cubic equations :  (i) 2 9 10 33 2x x x− + = ,  (ii) 8 2 7 3 03 2x x x− − + = .

 7. Solve the equation : x x4 214 45 0− + = .

3.7.6 Partly Factored Polynomials

 Quartic polynomial equations of the form ax b cx d px q rx s k+( ) +( ) +( ) +( )+ = 0 , k ¹ 0  

which can be rewritten in the form α β λ α β µx x x x k2 2 0+ +( ) + +( )+ =

 We illustrate the method of solving this situation in the next two examples.

Example 3.23
 Solve the equation 

   ( ) ( ) ( ) ( )x x x x− − − + +2 7 3 2 19  =  0 . 
Solution
 We can solve this fourth degree equation by rewriting it suitably and adopting a technique of 
substitution. Rewriting the equation as
   ( ) ( ) ( ) ( )x x x x− − − + +2 3 7 2 19  =  0 . 
the given equation becomes 
   ( ) ( )x x x x2 25 6 5 14 19− + − − +  =  0 . 

If we take x x2 5−  as y , then the equation becomes ( ) ( ) ;y y+ − + =6 14 19 0
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that is, 
   y y2 8 65− −  =  0 . 

Solving this we get solutions y =13 and y = −5 . Substituting this we get two quadratic equations

   x x2 5 13− −  =  0  and x x2 5 5 0− + =  
which can be solved by usual techniques.  The solutions obtained for these two equations together 

give  solutions as 5 77
2

5 5
2

± ±, .

Example 3.24
 Solve the equation ( )( )( )( )2 3 6 1 3 2 12 7x x x x− − − − −  =  0 .

Solution
 The given equation is same as 

   ( ) ( ) ( ) ( )2 3 3 2 6 1 12 7x x x x− − − − −  =  0 .

 After a computation, the above equation becomes 

   ( ) ( )6 13 6 6 13 12 72 2x x x x− + − + −  =  0 .

By taking y x x= −6 132 ,  the above equation becomes, 
   ( ) ( )y y+ + −6 12 7  =  0

which is same as 
   y y2 18 65+ +  =  0 .
Solving this equation, we get y = −13 and y = −5 .

Substituting the values of y  in y x x= −6 132 ,   we get
   6 13 52x x− +  =  0

   6 13 132x x− +  =  0
Solving these two equations, we get 

   x x x= =
1
2

5
3

, ,  =  13 143
12
+ i  and x i

=
−13 143
12

 

as the roots of the given equation.

EXERCISE 3.4
	 1. Solve : (i)  x x x x−( ) −( ) +( ) +( ) =5 7 6 4 504    (ii) ( )( )( )( )x x x x− − − + =4 7 2 1 16

 2. Solve : ( )( )( )( )2 1 3 2 2 3 20 0x x x x− + − + + =

3.8 Polynomial Equations with no Additional Information
3.8.1 Rational Root Theorem
 We	can	find	a	few	roots	of	some	polynomial	equations	by	trial	and	error	method.	For	instance,	
we consider the equation
   4 8 23 2x x x− − +  =  0 	 ...	(1)
 This is a third degree equation which cannot be solved by any method so far we discussed in this 
chapter.	If	we	denote	the	polynomial	in	(1)	as	P x( ) , then we see that P( )2 0=  which says that x − 2  
is a factor. As the rest of the problem of solving the equation is easy, we leave it as an exercise.
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Example 3.25
 Solve the equation x x x3 25 4 20 0− − + = .

Solution

 If P x( )  denotes the polynomial in the equation, then P( )2 0= . Hence 2  is a root of the 

polynomial	 equations.	To	find	 other	 roots,	we	 divide	 the	 given	 polynomial	 x x x3 25 4 20− − +  by 

x − 2  and get Q(x)= x x2 3 10− −  as the quotient. Solving Q(x) = 0 we get −2  and 5  as roots. Thus 

2 2 5, ,− are the solutions of the given equation.

 Guessing a number as a root by trial and error method is not an easy task. 
But	 when	 the	 coefficients	 are	 integers,	 using	 its	 leading	 coefficient	 and	 the	
constant term, we can list certain rational numbers as possible roots. Rational Root 
Theorem helps us to create such a list of possible rational roots. We recall that if 
a	polynomial	has	rational	coefficients,	 then	by	multiplying	by	suitable	numbers	
we	can	obtain	a	polynomial	with	integer	coefficients	having	the	same	roots.	So	
we can use Rational Root Theorem, given below, to guess a few roots of polynomial with rational 
coefficient.	We	state	the	theorem	without	proof.

Theorem 3.5 (Rational Root Theorem) 

 Let a x a x an
n + + + 1 0 with an ¹ 0and a0 0¹ ,	be	a	polynomial	with	integer	coefficients.		If	

p
q

,

with ( , )p q =1, is a root of the polynomial, then p  is a factor of a0  and q is a factor of an .

 When an =1, if there is a rational root p
q
,	then	as	per	theorem	3.5	 q  is a factor of an , then we 

must have q = ±1.Thus p 	must	be	an	integer.	So	a	monic	polynomial	with	integer	coefficient	cannot	

have non-integral rational roots. So when an =1, if at all there is a rational root, it must be an integer 

and the integer should divide a0 . (We say an integer a  divides an integer b ,  ifb ad= for some 

integer d .)
 As an example let us consider the equation x x2 5 6 0− − = . The divisors of 6 are ± ± ± ±1 2 3 6, , , . 

From Rational Root Theorem, we can conclude that ± ± ± ±1 2 3 6, , , are the only possible solutions 

of the equation.  It does not mean that all of them are solutions. The two values −1 and 6 satisfy the 

equation and other values do not satisfy the equation.

Moreover, if we consider the equation x2 4 0+ = , according to the Rational Root theorem, the 

possible solutions are ± ± ±1 2 4, , ;  but none of them is a solution. The Rational Root Theorem helps 

us only to guess a solution and it does not give a solution.

Example 3.26
 Find the roots of 2 3 2 3 03 2x x x+ + + = .

Solution
 According to our notations, an = 2 and a0 3= . If p

q
 is a zero of the polynomial, then as 

( , ) ,p q p=1 	must	divide	3	and	q must divide 2. Clearly, the possible values of p  are 1 1 3 3, , ,− −   
and the possible values of q are 1 1 2 2, , ,− − . Using these p  and q  we can form only the fractions  
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±
1
1

,± 1
2

,± 3
2

,± 3
1

.   Among these eight possibilities, after verifying by substitution, we get −3
2

 is the 

only	rational	zero.	To	find	other	zeros,	we	divide	the	given	polynomial	 2 3 2 33 2x x x+ + +  by 2 3x +  

and get x2 1+  as the quotient with zero remainder. Solving x2 1 0+ = ,we get i  and −i  as roots. Thus 
−

−
3

2
, ,i i  are the roots of the given polynomial equation.

3.8.2 Reciprocal Equations
 Let α  be a solution of the equation.

   2 3 2 7 2 3 26 5 4 3 2x x x x x x− + + + − +  =  0.	 ...	(1)

 Then α ¹ 0  (why?) and 

   2 3 2 7 2 3 26 5 4 3 2α α α α α α− + + + − +  =  0.

 Substituting 1
α

 for x 	in	the	left	side	of	(1),	we	get

2 1 3 1 2 1 7 1 2 1 3 16 5 4 3 2

α α α α α α






 − 






 + 






 + 






 + 






 − 






 + 2

    =  2 3 2 7 2 3 2 0 0
2 3 4 5 6

6 6

− + + + − +
= =

α α α α α α
α α

.  

 Thus 1
α
	is	also	a	solution	of	(1).	Similarly	we	can	see	that	if	α  is a solution of the equation

   2 3 4 4 3 25 4 3 2x x x x x+ − + − −  =  0  ... (2)

 then 1
α

 is also a solution of (2).

 Equations	(1)	and	(2)	have	a	common	property	that,		if	we	replace	 x  by 1
x

 in the equation and 

write it as a polynomial equation, then we get back the same equation.  The immediate question that 
flares	up	in	our	mind	is	“Can	we	identify	whether	a	given	equation	has	this	property	or	not	just	by	
seeing	it?”	Theorem	3.6	below	answers	this	question.

Definition 3.1 

 A polynomial P x( )  of degree n  is said to be a reciprocal polynomial  if  one of the following 

conditions is true:

 (i) P x x P
x

n( ) = 







1  (ii) P x x P
x

n( ) = − 







1 .

 A polynomial P x( )  of degree n  is said to be a reciprocal polynomial  of Type I if   P x x P
x

n( ) = 







1  .   is 

called a reciprocal equation of Type I. 

 A polynomial P x( )  of degree n  is said to be a reciprocal polynomial  of Type II P x x P
x

n( ) = − 







1 . is 

called a reciprocal equation of Type II. 
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Theorem 3.6 
 A polynomial equation   a x a x a x a x a x an

n
n

n
n

n+ + + + + +−
−

−
−

1
1

2
2

2
2

1 0 = 0 , ( )an ¹ 0  is a 

reciprocal equation if, and only if, one of the following two statements is true:
  (i)  a an = 0 ,    a an− =1 1 ,   a an− =2 2



 (ii)  a an = − 0 , a an− = −1 1 , a an− = −2 2 ,

Proof
 Consider the polynomial equation 
          P x( )  =  a x a x a x a x a x an

n
n

n
n

n+ + + + + +−
−

−
−

1
1

2
2

2
2

1 0 = 0 .	 …	(1)

 Replacing x  by 1
x
	in	(1),	we	get	

                                   P
x
1






   =  a

x
a
x

a
x

a
x

a
x

an
n

n
n

n
n+ + + + + +−

−
−
−

1
1

2
2

2
2

1
0 = 0 .  … (2)

 Multiplying both sides of (2) by xn , we get 

                          x P
x

n 1





  =  a x a x a x a x a x an n n

n n n0 1
1

2
2

2
2

1+ + + + + +− −
− − = 0 .		 	…	(3)

	 Now,	(1)	is	a	reciprocal	equation		⇔   P x x P
x

n( ) = ± 





  1
⇔ (1)	and	(3)	are	same	.	

 This is possible ⇔  a
a

a
a

a
a

a
a

a
a

a
a

n n n

n n n0

1

1

2

2

2

2

1

1

0= = = = = =− −

− −

 .   

 Let the proportion  be  equal to λ . Then, we get a
a
n

0

= λ  and  a
an

0 = λ .  Multiplying these 

equations, we get λ 2 1= .  So, we get two cases λ =1and  λ = −1 . 

Case (i) : 
 λ =1  In this case, we have  a a a a a an n n= = =− −0 1 1 2 2, , ,    . 

	 That	is,	the	coefficients	of	(1)	from	the	beginning	are	equal	to	the	coefficients	from	the	end.	

Case (ii) :
 λ = −1  In this case, we have  a a a a a an n n= − = − = −− −0 1 1 2 2, , ,    . 

	 That	is,	the	coefficients	of	(1)	from	the	beginning	are	equal	in	magnitude	to	the	coefficients	from	
the end, but opposite in sign. 
Note 
 Reciprocal	equations	of		Type	I		correspond	to	those	in	which	the	coefficients	from	the	beginning	
are	equal	to	the	coefficients	from	the	end.	
 For instance, the equation 6 43 43 6 05 4 3 2x x x x x+ − − + + =  is of type I. 
	 Reciprocal	equations	of		Type	II		correspond	to	those	in	which	the	coefficients	from	the	beginning	
are	equal	in	magnitude	to	the	coefficients	from	the	end,	but	opposite	in	sign.	
 For instance, the equation  6 41 97 97 41 6 05 4 3 2x x x x x− + − + − =  is of  Type II. 
Remark
 (i) A reciprocal equation cannot have 0  as a solution.

	 (ii)	The	coefficients	and	the	solutions	are	not	restricted	to	be	real.
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 (iii) The statement “If P x( ) = 0  is a polynomial equation such that whenever α  is a root, 1
α

 

is also a root, then the polynomial equationP x( ) = 0  must be a reciprocal equation” is 

not true. For instance 2 9 12 4 03 2x x x− + − =  is a polynomial equation whose roots are 2 2 1
2

, , . 

Note that x P
x

P x3 1




≠± ( ) ± P(x) and hence it is not a reciprocal equation. Reciprocal equations are 

classified	as	Type	I	and	Type	II	according	to a an r r− =  or a an r r− = − , r = 0,	1,	2,...n. We state 

some results without proof :
  • For an odd degree reciprocal equation of Type I, x = −1  must be a solution.

  • For an odd degree reciprocal equation of Type II, x =1must be a solution.

  • For an even degree reciprocal equation of Type II, the middle term must be 0 . Further 
x =1and x = −1  are solutions.

  • For an even degree reciprocal equation, by taking x
x

+
1   or x

x
−
1 as y , we can obtain a 

polynomial	equation	of	degree	one	half	of	the	degree	of	the	given	equation	;	solving	this	

polynomial equation,  we can get the roots of the given polynomial equation.

 As an illustration, let us consider the polynomial equation 

6 35 56 56 35 6 06 5 4 2x x x x x− + − + − =  

which  is an even degree reciprocal equation of  Type II. So 1 and −1  are two solutions of the equation 

and hence x2 1−  is a factor of the polynomial. Dividing the polynomial by the factor x2 1− , we get 

6 35 62 35 64 3 2x x x x− + − +   as a factor. Dividing this factor by x2 and rearranging the terms we get 

6 1 35 1 622
2x

x
x

x
+






 − +






 + . Setting u x

x
= +








1  it becomes a quadratic polynomial as  

6 2 35 622u u−( ) − +  which reduces to 6 35 502u u− + . Solving we obtain  u =
10
3

5
2

, . Taking u =
10
3

 

gives   x = 3 1
3

,  and taking u =
5
2

gives x = 2 1
2

, . So the required solutions are + −1 1 2 1
2

3 1
3

, , , , , .  

Example 3.27
 Solve the equation 7 43 43 73 2x x x− = − .

Solution
 The given equation can be written as 7 43 43 7 03 2x x x− − + = .

 This is an odd degree reciprocal equation of Type I. Thus −1 is a solution and hence x +1 is a factor. 

Dividing the polynomial 7 43 43 73 2x x x− − +  by the factor x +1,we get 7 50 72x x− +  as a quotient. 

Solving this we get 7  and 1
7

 as roots. Thus −1 1
7

7, , are the solutions of the given equation.

Example 3.28
 Solve the following equation: x x x x4 3 210 26 10 1 0− + − + = .
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Solution 
 This equation is Type I even degree reciprocal equation. Hence it can be rewritten as

x x
x

x
x

2 2
2

1 10 1 26 0+





− +





+






=  Since x ≠ 0 , we get x
x

x
x

2
2

1 10 1 26 0+





− +





+ =

 Let   y =  x
x

+ 1 . Then, we get

 y y2 2 10 26−( ) − +  =  0   ⇒  y y2 10 24− +  =  0   ⇒  ( )( )y y- -6 4 = 0 ⇒  y = 6  or y = 4

Case (i)

 y = 6  ⇒   x
x

+ =
1 6  ⇒   x x= + = −3 2 2 3 2 2, .

Case (ii)

 y = 4    ⇒  x
x

+ =
1 4  ⇒  x x= + = −2 3 2 3,

 Hence, the roots are 3 2 2 2 3± ±,

3.8.3 Non-polynomial Equations

 Some non-polynomial equations can be solved using polynomial equations. As an example let 

us consider the equation 15 2− =x x . First we note that this is not a polynomial equation. Squaring 

both sides, we get x x2 2 15 0+ − = . We know how to solve this polynomial equation.  From the 

solutions of the polynomial equation, we can analyse the given equation. Clearly 3  and −5  are 

solutions of x x2 2 15 0+ − = . If we adopt the notion of assigning only nonnegative values for ·   

then x = 3 	is	the	only	solution;	if	we	do	not	adopt	the	notion,	then	we	get	 x = −5  is also a solution.

Example 3.29: Find solution, if any, of the equation
   2 9 42cos cosx x− +  =  0 . ...	(1)

Solution

 The left hand side of this equation is not a polynomial in x . But it looks like a polynomial. In 

fact, we can say that this is a polynomial in cos x .	However,	we	can	solve	equation	(1)	by	using	our	

knowledge on polynomial equations. If we replace cos x  by y , then we get the polynomial equation

2 9 4 02y y− + =  for which 4  and 1
2

 are solutions.

 From this we conclude that x  must satisfy cos x = 4 or cos x = 1
2

. But cos x = 4  is never possible, 

if we take cos x = 1
2
,	then	we	get	infinitely	many	real	numbers	 x  satisfying cos x = 1

2
;	in	fact,	for	all

n∈ , x n= ±2
3

π
π 	are	solutions	for	the	given	equation	(1).

 If we repeat the steps by taking the equation cos cos ,2 9 20 0x x− + =  we observe that this 

equation has no solution.
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Remarks
 We note that
 • not	all	solutions	of	the	derived	polynomial	equation	give	a	solution	for	the	given	equation;

 • there	may	be	infinitely	many	solutions	for	non-polynomial	equations	though	they	look	like	
polynomial	equations;

 • there may be no solution for such equations.

 • the	Fundamental	Theorem	of	Algebra	 is	proved	only	 for	polynomials;	 for	non-polynomial	
expressions, we cannot talk about degree and hence we should not have any confusion on the 
Fundamental Theorem of Algebra having non-polynomial equations in mind.

EXERCISE 3.5
	 1. Solve the following equations

   (i) sin sin2 5 4 0x x− + =  (ii) 12 8 29 43 2x x x+ = −  

 2. Examine for the rational roots of 

   (i) 2 1 03 2x x− − =   (ii) x x8 3 1 0− + = . 

	 3. Solve : 8 8 63
3

2
3

2x xn n− =
−

	 4. Solve : 2 3 6x
a

a
x

b
a

a
b

+ = + .  

 5. Solve the equations 

   (i) 6 35 62 35 6 04 3 2x x x x− + − + =   (ii) x x x4 33 3 1 0+ − − =

 6. Find all real numbers satisfying 4 3 2 2 02 5x x− ( ) + =+ .

	 7. Solve the equation 6 5 38 5 6 04 3 2x x x x− − − + =  if it is known that 1
3

 is a solution.

3.9 Descartes Rule
 In this section we discuss some bounds for the number of positive roots, number of negative 
roots and number of nonreal complex roots for a polynomial over . These bounds can be computed 

using a powerful tool called “Descartes Rule”.

3.9.1 Statement of Descartes Rule
 To	discuss	 the	 rule	we	first	 introduce	 the	concept	of change of sign in the coefficients of a 
polynomial.

 Consider the polynomial.
2 3 4 5 6 7 87 6 5 4 3x x x x x x− − + + − +

	 For	this	polynomial,	let	us	denote	the	sign	of	the	coefficients	using	the	symbols		‘+ ’	and	‘− ’as

+ − − + + − +, , , , , ,
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 Note that we have not put any symbol corresponding to x2 . We further note that 4  changes of 

sign occurred (at x x x6 4 1, , and x0 ).

Definition 3.2

 A change of sign in the coefficients is said to occur at the j th power of x   in a polynomial 

P x( ) ,	if	the	coefficient	of	 x j+1 	and	the	coefficient	of	 x j 	(or)	also	coefficient	of	 x j−1 	coefficient	of	
x j are	 of	 different	 signs.	 (For	 zero	 coefficient	we	 take	 the	 sign	 of	 the	 immediately	 preceding	
nonzero	coefficient.)

 From the number of sign changes, we get some information about the roots of the polynomial using 
Descartes Rule. As the proof is beyond the scope of the book, we state the theorem without proof.

Theorem 3.7 (Descartes Rule)
 If p  is the number of positive zeros of a polynomialP x( )with	real	coefficients	and	 s  is the 

number	of	sign	changes	in	coefficients	of	P x( ),   then s p−  is a nonnegative even integer.

 The theorem states that the number of positive roots of a polynomialP x( )  cannot be more than 

the	number	of	sign	changes	in	coefficients	of	 P x( ) . Further it says that the difference between the 

number	of	sign	changes	in	coefficients	of	 P x( )  and the number of positive roots of the polynomial 

P x( )  is even.

 As a negative zero of P x( )  is a positive zero of P x( )−  we may use the theorem and conclude 
that the number of negative zeros of the polynomial P x( )  cannot be more than the number of 
sign changes in coefficients of P x( )−  and the difference between the number of sign changes in 

coefficients of P x( )− and the number of negative zeros of the polynomial P x( )  is even.

 As the multiplication of a polynomial by xk , for some positive integer k , neither changes the 

number	of	positive	zeros	of	the	polynomial	nor	the	number	of	sign	changes	in		coefficients,	we	need	
not worry about the constant term of the polynomial. Some authors assume further that the constant 
term of the polynomial must be non zero.

 We note that nothing is stated about 0 as a root, in Descartes rule. But from the very sight of the 
polynomial written in the customary form, one can say whether 0  is a root of the polynomial or not. 
Now let us verify Descartes rule by means of certain polynomials.

3.9.2 Attainment of bounds
3.9.2 (a) Bounds for the number of real roots

 The polynomialP x x x x x i x i( ) = + − − + −( )( )( )( )( )1 1 2 has the zeros − −1 1 2, , , ,i i . The 
polynomial, in the customary form is x x x5 42 2− − + .This polynomial P x( )  has 2  sign changes, 
namely at fourth and zeroth powers. Moreover, 

P x x x x( )− = − − + +5 42 2
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has one sign change. By our Descartes rule, the number of positive zeros of the polynomial P x( )  
cannot	be	more	than	2;	the	number	of	negative	zeros	of	the	polynomial	P x( )  cannot be more than 1. 
Clearly 1 and 2   are positive zeros, and −1 is the negative zero for the polynomial, x x x5 42 2− − + , 
and hence the bounds 2 		for	positive	zeros	and	the	bound	1	for	negative	zeros	are	attained.	We	note	
that i  and −i   are neither positive nor negative.

 We know  ( )( )( )( )x x x i x i+ + + −2 3 is a polynomial with roots − − −2 3, , ,i i . The polynomial, say 

P x( ) , in the customary form is x x x x4 3 25 7 5 6+ + + + .

 This polynomial P x( )  has no sign change and P x x x x x( )− = − + − +4 3 25 7 5 6 	 has	 4	 sign	
changes. By Descartes rule, the polynomial P x( ) cannot have more than 0  positive zeros and the 
number of negative zeros of the polynomial P x( )  cannot be more than 4 . 

 As another example, we consider the polynomial.

x C x C x C x C xn n n n n n n n n
n

n− + − + + − + −− − − −
−1

1
2

2
3

3 1
11 1 ( ) ( )( ) .

 This is the expansion of ( )x n−1 . This polynomial has n 	changes	in	coefficients	and	P x( )−  has no 

change	of	sign	in	coefficients.	This	shows	that	the	number	of	positive	zeros	of	the	polynomial	cannot	be	
more than n  and the number of negative zeros of the polynomial cannot be more than 0. The statement on 
negative zeros gives a very useful information that the polynomial has no negative zeros. But the statement 
on positive zeros gives no good information about the positive zeros, though there are exactlyn  positive 

zeros;	in	fact,	it	is	well-known	that	for	a	polynomial	of	degree	n , the number of zeros cannot be more than 

n  and hence the number of positive zeros cannot be more than n .

3.9.2 (b) Bounds for the number of Imaginary (Nonreal Complex)roots
 Using the Descartes rule, we can compute a lower bound for the number of imaginary roots.  Let 

m 	denote	the	number	of	sign	changes	in	coefficients	of	 P x( ) of degree n;  let k  denote the number 

of	sign	changes	in	coefficients	of	 P x( )− . Then there are at least n m k− +( )  imaginary roots for the 
polynomialP x( ) . Using the other conclusion of the rule, namely, the difference between the number 

of roots and the corresponding sign changes is even, we can sharpen the bounds in particular cases.

Example 3.30
 Show that the polynomial 9 2 7 29 5 4 2x x x x+ − − +  has at least six imaginary roots.

Solution
  Clearly there are 2  sign changes for the given polynomial P x( )  and hence number of positive 

roots of P x( )  cannot be more than two. Further, as P x x x x x( ) ,− = − − − − +9 2 7 29 5 4 2  there is one 

sign change for P x( )−  and hence the number of negative roots cannot be more than one. Clearly 0  

is not a root. So maximum number of real roots is 3  and hence there are atleast six imaginary roots.

Remark  From the above discussion we note that the Descartes rule gives only upper bounds for 
the	number	of	positive	roots	and	number	of	negative	roots;	the	Descartes	rule	neither	gives	the	exact	
number	of	positive	roots	nor	the	exact	number	of	negative	roots.	But	we	can	find	the	exact	number	
of	positive,	negative	and	nonreal	roots	in	certain	cases.	Also,	it	does	not	give	any	method	to	find	the	
roots.
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Example 3.31
 Discuss the nature of the roots of the following polynomials:

 (i) x x x x2018 1950 8 61947 15 26 2019+ + + +      (ii) x x x x5 4 3 219 2 5 11− + + +

Solution
 Let P x( )  be the polynomial under consideration.
 (i) The number of sign changes for P x( )  and P x( )−  are zero and hence it has no positive roots 

and no negative roots. Clearly zero is not a root. Thus the polynomial has no real roots and 
hence all roots of the polynomial are imaginary roots.

 (ii) The number of sign changes for P x( )  and P x( )−  are 2  and 1 respectively. Hence it has at 
most two positive roots and at most one negative root.Since the difference between number 
of	 sign	 changes	 in	 coefficients	 of	 P x( )−  and the number of negative roots is even, we 
cannot have zero negative roots. So the number of negative roots is 1. Since the difference 
between	number	of	sign	changes	in	coefficient	of	 P x( )  and the number of positive roots 
must be even, we must have either zero or two positive roots. But as the sum of the 
coefficients	is	zero,	1	is	a	root.	Thus	we	must	have	two	and	only	two	positive	roots. Obviously 
the other two roots are imaginary numbers.

EXERCISE 3.6
	 1. Discuss the maximum possible number of positive and negative roots of the polynomial  

equation9 4 4 3 2 7 7 2 09 8 7 6 5 3 2x x x x x x x x− + − + + + + + = .

 2. Discuss the maximum possible number of positive and negative zeros of the polynomials
x x2 5 6− + and x x2 5 16− + . Also draw rough sketch of the graphs.

	 3. Show that the equation x x x x9 5 4 25 4 2 1 0− + + + =  has atleast 6  imaginary solutions.

	 4. Determine the number of positive and negative roots of the equation x x x9 8 75 14 0− − = .

 5. Find the exact number of real zeros and imaginary of the polynomial x x x x x9 7 5 39 7 5 3+ + + + .

EXERCISE 3.7
Choose the correct or the most suitable answer from the given four alternatives :
	 1. A zero of x3 64+  is
	 	 ( 1 ) 	 0 	 	 ( 2 ) 	 4 	 	 ( 3 ) 	 4i 	 	 ( 4 ) 	 - 4

 2. If f and g  are polynomials of degrees m  and n  respectively,  

and if h x f g x( ) ( )= ( ) , then the degree of h  is

	 	 (1)mn   (2) m n+ 	 	 (3)	mn 	 	 (4) nm  
	 3. A polynomial equation in x  of degree n  always has

	 	 (1) n distinct roots (2) n real	roots	 (3) n 	imaginary	roots	 (4)	at	most	one	root.	

	 4. If α β, , and γ  are the zeros of x px qx r3 2+ + + , then 1
α∑  is

	 	 (1)− q
r

 (2)− p
r
	 (3) q

r
	 (4)	− q

p
 5. According to the rational root theorem, which number is not possible rational zero of

4 2 10 57 4 3x x x+ − − ?
	 	 (1)−1 (2) 5

4
	 (3) 4

5
	 (4)	5  
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6. The polynomial x kx x3 2 9− +  has three real zeros if and only if, k 	satisfies

(1) k £ 6  (2) k = 0 	 (3) k > 6 	 (4)	 k ≥ 6

7. The number of real numbers in [ , ]0 2p  satisfying sin sin4 22 1x x− +  is

(1) 2 (2) 4 (3)1 (4) ¥

8. If x x ax3 212 10 1999+ + + 	definitely	has	a	positive	zero, if and only if

(1) a ≥ 0 (2) a > 0 (3) a < 0 (4) a £ 0

9. The polynomial x x3 2 3+ +  has

(1) one	negative	and	two	imaginary	zeros (2) one positive and two imaginary zeros

(3) three	real	zeros (4) no	zeros

10. The number of positive zeros of the polynomial
j

n
n

r
r rC x

=
∑ −

0
1( ) is

(1)0 (2) n (3)< n (4) r

SUMMARY
In this chapter we studied

• Vieta’s	Formula	for	polynomial	equations	of	degree	2,3,	and	n>3.
• The Fundamental Theorem of Algebra : A polynomial of degree n ≥1 has at least one root

in  .
• Complex Conjugate Root Theorem : Imaginary (nonreal complex) roots occur as conjugate

pairs,	if	the	coefficients	of	the	polynomial	are	real.

• Rational Root Theorem : Let a x a x an
n + + + 1 0  with an ¹ 0  and a0 0¹ , be a polynomial 

with	integer	coefficients.	If	
p
q

, with ( , )p q =1, is a root of the polynomial, then p  is a factor 

of a0  and q  is a factor of an .
• Methods to solve some special types of polynomial equations like polynomials having only

even	powers,	partly	factored	polynomials,	polynomials	with	sum	of	the	coefficients	is	zero,
reciprocal equations.

• Descartes Rule : If p  is the number of positive roots of a polynomial P x( )  and s  is the
number	of	sign	changes	in	coefficients	of	P x( ) , then s p−  is a nonnegative even integer.
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