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“Nothing takes place in the world 
whose meaning is not that of some maximum or minimum”

- Leonhard Euler

Chapter

7 Applications of Differential Calculus

7.1 Introduction
7.1.1 Early Developments
 The primary objective of differential calculus is to partition something 
into smaller parts (infinitesimal parts), in order to determine how it 
changes. For this reason today’s differential calculus was earlier named as 
infinitesimal calculus. Applications of differential calculus to problems 
in physics and astronomy was contemporary with the origin of science. All 
through the 18th century these applications were multiplied until Laplace 
and Lagrange, towards the end of the 18th century, had brought the whole 
range of the study of forces into the realm of analysis.
 The development of applications of differentiation are also due 
to Lejeune Dirichlet, Riemann, von Neumann, Heine, Kronecker, 
Lipschitz, Christoffel, Kirchhoff, Beltrami, and many of the leading physicists of the century.
 •  Differential calculus has applications in geometry and dynamics.
 • Derivatives of function, representing cost, strength, materials in a process, profit, etc., are 

used to determine the monotonicity of functions and there by to determine the extreme values 
of the quantities represented by those functions.

 • Derivatives of a function do find a prominent place in many of the modelling problems in 
engineering and sciences.

 • Differential calculus has applications in social sciences and medical sciences too.
 Using just the first two derivatives of a function f x( ) ,  in this chapter, the nature of the function, 
sketching of curve y f x= ( ) , and local extrema (maxima or minima) of f x( )  are determined. Further, 
using certain higher derivatives of f x( )  (if they exist), series expansion of f x( )  about a point are 
also discussed.

Learning Objectives

 Upon completion of this chapter, students will be able to
 • apply derivatives to geometrical problems
 • use derivatives to physical problems
 • identify the nature of curves like monotonicity, convexity, and concavity
 • model  real  time  problems  for  computing  the  extreme  values  using derivatives
 • trace the curves for polynomials and other functions.

Rudolf Otto Sigismund Lipschitz
1832-1903

1
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2XII - Mathematics

7.2 Meaning of Derivatives
7.2.1 Derivative as slope
 Slope or Gradient of a line: Let l  be any given non vertical line as in the figure. Taking a finite 

horizontal line segment of any length with the starting point in the given line l  and the vertical line 
segment starting from the end of the horizontal line to touch the given line.  It can be observed that 
the ratio of the vertical length to the horizontal length is always a constant. This ratio is called the 
slope of the line l  and it is denoted as m . 

 The  slope  can  be  used  as  a  measure  to  determine  the increasing 
or decreasing nature of a line. The line is said to be increasing or decreasing 
according as m > 0  or m< 0   respectively. When m = 0 , the value of y  
does not change. Recall that y mx c= +  represents a straight line in the 
XY  plane where m  denotes the slope of the line.

 Slope or Gradient of a curve: Let y f x= ( )  be a given curve. The slope of the line joining the 

two distinct points ( ( )),x f x  and the point ( ( )),x h f x h+ +  is

   f x h f x
h

( ) ( )+ − . (Newton quotient). ...(1)

 Taking the limit as h → 0  we get,

 lim
( ) ( )

( )
h

f x h f x
h

f x
→

+ −
= ′

0
, (limit of Newton quotient) ... (2)

which is the slope of the curve at the point ( , )x y  or ( , ( ))x f x .

Remark

 If θ  is the angle made by the tangent to the curve y f x= ( )  at the 

point ( , )x y , then the slope of the curve at ( , )x y  is ′ =f x( ) tanθ , 

where θ  is measured in the anti clock wise direction from the  

X -axis. Note that, ′f x( )  is also denoted by dy
dx

 and also called 

instanteous rate of change. The average rate of change in an interval is calculated using Newton 
quotient.

Example 7.1

 For the function f x x x( ) , [ , ]= ∈2 0 2  compute the average rate of changes in the subintervals  

[ ] [ ] [ ] [ ], . , . , , , . , . ,0 0 5 0 5 1 1 1 5 1 5 2  and the instantaneous rate of changes at the points x = 0 5 1 1 5 2. , , . , .

Solution

 The average rate of change in an interval [ , ]a b  is f b f a
b a

( ) ( )−
−

 whereas, the instantaneous rate 

of change at a point x  is ′f x( )  for the given function. They are respectively, b a+  and 2x .

y f x= ( )

tangent

Slope of a curve 

(x, y)

tan(θ)

θ
x

y

Fig. 7.2

Fig.7.1
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Applications of Differential Calculus3

Rate of changes

a b x
Average rate is
f b f a
b a

b a( ) ( )−
−

= +

Instantaneous 
rate is
′ =f x x( ) 2

0 0.5 0.5 0.5 1

0.5 1 1 1.5 2

1 1.5 1.5 2.5 3

1.5 2 2 3.5 4
Table 7.1

7.2.2 Derivative as rate of change
 We have seen how the derivative is used to determine slope. The derivative can also be used to 
determine the rate of change of one variable with respect to another. A few examples are population 
growth rates, production rates, water flow rates, velocity, and acceleration.
 A common use of rate of change is to describe the motion of an object moving in a straight line. 
In such problems, it is customary to use either a horizontal or a vertical line with a designated origin 
to represent the line of motion. On such lines, movements in the forward direction considered to be 
in the positive direction and movements in the backward direction is considered to be in the negative 
direction.
 The function s(t) that gives the position (relative to the origin) of an object as a function of time 
t is called a position function. It is denoted by s f t= ( ) .  The velocity and the acceleration at time t is 

denoted as v t ds
dt

( ) = , and a t
dv
dt

d s
dt

( ) = =
2

2 .

Remark
 The following remarks are easy to observe:

 (1) Speed is the absolute value of velocity regardless of direction and hence, 

  Speed = =v t ds
dt

( ) .

 (2) •  When the particle is at rest then v t( ) = 0 .
  •  When the particle is moving forward then v t( ) > 0 .
  •  When the particle is moving backward then v t( ) < 0 .
  •  When the particle changes direction, v t( )  then changes its sign.

 (3) If tc  is the time point between the time points t1  and t2  ( )t t tc1 2< < where the particle changes 

direction then the total distance travelled from time t1  to time t2  is calculated as 

  s t s t s t s tc c( ) ( ) ( ) ( )1 2− + − .

 (4) Near the surface of the planet Earth, all bodies fall with the same constant acceleration. 
When air resistance is absent or insignificant and only force acting on a falling body is the 
force of gravity, we call the way the body falls is a free fall.

Chapter 7 Differential Calculus Original-new.indd   3 7/25/2019   6:27:33 PM



4XII - Mathematics

 An object thrown at time t = 0  from initial height s0  with initial velocity v0  satisfies the equation.

 a g v gt v s gt v t s= − = − + = − + +, ,0

2

0 0
2

.

 where, g = 9 8 2. / sm or 32 2ft / s .

 A few examples of  quantities which are the rates of change with respect to some other 
quantity in our daily life are given below:
 1. Slope is the rate of change in vertical length with respect to horizontal length.
 2. Velocity is the rate of displacement with respect to time.
 3. Acceleration is the rate of change in velocity with respect to time.
 4. The steepness of a hillside is the rate of change in its elevation with respect to linear 

distance.
 Consider the following two situations:
 • A person is continuously driving a car from Chennai to Dharmapuri. The distance (measured 

in kilometre) travelled is expressed as a function of time (measured in hours) by D t( ) . What 
is the meaning one can attribute to ′ =D ( )3 70 ?

  It means that, “the rate of distance covered when t = 3 is 70 kmph”.
 • A water source is draining with respect to the time t . The amount of water so drained after 

t  days is expressed as V t( ) . What is the meaning of the slope of the tangent to the curve 
y V t= ( )  at t = 7  is −3 ?

  It means that, “the water is draining at the rate of 3 units per day on day 7”.
 Likewise the rate of change concept can be used in our daily life problems. Let us now illustrate 
this with more examples.

Example 7.2
 The temperature in celsius in a long rod of length 10 m, insulated at both ends, is a function of 
length x  given by T x x= −( )10 . Prove that the rate of change of temperature at the midpoint of the 
rod is zero.

Solution
 We are given that, T x x= −10 2. Hence, the rate of change at any distance from one end is given 

by dT
dx

x= −10 2 . The mid point of the rod is at x = 5 . Substituting x = 5 , we get dT
dx

= 0 . 

Example 7.3
 A person learnt 100 words for an English test. The number of words the person remembers in  
t  days after learning is given by W t t t( ) ( . ) ,= × − ≤ ≤100 1 0 1 0 102 . What is the rate at which the 
person forgets the words 2 days after learning?

Solution
 We have,
  d

dt
W t( )  =  − × −20 1 0 1( . )t .

  Therefore at t d
dt
W t= 2, ( )  =  −16 .

 That is, the person forgets at the rate of 16  words after 2  days of studying.

Chapter 7 Differential Calculus Original-new.indd   4 7/25/2019   6:27:37 PM



Applications of Differential Calculus5

Example 7.4

 A particle moves so that the distance moved is according to the law s t t t( ) = − +
3

2

3
3 . At what 

time the velocity and acceleration are zero respectively?
Solution

  Distance moved in time ' 't  is s  =  t t
3

2

3
3− + .

  Velocity at time ' 't  is V  =  ds
dt

t t= −2 2 .

  Acceleration at time ' 't  is A  =  dV
dt

t= −2 2 .

 Therefore, the velocity is zero when t t2 2 0− = , that is t = 0 2, . The acceleration is zero when 
2 2 0t − = . That is at time at time t =1.

Example 7.5
  A particle is fired straight up from the ground to reach a height of s  feet in t seconds,where 

s t t t( ) = −128 16 2 .
   (1) Compute the maximum height of the particle reached.
   (2) What is the velocity when the particle hits the ground?
Solution
 (1)  At the maximum height, the velocity v(t) of the particle is zero.
  Now, we find the velocity of the particle at time t .

  v t
ds
dt

t( ) = = −128 32  

  v t t t( ) = ⇒ − = ⇒ =0 128 32 0 4 .
  After 4 seconds, the particle reaches the maximum height.
  The height at t = 4  is s( ) ( ) ( )4 128 4 16 4 2562= − =  ft.

 (2) When the particle hits the ground then s = 0 .
  s t t= ⇒ − =0 128 16 02  
    ⇒ =t 0 8, seconds.
  The particle hits the ground at t = 8 seconds. The velocity when it hits the ground is  

v(8) = –128 ft /s.

Example 7.6
 A particle moves along a horizontal line such that its position at any time t ≥ 0  is given by 

s t t t t( ) = − + +3 26 9 1 , where s  is measured in metres and t  in seconds?
 (1) At what time the particle is at rest?
 (2) At what time the particle changes direction?
 (3) Find the total distance travelled by the particle in the first 2 seconds.
Solution
 Given that s t t t t( ) = − + +3 26 9 1 . On differentiating, we get v t t t( )= − +3 12 92 and a t t( ) .= −6 12

 (1) The particle is at rest when v t( ) = 0 . Therefore, v t t t( ) ( )( )= − − =3 1 3 0  gives t =1and t = 3 .

Chapter 7 Differential Calculus Original-new.indd   5 7/25/2019   6:27:42 PM



6XII - Mathematics

 (2) The particle changes direction when v t( )  changes its sign. Now.

  if 0 1≤ <t  then both ( )t −1  and ( )t − <3 0  and hence, v t( ) > 0 .
  If 1 3< <t  then ( )t − >1 0  and ( )t − <3 0  and hence, v t( ) < 0 .
  If t > 3  then both ( )t −1  and ( )t − >3 0  and hence, v t( ) > 0 .
  Therefore, the particle changes direction when t =1 and t = 3 .
 (3) The total distance travelled by the particle from time t = 0  to t = 2  is given by, 

s s s s( ) ( ) ( ) ( ) | | | |0 1 1 2 1 5 5 3 6− + − = − + − =  metres.

7.2.3  Related rates
 A related rates problem is a problem which involves at least two changing quantities and asks 
you to figure out the rate at which one is changing given sufficient information on all of the others. 
For instance, when two vehicles drive in different directions we should be able to deduce the speed at 
which they are separating if we know their individual speeds and directions.

Example 7.7
 If we blow air into a balloon of spherical shape at a rate of 1000 3cm per second. At what rate the 
radius of the baloon changes when the radius is 7cm? Also compute the rate at which the surface area 
changes.

Solution
 The volume of the baloon of radius r  is V r=

4

3

3π . 

 We are given dV
dt

=1000  and we need to find dr
dt

 when r = 7 . Now,

  dV
dt

 =  3 4

3

2× ×π r dr
dt

.

 Substituting r = 7  and dV
dt

=1000 , we get 1000 4 49= × ×π
dr
dt

. 

  Hence, dr
dt

 =  1000

4 49

250

49× ×
=

π π
.

 The surface area S  of the baloon is S r= 4 2π . Therefore, dS
dt

r dr
dt

= × ×8π . 

 Substituting dr
dt
=

250

49π
 and r = 7 , we get

   dS
dt

 =  8 7
250

49

2000

7
π

π
× × = .

 Therefore, the rate of change of radius is 250

49p
  cm/sec and the rate of change of surface area is 

2000

7
 cm2 / sec.  

Fig.7.4
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Applications of Differential Calculus7

Example 7.8

 The price of a product is related to the number of units available (supply) by the equation 
Px P x+ − =3 16 234 , where P  is the price of the product per unit in Rupees(`) and x is the number of 
units. Find the rate at which the price is changing with respect to time when 90  units are available and 
the supply is increasing at a rate of 15  units/week.
Solution
 We have,
  P  =  234 16

3

+
+

x
x

  Therefore, dP
dt

 =  −
+

×
186

3 2( )x
dx
dt

.

 Substituting x dx
dt

= =90 15, , we get dP
dt

= − × = − ≈ −186

93
15

10

31
0 32

2
. .  That is the price is 

changing, in fact decreasing at the rate of  ̀  0.32 per unit.

Example 7.9

 Salt is poured from a conveyer belt at a rate of 30 cubic metre per minute forming a conical pile 
with a circular base whose height and diameter of base are always equal. How fast is the height of the 
pile increasing when the pile is 10 metre high?
Solution

 Let h  and r  be the height and the base radius. Therefore h r= 2 . Let V  be the volume of the salt 
cone.

  V  =  1
3

1

12
302 3 3p pr h h dV

dt
= =; min mtr / .

  Hence, dV
dt

 =  1
4

2ph dh
dt

  Therefore, dh
dt

 =  4 1
2

dV
dt h

⋅
π

 

  That is, dh
dt

 =  4 30
1

100
× ×

π

   =  6

5p
 mtr / min.

Example 7.10 (Two variable related rate problem)

 A road running north to south crosses a road going east to west at the point P . Car A  is driving 

north along the first road, and car B  is driving east along the second road. At a particular time car A  
i s  10 kilometres to the north of P  and traveling at  80 km/hr, while car B  is 15 kilometres to the east 

of P  and traveling at 100 km/hr. How fast is the distance between the two cars changing?

Fig.7.5

h

r
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8XII - Mathematics

Solution
 Let a t( )  be the distance of car A  north of P  at time t  , and b t( )  the distance of car B  east of 
P  at time t , and let c t( )  be the distance from car A  to car B  at time t . By the Pythagorean Theorem, 
c t a t b t( ) ( ) ( )2 2 2= + . 
 Taking derivatives, we get 2 2 2c t c t a t a t b t b t( ) ( ) ( ) ( ) ( ) ( )′ = ′ + ′ . 

  So, ′c  =  aa bb
c

aa bb
a b

′ + ′
=

′ + ′

+2 2
 

 Substituting known values, we get

  ′c  =   
( ) ( )

.
10 80 15 100

10 15

460

13
127 6

2 2

× + ×

+
= ≈  km/hr

 at the time of intersect. 

EXERCISE 7.1
 1. A point moves along a straight line in such a way that after t  seconds its distance from the origin 

is s t t= +2 32  metres.
   (i) Find the average velocity of the points between t = 3  and t = 6 seconds.
   (ii) Find the instantaneous velocities at t = 3  and t = 6  seconds.
 2.  A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance 

of s t=16 2  in t  seconds.
   (i) How long does the camera fall before it hits the ground?
   (ii) What is the average velocity with which the camera falls during the last 2 seconds?
   (iii) What is the instantaneous velocity of the camera when it hits the ground?
 3.  A particle moves along a line according to the law s t t t t( ) = − + −2 9 12 43 2 , where t ≥ 0 .
   (i) At what times the particle changes direction?
   (ii) Find the total distance travelled by the particle in the first 4 seconds.
   (iii) Find the particle’s acceleration each time the velocity is zero.
 4.  If the volume of a cube of side length x  is v x= 3 . Find the rate of change of the volume with 

respect to x  when x = 5  units.
 5.  If the mass m x( )  (in kilograms) of a thin rod of length x  (in metres) is given by, m x x( ) = 3   

then what is the rate of change of mass with respect to the length when it is x = 3  and x = 27  
metres.

 6.  A stone is dropped into a pond causing ripples in the form of concentric circles. The radius r  of 
the outer ripple is increasing at a constant rate at 2 cm per second. When the radius is 5 cm find 
the rate of changing of the total area of the disturbed water?

 7.  A beacon makes one revolution every 10 seconds. It is located on a ship which is anchored 5 km 
from a straight shore line. How fast is the beam moving along the shore line when it makes an 
angle of 45°with the shore?

 8.  A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If 
water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases 
when the water is 8 metres deep?

 9.  A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from 
the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall.

   (i) How fast is the top of the ladder moving down the wall?
   (ii) At what rate, the area of the triangle formed by the ladder, wall, and the floor, is changing?

Fig.7.6
P

N
(0, a(t))

(b(t), 0)

c(t)

E
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Applications of Differential Calculus9

 10,  A police jeep, approaching an orthogonal intersection from the northern direction, is chasing 
a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the 
intersection and the car is 0.8 km to the east. The police determine with a radar that the distance 
between them and the car is increasing at 20 km/hr. If the jeep is moving at 60 km/hr at the 
instant of measurement, what is the speed of the car?

7.2.4  Equations of Tangent and Normal
 According to Leibniz, tangent is the line through a pair of very close points on the curve.

Definition 7.1

 The tangent line (or simply tangent) to a 
plane curve at a given point is the straight 
line that just touches the curve at that point.

Definition 7.2

 The normal at a point on the curve is the 
straight line which is perpendicular to the 
tangent at that point.

 The tangent and the normal of a curve at a 
point are illustrated in the adjoining figure.

 Consider the given curve y f x= ( ) .

 The equation of the tangent to the curve at the point, say ( , )a b , is given by

y b x a dy
dx a b

− = − ×





( )

( , )

 or y b f a x a− = ′ ⋅ −( ) ( ) .

 In order to get the equation of the normal to the same curve at the same point, we observe that 
normal is perpendicular to the tangent at the point. Therefore, the slope of the normal at ( , )a b  is the 

negative of the reciprocal of the slope of the tangent which is −










1
dy
dx a b( , )

. 

 Hence, the equation of the normal is ,

( ) ( )

( , )

y b x ady
dx a b

− = −








 × −

1  or ( ) ( )
( , )

y b dy
dx

x a
a b

− ×





 = − − .

Remark

 (i) If the tangent to a curve is horizontal at a point, then the derivative at that point is 0. Hence, 
at that point x y1 1,( )  the equation of the tangent is y y= 1  and equation of the normal is x x= 1 .

 (ii) If the tangent to a curve is vertical at a point, then the derivative exists and infinite ∞( )  at 

the point. Hence, at that point x y1 1,( )  the equation of the tangent is x x= 1  and the equation 
of the normal is y y= 1 .

Fig.7.7

0

Curve  →

← Tangent

← Normal

x

y
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10XII - Mathematics

Example 7.11
 Find the equations of tangent and normal to the curve y x x= + −2 3 2  at the point ( , )1 2 .

Solution

 We have, dy
dx

x= +2 3 . Hence at ( , ),1 2 5
dy
dx

= . 

 Therefore, the required equation of tangent is

 ( ) ( )y x x y− = − ⇒ − − =2 5 1 5 3 0 .

 The slope of the normal at the point ( , )1 2  is − 1

5
 and 

therefore, the required equation of normal is

 ( ) ( )y x x y− = − − ⇒ + − =2
1

5
1 5 11 0 .

Example 7.12
 For what value of x  the tangent of the curve y x x x= − + −3 23 2  is parallel to the line y x= .
Solution
 The slope of the line y x=  is 1. The tangent to the given curve will be parallel to the line, if the 
slope of the tangent to the curve at a point is also 1. Hence,

  dy
dx

 =  3 6 1 12x x− + =

  which gives 3 62x x−  =  0 .

  Hence, x  =  0 and x = 2.

 Therefore, at (0, –2) and (2, –4) the tangent is parallel to the line y x= .

Example 7.13
 Find the equation of the tangent and normal to the Lissajous curve given by x t= 2 3cos  and 
y t t= ∈3 2sin ,  .

Solution
 Observe that the given curve is neither a circle nor an ellipse. For your reference the curve is 
shown in Fig. 7.9.

  Now, dy
dx

 =  
dy
dt

dx
dt

   =  − = −6 2

6 3

2

3

cos

sin

cos

sin

t
t

t
t

.

 Therefore, the tangent at any point is

  y t−3 2sin  =  − −
cos

sin
( cos )

2

3
2 3

t
t
x t

 That is, x t y tcos sin2 3+  =  3 2 3 2 2 3sin sin cos cost t t t+ . Fig.7.9
Lissajous curve

x t y t= =2 3 3 2cos ; sin

Fig.7.8

y
x

x
�

�
�

2
3

2

�1�2�3�4�5

�4

�3

�2

�1

(1, 2)

3210

1

2

3

4

5

5
3

0
x

y
−

−
=

x y+ − =5 1 1 0

y
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Applications of Differential Calculus11

 The slope of the normal is the negative of the reciprocal of the tangent which in this case is  
sin

cos

3

2

t
t

. Hence, the equation of the normal is

y t t
t
x t− = −3 2

3

2
2 3sin

sin

cos
( cos ) .

 That is, x t y t t t t t t tsin cos sin cos sin cos sin sin3 2 2 3 3 3 2 2 6
3

2
4− = − = − .

7.2.5  Angle between two curves

Definition 7.3
 Angle between two curves, if they intersect, is defined as the acute angle between the tangent 
lines to those two curves at the point of intersection.

 For the given curves, at the point of intersection using the slopes of the tangents, we can measure 
the acute angle between the two curves. Suppose y m x c= +1 1  and y m x c= +2 2  are two lines, then the 
acute angle θ  between these lines is given by,

   tanθ  =  m m
m m

1 2

1 21

−
+

  ... (3)

 where m1 and m2 are finite.

Remark
 (i) If the two curves are parallel at x y1 1,( ) , then m m1 2= .

 (ii) If the two curves are perpendicular at x y1 1,( )  and if m1  and m2  exists and finite then 
m m1 2 1= − .

Example 7.14
 Find the acute angle between y x= 2  and y x= −( )3 2 .

Solution
 Let us now find the point of intersection. Equating x x2 23= −( )  we get, x = 3

2
. Therefore, the 

point of intersection is 3

2

9

4
,







 . Let θ be the acute angle between the curves. The slopes of the curves 

are as follows :
  For the curve y   =  x2,

  dy
dx

 =  2x .

  m dy
dx1 =   at 3

2

9

4
,







  =  3.

  For the curve y  =  ( )x −3 2,

  dy
dx

 =  2 3( )x − .

  m dy
dx2 =   at 3

2

9

4
,







  =  −3.

Fig.7.10
0 2 4

2

4

x

y

–2–4

θ

y =
 (

x –
 3

)2

y =
 x2
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 Using (3), we get

  tanθ  =  3 3

1 9

3

4

− −
−

=
( )

  Hence, θ  =  tan− 







1 3

4
.

Example 7.15

 Find the acute angle between the curves y x= 2  and x y= 2  at their points of intersection 

( , ), ( , )0 0 1 1 .

Solution
 Let us now find the slopes of the curves.  
 The slope  m1  for the curve y x= 2.

   m1  =  dy
dx

x= 2  

 and slope m2  for the curve x y= 2, 

   m2  =  dy
dx y

=
1

2
.

 Let θ1 and θ2 be the acute angles at (0,0) and (1,1) respectively.
 At ( , )0 0 , we come across the indeterminate form of 0×∞ in the denominator of 

tan

( )

θ1

2
1

2

1 2
1

2

=
−

+










x
y

x
y

 and so we follow the limiting process.

   tanθ1  =  lim

( )
( , ) ( , )x y

x
y

x
y

→

−

+










0 0

2
1

2

1 2
1

2

  

    =  lim
( )( , ) ( , )x y

xy
y x→

−
+0 0

4 1

2
 

    =  ¥  

  which gives  θ1 =  tan ( )− ∞ =1

2

π .

 At ( , )1 1 , m m1 22
1

2
= =,  

   tanθ2  =  
2

1

2

1 2
1

2

−

+ 





( )

    =  3

4

   which gives θ2  =  tan− 







1 3

4
.

Fig.7.11
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Example 7.16

 Find the angle of intersection of the curve y x= sin  with the positive x -axis.

Solution
 The curve y x= sin  intersects the positive x -axis.  When y = 0  which gives,  x n n= =π , , , ,1 2 3 .

Now, dy
dx

x= cos . The slope at x = np  are cos( ) ( )n nπ = −1 . Hence, the required angle of intersection is

  tan ( )− −1 1 n  =  

π

π
4

3

4

  , when  is even

 , when is  odd

n

n










.

Example 7.17

 If the curves ax by2 2 1+ =  and cx dy2 2 1+ =  intersect each other orthogonally then,

1 1 1 1
a b c d
− = − .

Solution

 The two curves intersect at a point ( , )x y0 0  if ( ) ( )a c x b d y− + − =0

2

0

2 0 .

 Let us now find the slope of the curves at the point of intersection ( , )x y0 0 . The slopes of the 
curves are as follows :

  For the curve ax by2 2+  =  1,
dy
dx

ax
by

= −  .

  For the curve cx dy2 2+  =  1,
dy
dx

cx
dy

= −  .

 Now, two curves cut orthogonally, if the product of their slopes, at the point of intersection 
( , )x y0 0 , is −1. Hence, for the above two curves to cut orthogonally at ( , )x y0 0  if

  −








× −










ax
by

cx
dy

0

0

0

0

 =  −1.

  That is, acx bdy0

2

0

2+  =  0 ,

    together with ( ) ( )a c x b d y− + −0

2

0

2  =  0

  gives, a c
ac
−  =  b d

bd
− .

  That is,  1 1
c a
−  =  1 1

d b
− .

  Hence,  1 1
a b
−  =  1 1

c d
− .

Remark
In the above example, the converse is also true. That is assuming the condition one can easily 

establish that the curves cut orthogonally. 
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Example 7.18

 Prove that the ellipse x y2 24 8+ =  and the hyperbola x y2 22 4− =  intersect orthogonally.
Solution
 Let the point of intersection of the two curves be ( , )a b . Hence,

  a b2 24+  =  8  and a b2 22 4− =   ... (4)
 It is enough if we show that the product of the slopes of the two curves evaluated at ( , )a b  is −1.
 Differentiation of x y2 24 8+ =  with respect x , gives

  2 8x y dy
dx

+  =  0

  Therefore dy
dx

 =  − x
y4

  at ( , ),a b dy
dx

 =  m a
b1

4
= − .

 Differentiation of x y2 22 4− =  with respect to  x,  gives

  2 4x y dy
dx

−  =  0

  Therefore, dy
dx

 =  x
y2

  at ( , ),a b dy
dx

 =  m a
b2 2

= .

 Therefore, m m1 2×  =  −





×






 = −

a
b

a
b

a
b4 2 8

2

2
 ... (5)

 Applying the ratio of proportions in (4), we get

  a2

16 16− −
 =  b2

8 4

1

2 4− +
=
− −

.

 Therefore a
b

2

2

32

4
8= = . Substituting in (5), we get m m1 2 1× = − . Hence, the curves cut 

orthogonally.

EXERCISE 7.2
 1. Find the slope of the tangent to the curves at the respective given points.

   (i) y x x x= + −4 22  at x =1   (ii) x a t y b t= =cos , sin3 3  at t = π
2

.

 2. Find the point on the curve y x x= − +2 5 4  at which the tangent is parallel to the line 3 7x y+ = .

 3. Find the points on the curve y x x x= − + +3 26 3  where the normal is parallel to the line 

x y+ =1729 .

 4. Find the points on the curve y xy x2 24 5− = +  for which the tangent is horizontal.
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Applications of Differential Calculus15

 5. Find the tangent and normal to the following curves at the given points on the curve.
   (i) y x x= −2 4  at ( , )1 0  (ii) y x ex= +4 2  at ( , )0 2  

   (iii) y x x= sin  at π π
2 2

,






  (iv) x t y t= =cos , sin2 2  at t = π

3

 6. Find the equations of the tangents to the curve y x= +1 3  for which the tangent is orthogonal 

with the line x y+ =12 12 .

 7. Find the equations of the tangents to the curve y x
x

=
+
−

1
1

 which are parallel to the line x y+ =2 6 .

 8. Find the equation of tangent and normal to the curve given by x t= 7cos  and y t t= ∈2sin ,   
at any point on the curve.

 9. Find the angle between the rectangular hyperbola xy = 2  and the parabola x y2 4 0+ = .

 10. Show that the two curves x y r2 2 2− =  and xy c= 2  where c r,  are constants, cut orthogonally.

7.3 Mean Value Theorem
 Mean value theorem establishes the existence of a point, in between two points, at which the 
tangent to the curve is parallel to the secant joining those two points of the curve. We start this section 
with the statement of the intermediate value theorem as follows :

Theorem 7.1  (Intermediate value theorem)
 If f  is continuous on a closed interval [ , ]a b , and c  is any number between f a( )  and f b( )  

inclusive, then there is at least one number x  in the closed interval [ , ]a b , such that f x c( ) = .

7.3.1 Rolle’s Theorem

Theorem 7.2 (Rolle’s Theorem)
 Let f x( )  be continuous on a closed interval [ , ]a b  and differentiable on the open interval ( , )a b  

If f a f b( ) ( )= , then there is at least one point c a b∈ ( , )  where ′ =f c( ) 0 .

 Geometrically this means that if the tangent is moving 
along the curve starting at x a=  towards x b=  then there 

exists a c a b∈( , )  at which the tangent is parallel to the  

x -axis. 

Example 7.19
 Compute the value of ' 'c  satisfied by the Rolle’s theorem for the function 

 f x x x x( ) ( ) , [ , ]= − ∈2 21 0 1 .
Solution
 Observe that, f f f x( ) ( ), ( )0 0 1= =  is continuous in the interval [ , ]0 1  and is differentiable in  
( , )0 1 . Now,

′f x( )  =  2 1 1 2x x x( )( )− − .

Fig.7.12

′ =f c( ) 0
y f x
= ( )

x a= x c= x b= x

y

Chapter 7 Differential Calculus Original-new.indd   15 7/25/2019   6:28:25 PM



16XII - Mathematics

   Therefore, ′f c( )  =  0  gives c = 0 1, , and 
1

2

   which ⇒ c  =  1

2
0 1∈ ( , ) .

Example 7.20

 Find the values in the interval 1

2
2,







  satisfied by the Rolle's theorem for the function 

f x x
x
x( ) , ,= + ∈





1 1

2
2 .

Solution

 We have, f x( )  is continuous in 1

2
2,







 and differentiable in 1

2
2,







  with f f1

2

5

2
2







 = = ( ) . By 

the Rolle’s theorem there must exist a c∈







1

2
2,  such that,

 ′ = − = ⇒ =f c
c

c( ) 1
1

0 1
2

2  gives c = ±1,. As 1 1

2
2∈






, , we choose c =1. 

Example 7.21
 Compute the value of ' 'c  satisfied by Rolle’s theorem for the function f x x

x
( ) log=

+









2 6

5
 in the 

interval [ , ]2 3 .
Solution
 Observe that, f f( ) ( )2 0 3= =  and f x( )  is continuous in the interval [ , ]2 3  and differentiable in 
( , )2 3 . Now,

  ′f x( )  =  x
x x

2

2

6

6

−
+( )

 

  Therefore, ′f c( )  =  0  gives

  c
c c

2

2

6

6

−
+( )

 =  0

   which implies c  =  ± 6

  Now c  =  + ∈6 2 3( , ) .

 Observe that − ∉6 2 3( , )  and hence c = + 6  satisfies the Rolle’s theorem.

 Rolle’s  theorem can also be used to compute the number of roots of an algebraic equation in an 
interval without actually solving the equation.

Example 7.22
 Without actually solving show that the equation x x4 32 2 0+ − =  has only one real root in the 
interval ( , )0 1 .

Solution
 Let f x x x( ) = + −4 32 2 . Then f x( )  is continuous in [ , ]0 1  and differentiable in ( , )0 1 . Now,

  ′f x( )  =  4 63 2x x+ . If ′ =f x( ) 0  then, 
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  2 2 32x x( )+  =  0 . 

  Therefore, x  =  0 3

2
,−  but 0

3

2
0 1, ( , )− ∉ .

  Thus,  ′f x( )  >  0 0 1, ( , )∀ ∈x .

 Hence by the Rolle’s theorem there do not exist a b, ( , )∈ 0 1  such that, f a f b( ) ( )= =0 . Therefore 
the equation f x( ) = 0  cannot have two roots in the interval ( , )0 1 . But, f ( )0 2 0= − <  and f ( )1 1 0= >  
tells us the curve y f x= ( )  crosses the x -axis between 0  and 1 only once by the Intermediate value 
theorem. Therefore the equation x x4 32 2 0+ − =  has only one real root in the interval ( , )0 1 .

 As an application of the Rolle’s theorem we have the following,

Example 7.23
 Prove using the Rolle’s theorem that between any two distinct real zeros of the polynomial

a x a x a x an
n

n
n+ + + +−
−

1

1

1 0  

there is a zero of the polynomial
na x n a x an

n
n

n−
−

−+ − + +1

1

2

11( )  .

Solution

 Let P x a x a x a x an
n

n
n( ) = + + + +−
−

1

2

1 0 . Let α β<  be two real zeros of P x( ) . Therefore,

P P( ) ( )α β= = 0 . Since P x( )  is continuous in [ , ]α β  and differentiable in ( , )α β  by an application 

of Rolle’s theorem there exists γ α β∈ ( , )  such that ′ =P ( )γ 0 . Since,

′ = + − + +−
−

−P x na x n a x an
n

n
n( ) ( )1

1

2

11 

which completes the proof.

Example 7.24

 Prove that there is a zero of the polynomial, 2 9 11 123 2x x x− − +  in the interval ( , )2 7   given that 

2  and 7  are the zeros of the polynomial x x x x4 3 26 11 24 28− − + + .

Solution

 Applying the above example 7.23 with
P x x x x x( ) , ,= − − + + = =4 3 26 11 24 28 2 7α β

 and observing
′

= − − + =
P x x x x Q x( )

( )
2

2 9 11 123 2 , (say).

 This implies that there is a zero of the polynomial Q x( )  in the interval ( , )2 7 .

 For verification,
  Q( )2  =  16 36 22 12 28 58 30 0− − + = − = − <

  Q( )7   =  686 441 77 12 698 518 180 0− − + = − = >  

 From this we may see that there is a zero of the polynomial Q x( )  in the interval ( , )2 7 .

Chapter 7 Differential Calculus Original-new.indd   17 7/25/2019   6:28:37 PM



18XII - Mathematics

Remark
 There are functions for which Rolle’s theorem may not be applicable.
 (1) For the function f x x x( ) | |, [ , ]= ∈ −1 1  Rolle’s theorem is not applicable, even though 

f f( ) ( )− = =1 1 1   because f x( )  is not differentiable at x = 0 .

 (2) For the function,

f x
x

x x
( )

,
=

=
< ≤





1 0

0 1

when 

  when 
.

  even though f f( ) ( )0 1 1= = , Rolle's theorem is not applicable because the function f x( )  is 

not continuous at x = 0 .

 (3) For the function f x x x( ) sin , ,= ∈





0
2

π
 Rolle’s theorem is not applicable, even though 

f x( )  is continuous in the closed interval 0
2

,
π





 and differentiable in the open interval 

0
2

,
π






  because, 0 0

2
1= ≠ 






 =f f( )

π .

 If f x( )  is continuous in the closed interval [ , ]a b  and differentiable in the open interval ( , )a b  

and even if f a f b( ) ( )¹  then the Rolle’s theorem can be generalised as follows. 

7.3.2 Lagrange’s Mean Value Theorem

Theorem 7.3

 Let f x( )  be continuous in a closed interval [ , ]a b  and 

differentiable in the open interval ( , )a b   (where f (a), f (b) are  
not necessarily equal). Then there exist at least one point 
c a b∈ ( , )  such that,

  ′f c( )  =  f b f a
b a

( ) ( )−
−

  ... (6)

Remark
 If f a f b( ) ( )=  then Lagrange’s Mean Value Theorem gives the Rolle’s 

theorem. It is also known as rotated Rolle’s Theorem.

Remark

 A physical meaning of the above theorem is the number f b f a
b a

( ) ( )−
−

 can be 

thought of as the average rate of change in f x( )  over ( , )a b  and ′f c( )  as an instantaneous change.

 A geometrical meaning of the Lagrange’s mean value theorem is that the instantaneous rate of 
change at some interior point is equal to the average rate of change over the entire interval. This is 
illustrated as follows :

x a= x c= x b=

y f x= ( )

f a( )
f b( )

′ =

−
−

f c
f b

f a

b a
( )

( )
( )

x

y

Fig.7.13
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 If a car accelerating from zero takes just 8 seconds to travel 200 m, its average velocity for the 8 

second interval is 200

8
25=  m/s. The Mean Value Theorem says that at some point during the travel 

the speedometer must read exactly 90 km/h which is equal to 25  m/s.

 Theorem 7.4
 If f x( )  is continuous in [ , ]a b  and differentiable in ( , )a b  and if ′ > ∀ ∈f x x a b( ) , ( , )0 , then 

for, x x a b1 2, [ , ]∈ , such that x x1 2<  we have, f x f x( ) ( )1 2< .

Proof 
 By the mean value theorem, there exists a c x x a b∈ ⊂( , ) ( , )1 2  such that,

  f x f x
x x

( ) ( )2 1

2 1

−
−

 =  ′f c( )  

  Since ′f c( )  >  0 , and

  x x2 1−  >  0  

 We conclude that, whenever x x1 2< , we have f x f x( ) ( )1 2< .

Remark

 If ′ < ∀ ∈f x x a b( ) , ( , )0 , then for, x x a b1 2, [ , ]Î , such that x x1 2<  we have, f x f x( ) ( )1 2< .
 The proof is similar.

Example 7.25
 Find the values in the interval ( , )1 2  of the mean value theorem satisfied by the function 

f x x x( ) = − 2  for 1 2£ £x .
Solution

 f ( )1 0=  and f ( )2 2= − . Clearly f x( )  is defined and differentiable in 1 2< <x . Therefore, by 

the Mean Value Theorem, there exists a c∈ ( , )1 2  such that

  ′f c( )  =  f f c( ) ( )2 1

2 1
1 2

−
−

= −

  That is,  1 2− c  =  − ⇒ =2
3

2
c .

Geometrical meaning

 Geometrically, the mean value theorem says the secant to the curve 

y f x= ( )  between x a=  and x b=  is parallel to a tangent line of the 

curve, at some point c a b∈ ( , ) .

Consequences of Lagrange’s Mean Value Theorem
 There are three important consequences of MVT for derivatives.
 (1) To determine the monotonicity of the given function (Theorem 7.4)
 (2) If ′ =f x( ) 0  for all x  in ( , )a b , then f  is constant on ( , )a b .
 (3) If ′ = ′f x g x( ) ( )  for all x , then f x g x C( ) ( )= +  for some constant C .

Tangent

Seca
nt

x a= x c= x b=

y f x= ( )

f a( )
f b( )

′ =

−
−

f c
f b

f a

b a
( )

( )
( )

x

y

Fig.7.14
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7.3.3 Applications

Example 7.26
 A truck travels on a toll road with a speed limit of 80 km/hr. The truck completes a  
164 km journey in 2 hours. At the end of the toll road the trucker is issued with a speed violation 
ticket. Justify this using the Mean Value Theorem.

Solution

 Let f t( )  be the distance travelled by the trucker in ' 't  hours. This is a continuous function in 
[ , ]0 2  and differentiable in ( , )0 2 . Now, f ( )0 0=  and f ( )2 164= . By an application of the Mean 
Value Theorem, there exists a time c  such that,

′ =
−
−

= >f c( )
164 0

2 0
82 80 .

 Therefore at some point of time, during the travel in 2 hours the trucker must have travelled with 
a speed more than 80 km which justifies the issuance of a speed violation ticket.

Example 7.27
 Suppose f x( )  is a differentiable function for all x  with ′ ≤f x( ) 29  and f ( )2 17= . What is the 
maximum value of f ( )7 ?

Solution
 By the mean value theorem we have, there exists ' ' ( , )c ∈ 2 7  such that,

  f f( ) ( )7 2

7 2

−
−

 =  ′ ≤f c( ) 29 .

  Hence, f ( )7 5 29 17≤ × +  =  162

 Therefore, the maximum value of f ( )7  is 162 .

Example 7.28

 Prove, using mean value theorem, that
| sin sin | | |, ,α β α β α β− ≤ − ∈ .

Solution

 Let f x x( ) sin=  which is a differentiable function in any open interval. Consider an interval 

[ , ]α β . Applying the mean value theorem  there exists c∈ ( , )α β  such that,

  sin sinβ α
β α
−
−

 =  ′ =f c c( ) cos( )

  Therefore,  sin sinα β
α β
−
−

 =  cos( )c £1 

  Hence, | sin sin |α β−  £  | |α β− .

Remark
 If we take β = 0  in the above problem, we get | sin | | |α α≤ .
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Example 7.29
 A thermometer was taken from a freezer and placed in a boiling water. It took 22 seconds for the 
thermometer to raise from − °10 C  to 100°C . Show that the rate of change of temperature at some 
time t is5°C  per second.

Solution
 Let  f t( )  be the temperature at time t. By the mean value theorem, we have 

  ¢f c( )  =  
f b f a
b a

( ) ( )−
−

   =  100 10

22

− −( )

   =  
110

22

   =  5°C  per second.
 Hence the instantaneous rate of change of temperature at some time t should be 5°C  per 
second.

EXERCISE 7.3
 1. Explain why Rolle’s theorem is not applicable to the following functions in the respective 

intervals.

   (i) f x
x
x( ) , [ , ]= ∈ −

1
1 1   (ii) f x x x( ) tan , [ , ]= ∈ 0 π

  (iii)  f x x x x( ) log , [ , ]= − ∈2 2 7  

 2. Using the Rolle’s theorem, determine the values of x  at which the tangent is parallel to the  

x -axis for the following functions :

   (i) f x x x x( ) , [ , ]= − ∈2 0 1   (ii) f x x x
x

x( ) , [ , ]=
−
+

∈ −
2 2

2
1 6  

   (iii) f x x x x( ) , [ , ]= − ∈
3

0 9

 3. Explain why Lagrange’s mean value theorem is not applicable to the following functions in the 
respective intervals :

   (i) f x x
x

x( ) , [ , ]=
+

∈ −
1

1 2   (ii) f x x x( ) | |, [ , ]= + ∈ −3 1 1 3

 4. Using the Lagrange’s mean value theorem determine the values of x  at which the tangent is 
parallel to the secant line  at the end points of the given interval:

   (i) f x x x x( ) , [ , ]= − + ∈ −3 3 2 2 2   (ii) f x x x x( ) ( )( ), [ , ]= − − ∈2 7 3 11  

 5. Show that the value in the conclusion of the mean value theorem for

   (i) f x
x

( ) =
1  on a closed interval of positive numbers [ , ]a b  is ab

   (ii) f x Ax Bx C( ) = + +2  on any interval [ , ]a b  is a b+
2

.

 6. A race car driver is racing at 20th km. If his speed never exceeds 150 km/hr, what is the maximum 
distance he can cover in the next two hours.

 7. Suppose that for a function f x f x( ), ( )′ ≤1 for all 1 4£ £x . Show that f f( ) ( )4 1 3− ≤ .
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 8. Does there exist a differentiable function f x( )  such that f f( ) , ( )0 1 2 4= − =  and ′ ≤f x( ) 2  for 

all x . Justify your answer.

 9. Show that there lies a point on the curve f x x x e x( ) ( ) ,= + − ≤ ≤
−

3 3 02

π

 where tangent drawn is 

parallel to the x -axis.
 10. Using mean value theorem prove that for,  a b e e a ba b> > − < −− −0 0, , | | | | .

7.4 Series Expansions
 Taylor’s series and Maclaurin's series expansion of a function which are infinitely differentiable.

 Theorem 7.5
(a) Taylor’s Series
 Let f x( )  be a function infinitely differentiable at x a= . Then f x( )  can be expanded as a 
series, in an interval ( , )x a x a− + , of the form

  f x( )  =  f a
n

x a f a f a x a f a
n

x a
n

n

n
n

n
( ) ( )( )

!
( ) ( )

( )

!
( )

( )

!
( )

=

∞

∑ − = + ′ − + + − +
0 1

  .

(b) Maclaurin’s series
 If a = 0 , the expansion takes the form

  f x( )  =  f
n

x f f x f
n

x
n

n

n
n

n
( ) ( )( )

!
( )

( )

!

( )

!
.

0
0

0

1

0

0=

∞

∑ = +
′

+ + +   

Proof 
 The series of f x( ) , in powers of ( )x a− , be given by

  f x( )  =  A A x an
n

n
0

1

+ −
=

∞

∑ ( )   ... (7)

 Then A f a0 = ( ) . Differentiation of (7) gives

  ′f x( )  =  1 1

1

2

! ( )A nA x an
n

n
+ − −

=

∞

∑   ... (8)

  Substituting x a=  gives A f a1 = ′( ) . Differentiation of (8) gives

  ′′f x( )  =  2 12

2

3

! ( ) ( )A n n A x an
n

n
+ − − −

=

∞

∑   ... (9)

  Substituting x a=  gives A f a
2

2
=

′′( )

!
. Differentiation of (9) gives

  ′′′f x( )  =  3 1 23

3

4

! ( )( ) ( )A n n n A x an
n

n
+ − − − −

=

∞

∑   ... (10)

 Differentiation of (10) ( )k −3  times gives

  f xk( ) ( )  =  k A n n n k A x ak n
n k

n k
! ( )...( ) ( )+ − − + − −

= +

∞

∑ 1 1
1

 ...(11)
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 Substituting x a=  gives A f a
kk

k

=
( ) ( )

!
 which completes the proof of the theorem.

 In order to expand a function around a point say x a= , equivalently in powers of ( )x a−  we 

need to differentiate the given function as many times as the required powers and evaluate at x a= . 

This will give the value for the coefficients of the required powers of ( )x a− .

Example 7.30
 Expand log( )1+ x  as a Maclaurin’s series upto 4 non-zero terms for  –1 < x ≤ 1.

Solution

 Let f x x( ) log( )= +1 , then the Maclaurin series of f x( )  is f x a xn
n

n

n
( ) =

=

=∞∑ 0
, where, 

a f
nn

n

=
( ) ( )

!

0   various derivatives of the function f x( )  evaluated at x = 0  are given below:

Function and its 
derivatives

log( )1++ x  and its 

derivatives
value at x = 0

f x( ) log( )1+ x 0

′f x( )
1

1+ x 1

′′f x( ) −
+
1

1 2( )x −1

′′′f x( )
2

1 3( )+ x 2

f xiv( ) ( ) −
+
6

1 4( )x −6

Table 7.2

 Substituting the values and on simplification we get the required expansion of the function given 
by,

log( )1
2 3 4

2 3 4

+ = − + − +x x x x x
 ; –1 < x ≤ 1.

Example 7.31
 Expand tan x in ascending powers of x  upto 5th power for − < <p p

2 2
x .

Solution
 Let f x x( ) tan= , then the Mclaurin series of f x( )  is

f x a xn
n

n

n

( ) =
=

=∞

∑
0

, where, a f
nn

n

=
( ) ( )

!

0  .

 Various derivative’s of the function f x( )  evaluated at x = 0  is given below :
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 Now,

  ′f x( )  =  d
dx

x x(tan ) sec ( )= 2

  ′′f x( )  =  
d
dx

x x x x x x(sec ( )) sec sec tan sec tan2 22 2= ⋅ ⋅ = ⋅
   

  ′′′f x( )  =  d
dx

x x x x x x x x( sec ( ) tan ) sec ( ) sec tan sec sec tan2 2 42 2 2⋅ = ⋅ + ⋅ ⋅ ⋅

   =  2 44 2 2sec sec tanx x x+ ⋅
  f xiv( ) ( )

 =  
8 4 2 83 2 2 2sec sec tan sec tan sec sec sec tan tanx x x x x x x x x x⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅

   =  16 84 2 3sec tan sec tanx x x x+ ⋅  

  f xv( ) ( )  =  16 64 8 34 2 3 2 2 2sec sec sec sec tan tan sec tan secx x x x x x x x x⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅

    + ⋅ ⋅ ⋅16 3sec sec tan tanx x x x
   =  16 88 166 4 2 2 4sec sec tan sec tanx x x x x+ ⋅ + ⋅ .

Function and 
its derivatives

tan x  
and its derivatives

value at x = 0

f x( ) tan x  0

′f x( ) sec2 x  1

′′f x( ) 2 2sec tanx x  0

′′′f x( ) 2 44 2 2sec sec tanx x x+ ⋅  2

f xiv( ) ( ) 16 84 2 3sec tan sec tanx x x x⋅ + ⋅  0

f xv( ) ( ) 16 88 166 4 2 2 4sec sec tan sec tanx x x x x+ ⋅ + ⋅  16  

Table 7.3
 Substituting the values and on simplification we get the required expansion of the function as

tan x x x x= + + +
1

3

2

15

3 5
 ; − < <p p

2 2
x .

Example 7.32

 Write the Taylor series expansion of 1
x

 about x = 2  by finding the first three non-zero terms.

Solution

 Let f x
x

( ) =
1 , then the Taylor series of f x( )  is

f x a xn
n

n

n

( ) ( )= −
=

=∞

∑ 2
0

, where a f
nn

n

=
( ) ( )

!

2 .
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 Various derivatives of the function f x( )  evaluated at x = 2  are given below.

Functions and its 
derivatives

1
x

 and its 

derivatives
value at x = 2

f x( )
1
x

 1

2
 

′f x( ) −
1

2x
 −

1

4
 

′′f x( )
2

3x
 1

4
 

′′′f x( ) −
6

4x
 − 3

8
 

Table 7.4
 Substituting these values, we get the required expansion of the function as

  1
x

 =  1

2

1

4

2

1

1

4

2

2

3

8

2

3

2 3

− − + − − − +( )

!

( )

!

( )

!

x x x
  

 which is, 1
x

 =  
1

2

2

4

2

8

2

16

2 3

− − + − − − +( ) ( ) ( )x x x
 

EXERCISE 7.4
 1. Write the Maclaurin series expansion of the following functions:

   (i) ex    (ii) sin x    (iii) cos x

   (iv) log( )1- x ; –1 ≤ x < 1 (v) tan ( )-1 x  ; –1 ≤ x ≤ 1 (vi) cos2 x

 2. Write down the Taylor series expansion, of the function log x  about x =1  upto three non-zero 
terms for x > 0.

 3. Expand sin x  in ascending powers x − π
4

 upto three non-zero terms.

 4. Expand the polynomial f (x) = x2 – 3x + 2 in powers of x – 1.

7.5 Indeterminate Forms
 In this section, we shall discuss various “indeterminate forms” and methods of evaluating the 
limits when we come across them.

7.5.1 A Limit Process
 While computing the limits

lim ( )
x
R x

→α

 of certain functions R x( ) , we may come across the following situations like,
0

0
0 1 00 0, , , , , ,

∞
∞

×∞ ∞−∞ ∞∞ .
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 We say that they have the form of a number. But values cannot be assigned to them in a way that is  
consistent with the usual rules of addition and mutiplication of numbers. We call these expressions 
Indeterminate forms. Although they are not numbers, these indeterminate forms play a useful role in 
the limiting behaviour of a function.
 John (Johann) Bernoulli discovered a rule using derivatives to compute the limits of fractions 
whose numerators and denominators both approach zero or ¥ . The rule is known today as l’Hôpital’s 
Rule (pronounced as Lho pi tal Rule), named after Guillaume de l’Hospital’s, a French nobleman who 
wrote the earliest introductory differential calculus text, where the rule first appeared in print.

7.5.2  The l’Hôpital’s Rule 
 Suppose f x( )  and g x( )  are differentiable functions and ′ ≠g x( ) 0  with

  lim ( )
x a

f x
→

 =  0 =
→

lim ( )
x a
g x . Then lim

( )

( )
lim

( )

( )x a x a

f x
g x

f x
g x→ →

=
′
′

 

  lim ( )
x a

f x
→

 =  ±∞ =
→

lim ( )
x a
g x . Then lim

( )

( )
lim

( )

( )x a x a

f x
g x

f x
g x→ →

=
′
′

 

7.5.3  Indeterminate forms  0

0
0, , ,

∞
∞

×∞ ∞−∞

Example 7.33

 Evaluate : lim
x

x x
x x→

− +
− +











1

2

2

3 2

4 3
 .

Solution
 If we put directly x =1  we observe that the given function is in an indeterminate form 0

0
. As the 

numerator and the denominator functions are polynomials of degree 2 they both are differentiable. 
Hence, by an application of the l’Hôpital Rule, we get

  lim
x

x x
x x→

− +
− +











1

2

2

3 2

4 3
 =  lim

x

x
x→

−
−









1

2 3

2 4
 

   =  1
2

.

 Note that this limit may also be evaluated through the factorization of the numerator and 

denominator as x x
x x

x x
x x

2

2

3 2

4 3

1 2

1 3

− +
− +

=
− −
− −

( )( )

( )( )
 .

Example 7.34

 Compute the limit   lim
x a

n nx a
x a→

−
−









 .

Solution
 If we put directly x a=  we observe that the given function is in an indeterminate form  
0
0

. As the numerator and the denominator functions are polynomials they both are differentiable. 
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 Hence by an application of the l’Hôpital Rule we get,

  lim
x a

n nx a
x a→

−
−









  =  lim

x a

nn x
→

−×









1

1
 

   =  n an× −1 .
Example 7.35

 Evaluate the limit lim
sin

x

mx
x→









0
 .

Solution

 If we directly substitute x = 0  we get an indeterminate form 0
0

 and hence we apply the l’Hôpital’s 

rule to evaluate the limit as,

  lim
sin

x

mx
x→









0
 =  lim cos

x

m mx
→

×







0 1

   =  m
 The next example tells that the limit does not exist.

Example 7.36

 Evaluate the limit lim
sin

x

x
x→









0 2
 .

Solution
 If we directly substitute x = 0  we get an indeterminate form 0

0
 and hence we apply the l’Hôpital’s 

rule to evaluate the limit as,

   lim
sin

x

x
x→ +









0
2

 =  lim cos

x

x
x→ +







 = ∞

0 2
 

   lim
sin

x

x
x→ −









0
2

 =  lim cos

x

x
x→ −







 = −∞

0 2
 

 As the left limit and the right limit are not the same we conclude that the limit does not exist.

Remark

 One may be tempted to use the l’Hôpital’s rule once again in lim
cos

x

x
x→ +









0 2
 to conclude

  lim
cos

x

x
x→ +









0 2
 =  lim

sin

x

x
→ +

−





=
0 2

0 .

 which is not true because it was not an indeterminate form.
Example 7.37

 If lim
cos

cosθ

θ
θ→

−
−







 =

0

1

1
1

m
n

, then prove that m n= ± .

Solution

 As this is an indeterminate form 0
0






 , using the l’Hôpital’s Rule

  lim
cos

cosθ

θ
θ→

−
−









0

1

1

m
n

 =  lim sin

sinθ

θ
θ→









0

m m
n n
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 Now using the example 7.35, we have

  lim
sin

sinθ

θ
θ
θ

θ
→

×










0

m
n

m

n
 =  m
n

2

2

  Therefore m2  =  n2  
  That is m  =  ±n .
Example 7.38

 Evaluate : lim
log( )

cot( )x

x
x→ −

−









1

1

π
 .

Solution
 This is an indeterminate form ¥

¥
 and hence we use the l’Hôpital’s Rule to evaluate

  lim
log( )

cot( )x

x
x→ −

−
1

1

π
 =  lim

( )x

x

x→

−
−

−
−










∞
∞








1

1
1

2π πcosec

 On Simplication, 
   =  lim sin ( )

( )x

x
x→ − −











1

2

1

π
π

      0
0






  

 again applying the l’Hôpital Rule

   =  lim sin( ) cos( )

x

x x
→ −

⋅
−









1

2π π π
π

 

   =  lim sin( ) cos( )
x

x x
→ −

− ⋅( )
1

2 π π  

   =  0 .
Example 7.39

 Evaluate : lim
x xx e→ +

−
−









0

1 1

1
.

Solution
 This is an indeterminate of the form ∞−∞ . To evaluate this limit we first simplify and bring it in 

the form 0
0






  and applying the l’Hôpital Rule, we get

  lim
x xx e→ +

−
−









0

1 1

1
 =  lim

( )x

x

x

e x
x e→ +

− −
−



















0

1

1

0

0
 

 Now,

  lim
( )x

x

x

e x
x e→ +

− −
−











0

1

1
 =  lim

x

x

x x

e
xe e→ +

−
+ −


















0

1

1

0

0
 

   =  lim
x

x

x x

e
xe e→ + +









 =

0 2

1

2
.
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Example 7.40

 Evaluate : lim log
x

x x
→ +0

.

Solution
 This is an indeterminate of the form ( )0×∞ . To evaluate this limit, we first simplify and bring it 

to the form ∞
∞






  and apply l’Hôpital Rule

  lim log
x

x x
→ +0

 =  lim log

x
x

x
→ +











∞
∞








0 1
 

   =  lim
x

x

x
→ + −









0

1

1
2

  =  lim ( )
x

x
→ +

− =
0

0 .

Example 7.41

 Evaluate : lim
x

x x
x→∞

+ +









2

4

17 29 .

Solution

 This is an indeterminate of the form ∞
∞






 . To evaluate this limit, we apply l’Hôpital Rule.

  lim
x

x x
x→∞

+ +









2

4

17 29  =  lim
x

x
x→∞

+







2 17

4 3

   =  lim
x x→∞









2

12 2
  =  0 .

Example 7.42

 Evaluate : lim ,
x

x

m

e
x

m N
→∞









 ∈ .

Solution

 This is an indeterminate of the form ∞
∞






 . 

 To evaluate this limit, we apply l’Hôpital Rule m  times

  lim
x

x

m

e
x→∞

 =  lim
!x

xe
m→∞

 

   =  ¥ .

7.5.4  Indeterminate forms 00,1∞ and ∞0

 In order to evaluate the indeterminate forms like this, we shall first state the theorem on the limit 
of a composite function.

 Theorem 7.6

 Let lim ( )
x
g x

→α
 exist and let it be L  and let f x( )  be a continuous function at x L= . Then,

  lim ( ( ))
x

f g x
→α

 =  f g x
x
lim ( )
→( )α

.
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The evaluation procedure for evaluating the limits

 (1) Let A g x
x a

=
→

lim ( ) . Then taking logarithm, with the assumption that A > 0  to ensure the 

continuity of the logarithm function, we get, log lim log( ( ))A g x
x a

=
→

. Therefore using the above 

theorem with f x x( ) log=  we have the limit

   lim log( ( ))
x a

g x
→

 =  log lim ( )
x a
g x

→( ) .

 (2) We have the limit limlog( ( ))
x a

g x
→

into either 0
0






  or ∞

∞






  evaluate it using l’Hôpital Rule.

 (3) Let that evaluated limit be say α . Then the required limit is eα .

Example 7.43

 Using the l’Hôpital Rule prove that, lim ( )
x

xx e
→ +

+ =
0

1

1 .

Solution

 This is an indeterminate of the form 1¥ . Let g x x x( ) ( )= +1
1

. Taking the logarithm, we get

  log ( )g x  =  log( )1+ x
x

 

  lim log( ( )
x

g x
→ +0

 =  lim
log( )

x

x
x→ +

+














0

1 0

0

   =  lim
x

x

→

+
+









0

1
1

1
         (by l’Hôpital Rule)

   =  1 .

  But, lim log ( )
x

g x
→ +0

 =  log lim ( )
x

g x
→ +( )

0
 

  Therefore, log lim ( )
x

g x
→ +( )

0
 =  1.

 Hence by exponentiating, we get lim ( )
x

g x e
→ +

=
0

.

Example 7.44

 Evaluate : lim( ) log

x

xx
→∞

+1 2

1

2 .

Solution
 This is an indeterminate of the form ¥0 . 

  Let  g x( )  =  ( ) log1 2

1

2+ x x .

 Taking the logarithm, we get

  log ( )g x  =  log( )

log

1 2

2

+ x
x
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  lim log ( )
x

g x
→∞

 =  lim log( )

logx

x
x→∞

+









∞
∞








1 2

2
 

   =  lim
x

x

x
→∞

+









2
1 2

2
    (by l’Hôpital Rule)

   =  lim
x

x
x→∞ +









∞
∞








1 2
 

   = 





 =→∞

lim
x

1

2

1

2
  but,

  lim log ( )
x

g x
→∞

 =  log lim ( )
x
g x

→∞( ) .

 Hence by exponentiating, we get the required limit as e .

Example 7.45

 Evaluate : lim
x

xx
→

−

1

1

1 .

Solution

 Let g x x x( ) = −
1

1 . This is an indeterminate of the form 1¥ . Taking the logarithm,

  log ( )g x  =  log x
x1−

.

  Therefore, lim log ( )
x

g x
→1

 =  lim log

x

x
x→ −
















1 1

0

0
.

 An application of l’Hôpital rule,

  lim
x

x

→ −








1

1

1
 =  −1

  But,  lim log ( )
x

g x
→1

 = log lim ( )
x
g x

→( )
1

 Hence on exponentiating, we get

  lim
x

xx
→

−

1

1

1  =  e
e

− =1 1 .

EXERCISE 7.5
Evaluate the following limits, if necessary use l’Hôpital Rule :

 1. lim
cos

x

x
x→

−
0 2

1   2. lim
x

x
x x→∞

−
− +

2 3

5 3

2

2
 3. lim

logx

x
x→∞

 4. lim
sec

tanx

x
x→

−π
2

 5. lim
x

xe x
→∞

−  6. lim
sinx x x→

−







0

1 1  

 7. lim
x x

x
x→ + −

−
−









1
2

2

1 1  
8. lim

x

xx
→ +0

 9. lim
x

x

x→∞
+






1

1  
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 10. lim(sin )tan

x

xx
→p

2

 11. lim (cos )
x

xx
→ +0

1
2

 12. If an initial amount A0 of money is invested at an interest rate r compounded n  times a year, 

the value of the investment after t years is A A r
n

nt

= +





0 1 .  If the  interest is compounded 

continuously, (that is as n →∞ ), show that the amount after t years is A A ert= 0

7.6 Applications of First Derivative
 Using the first derivative we can test a function f x( )  for its monotonicity  
(increasing or decreasing), focusing on a particular point in its domain and  
the local extrema (maxima or minima) on a domain.

7.6.1 Monotonicity of functions
 Monotonicity of functions are its behaviour of increasing or decreasing.

Definition 7.4

 A function f x( )  is said to be an increasing function in an interval I  
 if a b f a f b a b I< ⇒ ≤ ∀ ∈( ) ( ), , .

Definition 7.5

 A function f x( )  is said to be a decreasing function in an interval I  
 if a b f a f b a b I< ⇒ ≥ ∀ ∈( ) ( ), , .

 The function f x x( ) =  is an increasing function in the entire real line, whereas the function 

f x x( ) = −  is a decreasing function in the entire real line. In general, a given function may be increasing 

in some interval and decreasing in some other interval, say for instance, the function f x x( ) | |=  is 

decreasing in ( , ]−∞ 0  and is increasing in [ , )0 ¥ . These functions are simple to observe for their 
monotonicity. But given an arbitrary function how we determine its monotonicity in an interval of a 
real line? That is where following theorem will be useful, which is stated here.

 Theorem 7.7

 If the function f x( )  is differentiable in an open interval ( , )a b  then we say,
 (1) if

   d
dx

f x( ( ))  ≥  0, ( , )∀ ∈x a b . ... (1)

  then f x( )  is increasing in the interval ( , )a b .

 (2) if

   d
dx

f x( ( ))  >  0, ( , )∀ ∈x a b . ... (2)

  then f x( )  is strictly increasing in the interval ( , )a b .

  The proof of the above can be observed from Theorem 7.3.
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 (3) f x( )  is decreasing in the interval ( , )a b  if

   d
dx

f x( ( ))  £  0, ( , )∀ ∈x a b . ...(3)

 (4) f x( )  is strictly decreasing in the interval ( , )a b  if

   d
dx

f x( ( ))  <  0, ( , )∀ ∈x a b . ... (4)

Remark
 It is very important to note the following fact. It is false to say that if a differentiable function 
f x( )  on I  is strictly increasing on I , then ′ >f x( ) 0  for all x I∈ . For instance, consider 
y x x= ∈ −∞ ∞3, ( , ) . It is strictly increasing on ( , )−∞ ∞ . To prove this, let a b> . Then we have to 
prove that f a f b( ) ( )> . For this purpose, we have to prove a b3 3 0− > .

 Now,
  a b3 3−  =  ( )( )a b a ab b− + +2 2

   =  ( ) ( )a b a ab b− + +
1

2
2 2 22 2

   =  ( ) ( )a b a b a b− + + +( )1

2

2 2 2  

   >  0  since a b− > 0  and other terms inside the bracket are > 0 .
 Hence it is clear that the quadratic expression is always positive (it is equal to zero only if 
a b= = 0 , which contradicts the condition a b< ). Therefore the function is y x= 3  is strictly increasing 
in ( , )−∞ ∞ . But ′ =f x x( ) 3 2  which is equal to zero at x = 0 .

Definition 7.6

 A stationary point ( , ( ))x f x0 0  of a differentiable function f x( )  is where ′ =f x( )0 0 .

Definition 7.7

 A critical point ( , ( ))x f x0 0  of a function f x( )  is where ′ =f x( )0 0  or does not exist.

 Every stationary point is a critical point however all critical points need not be stationary points. 
As an example, the function f x x( ) | |= −17  has a critical point at ( , )17 0  but ( , )17 0  is not a stationary 
point as the function has no derivative at x =17 .
Example 7.46
 Prove that the function f x x( ) = +2 2  is strictly increasing in the interval ( , )2 7  and strictly 
decreasing in the interval ( , )−2 0 .
Solution
 We have, 
  ′f x( )  =  2 0 2 7x x> ∀ ∈, ( , )  and
  ′f x( )  =  2 0 2 0x x< ∀ ∈ −, ( , )  
 and hence the proof is completed.
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Example 7.47
 Prove that the function f x x x( ) = − −2 2 3  is strictly increasing in ( , )2 ¥ .

Solution
 Since f x x x( ) = − −2 2 3 , ′ = − > ∀ ∈ ∞f x x x( ) ( , )2 2 0 2 . Hence f x( )  is strictly increasing in 
( , )2 ¥ .

7.6.2 Absolute maxima and minima
 The absolute maxima and absolute minima are referred to describing the largest and smallest 
values of a function on an interval.

Definition 7.8
 Let x0  be a number in the domain D of a function f x( ) . Then f x( )0  is the absolute 

maximum value of f x( ) on D , if  f x f x x D0( ) ≥ ( )∀ ∈ and f x( )0  is the absolute minimum 

value of f x( )  on D  if f x f x x D0( ) ≤ ( )∀ ∈ .

 In general, there is no guarantee that a function will actually have an absolute maximum or 
absolute minimum on a given interval. The following figures show that a continuous function may or 
may not have absolute maxima or minima on an infinite interval or on a finite open interval.

 However, the following theorem shows that a continuous function must have both an absolute 
maximum and an absolute minimum on every closed interval.

 Fig. 7.15 Fig. 7.16

x

y

x

y

f x( )  has an absolute minimum but no absolute 
maximum on −∞ ∞( ), f x( ) has no absolute extrema on −∞ ∞( ), .

f x( )  has an 
absolute maximum and 
an absolute minimum 

on −∞ ∞( ),

f x( ) has no absolute 
extrema on a b,( ) .

f x( )  has an 
absolute maximum and 
an absolute minimum 

on a,b[ ]

x

y

x

y

x

y

(a )b [a ]b

Fig. 7.18 Fig. 7.19Fig. 7.17
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Theorem 7.8 (Extreme Value Theorem)
 If f x( ) is continuous on a closed interval a b,[ ] , then f has both an absolute maximum and 
an absolute minimum on a b,[ ] .

 The absolute extrema of f x( ) occur either at the endpoints of closed interval a b,[ ]or inside 

the open interval a b,( ) .If the absolute extrema occurs inside, then it must occur at critical numbers 

of f x( ) . Thus, we can use the following procedure to find the absolute extrema of a continuous 

function on closed interval a b,[ ] .

	 A	 procedure	 for	 finding	 the	 absolute	 extrema	 of	 a	 continuous	 function	 f x( ) on closed 

interval a b,[ ] . 

 Step 1 : Find the critical numbers of f x( )  in a b,( )

 Step 2 : Evaluate f x( ) at all the critical numbers and at the endpoints a and b

 Step 3 : The largest and the smallest of the values in step 2 is the absolute maximum and 
absolute minimum of f x( )  respectively on the closed interval a b,[ ] .  

Example 7.48
 Find the absolute maximum and absolute minimum values of the function f x x x x( ) = + −2 3 123 2

on −[ ]3 2,

Solution
 Differentiating the given function,  we get
   ′( )f x  =  6 6 122x x+ −
    =  6 22x x+ −( )
   ′( )f x  =  6 2 1x x+( ) −( )
  Thus,  ′( ) = ⇒ = − ∈ −( )f x x0 2 1 3 2, , .

 Therefore, the critical numbers are x = −2 1, . Evaluating f x( ) at the endpoints x = −3 2, and at 
critical numbers x = −2 1, , we get f −( ) =3 9 , f 2 4( ) = , f −( ) =2 20  and f 1 7( ) = − . 

 From these  values, the absolute maximum is 20  which occurs at x = −2 , and the absolute 
minimum is −7 which occurs at x =1.

Example 7.49
 Find the absolute extrema of the function f x x( ) = 3cos on the closed interval 0 2, π[ ] .
Solution
 Differentiating the given function,  we get ′( ) = −f x x3sin .

 Thus, ′( ) = ⇒ = ⇒ = ∈( )f x x x0 0 0 2sin ,π π . Evaluating f x( ) at the endpoints x = 0 2, π and 
at critical number x = π , we get f 0 3( ) = , f 2 3π( ) = , and f π( ) = −3 .

 From these values, the absolute maximum is 3 which occurs at x = 0 2, π , and the absolute 
minimum is −3 which occurs at x = π .
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7.6.3  Relative Extrema on an Interval
 A function f x( ) is said to have a relative maximum at x0 , if there is an open interval containing 
x0  on which f x( )0 is the largest value. Similarly, f x( ) is said to have a relative minimum at x0 , if 
there is an open interval containing x0  on which f x( )0  is the smallest value.
 A relative maximum need not be the largest value on the entire domain, while a relative minimum 
need not be the smallest value on the entire domain. Therefore, there may be more than one relative 
maximum or relative minimum on the entire domain.
 A relative extrema of a function is the extreme values (maximum or minimum) of the functions 
among all the evaluated values of f x x I D( ),∀ ∈ ⊂  where I  may be open or closed. Usually the 
local extreme value of a function is attained at a critical point. Note that, a function may have a critical 
point at x c=  without having a local extreme value there. For instance, both of the functions y x= 3  

and y x=
1

3  have critical points at the origin, but neither function has a local extreme value at the 
origin. 

Theorem 7.9 (Fermat)
 If f x( )  has a relative extrema at x c=  then c  is a critical number. Invariably there will be 
critical numbers of the function obtained as solutions of the equation ′ =f x( ) 0  or as values of x 
at which ′f x( )  does not exist.

7.6.4 Extrema using First Derivative Test
 After we have determined the intervals on which a function is increasing or decreasing, it is not 
difficult to locate the relative extrema of the function. The location or points at which the relative 
extrema occurs for a given function f x( )  can be observed through the graph y f x= ( ) . However to 
find the exact point and the value of the extrema of functions we need to use certain test on functions. 
One such test is the first derivative test, which is stated in the following theorem.

 Theorem 7.10 (First Derivative Test)

 Let ( , ( ))c f c  be a critical point of 

function f x( )  that is continuous on 

an open interval I  containing c . If 

f x( )  is differentiable on the 

interval, except possibly at c , then 

f c( )  can be classified as follows:

(when moving across the interval I 
from left to right)

 (i) If ′f x( )  changes from negative to positive at c , then f x( )  has a local minimum f c( ) .

 (ii) If ′f x( )  changes from positive to negative at c , then f x( )  has a local maximum f c( ) .

 (iii) If ′f x( )  is positive on both sides of c  or negative on both sides of c , then f c( )  is neither 
a local minimum nor a local maximum.

Fig. 7.20

c1 c2 c3

y f x= ( )
( , ( ))c f c1 1

( , ( ))c f c2 2

( , ( ))c f c3 3

′ =f c( )1 0

′ =f c( )2 0

′f c( )3 does not exist

f c( )1 is a local maximum

f c( )2

is not a
local 

extremum f c( )3
is a local minimum

0 0+ + + + + + + + + + + + + + + + + + + +– – – – – – – – – – – –
′ >f x( ) 0 ′ >f x( ) 0′ <f x( ) 0 ′ <f x( ) 0
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Example 7.50

 Find the intervals of monotonicity and hence find the local extrema for the 

function f x x x( ) = − +2 4 4 .
Solution
 We have,
  f x( )  =  ( )x − 2 2 , then
   ′f x( )  =  2 2 0( )x − =  gives x = 2  .

 The intervals of monotonicity are ( , )−∞ 2  and ( , )2 ¥ . Since ′ <f x( ) 0 , for x∈ −∞( , )2  the 
function f x( )  is strictly decreasing on ( , )−∞ 2 . As ′ >f x( ) 0 , for x∈ ∞( , )2  the function f x( )  is 
strictly increasing on ( , )2 ¥ . Because ¢f x( ) changes its sign from negative to positive when passing 
through x = 2  for the function f x( ) , it has a local minimum at x = 2 . The local minimum value is 
f ( )2 0= .

Example 7.51
 Find the intervals of monotonicity and hence find the local extrema for the function f x x( ) =

2
3 .

Solution

 We have, f x x( ) =
2
3 , then ′( ) = =−f x x

x
2

3

2

3

1
3

1
3

. ′ ( ) ≠ ∀ ∈f x x0   and ′( )f x  does not exist at 

x = 0 . Therefore, there are no stationary points but there is a critical point at x = 0 .

Interval (-∞, 0) (0, ∞)

Sign of ′ ( )f x  _ +
Monotonicity strictly decreasing strictly increasing

 Table 7.5

 Because ′( )f x changes its sign from negative to positive when passing through x = 0 for the 

function f x( ) , it has a local minimum at x = 0 .The local minimum value is f 0 0( ) = . Note that here 
the local minimum occurs at a critical point which is not a stationary point.    

Example 7.52
 Prove that the function f x x x( ) sin= −  is increasing on the real line. Also discuss for the existence 
of local extrema.
Solution
 Since ′ = − ≥f x x( ) cos1 0  and zero at the points x n n= ∈2 π , 

and hence the function is 
increasing on the real line.
 Since there is no sign change in ′f x( )  when passing through x n n= ∈2 π , 

 by the first derivative 

test there is no local extrema.

Example 7.53
 Discuss the monotonicity and local extrema of the function

f x x x
x
x( ) log( ) ,= + −

+
> −1

1
1 and hence find the domain where, log( )1

1
+ >

+
x x

x
.

Fig.7.21

x

y
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Solution
 We have,
  f x( )  =  log( )1

1
+ −

+
x x

x

  Therefore,  ′f x( )  =  1

1

1

1 2+
−

+x x( )

   =  x
x( )1 2+

.

 Hence,

′f x( )  is 
< − < <
= =
> >









0 1 0

0 0

0 0

when

when

 when  

x
x
x

 

 Therefore f x( )  is strictly increasing for x > 0  and strictly decreasing for x < 0 . Since ′f x( )  
changes from negative to positive when passing through x = 0 , the first derivative test tells us there 
is a local minimum at x = 0  which is f ( )0 0= . Further, for x > 0 , f x f( ) ( )> =0 0  gives

log( ) log( )1
1

0 1
1

+ −
+

> ⇒ + >
+

x x
x

x x
x

  on ( , )0 ¥ .

Example 7.54
 Find the intervals of monotonicity and local extrema of the function f x x x x( ) log= + 3 .
Solution
 The given function is defined and is differentiable at all x∈ ∞( , )0 .

  f x( )  =  x x xlog + 3 .

  Therefore ′f x( )  =  log logx x+ + = +1 3 4 .

 The stationary points are given by 4+ log x  =  0 .
  That is  x  =  e−4 .
 Hence the intervals of monotonicity are ( , )0 4e−  and ( , )e− ∞4 .

 At x e e f e= ∈ ′ = − <− − −5 4 50 1 0( , ), ( )  and hence in the interval ( , )0 4e−  the function is strictly 

decreasing.
 At x e e f e= ∈ ∞ ′ = >− − −3 4 3 1 0( , ), ( )  and hence strictly increasing in the interval ( , )e− ∞4 . Since 
′f x( )  changes from negative to positive when passing through x e= −4 , the first derivative test tells 

us there is a local minimum at x e= −4  and it is f e e( )− −= −4 4 .

Example 7.55
 Find the intervals of monotonicity and local extrema of the function f x

x
( ) =

+
1

1 2
 .

Solution
 The given function is defined and is differentiable at all x∈ −∞ ∞( , ) . As

  f x( )  =  1

1 2+ x
.

  We have ′f x( )  =  −
+
2

1 2 2

x
x( )

.
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 The stationary points are given by −
+
2

1 2 2

x
x( )

 =  0  that is x = 0 .

 Hence the intervals of monotonicity are  ( , )−∞ 0 and ( , )0 ¥ .

 On the interval  ( , )−∞ 0 the function strictly increases because ′ >f x( ) 0  in that interval.

 The function f x( )  strictly decreases in the interval  ( , )0 ¥ because ′ <f x( ) 0  in that interval. 
Since ′f x( )  changes from positive to negative when passing through x = 0 , the first derivative test 
tells us there is local maximum at x = 0  and the local maximum value is f ( )0 1= .

Example 7.56
 Find the intervals of monotonicity and local extrema of the function f x x

x
( ) =

+1 2
.

Solution
 The given function is defined and differentiable at all x∈ −∞ ∞( , ) , As

  f x( )  =  x
x1 2+

  ′f x( )  =  1

1

2

2 2

−
+

x
x( )

 The stationary points are give by 1 2− x  =  0   that is x = ±1
 Hence the intervals of monotonicity are ( , ), ( , )−∞ − −1 1 1 and ( , )1 ¥ .

Interval (-∞, -1) (-1, 1) (1, ∞)

Sign of ′ ( )f x  _ + _

Monotonicity strictly decreasing strictly increasing strictly decreasing

Table 7.6

 Therefore, f x( ) strictly increasing on ( , )−∞ −1

and ( , )1 ¥ , strictly decreasing on ( , )-1 1 .

 Since ′f x( )  changes from negative to positive 

when passing through x = −1 , the first derivative test 

tells us there is a local minimum at x = −1  and the local 

minimum value is f ( )− = −1
1

2
. As ′f x( )  changes from positive to negative when passing through 

x =1 , the first derivative test tells us there is a local maximum at x =1 and the local maximum value 

is f ( )1
1

2
= .

f x x
x

( ) �
�1 2

0�1�2�3 1 2 3

�1

1
y

x

Fig.7.22
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EXERCISE 7.6
 1. Find the absolute extrema of the following functions on the given closed interval.

   (i) f x x x( ) = − +2 12 10  ; 1 2,[ ]  (ii) f x x x( ) = −3 44 3  ; −[ ]1 2,

   (iii) f x x x( )= −6 3
4

3

1

3  ; [ , ]-1 1  (iv) f x x x( ) cos sin= +2 2  ; 0
2

,
π





 2. Find the intervals of monotonicities and hence find the local extremum for the following 
functions:

 (i) f x x x x( ) = + −2 3 123 2  (ii) f x x
x

( ) =
−5

 (iii) f x e
e

x

x( ) =
−1

 (iv) f x x x( ) log= −
3

3

 (v) f x x x x( ) sin cos , ( , )= + ∈5 0 2π

7.7 Applications of Second Derivative
 Second derivative of a function is used to determine the concavity, convexity, the points of 
inflection, and local extrema of functions.

7.7.1 Concavity, Convexity, and Points of Inflection
 A graph is said to be concave down (convex up) 
at a point if the tangent line lies above the graph in 
the vicinity of the point. It is said to be concave up 
(convex down) at a point if the tangent line to the 
graph at that point lies below the graph in the vicinity 
of the point. This may be easily observed from the adjoining graph. 

Definition 7.8

 Let f x( )  be a function whose second derivative exists in an open interval I a b= ( , ) . Then the 
function f x( )  is said to be 
 (i) If ′f x( )  is strictly increasing on I , then the function is concave up on an open interval I .
 (ii) If ′f x( )  is strictly decreasing on I , then the function is concave down on an open interval I.

 Analytically, given a differentiable function whose graph y f x= ( ) , then the concavity is given 
by the following result.

 Theorem 7.11 (Test of Concavity)
 (i) If ′′ >f x( ) 0  on an open interval I , then f x( )  is concave up on I .
 (ii) If ′′ <f x( ) 0  on an open interval I , then f x( )  is concave down on I .

Remark
 (1) Any local maximum of a convex upward function defined on the interval [ , ]a b  is also its 

absolute maximum on this interval.
 (2) Any local minimum of a convex downward function defined on the interval [ , ]a b  is also its 

absolute minimum on this interval.

Fig.7.23

Concave
Down

Concave
Up
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 (3) There is only one absolute maximum (and one absolute minimum) but there can be more 
than one local maximum or minimum.

Points of Inflection

Definition 7.9
 The points where the graph of the function changes from “concave up to concave down” or 
“concave down to concave up” are called the points of inflection of f x( ) .

 Theorem 7.12 (Test for Points of Inflection)

 (i) If ′′f c( )  exists and ′′f c( )  changes sign when passing through x c= , then the point 

( , ( ))c f c  is a point of inflection of the graph of f . 

 (ii) If ′′f c( )  exists at the point of inflection, then ′′ =f c( ) 0 .

Remark 
 To determine the position of points of inflexion on the curve y f x= ( )  it is necessary to find the 
points where ′′f x( )  changes sign. For ‘smooth’ curves (no sharp corners), this may happen when 
either
 (i) ′′ =f x( ) 0  or
 (ii) ′′f x( )  does not exist at the point.

Remark
 (1) It is also possible that ′′f c( )  may not exist, but ( , ( ))c f c  could be a point of inflection. For 

instance, f x x( ) =
1

3  at c = 0 .

 (2) It is possible that ′′ =f c( ) 0  at a point but ( , ( ))c f c  need not be a point of inflection. For 

instance, f x x( ) = 4  at c = 0 .

 (3) A point of inflection need not be a stationary point. For instance, if f x x( ) sin=  then, 
′ =f x x( ) cos  and ′′ = −f x x( ) sin   and hence ( , )p 0  is a point of inflection but not a stationary 

point for f x( ) .

Example 7.57
 Determine the intervals of concavity of the curve f x x x x( ) ( ) ( ),= − ⋅ − ∈1 53

  and, points of 
inflection if any.

Solution
 The given function is a polynomial of degree 4. Now,
  ′f x( )   =  ( ) ( ) ( )x x x− + − ⋅ −1 3 1 53 2  
   =  4 1 42( ) ( )x x− ⋅ −

  ′′f x( )  =  4 1 2 1 42(( ) ( ) ( ))x x x− + − ⋅ −

   =  12 1 3( ) ( )x x− ⋅ −

 Now,
   ′′f x( )  =  0   ⇒ = =x x1 3, . Fig.7.24

1 2 3 4
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40

60

80

x

′′f x( )
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 The intervals of concavity are tabulated in the table 7.7.

Interval (-∞, 1) (1, 3) (3, ∞)

Sign of ′′ ( )f x  + _ +

Concavity concave up concave down concave up

 The curve is concave upwards on ( , )−∞ 1  and ( , )3 ¥ .
 The curve is concave downwards on ( , )1 3 .
 As ′′f x( )  changes its sign when it passes through x =1 and x f= =3 1 1 1 0, ( , ( )) ( , )  and 
( , ( )) ( , )3 3 3 16f = −  are points of inflection for the graph y f x= ( ) . This may be observed from the 

adjoining figure of the curve ′′f x( ) . 

Example 7.58
 Determine the intervals of concavity of the curve y x= +3 sin .
Solution
 The given function is a periodic function with period 2p  and hence there will be stationary 
points and points of inflections in each period interval. We have,

  dy
dx

 =  cos x  and d y
dx

x
2

2
= −sin  

  Now,  d y
dx

2

2  =  − = ⇒ =sin x x n0 π .

 We now consider an interval, ( , )−π π  by splitting into two sub 
intervals ( , )−π 0  and ( , )0 p .

 In the interval ( , )−π 0 , d y
dx

2

2
0>  and hence the function is concave upward.

 In the interval ( , ),0 0
2

2
π
d y
dx

<   and hence the function is concave downward. Therefore ( , )0 3  is 

a point of inflection. The general intervals need to be considered to discuss the concavity of the curve 
are ( , ( ) )n nπ π+1 , where n  is any integer which can be discussed as before to conclude that ( , )np 3  
are also points of inflection.

7.7.2 Extrema using Second Derivative Test
 The Second Derivative Test: The Second Derivative Test relates the concepts of critical points, 
extreme values, and concavity to give a very useful tool for determining whether a critical point on 
the graph of a function is a relative minimum or maximum.

Theorem 7.13 (The Second Derivative Test)

   Suppose that c  is a critical point at which ′ =f c( ) 0 , that ′f x( )  exists in a neighborhood of c , 

and that ′f c( )  exists. Then f  has a relative maximum value at c  if ′′ <f c( ) 0  and a relative 

minimum value at c  if ′′ >f c( ) 0 . If ′′ =f c( ) 0 , the test is not informative.

2.0

2.5

3.0

3.5

4.0

-2π -π 0 π 2π
x

y

Fig.7.25

Table 7.7
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Example 7.59

 Find the local extremum of the function f x x x( ) = +4 32 .
Solution

 We have,
  ′f x( )  =  4 32 03x + =  gives x3 8= −

  ⇒ x  =  −2

  and  ′′f x( )  =  12 2x .

 As ′′ − >f ( )2 0 , the function has local minimum at x=−2 . The local minimum value is
f ( )− =−2 48 . Therefore, the extreme point is ( , )− −2 48 .

Example 7.60

 Find the local extrema of the function f x x x( )= −4 66 4 .

Solution

 Differentiating with respect to x, we get 

  ′( )f x   =  24 245 3x x-

   =  24 13 2x x −( )

   =  24 1 13x x x+( ) −( )

 ′( )=f x 0 Þ x=−1 0 1, , . Hence the critical 
numbers are x = −1 0 1, ,    
 Now, ′′( )= − = −( )f x x x x x120 72 24 5 34 2 2 2 .
 Þ ′′ −( )=f 1 48 , ′′( )=f 0 0 , ′′( )=f 1 48 .   

As ′′ −( )f 1 and ′′( )f 1  are positive by the second derivative test, the function f x( )has local 
minimum. But at x = 0 , ′′ =f ( )0 0 . That is the second derivative test does not give any information 
about local extrema at x = 0 . Therefore, we need to go back to the first derivative test. The intervals 
of monotonicity is tabulated in the table 7.8.

Interval ( , )−∞ −1 ( , )−1 0 ( , )0 1 ( , )1 ∞

Sign of ′f x( ) - + - +

Monotonicity
strictly 

decreasing
strictly 

increasing
strictly 

decreasing
strictly 

increasing

Table 7.8

By the first derivative test f x( )  has local minimum at x = −1, its local minimum value is −2 . 
At x = 0 , the function f x( )  has local maximum at x = 0 , and its local maximum value is 0 . At x = 1 ,  
the function f x( )  has local minimum at x = 1 , and its local minimum value is −2 .
Remark
 When the second derivative vanishes, we have no information about extrema. We have used the 
first derivative test to find out the extrema of the function!

y

x

Fig.7.26
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Example 7.61
 Find the local maximum and minimum of the function x y2 2  on the line x y+ =10 .
Solution

 Let the given function be written as f x x x( ) ( )= −2 210 . Now,

  f x( )  =  x x x x x x2 2 4 3 2100 20 20 100( )− + = − +

  Therefore,  ′f x( )  =  4 60 200 4 15 503 2 2x x x x x x− + = − +( )

  ′f x( )  =  4 15 50 0 0 5 102x x x x( ) , ,− + = ⇒ =  

  and  ′′f x( )  =  12 120 2002x x− +

 The stationary points of f x( )  are x = 0 5 10, ,  at these points the values of ′′f x( )  are respectively 
200 100,−  and 200 . At x = 0 , it has local minimum and its value is f ( )0 0= . At x = 5 , it has local 
maximum and its value is f ( )5 625= . At x =10 , it has local minimum and its value is f ( )10 0= .

EXERCISE 7.7
 1. Find intervals of concavity and points of inflexion for the following functions:
   (i) f x x x( ) ( )= − 4 3   (ii) f x x x x( ) sin cos ,= + < <0 2π   (iii) f x e ex x( ) ( )= − −1

2

 2. Find the local extrema for the following functions using second derivative test :
   (i) f x x x( ) = − +3 55 3   (ii) f x x x( ) log=    (iii) f x x e x( ) = −2 2  

 3. For the function f x x x x( ) = + − +4 3 6 13 2  find the intervals of monotonicity, local extrema, 
intervals of concavity and points of inflection.

7.8 Applications in Optimization
 Optimization is a process of finding an extreme value (either maximum 
or minimum) under certain conditions.
 A procedure for solving for an extremum or optimization problems.
 Step 1 : Draw an appropriate figure and label the quantities relevant to the problem.
 Step 2 : Find  a experssion for the quantity to be maximized or minimized.
 Step 3 : Using the given conditions of the problem, the quantity to be extremized .
 Step 4 : Determine the interval of possible values for this variable from the conditions given in 

the problem.
 Step 5 : Using the techniques of extremum (absolute extrimum, first derivative test or second 

derivative test) obtain the maximum or minimum.

Example 7.62

 We have a 12 square unit piece of thin material and want to make an open box by cutting small 
squares from the corners of our material and folding the sides up. The question is, which cut produces 
the box of maximum volume?
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Solution
 Let  x  =  length of the cut on each side of the little squares.
  V  =  the volume of the folded box.
 The length of the base after two cuts along each edge of size x  is 12 2− x . The depth of the box 
after folding is x , so the volume is V x x= × −( )12 2 2 . Note that, when x = 0  or 6 , the volume is zero 

and hence there cannot be a box. Therefore the problem is to maximize, V x x x= × − ∈( ) , ( , )12 2 0 62 . 

Now, dV
dx

 =  ( ) ( )12 2 4 12 22− − −x x x

   =  ( )( )12 2 12 6− −x x .
 dV

dx
= 0  gives the stationary points x = 2 6, . Since 

6 0 6∉ ( , )  the only stationary point is at x = ∈2 0 6( , ) . 

Further, 
dV
dx

changes its sign from postive to negative 

when passing through x = 2 . Therefore at x = 2  the 

volume V  is local maximum. The local maximum volume 
value is V =128  units. Hence the maximum cut can only be 2 units.

Example 7.63

 Find the points on the unit circle x y2 2 1+ =  nearest and farthest from ( , )1 1 .

Solution

 The distance from the point ( , )1 1  to any point ( , )x y  is d x y= − + −( ) ( )1 12 2 . Instead of 

extremising  d , for convenience we extremise D d x y= = − + −2 2 21 1( ) ( ) , subject to the condition 

x y2 2 1+ = . Now, dD
dx

x y dy
dx

= − + − ×2 1 2 1( ) ( )  , where the dy
dx

 will be computed by differentiating 

x y2 2 1+ =  with respect to x . Therefore we get, 2 2 0x y dy
dx

+ =  which gives us dy
dx

x
y

=− .

 Substituting this, we get 
dD
dx

x y x
y

= − + − −







2 1 2 1( ) ( )  

   =  
2[ ]xy y xy x

y
− − +

   =  2 0
x y
y
−







 =

   ⇒  x y=

 Since ( , )x y  lie on the circle x y2 2 1+ =   we get, 2 12x =  gives x=± 1

2
. Hence the points at 

which the extremum distance occur are, 1

2

1

2

1

2

1

2
, , ,









 − −








. 

Fig.7.28
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(0,-1)

(-1,0) (1,0)

(1,1)
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y

Fig.7.27
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 To find the extrema, we apply second derivative test. So,

  d D
dx

2

2  =  2
2 2

3

y x
y
+

.

 The value of 
d D
dx

d D
dx

2

2
1

2

1

2

2

2
1

2

1

2

0 0






>






<






− −





, ,

; .

 This implies the nearest and farthest points are 1

2

1

2

1

2

1

2
, ,







− −





and .

 Therefore, the nearest and the farthest distances are respectively  2 1-  and 2 1+ .

Example 7.64

 A steel plant is capable of producing x tonnes per day of a low-grade steel and y tonnes per day 

of a high-grade steel, where y x
x

=
−
−

40 5

10
. If the fixed market price of low-grade steel is half that of 

high-grade steel, then what should be optimal productions in low-grade steel and high-grade steel in 
order to have maximum receipts.
Solution

 Let the price of low-grade steel be `p per tonne. Then the price of high-grade steel is `2p per 
tonne. 

 The total receipt per day is given by R px py px p x
x

= + = +
−
−







2 2

40 5

10
. Hence the problem is 

to maximise R . Now, simplifying and differentiating R  with respect to x , we get

   R  =  p
x
x

80

10

2−
−











  dR
dx

 =  p
x x

x

2

2

20 80

10

− +
−









( )

  d R
dx

2

2  =  -
-

40

10 3

p
x( )

  Now,  dR
dx

 =  0 20 80 02⇒ − + =x x  and hence x =  10 2 5±

  At x d R
dx

= −10 2 5
2

2
,  <  0

and hence R   will be maximum. If x = 10 2 5-  then y = 5 5− . Therefore the steel plant must 
produce low-grade and high-grade steels respectively in tonnes per day are

10 2 5-  and 5 5− .

Example 7.65
 Prove that among all the rectangles of the given area square has the least perimeter.

Solution
 Let x y,  be the sides of the rectangle. Hence the area of the rectangle is xy k=  (given). The 

perimeter of the rectangle P is 2( )x y+ . So the problem is to minimize 2( )x y+  suject to the condition 

xy k= . Let P x x k
x

( ) = +





2 .
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  ′ ( )P x  =  2 1
2

−








k
x

  ′ ( )P x  =  0   gives 1 0
2

−






=

k
x

 

  Therefore x  =  k

 Substituting x k=  in  xy k=  we get y k= . Therefore the minimum perimeter rectangle of 

a given area is a square.

EXERCISE 7.9
 1. Find two positive numbers whose sum is 12 and their product is maximum.

 2. Find two positive numbers whose product is 20 and their sum is minimum.

 3. Find the smallest possible value of x y2 2+ given that x y+ =10 . 

 4. A garden is to be laid out in a rectangular area and protected by wire fence. What is the largest 
possible area of the fenced garden with 40 metres of wire.

 5. A rectangular page is to contain 24 cm2 of print. The margins at the top and bottom of the page 
are 1.5 cm and the margins at other sides of the page is 1 cm. What should be the dimensions 
of the page so that the area of the paper used is minimum.

 6. A farmer plans to fence a rectangular pasture adjacent to a river. The pasture must contain 
1,80,000 sq.mtrs in order to provide enough grass for herds. No fencing is needed along the 
river. What is the length of the minimum needed fencing material?

 7. Find the dimensions of the rectangle with maximum area that can be inscribed in a circle of 
radius 10 cm.

 8. Prove that among all the rectangles of the given perimeter, the square has the maximum area.

 9. Find the dimensions of the largest rectangle that can be inscribed in a semi circle of radius  
r  cm.

 10. A manufacturer wants to design an open box having a square base and a surface area of  
108 sq.cm. Determine the dimensions of the box for the maximum volume.

 11. The volume of a cylinder is given by the formula V r h= π 2 . Find the greatest and least values 
of V if r h+ = 6 .

 12. A hollow cone with base radius a cm and height b cm is placed on a table. Show that the 

volume of the largest cylinder that can be hidden underneath is 4

9
times volume of the cone.

7.9 Symmetry and Asymptotes
7.9.1 Symmetry
 Consider the following curves and observe that each of them is having some special properties, 
called symmetry with respect to a point, with respect to a line.
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 Fig.7.29 Fig.7.30 Fig. 7.31
 We now formally define the symmetry as follows :
 If an image or a curve is a mirror reflection of another image with respect to a line, we say the 
image or the curve is symmetric with respect to that line. The line is called the line of symmetry.
 A curve is said to have a θ  angle rotational symmetry with respect to a point if the curve is 
unchanged by a rotation of an angle  θ  with respect to that point.
 A curve may be symmetric with respect to many lines. Specifically, we consider the symmetry 
with respect to the co-ordinate axes and symmetric with respect to the origin. Mathematically, a curve 
f x y( , ) = 0  is said to be 

 • Symmetric with respect to the y-axis if f x y f x y( , ) ( , )= −  ∀x y,  or if  ( , )x y  is a point on 
the graph of the curve then so is ( , )−x y . If we keep a mirror on the y-axis the portion of the 
curve on one side of the mirror is the same as the portion of the curve on the other side of the 
mirror.

 • Symmetric with respect to the x-axis  if f x y f x y x y( , ) ( , ) ,= − ∀  or if ( , )x y  is a point on 
the graph of the curve then so is ( , )x y− . If we keep a mirror on the x -axis the portion of the 
curve on one side of the mirror is the same as the portion of the curve on the other side of the 
mirror.

 • Symmetric with respect to the origin if f x y f x y x y( , ) ( , ) ,= − − ∀  or if ( , )x y  is a point on 
the graph of the curve then so is ( , )− −x y . That is the curve is unchanged if we rotate it by 

180°  about the origin.
 For instance, the curves mentioned above x y y x= =2 2,  and y x=  are symmetric with respect to  
x-axis, y-axis and origin respectively.

7.9.2 Asymptotes
 An asymptote for the curve y f x= ( )   is a straight line which is a tangent at ¥  to the curve. In 
other words the distance between the curve and the straight line tends to zero when the points on the 
curve approach infinity.  There are three types of asymptotes. They are 

 1. Horizontal asymptote, which is parallel to the x -axis. The line y L=  is said to be a horizontal 

asymptote for the curve y f x= ( )  if either lim ( )
x

f x L
→+∞

=  or lim ( )
x

f x L
→−∞

= .

 2. Vertical asymptote, which is parallel to the y -axis. The line x a=  is said to be vertical 

asymptote for the curve y f x= ( )  if  lim ( )
x a

f x
→ −

= ±∞  or lim ( )
x a

f x
→ +

= ±∞ .

 3. Slant asymptote, A slant (oblique) asymptote occurs when the polynomial in the numerator is 
a higher degree than the polynomial in the denominator.

  To find the slant asymptote you must divide the numerator by the denominator using either long 
division or synthetic division.

-1 0. -0 5.

-0 5.

-1 0.

0.5 1.0

0.5

1.0
y
x=

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-1 0. -0 5. 0.5 1.0

y
x

=
2

-2

-1

-2

2

2 4

1

y

x
y= 2

0
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Example 7.66

 Find the asymptotes of the function f x
x

( ) =
1 .

Solution

 We have, lim
x x→ −

= −∞
0

1  and  lim
x x→ +

= ∞
0

1 . Hence, 

the required vertical asymptote is x = 0  or the  
y -axis.
 As the curve is symmetric with respect to both 
the axes, y = 0  or the x -axis is also an asymptote. 
Hence this (rectangular hyperbola) curve has both 
the vertical and horizontal asymptotes.

Example 7.67
 Find the slant (oblique) asymptote for the function f x x x

x
( ) =

− +
+

2 6 7

5
.

Solution
 Since the polynomial in the numerator is a higher degree (2nd) than the denominator (1st), we 
know we have a slant asymptote. To find it, we must divide the numerator by the denominator. We 
can use long division to do that:

)x x x
x x

x
x

x
+ − +

+
− +
− −

−
5 6 7

5

11 7

11 55

62

11
2

2

 Notice that we don't need to finish the long division 
problem to find the remainder. We only need the terms that 
will make up the equation of the line. The slant asymptote 
is  y x= −11.

 As you can see in this graph of the function, the curve approaches the slant asymptote y x= −11
but never crosses it: 
Example 7.68

 Find the asymptotes of the curve f x x
x

( ) = −
−

2 8

16

2

2
.

Solution

 As lim
x

x
x→− +

−
−

= −∞
4

2

2

2 8

16
 and lim

x

x
x→ +

−
−

= ∞
4

2

2

2 8

16
. 

 Therefore x=−4  and x = 4  are vertical asymptotes.

  As  lim
x

x
x→∞

−
−

2 8

16

2

2
 =  lim

x

x

x
→∞

−

−

2
8

1
16

2

2

= 2

Fig.7.32
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  and  lim
x

x
x→−∞

−
−

2 8

16

2

2
 =  lim

x

x

x
→−∞

−

−

2
8

1
16

2

2

= 2

 Therefore, y = 2 is a horizontal asymptote. This can also be obtained by synthetic division.

7.10 Sketching of Curves
 When we are sketching the graph of functions either by hand or through any graphing software 
we cannot show the entire graph. Only a part of the graph can be sketched. Hence a crucial question 
is which part of the curve we need to show and how to decide that part. To decide on this we use the 
derivatives of functions. We enlist few guidelines for determining a good viewing rectangle for the 
graph of a function. They are :
 (i) The domain and the range of the function. (ii) The intercepts of the cure (if any).
 (iii) Critical points of the function. (iv) Local extrema of the function.
 (v) Intervals of concavity. (vi) Points of inflexions (if any).
 (vii) Asymptotes of the curve (if exists)

Example 7.69
 Sketch the curve y f x x x= = − −( ) 2 6 .
Solution
 Factorising the given function, we have 
 y f x x x= = − +( ) ( )( )3 2 .
 (1) The domain of the given function f x( )  is the entire 

real line.
 (2) Putting y = 0  we get x = −2 3, . Therefore the x

-intercepts are ( , )−2 0  and ( , )3 0  putting x = 0  we get 
y = −6 . Therefore the y -intercept is ( , )0 6− .

 (3) ′ = −f x x( ) 2 1  and hence the critical point of the curve 

occurs at x = 1

2
.

 (4) ′′ = > ∀f x x( ) ,2 0 . Therefore at x = 1

2
 the curve has a 

local minimum which is f 1

2

25

4







 = − .

 (5) The range of the function is y≥− 25

4

 (6) Since ′′ = > ∀f x x( ) ,2 0  the function is concave upward in the entire real line.
 (7) Since f x x( ) ,= ≠ ∀2 0  the curve has no points of inflection.
 (8) The curve has no asymptotes.
 The rough sketch of the curve is shown on the right side.

Fig.7.35
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  Example 7.70
 Sketch the curve y f x x x= = − −( ) 3 6 9 .
Solution
 Factorising the given function, we have

y f x x x x= = − + +( ) ( )( )3 3 32 .
 (1) The domain and the range of the given function f x( )  are 

the entire real line.

 (2) Putting y = 0 , we get the x = 3 . The other two roots are 

imaginary. Therefore, the x -intercept is ( , )3 0 . Putting x = 0

, we get y = −9. Therefore, the y-intercept is ( , )0 9− .

 (3) ′ = −f x x( ) ( )3 22  and hence the critical points of the curve 

occur at x = ± 2 .

  (4) ′′ =f x x( ) 6 . Therefore at x = 2  the curve has a local 

minimum because ′′( ) = >f 2 6 2 0 . The local minimum 

is f 2 4 2 9( ) = − − . Similarly x = − 2  the curve has a 

local maximum because ′′ −( ) = − <f 2 6 2 0 . The local 

maximum is f −( ) = −2 4 2 9 .

 (5) Since ′′( ) = > ∀ >f x x x6 0 0,  the function is concave upward in the positive real line. As 
′′( ) = < ∀ <f x x x6 0 0,  the function is concave downward in the negative real line.

  (6) Since ′′( ) =f x 0  at x = 0  and ′′f x( )  changes its sign when passing through x = 0 . Therefore 

the point of inflection is 0 0 0 9, ,f ( )( ) = ( ) .

 (7) The curve has no asymptotes.

 The rough sketch of the curve is shown on the right side.

Example 7.71

 Sketch the curve y x x
x

=
−
−

2 3

1( )
.

Solution
 Factorising the given function we have,

y f x x x
x

= =
−
−

( )
( )

( )

3

1
.

 (1) The domain and the range of f x( )   are respectively 

R \{ }1   and the entire real line.

 (2) Putting y = 0  we get the x = 0 3, . Therefore the  

x -intercept is ( , )3 0 . Putting x = 0 , we get y = 0 . 

Therefore the curve passes through the origin.

Fig.7.36
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 (3) ′ =
− +
−

f x x x
x

( )
( )

2

2

2 3

1
 and hence the critical point of the curve occurs at x =1 as ′f ( )1  does not 

exist. But x x2 2 3 0− + =  has no real solution. Hence the only critical point occurs at x =1.
 (4) x =1 is not in the domain of the function and ′ ≠ ∀ ∈f x x( ) \{ }0 1 , there is no local 

maximum or local minimum.

 (5) ′′ = −
−

∀ ∈f x
x

x( )
( )

\{ }
4

1
1

3
 . Therefore when x f x< ′′ >1 0, ( )  the curve is concave upwards 

in ( , )−∞ 1  and when x f x> ′′ <1 0, ( )  the curve is concave downwards in ( , )1 ¥ . Since 
′′ ≠ ∈f x x( ) \{ }0 1  there is no point of infection for f x( ) . 

 (6) Since, lim
( )x

x x
x→ −

−
−

= +∞
1

2 3

1
 and lim

( )
,

x

x x
x

x
→ +

−
−

= −∞ =
1

2 3

1
1 is a vertical asymptote.

  The rough sketch is shown on the right side.

Example 7.72
 Sketch the graph of the function y x

x
=

−
3

12
.

Solution

 (1) The domain of f x( ) is  \ ,−{ }1 1 .

 (2) Since f x y f x y− −( ) = ( ), , , the curve is symmetric about the origin.

 (3) Putting y = 0 , we get x = 0 . Hence the x -intercept is 0 0,( ) .

 (4) Putting x = 0 , we get y = 0 . Hence the y -intercept is 0 0,( ) . 

 (5) To determine monotonicity, we find the first derivative as ′( ) = − +( )

−( )
f x x

x

3 1

1

2

2
2

.

  Hence, ′( )f x does not exist at x = −1 1, . Therefore, critical numbers are x = −1 1, . 

The intervals of monotonicity is tabulated in Table 7.9.

Interval (-∞, -1) (-1, 1) (1, ∞)

Sign of ′ ( )f x  _ _ _

Monotonicity strictly decreasing strictly decreasing strictly decreasing

Table 7.9

 (6) Since there is no sign change in ′( )f x when passing through critical numbers. There is no 
local extrema.

 (7) To determine the concavity, we find the second derivative as ′′( ) = +( )

−( )
f x x x

x

6 3

1

2

2
3

 . 

′′( ) = ⇒ =f x x0 0 and ′′( )f x does not exist at x = −1 1, .
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  The intervals of concavity is tabulated in Table 7.10.

Interval (-∞, -1) (-1, 0) (0, 1) (1, ∞)

Sign of ′′ ( )f x  _ + _ +

Concavity concave 
down concave up concave 

down concave up

  

Table  7.10

 (8) As x = −1  and 1are not in the domain of f x( ) and at x = 0 ,the second derivative is zero and 

′′( )f x  changes its sign from positive to negative when passing through x = 0 . .Therefore, 

the point of inflection is 0 0 0 0, ,f ( )( ) = ( ) .

 (9) lim lim lim
x x x

f x x
x x

x
→±∞ →±∞ →±∞

( ) =
−

=
−

=
3

1

3

1
0

2
. Therefore y = 0  is a horizontal asymptote. Since 

the denominator is zero, when x = ±1 .

 lim
x

x
x→− − −

= −∞
1

2

3

1
, lim

x

x
x→− + −

= +∞
1

2

3

1
,

 lim
x

x
x→ − −

= −∞
1

2

3

1
, lim

x

x
x→ + −

= ∞
1

2

3

1
.

 Therefore x = −1  and x =1  are 

vertical asymptotes. 

 The rough sketch of the curve is 

shown on the right side.

EXERCISE 7.9
 1. Find the asymptotes of the following curves : 

 (i) f x x
x

( ) =
−

2

2 1
 (ii) f x

x
x

( ) =
+

2

1
 (iii) f x

x
x

( ) =
+

3

22

 (iv) f x x x
x

( ) =
− −
+

2 6 1

3
 (v) f x x x

x
( ) =

+ −
−

2 6 4

3 6

 2. Sketch the graphs of the following functions:

 (i) y x x= − − +
1

3
3 23( )  (ii) y x x= −4  (iii) y x

x
=

+
−

2

2

1

4

 (iv) y
e x=

+ −

1
1

 (v)  y x x= −
3

24
log

Fig.7.38
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EXERCISE 7.10

Choose the correct or the most suitable answer from the given four alternatives :
 1. The volume of a sphere is increasing in volume at the rate of  3 3p cm / sec .  

The rate of change of its radius when radius is 1

2
 cm 

  (1) 3 cm/s (2) 2 cm/s (3) 1 cm/s (4) 1
2

 cm/s

 2. A balloon rises straight up at 10 m/s. An observer is 40 m away from the spot where the 
balloon left the ground. Find the rate of change of the balloon’s angle of elevation in radian 
per second when the balloon is 30 metres above the ground.

  (1) 3

25
 radians/sec (2) 4

25
 radians/sec (3) 1

5
 radians/sec (4) 1

3
 radians/sec

 3. The position of a particle moving along a horizontal line of any time t is given by 
s t t t( ) = − −3 2 82 .  The time at which the particle is at rest is

  (1) t = 0   (2) t = 1

3
  (3) t =1  (4) t = 3  

 4. A stone is thrown up vertically. The height it reaches at time t seconds is given by x t t= −80 16 2 . 
The stone reaches the maximum height in time t seconds is given by

  (1) 2  (2) 2.5 (3) 3 (4) 3.5

 5. Find the point on the curve 6 23y x= +  at which y-coordinate changes 8 times as fast as 
x-coordinate is

  (1) ( , )4 11   (2) ( , )4 11−   (3) ( , )−4 11   (4) ( , )− −4 11  

 6. The abscissa of the point on the curve f x x( ) = −8 2   at which the slope of the tangent is  

−0 25. ?
  (1) −8  (2) −4   (3) −2   (4) 0

 7. The slope of the line normal to the curve f x x( ) cos= 2 4  at x = π
12

 is

  (1) −4 3   (2) −4   (3) 3

12
  (4) 4 3  

 8. The tangent to the curve y xy2 9 0− + =  is vertical when

  (1)  y = 0  (2) y = ± 3  (3) y = 1

2
 (4) y = ±3

 9. Angle between y x2 =  and x y2 =  at the origin is

  (1) tan−1 3

4
  (2) tan− 








1 4

3
  (3) p

2
  (4) p

4
 

 10. What is the value of the limit lim cot
x

x
x→

−







0

1 ?

  (1) 0 (2) 1 (3) 2 (4) ∞
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 11. The function sin cos4 4x x+  is increasing in the interval

  (1) 5

8

3

4

π π
,







  (2) π π
2

5

8
,







  (3) π π
4 2

,






  (4) 0
4

,
π





 

 12. The number given by the Rolle’s theorem for the function x x x3 23 0 3− ∈, [ , ]  is

  (1) 1 (2) 2   (3) 3

2
  (4) 2

 13. The number given by the Mean value theorem for the function 
1

1 9
x

x, [ , ]∈  is

  (1) 2 (2) 2.5 (3) 3 (4) 3.5
 14. The minimum value of the function | |3 9− +x  is

  (1) 0 (2) 3 (3) 6 (4) 9
 15. The maximum slope of the tangent to the curve y e x xx= ∈sin , [ , ]0 2π  is at

  (1) x = π
4

  (2) x = π
2

  (3) x = π   (4) x = 3

2

π  

 16. The maximum value of the function x e xx2 2 0− >,  is

  (1) 1
e

  (2) 1

2e
  (3) 1

2e
  (4) 4

4e
 

 17. One of the closest points on the curve x y2 2 4− =  to the point ( , )6 0  is 

  (1) ( , )2 0   (2) 5 1,( )   (3) 3 5,( )   (4) 13 3,−( )  

 18. The maximum product of two positive numbers, when their sum of the squares is 200, is
  (1) 100   (2) 25 7   (3) 28   (4) 24 14  

 19. The curve y ax bx= +4 2  with ab > 0  

  (1) has no horizontal tangent (2) is concave up
  (3) is concave down  (4) has no points of inflection
 20. The point of inflection of the curve y x= −( )1 3  is

  (1) ( , )0 0   (2) ( , )0 1   (3) ( , )1 0   (4) ( , )1 1  
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SUMMARY
 • If y f x= ( ) ,then dy

dx
represents instantaneous rate of change of y with respect to x .

 • If y f g t= ( )( ) , then dy
dt

f g t g t= ′ ( )( )⋅ ′ ( ) which is called the chain rule.

 • The equation of tangent at  a b,( ) to the curve y f x= ( ) is given by y b dy
dx

x a
a b

− = 



 −( )

( ),

 or 

y b f a x a− = ′ ( ) −( ) .

 • Rolle’s Theorem
  Let f x( ) be continuous in a closed interval a b,[ ] and differentiable on the open interval 

a b,( ) . If f a f b( ) = ( ) , then there is at least one point c a b∈( ), where ′ ( ) =f c 0 .

 • Lagrange’s Mean Value Theorem

  Let f x( ) be continuous in a closed interval a b,[ ] and differentiable on the open interval a b,( )  
(where f (a) and f (b) are not necessarily equal). Then there is at least one point c a b∈( ), such 

that ′ ( ) =
( ) − ( )

−
f c f b f a

b a
.     

 • Taylor’s series
  Let f x( ) be a function infinitely differentiable at x a= . Then f x( ) can be expanded as a 

series in an interval x a x a− +( ), ,of the form

  f x f a
n

x a f a f a x a f a
n

x a
n

n

n
n

n( ) =
( )

−( ) = ( ) + ′ ( )
−( ) + +

( )
−( )

( )

=

∞ ( )

∑
0 1

 ++         

 • Maclaurin’s series

  In the Taylor’s series if a = 0 , then the expansion takes the form

  f x f
n

x f f x f
n

x
n

n

n
n

n( ) =
( ) ( ) = ( ) + ′ ( ) ( ) + +

( ) ( ) +
( )

=

∞ ( )

∑ 0
0

0

1

0

0

 

     

 • The l’Hôpital’s rule

  Suppose f x( ) and g x( ) are differentiable functions and ′ ( ) ≠g x 0 with       

  lim lim
x a x a

f x g x
→ →

( ) = = ( )0 . Then lim lim
x a x a

f x
g x

f x
g x→ →

( )
( ) = ′ ( )

′ ( )  

  lim lim
x a x a

f x g x
→ →

( ) = ±∞ = ( ) . Then lim lim
x a x a

f x
g x

f x
g x→ →

( )
( ) = ′ ( )

′ ( )
  

 • If the function f x( ) is differentiable in an open interval a b,( ) then we say,  if d
dx

f x( )( ) > 0 , 

∀ ∈( )x a b, then f x( )  is strictly increasing in the interval a b,( ) .
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if d
dx

f x( )( ) < 0 , ∀ ∈( )x a b, then f x( )  is strictly decreasing in the interval a b,( )

• A procedure for finding the absolute extrema of a continous function f x( ) on a closed interval
a b,[ ] .

Step 1 :  Find the critical numbers of f x( )  in a b,( ) .

Step 2 : Evaluate f x( ) at all critical numbers and at the endpoints a and b .
Step 3 : The largest and the smallest of the values in Step 2 is the absolute maximum 

and absolute minimum of f x( ) respectively on the closed interval a b,[ ] .

• First Derivative Test

Let c f c, ( )( ) be a critical point of function f x( )  that is continuous on an open interval I
containing c . If f x( ) is differentiable on the interval, except  possibly at c , then f c( )  can
be classified as follows:(when moving across I from left to right)

(i) If ′ ( )f x  changes from negative to positive at c , then f x( )  has a local minimum
f (c).

(ii) If ′ ( )f x  changes from positive to negative at c , then f x( )  has a local maximum
f (c).

(iii) If ′ ( )f x  is positive on both sides of c , or negative on both sides of c  then f x( )  has
neither a local minimum nor a local minimum.

• Second Derivative Test

Suppose that c is a critical point at which ′ ( ) =f c 0 , that ′′ ( )f x exists in a neighbourhood of
c , and that ′ ( )f c exists. Then f has a relative maximum value at c if ′′ ( ) <f c 0  and a
relative minimum value at c if ′′ ( ) >f c 0 . If ′′ ( ) =f c 0 , the test is not informative.
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