Applications of Integration

“Give me a place to stand and I will move the earth”
- Archimedes

One of the earliest mathematicians who made wonderful discoveries to
compute the areas and volumes of geometrical objects was Archimedes.
Archimedes proved that the area enclosed by a parabola and a straight line

iIs — times the area of an inscribed triangle Ly
¥
' (see3Fig. 9.1). N B(2.4)
He obtained the area by segmenting it into 13
I._--Jtﬁ infinitely many elementary areas and then finding
Archimedes of Syracuse  their sum. This limiting concept is inbuilt in the C1DA L1
@& (svsai]z%?egfﬁiﬁg%ﬁ%ﬁ)) definition of definite integral which we are going ' 3! C[E’Z] ®
physicist, engineer, inventor  t0 develop here and apply the same in finding —5 1 [0 3 5 X

areas and volumes of certain geometrical shapes.

@ Learning Objectives

Upon completion of this Chapter, students will be able to
* define a definite integral as the limit of a sum

* demonstrate a definite integral geometrically

« use the fundamental theorem of integral calculus

 evaluate definite integrals by evaluating anti-derivatives

* establish some properties of definite integrals

« identify improper integrals and use the gamma integral

« derive reduction formulae

 apply definite integral to evaluate area of a plane region

 apply definite integral to evaluate the volume of a solid of revolution

We briefly recall what we have already studied about anti-derivative of a given function f(x).
If a function F(x) can be found such that diF(x):f(x), then the function F(x) is called an
X

anti-derivative of f(x).
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It is not unique, because, for any arbitrary constant C, we get di[F(x) +C]= di[F(x)] = f(x).
X X

That is, if F(x) is an anti-derivative of f(x), then the function F(x)+ C is also an anti-derivative of
the same function f(x). Note that all anti-derivatives of f(x) differ by a constant only. The
anti-derivative of f(x) is usually called the indefinite integral of f(x) with respect to xand is

K, a constant Kx+C
(ax+b)" where a=0 and b are constants; and| 1| (ax+5)"" LC
n=-1 a n+l1
1
,where a=0 and b are constants —log, |(ax+b)|+C
ax+b a
. eax
e™ , where a is a non-zero constant 7 +C
® cos(ax+b
sin(ax+b), where a=0 and b are constants _cos(ax+b) +C
a
sin(ax+b
cos(ax+b), where a=0 and b are constants sin(ax +) +C
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denoted by f f(x)dx.

A well-known property of indefinite integral is its linear property :

I[af(x) +Bg()}dx =« If(x)dx+ B Ig(x)dx , Where o and S are constants.

We list below some functions and their anti-derivatives (indefinite integrals):

Function f(x)

Indefinite integral f f(x)dx

a

tan(ax +b), where a=0 and b are constants

1 log |sec(ax + b)| +C
a

cot(ax+b), where a=0 and b are constants

1 log|sin(ax +b)|+ C
a

sec(ax+b), where a=0 and b are constants

é log | sec(ax+b) +tan(ax+b) | +C

cosec(ax+b), where a=0 and b are constants

1 log |cosec(ax +b)—cot(ax + b)| +C
a

——, where a=0 is a constant

L. (fj +C
a a

a +x

. 1 a+x
ﬁ,Where a=0 is a constant —log, +C
a —x 2a a—x

. 1 xX—a
ﬁ,Where a=0 is a constant —log, +C
X —a 2a xX+a
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Function f(x) Indefinite integral f f(x)dx

;, where a is a constant log, ‘x+\/a2 +x2‘+C

a’+x°

, Where a=0 is a constant sin™ (fj +C
a—x’ a
1 .

T where a is a constant log, ‘x+ Vx’—a’|+C

X —d

2 2 H 2 2 2
\a® +x°, where a is a constant xNat+xt a >
T"‘?loge x+ 612 +x2

+C

+—sin
2

Ja? —x* , where a is a constant wa'-x* a . _l[x)’LC
a

\Jx®—a* , where a is a constant wxt-a* &

5 —?logeer\/xZ—a2 +C

9.2 Definite Integral as the Limit of a Sum
9.2.1 Riemann Integral N

Consider a real-valued, bounded function f(x) defined *//\Qk -
on the closed and bounded interval[a,b], a <b.The function 7| \ 3
f(x) need not have the same sign on [a,b]; that is, f(x) X, ( X X X,
may have positive as well as negative values on [a,b]. See X X, X % X
Fig 9.2. Partition the interval [a,b] into n subintervals “—b
[x0, % 1,0, %, 1,5 [%, 55 %, L. [x, ., x, ] such that e

a=Xx,<x, <x,<--<x,, <x, =b. Fig. 9.2

In each subinterval [x,,,x,],i=1,2,---,n, choose a real number ¢& arbitrarily such that

X, 6 <X,

Consider the sum if(éz)(xz _‘xi—l) = f(él )(x] _xo)"‘f(gz)(xz _x1)+"'+f(‘§n)(xn _xn—l) (1)

i=1

The sum in (1) is called a Riemann sum of f(x) corresponding to the partition
[xy,x,1,[x;,x,],---,[x, ;,x,] of [a,b]. Since there are infinitely many values & satisfying the condition
x,, <& <x,, there are infinitely many Riemann sums of f(x) corresponding to the same partition

[xy,%,1,[%,, %, ], -+,[x, . x,] Of [a,b]. If, under the limiting process » — co and max(xl. - X, )—) 0,

i—1
the sum in (1) tends to a finite value, say A, then the value A is called the definite integral of f(x)
with respect to xon [a,b]. It is also called the Riemann integral of /(x) on [a,b] and is denoted by

b
f Jf(x)dx and is read as the integral of f(x) with respectto xfrom ato b. If a=5, then we have

]f(x)dx =0.
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Note
In the present chapter, we consider bounded functions f(x)that are continuous on[a,b].

However, the Riemann integral of f(x) on [a,b]also exists for bounded functions f(x)that are

piece-wise continuous on[a,b].We have used the same symbol f both for definite integral and anti-
derivative (indefinite integral). The reason will be clear after we state the Fundamental Theorems of
Integral Calculus. The variable x is dummy in the sense that it is selected at our choice only. So we

can write f f(x)dx as f f(u)du . So, we have f J(x)dx = f f(u)du . As max(xl.—xl._l

three points x._,,&,, and x, of each subinterval [x, ,,x,] are dragged into a single point. We have

)—>o, all the

already indicated that there are infinitely many ways of choosing the evaluation point & in the

subinterval [x, ,x,], i=1,2,---,n. By choosing & =x, ,, i=1,2,---,n, we have

[ () = tim > /) ). (2)

n—0 and max(x; —x;_; )—>0 i1

Equation (2) is known as the left-end rule for evaluating the Riemann integral.

By choosing &, =x,, i=1,2,---,n, we have

b n
[/ ()dx = lim DS = x,).
n— and max (x;—x;_;)—>0 -1

: ..(3)

Equation (3) is known as the right-end rule for evaluating the Riemann integral.
. o+

By choosing &, =% i=12,---,n, we have

b U X, +x

j f(x)dx = lim > f(—” ’)(xl. —x.).

: n— and max (x;—x;_; )—>0 -1 2 (4)

Equation (4) is known as the mid-point rule for evaluating the Riemann integral.

Remarks
b X
(1) If the Riemann integral f S(x)dx exists, then the Riemann integral f S@)duis a

well-defined real number for every x €[a,b] So, we can define a function F(x)on [a,b]

such that F(x)= ]f(u)du,x €la,b].

y
(2 If f(x)=0 for all xe[a,b], then the Riemann integral IR
b

T(X)\
4

f f(x)dx is equal to the geometric area of the region bounded by /

x=a| &x |O
the graph of y = f(x), the x-axis, the lines x=aand x=5b. See Fin 9.3
ig. 9.
Fig. 9.3.
93 Applications of Integration
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(3) If f(x)<0 for all xe[a,b], then the Riemann integral ‘i’
b
f S (x)dx is equal to the negative of the geometric area of the | o] & | /

region bounded by the graph of y= f(x), the x-axis, the _\|\Mb

linesx =aand x =5 . See Fig. 9.4. In this case, the geometric
area of the region bounded by the graph of y= f(x),

the x-axis, the lines x =aand x = b is given by

] f(x)dx

(4) If f(x) takes positive as well as negative values on [a,b], then the interval [a,b] can be
divided into subintervals [a,c], [C,,C,],---, [c,,b]such that f(x) has the same sign

b
throughout each of subintervals. So, the Riemann integral f S (x)dx is given by
b <} Cy ¢ b
[ rax = [ fdc+ [ feode+-+ [ )y,
In this case, the geometric area of the region bounded by the graph of y = f(x), the x-axis,

the lines x =aand x = bis given by

- ot

]f(x)dx

cfzf(x)dx ]f(x)dx

For instance, consider the following graph of a (@
function f(x),x €[a,b]. See Fig. 9.5. Here, A, A, and,
A,denote geometric areas of the individual parts.

b
Then, the definite integral f S (x)dx is given by A

]f(X)dx ]f(X)dx+7f(x)dx+jf(x)dx x=a

= A-A+A. Fig. 9.5
The geometric area of the region bounded by the graph of y = f(x), the x-—axis, the lines
x=aand x=>5 isgiven by A +A + A, . In view of the above discussion, it is clear that a Riemann
integral need not represent geometrical area.

Note
Even if we do not mention explicitly, it is always understood that the areas are measured in

square units and volumes are measured in cubic units.
Example 9.1
0.5
Estimate the value of fo x’dx using the Riemann sums corresponding to 5 subintervals of equal
width and applying (i) left-end rule (ii) right-end rule (iii) the mid-point rule.

X1l - Mathematics 94
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Solution
Here a = 0,b=0.5,n=35, f(x)=x"
So, the width of each subinterval is
b—a 05-0

=— =0.1.
n 5

h:Ax:

The partition of the interval is given by the points
X, = 0,
X, = x,+h=0+0.1=0.1
X, = x,+h=0.1+0.1=0.2
X, =x, +h=02+0.1=03
X, = x,+h=03+0.1=0.4
X, = x,+h=04+0.1=0.5
(i) The left-end rule for Riemann sum with equal width AXis
S =[/(x)+f(x)++f(x,,)]Ax.
S =[£(0)+f(0.1)+ f(0.2)+f(0.3)+f(0.4)](0.1)
® = [0.00+0.01+0.04+0.09+0.16](0.1) = 0.03 &
.'.fOO'szdx is approximately 0.03.

(ii) The right-end rule for Riemann sum with equal width Axis
S =[/(x)+/(x)++f(x,)]Ax.
S =[£(0.1)+f(02)+f(0.3)+f(0.4)+ f(0.5)](0.1)
= [0.01+0.04+0.09+0.16+0.25](0.1) = 0.055.
foo'sxzdx is approximately 0.055.

(iii)The mid-point rule for Riemann sum with equal width Axis

o) o

o8 = [ £(0.05)+ f(0.15)+ f (0.25)+  (0.35)+ f (0.45)](0.1)

[0.0025 +0.0225+0.0625+0.1225 + 0.2025] (0.1
= 0.04125.

foo'sxzdx is approximately 0.04125. -

95 Applications of Integration
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EXERCISE 9.1

1.5

1. Find an approximate value of f xdx by applying the left-end rule with the partition
I
1.1,1.2,1.3,1.4,1.5}.
2. Find an approximate value of j‘xzdxby applying the right-end rule with the partition
1
1.1,1.2,1.3,1.4, 1.5}
3. Find an approximate value of lfs(Z—x)dx by applying the mid-point rule with the partition
i

{1.1,1.2,1.3, 1.4, 1.5}
b
9.2.2 Limit Formula to Evaluate ff(X)dx

Divide the interval [a,b] into n equal subintervals [x,,x,1,[x,,x,],---,[x, ,,x, ,].[x,,x,]such

b-a
thata=x, <x, <x,<---<x,_,<x,=b. Then, we have x,—x,=x,-x,=-=x,—x, , =

n
h= b_a.Then, we get x, =a+ihi=1,2,-,n

.Put

n
So, by the definition of definite integral, we get

n

lim Z J(x)(x; —x,_,) (Right-end rule)

n—0 and max (x; —x;_; )—>0 -1
. b—ad .
= lim z fla+i
n—>0 n i-1

b—aj
— .
[ s =1imb_—azn:f(a+(b—a)£j.
a noeen r=1 n

n

aZf(aHb—a)ﬁ] - lim{b;af(a)+b_—a y f(a+(b—a)£ﬂ
n n—w n n D n

n r=0

Note. lgn

n—»0 n

:nmb_“z":f(ﬁ(b—a)fj
r=l1 n
:ff(x)dx_

ff(x)dx = limb_—aif(a+(b—a)£)
g noe o = n

:limb_azn:f(a+(b—a)£j.
n—»o pary n

n

1
1 1
If a=0 and b=1, then we get ff(x)dxz hm—Zf[z]:hm_Z [1]
g n—oo p n n

r=0 e n r=I1
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Example 9.2 1

Evaluatefxdx, as the limit of a sum.

Solution
Here f(x)=x, a=0 and b =1. Hence, we get

]f(x)dx lim— Zf( j:]xdx—hm Z—

}’IA)OOn n—)oonrln

%i_)rg%[l+2+---+ n]

lim 12 nin+1) _ 1+1 _l.
n—w M 2 nsz n 2

|
Example 9.3
Evaluate fx3dx, as the limit of a sum.
Solution
Here f(x)=x’, a=0and h=1. Hence, we get
jf(x)dx = lim— Zf( j:j 3abc—liml N
g - n—»0 n 0 n—»0 n —1 n3
= lim— [13+23+ 4N ]—l ! @
n—o0 n n—oo n
®
2
it 1)1 .
E n—e 4 n 4
xample 9.4
4
Evaluate f(zx2 +3)dx, as the limit of a sum.
1
Solution
We use the formula
b n
ff(X)dx = limb;aZf(a+(b—a)£j
a n—>0 n —1 n
Here f(x)=2x*+3,a=1landb=4.
So, we get
2 2
f(a+(b—a)£j = f(1+(4—1)rJ f(1+2] = 2[1+3—rj +3 =5+18§ L2
n n n n n n
Hence, we get
n 2 n
f(zx +3)dx = 11m32(5+18’; +12Vj {1521 Sy ot 3?2@
n—® p n n n—)oo oy )
15 54 36
= lim| —n+—(1"+2°+---4+n* )+ =(1+2+---+n
n—>w|: n n3 ( ) n2 ( )jl
97 Applications of Integration

‘ ‘ Chapter 9 Applications of Integration.indd 97 @

7/25/2019 7:08:23 PM ‘ ‘



= llm|:15+

n’ 6 n> 2

= lim[15+9(1+lj(2+lj+18(1+lﬂ
n—oo n n n

= 15+9(1+0)(2+0) +18(1+0) = 51. -

54 n(n+H(2n+1) +§ n(n+l)}

EXERCISE 9.2

1. Evaluate the following integrals as the limits of sums:

(i) [(5x+ 4y (ii) [(4x* ~Dyelx ] e
; ; NZ2A4Q9

9.3 Fundamental Theorems of Integral Calculus and their Applications

b
We observe in the above examples that evaluation of f f(x)dx as a limit of the sum is quite

tedious, even if f(x) is a very simple function. Both Newton and Leibnitz, more or less at the same

time, devised an easy method for evaluating definite integrals. Their method is based upon two
celebrated theorems known as First Fundamental Theorem and Second Fundamental Theorem
of Integral Calculus. These theorems establish the connection between a function and its
anti-derivative (if it exists). In fact, the two theorems provide a link between differential calculus and
integral calculus. We state below the above important theorems without proofs.

\

/Theorem 9.1 (First Fundamental Theorem of Integral Calculus)

If /(x) beacontinuous function defined on a closed interval [a,b]and F(x) = f fu)du, a<x<b

then, diF(x) = f(x). In other words, F(x) is an anti-derivative of f(x).
X

J

\

Theorem 9.2 (Second Fundamental Theorem of Integral Calculus)

If f(x) be a continuous function defined on a closed interval [a,b] and F(x) iS an

anti-derivative of f(x), then,

f F(x)dx = F(b)— F(a).

\- J

Note
b
Since F(b) — F(a) is the value of the definite integral (Riemann integral) f f(x)dx, any arbitrary

constant added to the anti-derivative F'(x)cancels outand hence it is not necessary to add an arbitrary
constant to the anti-derivative, when we are evaluating definite integrals. As a short-hand form, we

write F(b)—F(a)= [F (x)]i .The value of a definite integral is unique.

X1l - Mathematics 98
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By the second fundamental theorem of integral calculus, the following properties of definite

integrals hold. They are stated here without proof.

Property 1

[ r@de=] frdn, a<o

i.e., definite integral is independent of the change of variable.

Property 2 : J f(x)dx = —jf f(x)dx

i.e., the value of the definite integral changes by minus sign if the limits are interchanged.

Property 3

Property 4

Property 5 : If x =g(u), then J f(x)dx = J flg(u)———=

: jf(x)dx:jf(x)dx+jf(x)dx,a<c<b

dg( )

: Jj [of (x) + Bg(x)Jdx = och f(x)dx+ B_[j g(x)dx ,where o« and f are constants.

du where g(c)=aand g(d)=>b .

This property is used for evaluating definite integrals by making substitution.
We illustrate the use of the above properties by the following examples.

Example 9.5

3
Evaluate : J' (3x” —4x+5)dx .
0

Solution
Example 9.6 1
Evaluate J' 2x2+7
g 5x"+9
Solution
] 2x+7

‘ ‘ Chapter 9 Applications of Integration.indd 99

3
[3x* —4x+ 5y
0

3 3 3
J.3x2dx— I4x dx + J-S dx
0 0 0
3 3 3
3Ix2dx—4jxdx+51dx
0 0 0
373 2P
3[’(—} —4{)‘—} +3[x]]
3 0 2 0
(27-0)-2(9-0)+5(3-0)

27-18+15=24.

99

1

7
I(SX Ny :glog[Sx +9]) += j
0

s
2
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= l[log14—log9]+zx£ fan~! —>— =llog5+itan_l£.
5 503 [ 3 } 579 35 3
V5 =
Example 9.7
1
Evaluate : f [2x]dxwhere [-] is the greatest integer function.
0
Solution 1 ,
1 2
f[zx]dx—f 2x]dx+f[2x]dx_f0dx+f1dx 0+[x o1 _1
o 2 2 2 -
2 2
Example 9.8
3
Evaluate : I Secxmnx
J 1+sec’ x
Solution
3
Let | dex. Put secx =U. Then, secxtanx dx = du .
o 1+sec” x
@ When x =0, u=secO=1. When X=%,u=sec§:2. &
2 T
=[tan'u tan"'(2)—tan"' 1 = tan”' (2)——.
lj I = tan™'(2) 2)-7, .
Example 9.9
9
Evaluate : '[
0 X+Ax
Solution
Letv/x =u. Then x=u?,and so dx = 2udu.
When x =0, u=0.When x=9, u=3.
’ : 1 3
dx = =2 |——du =2|log|l+u|| =2[logd—0]=1logl6.
S e R e (T S A ST
Example 9.10
Evaluate: j—
T(x+1)(x+2)
Solution
Letl = I—
T(x+1)(x+2)
XII - Mathematics 100

‘ ‘ Chapter 9 Applications of Integration.indd 100 @ 7/25/2019 7:08:36 PM ‘ ‘



a1 2 . . .
| = + d Using partial fractions
{[{(x%rl) x+2} * ( gp )

[—log(x+1)+2log(x + 2)]12

_ log{ﬂ}

X+1 ]

logE—log%

= log—.
8 27 [ |
Example 9.11

3
0
Evaluate : J. cos
0

. ——do
(1+sin0)(2+sin0O)

Solution

Letl

dg. Putu=1+sin0 .Then, du=cosOd0 .

] cos@
s (1+sin0)(2 +sin )

When 0 = 0,u=1.When 6=—,u=2.

2
2

ZI(“”)_”du _ }(l_Ljdu = [logu ~log(1+u)] ®

Jou(l+u) u l+u

@ X d
=

u —
u(l+u)

1

(log2—1log3)—(logl—log2) =2log2—log3 = log?

[ |
Example 9.12
1
V2ol
Evaluate : J' — x3 dx .
* (1-x7)?
Solution
1
N
Letl = [ g
* (1-x7)?
Put u = sin' x. Then,x =sinu and so, du = = dx .
1-x
1 Vs
When x = 0,u=0.When x= —,u=—.
J2 4
= I —du = Iuseczu du = [utanu]} — Itanu du:[utanu]g +[logcosu]g
5 cos”u ; ;
4 1 T 1
= —+log—==———log?2.
4 gVE 4 28
[ |
101 Applications of Integration
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Example 9.13

Evaluate : ].( tan x + cotx)dx
0

Solution
2
Let | = I(\/tanx+ cotx)dx.Then,we get
0
T 3 %
| = J' \/smx +\/c?sx J' lle-i—COS)C J‘ sin x + cos x dx
0 COS X Sin x 0 SIHXCOS)C SlIIXCOS)C
B \/—I (sin x + cos x)dx
\/ —(sinx —cos x)’
Put u = sinXx—cosX . Then, du = (cosx+sin x)dx.
When x = 0, u=-1.When x = %,u:l.
1
| =42 =2[sin"u]’, =2[sin"' 1) —sin"'(-1)) | =72 .
55 e ] .
Example 9.14
1.5
@& Evaluate : J.[xz} dx, where [x] is the greatest integer function. @&
0
Solution

We know that the greatest integer function [x] is the largest integer less than or equal to x.In
other words, it is defined by [x]=n, if n<x<(n+1), where n is an integer.

0 if 0<x<l y
So,weget [x*]=11 if 1<x<+2 24 o~
if V2<x<L5
We note that the above function is not continuous on [0,1.5]. 1T H
But, it is continuous in each of the sub-intervals [0,1), [1,\/5 )
and [\/5,1.5] ; that is, it is piece-wise continuous on [0,1.5]. 0 f\/g 15 X
See Fig. 9.6. Hence, we get Fig. 9.6

1.5

1 V2
J[xz] dx = J[xzj dx + IJ-[xZJ dx + I[x } dx = IO dx + fldx+ J.de
- 0+(x)f+(2x)1g:(\/—— )+(3—2J_) 2- 2.
Example 9.15

4
Evaluate : .[|x+3| dx .
—4
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Solution y >/
.. X+3 if x>-3 4
By definition, we have |Xx+3|= . 3
-x=3 if x<-3 .,

See Fig. 9.7 for the graph of y =[x+3]in -4<x<4. \4@

4 3 4 -3 4 (-4,0) (=3,0) |O (4,0)
j|x+3| dx = j|x+3| dx + j|x+3| dx = j(—x—3) dix + j(x+3) dx _

3 3 3 3 3 Fig. 9.7

) -3 ) 4
= {—X——3x} +{X—+3x}
2 —4 2 -3

(2o om )

Next, we give examples to illustrate the application of Property 5.

Example 9.16

> dx 1
P———=—log, 2.
Show that IO 445sinx 3 o
Solution
2tan >
Put u :tani.Then, sin x = 2 _ 2u2,du:lsec25dx:>dx= 2d“2,
2 1+tan2 > I+u 2 2 I+u

When X = O,u=tan0=0. When x:%,u:tanzzl.

4
2du
. J'Z dx _J'l 1+ 2> _J'l du L du
o= = = - L
0 4+5sinx 04+5( 2u2) 02t +5u+2 270 o 5
I+u 2
)3 B
:lr il ==X lo 4] 4 1 “+E —llo 2
2740 57 (3 |2 3)g( 5)3 3 8l w2 3 08
u+—| - = 2X u+=|+=
4 4 4 4) 4)|, 0
|
Note
To evaluate anti-derivatives of the typej e - , We use the substitution method by
acosx+bsinx+c
2
putting u=tan’ so that cosx=l—2,smx=2—u2,dx= 2du2 :
2 I+u l1+u I+u

Example 9.17
p " t_[z sin2xdx _w
rovethal ), Gin*x+cos'x 4

103

‘ ‘ Chapter 9 Applications of Integration.indd 103 @

Applications of Integration

7/25/2019 7:08:52 PM ‘ ‘



| T T ] ® CH ||

Solution . ‘
| — J~Z sin 2x dx [ sin 2x dx
0 sin* x+cos”’ x 0 (sin2)c+cos2 x)2 —2sin® xcos® x
B jz sin 2x dx _[ " 2sin2x dx _J " 2sin2x dx
1—;(25inxcosx) 0 2—sin’ 2x 1+c0s” 2x
Put u = cos2x, Then, du=-2sin2x dx.
Vs T
When x = 0, we have u=cos0=1.Whenx:Z,we have u:COSEZO'
0 —du 1
o= = =|tan”'
Ill+u J.°1+u [an u] u
Example 9.18
2 dx 1 a
4 =—tan'| — |, wherea, b>0.
Prove that IO a’*sin’ x+b*cos’x  ab (bj
Solution
bid 2
PutI:J.Z dx _J- sec xdxz.
0 g*sin® x+b* cos’ x o g’ tan’ x+b
Put u = tanx. Then du =sec’ x dx.
(O] When x = 0, we have u=tan0=0.When x:%,wehave u:tan%:I. [0}
U d | d 1 o
1
'.IZJ 22“ _22__[ . :_2 ztn_l @ =—tan ! a )
Catu+b”  g*Jo hY b b )|, ab b
u’ +()
a
We derive some more properties of definite integrals. [
Property 6

j;bf(x)dx:j;bf(a—l—b—x)dx

Proof
Let u = a+b—x. Then, we get dx=—du .
When x = a,u=a+b—a=b.When x=b,wegetu=a+b-b=a.
b a b
f Fx)dx = fh f(a+b—u)(—du) = f f(a+b—u)du
- fbf(a—i—b—x)dx. m
Note

Replace a by 0 and b by a in the above property we get the following property
j: S(ydx= | 0" fla—x)dx.
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Example 9.19
Evaluate J. ; dx

0 sinx+cosx

Solution
| = J'Z; dx = J‘Z ! dx
0 sin x4+ Ccosx 0 \/5( 1 sinx+ 1 cosx)
2 2
1 _F 1 1 = 1
= — dx = —J 4 dx
V27 (coscosx+sinsmx) V27 cos(—x)
1 i
- Tj; ——dx, smcej F(x)dx = j fa—x)dx
— | #secx dx = log(sec x + tan x) i
\/_J‘ \/—[ ]0
T[log(ﬁ +1)— 1og(1+0)}
1
= —log(\2 +1).
2 m ®
Property 7

J-Ozaf(x) dx = J: [f(x)+ f(2a—x)]dx

Proof
By property 3, we have j:af(x)dx = j;af(x)derLzaf(x)dx. 1)

Let us make the substitution x = 2a—u infzaf(x)dx. Then, dx = —du.

When x = a,wehaveu =2a—a=a.Whenx=2a, we haveu =2a—-2a=0.S0, we get

J;zaf(x)dx faof(2a—u)<—du) = foaf(Za—u)du = j;af(Za—x)dx. ..(2)

Substituting equation (2) in equation (1), we get
NS ﬁ”f(x)dx+j;”f(za—x)dx
_ fo“[f(x)+f(2a—x)]dx. -

Property 8
If £(x) is an even function, then Llf(x) dx = 2J'0 f(x)dx.

(Recall that a function f(x) is an even function if and only if f(-x)= f(x).)
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Proof
By property 3, we have

J‘_C;f(x)dx = _[if(x)dx+J‘0af(x)dx_

0
In the integral J._af(x) dx , let us make the substitution, x = —u.Then, dx =—du.

When x = —a, we get u=a, when x=0, we get u=0, So, we get

jo S(xyds = | ° S (=u)(—du) = [ flmwydu = | f(=x)dx = [ fx)dx. (2
Substituting equation (2) in equation (1), we get
J_ua f(x)dx = J: f(x)dx+ Joa f(x)dx= ZJ.: f(x)dx. n
Property 9

If f(x) isan odd function, then J_aaf(x) dx =0.

(Recall that a function f(x) isan odd function if and only if f(—x)=-/(x).)
Proof

By property 3, we have
[" reyax= [ reoyacs [ rexan. ()
Consider J_Oaf(x) dx . In this integral, let us make the substitution, x =—u.Then, dx = —du.
When x = —a,weget u=a;when x=0,we get u=0. So, we get
| = [ peux-do = [ fendu =] f0de= [ fd. ()

Substituting equation (2) in equation (1), we get

[ reyds = [ feode=] f(de=0 .

Property 10
If fQa-x)= £(x), then [ fx)dx=2]" f(x)
Proof
By property 7, we have
[T r@a=[ 11+ f@a-v)]d. (1)

Setting the condition f(2a—x)= f(x) inequation (1), we get

[Zreac=]"lr@+r@lar=2" f(xd. ]

Property 11

If f(2a—x)=—/(x), then [ /(x)dc=0.
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Proof
By property 7, we have

[ reac=[ 1100+ f2a-)]dx. )
Setting the condition f(2a—x)=—f(x) inequation (1), we get

J-:a F(x)dx= J'O“[f(x) — f(x)]dx=0. .

Property 12

a

[xr@yde=

0

Proof

< Jrear if fa-0= 0.

a

Let | :fxf(x)dx (D)

0

Then | = ].(a—x)f(a—x)dx, since ].g(x)dx: ].g(a—x)dx

].(a—x)f(x)dx, since f(a—x)= f(x).

o= j(a—x)f(x)dx .. (2

Adding (1) and (2), we get
21 = I(x+a—x)f(x)dx

= a| f(x)dx.
/
a a
== f(x)dx.
2 [ H
Note
This property help us to remove the factor x present in the integrand of the LHS.
Example 9.20
Show that J: g(sin x)dx =2 E g(sin x)dx, where g(sinx) is a function of sinx.
Solution
We know that
[ fwds =2 [ fods if fQRa-x)= f(x).
Take 2a =7 and f(x)=g(sinx).
Then, f(2a—x) = g(sin(r —x)) = g(sinx) = f(x).
107 Applications of Integration
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o 02” f(x)dx = 2 j; " F(x)dx

J: g(sinx)dx = 2_[3 g(sinx)dx. [ |
Result .
| 0" g(sin x)dy =2 * g(sin x) . m

Note
The above result is useful in evaluating definite integrals of the type JO g(sinx)dx .

Example 9.21
Evaluatefn x dx .
0 1+sinx
Solution
Let 1 = ["——ax.
0 1+sinx
n 1
= J X —dx
0 I+sinx
1 1
Let f(x) = —. Then f(zr-x)=—: =——=f(%)
I+sin X l+sin(r —x) l+sinx

. _ Trr 1 .. r a r i _
”J.O 1+sinxdx - EJO 1+sinxdx’ (. fo(x)deE !f(x)dx T fla=0=7)

0

g

—2[2—L_x, since [ a(sinx)dv=2] ? g(sin x)d

0 1+sinx
= ZIE;dx sincejjf(@dx:_[:f(a—x)dx

0 . (m
1+sm(—x)
2

LI LI n
2_[2 a’x=2j2 dx:‘[zseczzdx
0 1+cosx 0 b 2 X 0 2
cos 5

a

2{tan§}2 :Z{tanz—tanO} =2.
2 4

0

Example 9.22

2n T
Show that IO g(cosx)dx =2J.0 g(cosx)dx where g(cosx) is a function of cosx.

Solution
Take 2a = 27 and f(x)=g(cosx).

X1l - Mathematics 108

‘ ‘ Chapter 9 Applications of Integration.indd 108 @ 7/25/2019  7:09:24 PM ‘ ‘



Then, f(2a—x) = f(2r —x)=g(cos(2w —x)) = g(cosx) = f(x)
.'.j;zaf(x)dx = 2" s,

27 n
fo g(cosx)dx = 2.[0 g(cosx)dx . ]

Result2

Note

2n
The above result is useful in evaluating definite integrals of the type JO g(cos x)dx.

Example 9.23
If £(x)= f(a+x), then fo “ () dy =2 j; " f(x)dx
Solution
We write j; “ () dy = fo () dx+ f ey dx ()

2a
Consider f f(x)dx

Substituting X = a+u, we have dx =du ; when x =a,u=0and when x=2a,u=a.

ST pan < ] faruydu= [ faydu, since f(x)= fa+)
= [ r(yas. - (2)
Substituting (2) in (1), we get
[ rwac = 2" reyde. g

Example 9.24

z
2
Evaluate : jxcosx dx.

Solution
Let f(x) = XcosX.Then f(—x)=(—x)cos(—x) =—xcosx =—f(x).
So f(x) = xcosX is an odd function.

Hence, applying the property, for odd function f(x), j f(x)dx = 0,

2
.. we get Ixcosx dx =0.

2 |
Example 9.25

log2
Evaluate : j eMdx .
—log2

Solution
Let f(x) = e™. Then f(-x)=e M =e"=f(x)
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So f(x) is an even function.

log2 log2 log2 logl
Hence I eMdx =2 J- eMdx=2 J‘ e dx=2(—e ") =2(—e " +e’) = 2(—6 2 +1]
—log2 0 0
= 2(—1 + lj =1.
2 m
Example 9.26
Evaluate : J /() e
* f)+ fla=x)
Solution
Let 1 = [’ VACI N (1)

0 f(x)+ fla—x)
Applying the formulajoa S (x)dx =J0af(a —x)dx in equation (1), we get

1= ACh) dx
¢ fla—x)+ f(a—(a—x))
Sy At B e

¢ f(x)+ fla—x)
Adding equations (1) and (2), we get

® PJ pm— L N L S ®
* f(x)+ fla=x) O f()+ fla=x)

N FICEF (TRt
" f@+ fla=x)

= ja dx=a.
0
a
Hence, weget | = —.
2 |
Example 9.27
Prove that JOZ log(1+ tan x)dx = glog 2.
Solution x
Letusput | = JO“ log(1+ tan x)dx (1)

Applying the property fouf(x)dx = I:f(a—x)dx in equation (1), we get

T
tan ——tanx

| = j;log[1+tan(%—x)]dx:j;log 1+4—TE dx

1+ tan—tan x
4

_ J4log[1+1_tanx:|dx=_[4log l+tanx+1—tanx i
0 1+ tan x 0 1+tanx
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T 2 r
- J04 log [ T x:| dx = .[04 [log2 —log(1+ tan x)]dx

= log 2]02 dx — JOZ log(1+ tan x)dx

T
=—log2-1
4 g

So, we get 21 = Zlogz. Hence, we get | =%10g2. m

Example 9.28
Show that [ (tan™ T(1=x)) dr="—log, 2
ow tha Jo(tan X+ tan (—x)) X_E_ og,2.

Solution
(! 1 Sl
I = J.O (tan x+tan (1 x)) dx
= J‘l‘[an’1 x dx+j1tan*1(1—x) dx
0 0

- jol tan” x dy+ j; tan”' (1- (1= x)) dv, since [ f(x)dx=[" f(a—x)d

1 1
JO tan”' x dx+ _[O tan~' x dx

2_[1tan_1 x dx
0

[2 J.udv]z) ,where z=tan"'x and dv = dx

2[uv— fvdul, applying integration by parts
1 1

dx 1 T
2| xtan' x— |x =2| xtan' x——log(1+x* =——log2
( I1+x2j0 [ 2 d )J 2 % m

0

Example 9.29

Jx

3
Evaluate '[2 —_—

dx.
\/5—x+\/;

Solution
Letusput I = ISL .. (1)

dx
\/5—x+\/;

b
Applying the formula fbf(x)dx = J- S(a+b—x)dx  we get

_J.z\/s_(2+3_x)+\/(2+3_x)dx J‘Z\/;+mdx .. (2
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Adding (1) and (2), we get

21 = jS‘/;Jr— DX o= [Cae=[x] =3-2=1.
> Jx+~5-x 2
1
Hence, weget | = —.
2 [ |
Example 9.30
b 2
Evaluate I LB
o 1+a
Solution
s 2
Let | = [ ()
l+a"
b b
Using ff(x)dx = If(a+b—x)dx we get,
s 2 _ _
| - ICOS (7 _7[_ X) I
l+a" "™
T 2 _
_ J- cos (7x) i
I+a™
3 2
@ = Ia"[cos xj dx .. (2) ®
- a’ +1
Adding (1) and (2) we get
V4 2 T
21 = J. €05 X (o 41) dx = I cos’ x dx
oa +l1 -
= 2'[ cos’ x d (since cos® X is an even function)
0
" (1+cos2x) 1[ sin2XT 1 T
H | = | —dx=—| x+ =—[r]=—=.
ence 6[ 0 2[ ] > n
EXERCISE 9.3
1. Evaluate the following definite integrals :
dx 1 dx Loll-x
1 11 111 —d
2 J2—4 (i) _'[x2+2x+5 (i} 6[ 14+ x
™ z e
( J(l+smxjd (V) I\/COSQ sin’ 0 dO (vi) j a = dx
1+cosx ; o(l+x2)
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2. Evaluate the following integrals using properties of integration :

T

5 x 2
(i) Ixcos ev ! dx (i) I(x5+xcosx+tan3x+1)dx
5 e +1
2
: 7 3+cosx
(iii) [ sin’ x dx iv) | xlog(—) dx
" ; 3—cosx
4
2n 1
(V) J‘sin“xcos3 dx (vi) I|5x—3| dx
0 0
- sin? x L cos? x p llog( +x)
(vii) Ism Jt di+ jcos Jt dt (viii) I
0 0 0
3n
xsin x -
IX X) |} —F—
(%) J‘1+s1n)c ) '[8 1+\/tanx

(xi) 7]‘x [sin2 (sin x) + cos*(cos x)] dx

9.4 Bernoulli’s Formula
The evaluation of an indefinite integral of the form f u(x)v(x)dx becomes very simple, when u

is a polynomial function of x (that is, u(x) = a,x" +ax"" +---+a, ) and v(x) can be easily integrated
successively. It is accomplished by a formula called Bernoulli’s formula. This formula is actually
an extension of the formula of integration by parts. To derive the formula, we use the following
notation:

du du(l) du(Z)
u(l) - u(2) - u(3) =, e

dx dx dx
V(l) = fvdx, V(Z) = v(l)dx, V(3) = fv(z)dx’ ,,,,,,
Then, we have
dvm = vdx, dv(z) (Ddx dv(3) v(z)dx, ......

Now, by integration by parts, we get
du
fuvdx = fudv(l) =uvy, —Iv(l)du =uv, _J.V(l)gdx

— I PAC)
= uv,, ju av,,

- (0, _ M
= uy, (u Vo) J.v(z)du )

du®
= uv, —u(l)v(z) + Jv(z) —dx
dx
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_,D (2)
uv,, —u v(2)+ju v,

_ _,, () (2) B (2)
= uv,, —u v(2)+(u Vay — |V du )

_ _,,M (2) _ (2)
= Uy —U Vg, Vg, Iv(3)du .

Proceeding in this way, we get

(2) (3)

_ o) _
fuvdx = UV, —U Vo, U TV —u )

The above result is called the Bernoulli’s formula for integration of product of two functions.

Note

Since u is a polynomial function of x, the successive derivative u"” will be zero for some
positive integer mand so all further derivatives will be =zero only. Hence the

right-hand-side of the above formula contains a finite number of terms only.
Example 9.31

T
2 . . .
Evaluate_[o x”cosnxdx  where n is a positive integer.

Solution

Taking » = x*and v = cos nx, and applying the Bernoulli’s formula, we get

J‘:xz cos mx dx — [(xz)(sinnx]_(zx)(_ cosznxj+(2)(_ sinsnxﬂﬂ
n n

n 0

= _27:(;1) , since cosnz =(—1)"and sinnz =0.
n
Example 9.32

1
Evaluate : jo e (1 + x — 2x7)dx.

Solution

Taking u =1+ x — 2x’andv =e ™", and applying the Bernoulli’s formula, we get

| = J;e_z"(1+x—2x3)dx

_ _(1+x—2x3)(e_2 ]—(1—6%)(64 ]+(—12x)(e_8 J—(—lz)[em ﬂo

1

—2x

_ 616 (16x3+24x2+16x)}

0
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Example 9.33
2n .
Evaluate : JO x’sinnxdx  where n isa positive integer.

Solution
Taking « = x*and v = sin nx , and applying the Bernoulli’s formula, we get

o J-Ozn 2 sinmcdy — [(xz)(_ cos nxj_(zx)(_ sinznx}r (2)(cos nxﬂzn

n 7’13 0
N 1 1 . .
= | (47%) - —0+(2) = |- 0-0+(2) — || since cos2nz =1land sin2nz =0
Ar* 2 2 4r?
n n n n u
Example 9.34

1
Evaluate : L e (1=x")dx,

Solution

Taking u =1-x*andv=e"

R (s e G
)zl
A A A A

= %(e’l Jre’l)—%(eA —ef’l).

, and applying the Bernoulli’s formula, we get

Il
[\
TN

[ |
EXERCISE 9.4
Evaluate the following:
1 T
1 1. 0 - £ asin 'y s -1 2
1. J.x3e_2x dx 2. J-s1n(3tan xz)tan xdx 3. Ie—mdx 4, _[xzcos2x dx
0 0 1+x 0 Vl—X2 0

9.5 Improper Integrals

In defining the Riemann integral f ' f(x)dx, the interval [a,b] of integration is finite and f(x)
is finite at every point in [a,b]. In many physical applications, the following types of integrals arise:

[“reods, [ s, |7 e,

where a is a real number and £(x) is a continuous function on the interval of integration. They are

defined as the limits of Riemann integrals as follows:
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(i) J, 7G)dx = lim j F(x)d
(i) [* fGodx = tim [7(x)ds

(iii) [~ sy = lim j f(x)dx

They are called improper integrals of first kind. If the limits exist, then the improper
integrals are said to be convergent.

Note
By the Fundamental theorem of integral calculus, there exists a function F(z) such that

fa f()dx = F()-F(a)
o [T reas = tim [ pds=lim{F ) - F@) = [ fas] .

Example935
Evaluate I >dx, a>0,heR.
a+x°
Solution
® We have j dx = {ltanlf} :ltanloo—ltanlé:l[z—tanlé] ®
a’+x° a al, a a a al?2 a u
Note
From the above example, we get
: ol [ T
i dx = —|=—tan' 0 | = —.
® 5|.a2+x2 al?2 } 2a
. o1 [z l\n =« T
i dx = —| =——tan"'1 ——=|=—.
() Ja2+x2 al 2 } {2 4} 4a
(iii) aj L =tim |’ ds = Tim2 [ L g since s even function
Sa+x 1= —fa2+x 1= 0a2+x a +x
iy T T
=2 sdx=2| —|=—.
(;[az (Zaj a
Example 9.36

2
Evaluate j
04s1n x+5c0s’x

Solution

dx

T

2
Let | = [—— _
o 4xsin” x+5c0s” x
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3 sec? x (Dividing both numerator and
B '([ 4tan” x + 5 {denominator by cos’ X).
Let u = tanx.Then du =sec” xdx
When x = O,u=tan0=0
When x =

T T
—,u=tan— =00,
2 2

s du
= This is an improper integral
j L proper integral)

- (tan"' co—tan"' 0) =

:le 120 (u)] L(”) T
40{ (\fﬂ Zxﬁ tan | 7= 245 25 2) a5
2 274 =

EXERCISE 9.5

1. Evaluate the following:

y/a T

2{ dx (ii)zj dx
01+50082x 05+4sin2x

(i)

9.6 Reduction Formulae

® Certain definite integrals can be evaluated by an index-reduction method. In this section, ®
we obtain the values of the following definite integrals:

I kL kL
b il il 1
JOZ sin"x dx .[02 cos"x dbx | .[02 sin”x cos"x dx JO x"(1=x)"dx

We also obtain the value of the improper integral JO e x"dx

The method of obtaining a reduction formula has the following steps:

Step 1 : ldentify an index (positive integer) nin the integral.

Step 2 : Putthe integral as /.

Step 3 : Applying integration by parts, obtain the equation for / intermsof / ,or / ,
The resulting equation is called the reduction formula for 7, .

We list below a few reduction formulae without proof:

Reduction Formula I : If 1 = ffsin” xdx, then I = MIn_z ,nN>2.
n
. _ (-1 l)
Reduction FormulaIl : If [ = f cos” xdx , then I = ,N=>2.
n
. 2 _(n-1)
Reduction Formula Il : If I = f sin” xcos” x dx, then I I . ,,n=2.
' " m+n ™
. 1 n
Reduction Formula IV : If7 :f x" (I-x)"dx, then [, =——1  ,n>1.
’ 0 Tom+n+l 7
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Using the reduction formulas I and 11, we obtain the following result (stated without proofs):

(-9 (-3

J.g iy d JZ. ] n (n-2) 2
sin"x dx = | cos" x dx =
-1 - )
° 0 (n )x(n 3)><---><g, ifn=35,7,---
n (n-2) 3
Note As illustrations, we have
J.Ecossxdx: Jgsinsxdx:ﬂxle
0 0 5 3
Jgsinﬁxdx: J‘Ecos(’xdxzéxgxlxz
0 0 2 2

Example 9.37
Evaluate JOE (sin2 x+ cos” x) dx

xlxg, ifn=246,-

Solution . i .
Given that | = jz(sin2 x+cos’ x)dx = J.Esin2 xdx + jzcos“ xdx = lxl + Exlxz — 7_7T
0 0 0 2 2 4 2 2 16
Example 9.38 L
L3 4 7
Evaluatej 2 C?SS * N
Olsin®x 3
Solution n T T
| = .[02 (3 cos® x—7sin’ x) dx = 3_[02 cos* x dx — 7]02 sin’ x dx
® ®
3 1 4 2 91 56
= 3X—X—X— —TX—X—=— ——,
4 2 2 53 16 15
By applying the reduction formula Il1 iteratively, we get the following results (stated without
proof):
(i) If nisevenand mis even, u
> n-1 n-3 n-95 1 m-1) (m-3) (m-5) 1mx
[sinxcosxax - 07D (029 (-9 (m-1) (m-3) (m-5) 1
0 (m+n)(m+n-2)(m+n-4) (M+2) m M-2)(m-4) 22
(if) If n isodd and mis any positive integer (even or odd), then
z _(n=1) (n-3) (n-5) 2 1

J.Z sin”z cos"z dx
0

Note

(m+n)(m+n-2) (m+n—4)m(m+3) (m+1)

If one of mandn is odd, then it is convenient to get the power of cos x as odd. For instance, if

m is odd and n is even, then

T T

5 . 5 . —1
JOZ sin”x cos"x dx = JOZ sin"x cos”x dx = (m—1)

(m-3) (m-35)

2 1

Example 9.39
Find the values of the following:

T ™
(i) J.OE sin’x cos*x dx (ii) _[05 sin*x cos’x dx
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Solution .
(i) J-Esin“x costx e — 6= (6-3) (6-5 (4-D) (4-3) =n
’ (6+4) (6+4-2) (6+4-4) (4 (4-2) 2
_ 00 OHr _ 3T
10 ®)(6) @) (2)2 512
Also, J-Zsin“x cos’x dx = J-;[sin6x costrax - B DB D7 _ 3r
° ’ 10) () (6) (4) (2)2 512
(ii) Jgsinsx cos'xdx cDDBHED _GDOD _ 8
’ DG B GG 315
Also, fgsinsx cos’x dx = I;sin“x cosxde DA D _ 8
' ’ ©) (D (5) 315 8
Example 9.40
Evaluate Jozaxzv2ax—x2dx,
Solution

Put x = 2acos’ 6. Then, dx =—4acosOsin0do .
When x =0, 2acos’8 =0and so 0=%.Whenx:2a, 2acos’O=2aandso 0=0.

Hence, we get

® | = Jozaxzxﬂax—xzdx @

- j; 4a” cos> O 4a’ cos’ O — 4a® cos* B(—4a cos Osin 0)d0
2

- JOE 4a* cos” ©2acosOsin O(4acosOsin 0)d0

- 32a4_|f cos*0sin’ 0d0O
:32a4xlx§xlxz=7ra4.
6 4 2 2 [ |

Example 9.41
1 5
Evaluatefo x*(1-x) dx.
Solution
Put x = sin@.Then, dx =cos0d0.
When x = 0, sin@=0andso 6 =0.Whenx=1, sinf =1and so 9:%.
Hence, we get
g .5 _wua2a)
| = '[0 sin 9(1 sin 9) cos6do

- jzsinsecoslledezg 8 6 4 2 1 1
0

X—X—X—X—X—=——,
16 14 12 10 8 6 336
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By applying the reduction formula Il1 iteratively, we get the following results (stated without
proof):

m! X n!

1
" (1-x)"dx = ————— , wheremand n are positive integers.
j;x (-x) (m+n+1)! P J u
Example 9.42
1
Evaluate |, x* (1-x)'dx,
Solution
1 " ! !
Jx'”(l—x) dx = u
0 (m+n+1)!
Lo 4 31 x4! 31 x 4! 3x2x1x4x3x2x1 1
J. X (l—x) dx = = = = )
B+4+1)! 8! 8xTx6x5x4x3x2x1 280 u

EXERCISE 9.6

1. Evaluate the following:

3 3 1 G

(i) [sinx dx (i) [ cos’xdx (i) [ sin®2x dx (iv) | sin®3x dx
0 0 0 0
% 2 L3

V) [sin®xcos'xdx  (vi) [ sin7%dx (vii) Jozsin39cossed9 (viii) jolxz(l—xf dx
0 0

9.7 Gamma Integral
In this section, we study about a special improper integral of the form _[: e*x"'dx, where nis

a positive integer. Here, we have

o .y e e 1 1
e” = lime" =0 and e~ =lime " = — =—=0
xo® x—eo lime* oo
x>0

By L’Hopital’s rule, for every positive integer m, we get,

m
) _ .X .om!
limx"e™ = im—=lim—=0.

X—>0 X—>0 ex X—>0 ex

Example 9.43
Prove that J-O e "x"dx=n! where nisa positive integer.

Solution

Applying integration by parts, we get
R E ) R [ Py e

Let 7, J:e‘xx”dx.Then, I =nl .

So,weget I = n(n-1)I1,,.

Proceeding in this way, we get ultimately,
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I, = n(n-1)(n-2)---Q))I,.
But, I, = j:e-xx‘)dx: (-e), =0+1=1.S0, we get I, =n(n-1)(n-2)---(2)(1) = n

Hence, we get
Result

jo e "x"dx=n!, wheren isanonnegative integer. [ |

Note
The integral IO e”*x""'dx defines a unique positive integer for every positive integern >1.

Definition 9.1

j:e’xx”"dxis called the gamma integral. It is denoted by I'(n) and is read as

“gamma of n”. |
Note
I'(n+1) = n’(n).
r{a = j: e “x'dx = (—e‘x ): =0+1=1,
I'(n) = J.:e_"x"_ldx.
= (n-HHn=123,..
Example 9.44

Evaluate Jo e “x"dx wherea>0.

Solution
Making the substitution 7 =ax, we get df =adxandx=0=¢=0andx =00 = = .

Hence, we get
J. e “x"dx
0

Il
—
o

8
VR
Q |~
;/:
2 |

Il

;H
—
.
~
=
&

Thus

j: e x"dx = ——
Example 9.45
Show that I'(n) =2 J.e’xzxz"’ldx.
0

Solution {
Using the substitution x = ~/u , we get dx=——du .
2Ju

When x = 0,weget u=0.When x=0,weget u=w.

2?e"2x2"ldx = 2:[6” (\/;)2”71 2\1/; du = j.e”u”ldu =I'(n).
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Example 9.46

Evaluate Ix— dx, where nis a positive integer> 2.
n
0

Solution

Using the formula n = %", we get

Ooxn OO—xn iy Y 00—x n_n
| = J.—xdxz In x"dx = I(ebg ) x"dx = _[e logr 1l
n
0

0 0

Using the substitution u = xlogn, we get dx = du

logn

When x =0,weget u=0.When x=0w,weget u=ow.

°° _u( u jn du
= Ie
; logn ) logn

1 y I'(n+1 n!
— Ie—uu(nﬂ)—ldu — ( + ) —

" (logn)™" ] (logn)™  (logn)™" " u

EXERCISE 9.7

Evaluate the following
0 E e—tanx
LoGi) [ e dx (i) [~ dx
; 0 €os” x

= 12K5G 4
2. If J‘e""‘ xY’dx=32, a>0, find o

0

9.8 Evaluation of a Bounded Plane Area by Integration

In the beginning of this chapter, we have already introduced definite integral by a geometrical
approach. In that approach, we have noted that, whenever the integrand of the definite integral is
non-negative, the definite integral yields the geometrical area. In the present section, we apply the

approach for finding areas of plane regions bounded by plane curves.

9.8.1 Area of the region bounded by a curve, x — axis and the lines x = a
and x=Db. y

Case (i) _ _ ‘
Lety= f(x), a<x<bbe the equation of the portion of the

continuous curve that lies above the x—axis (that is, the portion
lies either in the first quadrant or in the second quadrant) between X
the linesx =aand x =5 . See Fig.9.8. Then, y >0 for every point of x=2
the portion of the curve. Consider the region bounded by the curve,
X —axis, the ordinates x =a and x=5. It is important to note that Fig. 9.8
y does not change its sign in the region. Then, the area A of the region is found as follows:

y="F(x)
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Viewing in the positive direction of the y —axis, divide the region into elementary vertical strips

(thin rectangles) of height y and width Ax. Then, Ais the limit sum of the areas of the vertical strips.

b
Hence, we get A =lim Y, —yAx = _f ydx =

as<x<b

f;bydx

Case (ii)
Lety = f(x), a<x<bbe the equation of the portion

of

the continuous curve that lies below the x—axis (that is, the

portion lies either in the third quadrant or in the fourth

quadrant). Then, y <0 for every point of the portion of the

curve. It is important to note that y does not change its sign in

the region. Consider the region bounded by the curve,

X —axis, the ordinates x =a and x =5 . See Fig.9.9. Then, the

area A of the region is found as follows:

Viewing in the negative direction of the y —axis, divide the region into elementary vertical strips

(thin rectangles) of height |y|=—y and width Ax. Then, Ais the limit of the sum of the areas of the

vertical strips. Hence, we get A =1lim ) —yAx = — f ’ ydx = f ' yax| .

as<x<h
Case (iii)
Let y = f(x), a <x < bDbe the equation of the portion
of the continuous curve that lies above as well as below

the x—axis (that is, the portion may lie in all quadrants).
Draw the graph of y= f(x) in the XY — plane. The
graph lies alternately above and below the x—axis and it
is intercepted between the ordinates x=aand x=h.
Divide the interval[a,b] into subintervals [a,c,], [C,,C,],
.-+, [e,,b] such that f(x) has the same sign on each of
subintervals. Applying cases (i) and (ii), we can obtain
individually, the geometrical areas of the regions
corresponding to the subintervals.

. /A
7N

Fig. 9.10

Hence the geometrical area of the region bounded by the graph of y = f(x), the x-axis, the lines

x=a andx = bis given by + et

C.l[ f(x)dx

C] f(x)dx

3. f(x)dx

For instance, consider the shaded region in Fig. 9.10. Here A, A,, A,, and A, denote geometric

areas of the individual parts. Then, the total area is given by

A:A,+A2+A3+A4=i|‘f(x)dx+

".2[ f(x)dx

123
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9.8.2 Area of the region bounded by a curve, y— axis and the linesy =c
andy =d.
Case (iv)

Letx= f(y), c<y<dbe the equation of the portion of the y
continuous  curve that lies to the right side of f \ y=d
y —axis (that is, the portion lies either in the first quadrant or in the AYH
fourth quadrant). Then, x>0 for every point of the portion of the
curve. It is important to note that x does not change its sign in the 0 / "
region. / e
Consider the region bounded by the curve, y-—axis, the lines x=1f(y)
y=cand y=d.The region is sketched as in Fig. 9.11. Then, the area Fig. 9.11

A of the region is found as follows:
Viewing in the positive direction of the x — axis, divide the region into thin horizontal strips (thin

rectangles) of length xand width Ay. Then, Ais the limit of the sum of the areas of the horizontal

d
strips. Hence, we get A = lim Z XAy = f xdy .

c<y<d

Case (v)
Letx = f(y), ¢ <y <d be the equation of the portion of

the continuous curve that lies to the left side of y —axis (that
is, the portion lies either in the second quadrant or in the third
quadrant). Then, x <0 for every point of the portion of the Ay
curve. Itis important to note that x does not change its sign in - «
the region. Consider the region bounded by the curve, \ O

y —axis, the lines y =cand y =d . The region is sketched as —

inFig. 9.12. Then, the area A of the region is found as follows: 8/ y=e

- <
<
I
o

Viewing in the positive direction of the x — axis, divide
the region into thin horizontal strips (thin rectangles) of length
x| =—xand width Ay. Then, Ais the limit of the sum of the

areas of the horizontal strips.

Hence, we get A =lim Z (—x)Ay = —_dey _ ‘f,dxdy‘ :

c<y<d

Case (vi)
Letx = f(y), ¢ < y<d be the equation of the portion of the continuous curve that lies to the
right as well as to the left of the y —axis (that is, the portion may lie in all quadrants). Draw the graph

of x= f(y) inthe XY — plane. The graph lies alternately to the right and to the left of the y—axis
and it is intercepted between the linesy =cand y=d . Divide the interval [c¢,d]into subintervals
[c,a], [a,,8,], -+, [a,,d] such that f(y) has the same sign on each of subintervals. Applying cases

X1l - Mathematics 124

| T T ® . T ||

‘ ‘ Chapter 9 Applications of Integration.indd 124 @ 7/25/2019 7:11:07 PM ‘ ‘



| T T ] ® CH ||

(iii) and (iv), we can obtain individually, the geometrical areas of the regions corresponding to the

subintervals.
Hence the geometrical area A of the region bounded by the y
graph of x= f(y), the y-axis, the lines y=cand y=dis given di ) y=d

For instance, consider the shaded region in Fig. 9.13. Here, B,, B,, x

by A = + et

1

o

dff (y)dy

B,and B, denote geometric areas of the individual parts. Then, the

total area B of the region bounded by the curve x=f(y), ve “ y=c
y —axis and the lines y =cand y =d is given by
B = B +B,+B,+B, Fig. 9.13
a, a, as d
= | [FO)dv|+ [ Sy +| [ £+ [ Sy
Example 9.47

Find the area of the region bounded by the line6x+5y =30, x— axis and the lines x=-1 and
x=3.

Solution \ Ay
The region is sketched in Fig. 9.14. It lies above the N (6.0)
x —axis. Hence, the required area is given by s,

)
3 s
. 3(30—6x 30x 3% \
A= f_lydx:jl( : )dx:(T)l | 6o
N AX \\\\\
B (90—27)_(—30—3)_% x=-1
5 5 5° i3
Fig. 9.14
Example 9.48 -

Find the area of the region bounded by the line7x -5y =35, x—axis and the lines x=-2 and
X=3.

Solution
The region is sketched in Fig. 9.15. It lies below the x —axis. Hence, the required area is given
by y
3 13 7x—-35 y:7><—3‘5
A= U_zydx = I_z( 5 )dx‘ 5
o| Ax|(3,0,/6G0
(_210)
2 3
_ L[ X35k s
5 2 X=-2 B
-2
0.-7)
_ 1 ((ﬁj—losj—(M) :Q,
S\ 2 Fig. 9.15 [
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Example 9.49
2 2
Find the area of the region bounded by the ellipse x—2+% =1.
a

Solution

The ellipse is symmetric about both major and
minor axes. It is sketched as in Fig.9.16. So, viewing in e
the positive direction of y -axis, the required area A is y

four times the area of the region bounded by the portion ©.b) *// >

of the ellipse in the first quadrant (y=é a’ —x2,0<x<a),
a

x-axis, x=0 and x=a. (-a,0) o| Ax (a,0)
Hence, by taking vertical strips, we get (0,-D) X=a

A= 4Jaydx=4ja2\/a2—x2dx
0 0 a
_ 4_b[xVa2—x2 a . l(fﬂa:ibxnaz B

+—sin =mab
2

a a 4 -

a
Note

Viewing in the positive direction of X -axis, the required

area A is four times the area of the region bounded by the
portion of the ellipse in the first quadrant Ay x=2\b? - y?

a — X
(x:z,/bz_y2,0<y<bjy-axis,y:Oandyzb.Hence,by !y(a,o)

taking horizontal strips (see Fig.9.17), we get

A :J‘:xdy:4_[0b%«/b2—y2dy Fig. 9.17
b

_4_a{y\/b2—y2 b (y)] _4a b’
0

+—sin~ | =
b 2 2 b b 4

=mab.

Note
Putting b =a in the above result, we get that the area of the region enclosed by the circle

x2+y2:a2is ra’.

Example 9.50 y
Find the area of the region bounded between the parabola y* = 4ax |y
and its latus rectum. (a.22)
Solution Y - )
The equation of the latus-rectum is x = a . It intersects the parabola at \ '
(a,—2a)

the points L(a,2a) and L,(a,—2a). The required area is sketched in Fig. 0

9.18. By symmetry, the required area A is twice the area bounded by the

portion of the parabola x=a
y:2\/;\/;,x-axis, x=0 and x=a . Fig. 9.18
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Hence, by taking vertical strips, we get

3
A= yar=2; zm;dx:w;{gxz}
0

3 2
= 4\/ax§a2:8%. [ |

a

Note

N .. L . . . (a,2a)
Viewing in the positive direction of X -axis, and making horizontal

strips (see Fig. 9.19), we get =

X
_ A% A% y2 0 (a,0) y=0
A= ZJO (a—x)dy—Z.[O (a—a)dy \

3\ 3 2 (a,—2a)
y , 8a 8a
=2 —— | =2|2a"——|[=—.

12a

0 x=a
Note Fig. 9.19
It is quite interesting to note that the above area is equal to

two-thirds the base (latus-rectum) times the height (the distance between the focus and the vertex).
This verifies Archimedes’ formula for areas of parabolic arches which states that the area under a
parabolic arch is two-thirds the area of the rectangle having base of the arch as length and height of
the arch as the breadth. It is also equal to four-thirds the area of the triangle with base (latus-rectum)
and height (the distance between the focus and the vertex).

@ Exam[_)le 9.51 _ ' ®
Find the area of the region bounded by the y -axis and the parabola x =5-4y— 7.
Solution
The equation of the parabola is(y +2)* = —(x—9). The parabola crosses \
the y -axis at (0,—5) and (0,1) .The vertex is at (9,—2)and the axis of the ‘% )
parabola isy =—2. The required area is sketched as in Fig. 9.20. ° \(H)
Viewing in the positive direction of x — axis, and making horizontal strips, —
the requireld area Alis given by 1 Fig. 9.20
s , Y 8 100 -
A= _.!xdy = _'5[(5—4y—y )dy = {Sy—zy —?L = 5_(_Tj = 36. u
Note

As in the previous problem, we again verify Archimedes’ formula that the area of the parabolic
arch is equal to two-thirds the base times the height.

Example 9.52

Find the area of the region bounded by x— axis, the sine curve y =sinx, the lines x=0 and
X=21. 7y
Solution

The required area is sketched in Fig. 9.21. One portion of X
the region lies above the x — axis between x=0and x = , and °© (w0 (2m,0)
the other portion lies below x —axis between x =z and x =27 . N 2
So, the required area is given by X0 X=7

Fig. 9.21
127 Applications of Integration
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2r
I sin xdx

T

A= 7].ydx+ =[-cosx]; +‘[—c0s X]iﬂ‘
0

2r
I vdx

T
= .[sin xdx +
0

= [—cosn+cos0]+‘[—cos2ﬂ+c0s7r]‘ =2+|-2|=4.

Note

2
If we compute the definite integral J. sin xdx , we get

0
2r

Isin xdx = [—cos X]E” = [—cos 271]—[—005 O] =0.
2
So J. f(x)dx does not represent the area of the region bounded by the curve y =sinx, X — axis,
0
the lines x=0and x=2r.
Example 9.53

Find the area of the region bounded by x — axis, the curve y = |cos x| ,the lines x=0and x=r .
Solution

cosx,0<x< r y
The given curve is y = 2 \
—COS X, Tex<n ]
2
It lies above the x—axis. The required area is sketched in X
m
Fig. 9.22. So, the required area is given by © 5 i
L2 X=0 . X=m
A= [ = Jeosde (~cosx)ae = [sinx]; ~[sin ] AP
= |ydx = |cosxdx —CoSx)dx =|sin —[smX|z -
; ; ; 0 > Fig. 9.22
2
= [1-0]-[0-1] =2. -
9.8.3 Area of the region bounded between two curves
Case (i)

Lety= f(x)and y=g(x)be the equations of two curves in the XOY —plane such that
f(x)=g(x)for all xe[a,b]. We want to find the area Aof the { o F )
region bounded between the two curves, the ordinates x =aand Ve \f(x)
x=b. /]

The required area is sketched in Fig. 9.23. To compute A, we = .
divide the region into thin vertical strips of width Axand height \\ /_g(x)
f(x)—g(x). It is important note that f(x)—g(x)=0 for all x=a o) |,

x €[a,b]. As before, the required area is the limit of the sum of the Fig. 9.23

areas of the vertical strips. Hence, we get A = r[f(x) —g(x)]dx .
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Note

Viewing in the positive direction of y—axis, the curve y= f(x)can be termed as the upper

curve (U) and the curve y = g(x) as the lower curve (L). Thus, we get 4 = .r[yU -y, ldx.
a y

Case (ii) A
Let x= f(y)and x = g(y) be the equations of two curves in
the XOY —plane such that f(y)> g(y)forall y e[c,d]. We want /

to find the areca A of the region bounded between the two curves,
the linesy=cand y=d. The required area is sketched in .y

Fig. 9.24. To compute A, we view in the positive direction of the x — \ o)

axis and divide the region into thin horizontal strips of width Ay and
height /(y)—g(y). Itisimportant note that f(y)—g(y)>0 forall ~*=9% N
vy ele,d]. As before, the required area is the limit of the sum of

the areas of the horizontal strips. Hence, we get
A= [1/0)-g)dy.
Note

Viewing in the positive direction of x — axis, the curve x = f(y) can be termed as the right curve

(R) and the curve x = f(y)as the left curve (L). Thus, we get 4= r[xR —x, dy.
Example 9.54
Find the area of the region bounded between the parabolas y* = 4x

<

and x> =4y .
Solution V%& %
First, we get the points of intersection of the parabolas. For this, we A
solve y* =4x and x> =4y simultaneously: Eliminating y between them, <C
we get x* =64x and so x=0 and x =4. Then the points of intersection ©0) @0)"
are (0,0) and (4,4). The required region is sketched in Fig.9.25. \
x=0
Viewing in the direction of y -axis, the equation of the upper boundary X\:4
2 .
IS y= 2/x for 0< x<4 andthe equation of the lower boundary is y = x? Fig. 9.25
for 0 <x<4. So, the required area A is
4
4 4 x’ 2x77) X 2x8) 64 16
A= —Y,)dx=| | 2dx == |dx=|2 | =2 == -2 —0=—.
J, o L)xjo(f 4))“[(3)121)[(3)12] 37 2®
y
Note ] $
Viewing in the positive direction of x -axis, the right bounding \ 0n e L
, y=4
curve is x* =4yand the left bounding curve is y* =4x . See Fig. (4,4)
9.26. The equation of the right boundary is x = 2\/; for 0<y<4 x=2y
X
2 (010)
and the equation of the left boundary is x = yI for 0<y<4. So,
the required area A is
Fig. 9.26
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4 4 y2 2y3/2 y3 4
A:JO (xR—xL)dx=J.0 (2 y—T)dyz 2(TJ_E =
0

Example 9.55

2(—2X8)—ﬁ _0=16
3 ) 12 3

Find the area of the region bounded between the parabola x* =y and the curve y =|x|.

Solution
Both the curves are symmetrical about y -axis.

The curve |x| is ¥ ifx =20
=|X = .
Y Y —xif x<0 N

. )
It intersects the parabola x* = y at (1,1) and (=1,1) . \/\/‘

The area of the region bounded by the curves is
sketched in Fig. 9.27. It lies in the first quadrant as well as

y

A

Qy

7

4

%

in the second quadrant. By symmetry, the required area is 1,0) @0 X

twice the area in the first quadrant.
In the first quadrant, the upper curve is y =x,0<x <1
and the lower curve is y = x*,0 < x <1. Hence, the required
area is given by 1 1
A = 2] [y =, )de=2] [x=dx

Example 9.56

Find the area of the region bounded by y = cosx, y =sinx, the lines x = % and x =—.

Solution

Theregion is sketched in Fig. 9.28. The upper boundary of the region is y = sin x for % <x< o

@)

Fig. 9.27

Ry
4

St

and the lower boundary of the region is y =cosx for %g X < %ﬁ So the required area A is given

by
A= J.Z(yu —yL)dx=j.Z(sin X —C0s X)dx = [—cos x —sin x|
_( Y/ SEJ ( . T n)
=| —sin— —CcoS— |—| —sin— —cos—
4 4 4 4
@@ HEHE)
- 2 V2 V2) (2
2 2
= $+—2—2\/§.
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Example 9.57
The region enclosed by the circle x* 4 y* = a* is divided into two segments by the line x = 4.

Find the area of the smaller segment.

Solution
The smaller segment is sketched in Fig. 9.29. Here 0 < & < a. By symmetry about the X -axis,

the area of the smaller segment is given by

Y
“ T~
o[ g NE X a (X
A—ZL a —x dx—2|: 5 +2s1n g *J\\ X
h Q /(a,O)
2 [ 2 2 2 X=a
= 2{O+%sin_l(l)}—Z{%jt%sin_l (ﬁﬂ —
“ Fig. 9.29

= 4 [zj —ha* —h* —a*sin™ (ﬁ)
2 a
& F sin! (ﬁﬂ ~iNat — i
2 a
a’cos™ [ﬁj —ha* —h*.
a

Example 9.58

Find the area of the region in the first quadrant bounded by the parabola y* =4x, the line
x+y=3 and Yy -axis.

Solution
First, we find the points of intersection of x+y =3 and y* —4x:

x+y=3=>y=3-x.

2 2 ly
Sy =4x = (3-X)" =4X
= x> -10x+9=0 \(0,3) y* =4x
= X=1,Xx=9.
_ _ 0.2 >, 2)
~X=linx+y=3=y=2,and x=9 in x+y=3=y=-6. 5 X
=3
~.(1,2) and (9,—-6) are the points of intersection. x+Y &)
. , 9,”
The line x+ y =3 meets the y -axis at (0,3). C

The required area is sketched in Fig. 9.30. Fig. 9.30
Viewing in the direction of y -axis, on the right bounding curve is given by

2

y— <y<
x =12 0<y<2
3—-y,2<y<3
a2 3 B 27 3
LA = joxdy+.[2xdy—.[07dy+fz (B-y)dy

SRR A C :
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Example 9.59

Find, by integration, the area of the region bounded by the lines 5x-2y =15, x+y+4=0 and
the x-axis.

Solution
The lines 5x—2y =15, x+y+4=0 intersect at (1,—5). The line 5x—2y =15 meets the x-axis

at (3,0). The line x+ y+4=0 meets the x-axis at (—4,0). The required area is shaded in Fig.9.31.

It lies below the x-axis. It can be computed either by considering vertical strips or horizontal strips.

When we do by vertical strips, the region has to be divided into two sub-regions by the line
x=1. Then, we get

+

A= ].ydx
4

3
I ydx
1

1

= J.(—4—x)dx

4

+

3
J-(Sx—ISde Y
2

35
>

When we do by horizontal strips, there is no need to subdivide the region. In this case, the area
is bounded on the right by the line 5x—2y =15 and on the left by x+ y+4=0. So, we get

0

[ = [ 52 a0

0 7y 7y2°
T+—=|dy=|Ty+
I[ s}y{y 10}

-5
=0- —35+£ =£.
2 2

A

Note

The region is triangular with base 7 units and height 5 units. Hence its area is 33 without using
integration. 2
Example 9.60

Using integration find the area of the region bounded by triangle ABC, whose vertices A, B, and
Care (-1,1), (3,2),and (0,5) respectively.
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Solution
See Fig. 9.32.
Equation of AB is yol_x+l or y =l(x+5)
Equation of BC is y=s _x70 or y=—x+5 ALY :
2-5 3-0 : X
D |O E
. y—1 x+1
Equation of ACis ——=—— or 4x+5 :
q 51 o1 T Fig. 9.32
.. Area of AABC = Area DACO+ Area of OCBE — Area of DABE
0 3 1 ¢3
= J.l(4x+5)dx+jo (—x+5)dx—ZJ._l(x+5)dx
2 0 2 3 2 3
= {ﬁ+5x} +{—X—+5x} —l[x—+5x}
2 » 2 0 4| 2 . ]
- O—(+2—5)+(—2+15J—0—l|:2+15]+1[1—5]=1—5
2 412 412 2
Example 9.61
Using integration, find the area of the region which is bounded by x-axis, the tangent and normal
to the circle x> + y> =4 drawn at (1\/5) g
Solution
We recall that the equation of the tangent to the circle
x*+y*=a* at (x,y) is xx,+yy, =da’ . So, the equation of the I w0 0TS N
tangent to the circle x* +y°> =4 at (1\6) iS x+ /3 =4 that is, %J
y= —%(x—4) . The tangent meets the x-axis at the point (4,0). Fig. 9.33

The slope of the tangent is - f So the slope of the normal is 3 and hence equation of the normal
IS y—3=+B(x-1); thatis y= J3x and it passes through the origin. The area to be found is shaded

in the adjoining figure. It can be found by two methods.

Method 1
Viewing in the postive direction of y-axis, the required area is the area of the region bounded by

X-axis, y = J3x and x+ y\/§ =4. So it can be obtained by applying the formula fbydx. For this, we
have to split the region into sub-regions, one sub-region bounded by Xx-axis, the normal y = J/3x and

the line x =1; the other sub-region bounded by x-axis, the tangent x+ y\/§ =4 and the line x=1

axis.
. Arearequired = J.;ydx+J‘l4ydx=J‘;\/gxdx+J.14|:—%(x—4):|dx

L RS
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Method 2
Viewing in the direction of x-axis, the required area is the area of the region bounded between

y=+/3x and x+»+/3=4, y=0and y=+/3. So, it can be obtained by applying the formula
d
L (XR _xL)dy

Here, c=0, d = \/5, x, is the x-value on the tangent x + y\/g =4 and x, is the x-value on the

normal y = J3x.

. Area required = Ld(xR —x,)dy = Joﬁ((4 - y\/g) - %) dy

y2 yz NG
- K“yﬁﬁj‘ ﬁ}
3 3

Working rule for finding area of the region bounded by y = f (X), y = f(X), the lines x=a and

x=b,where a<b :

Draw an arbitrary line parallel to y-axis cutting the plane region. First, find the y-coordinate of
the point where the line enters the region. Call it y,, ., . Next, find the y-coordinate of the point

where the line exits the region. Call it y,,,. Both y,..., and v, can be found from the equations

of the bounding curves. Then, the required area is given by ﬁymr — Vovmry | X

Working rule for finding area of the region bounded by X = g,(y), X = g,(Y), the lines y =¢ and
y=d ,where c<d :

Draw an arbitrary line parallel to x-axis cutting the plane region.

First, find the X-coordinate of the point where the line enters the region. Call it X, .

Next, find the X-coordinate of the point where the line exits the region. Call it x,,,, . Both
Xpnmey @Nd x,., can be found from the equations of the bounding curves. Then, the required area is

given by Ld [xEXIT _xENTRY]dy'
EXERCISE 9.8

Find the area of the region bounded by 3x-2y+6=0, x=-3, x=1 and x-axis.
Find the area of the region bounded by 2x—y+1=0, y=-1, y=3 and y-axis.

Find the area of the region bounded by the curve 2+ x —x*> + y =0, x-axis, Xx=-3 and x = 3.
Find the area of the region bounded by the line y = 2x+5 and the parabola y = x* —2x.

Find the area of the region bounded between the curves y =sinx and y =cosx and the
lines x=0 and x=7.

6. Find the area of the region bounded by y =tanx, y =cotx andthe lines x=0, x= % y=0.

a bk~ w N oE

7. Find the area of the region bounded by the parabola y* = x and the line y =x-2.
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8. Father of a family wishes to divide his square field bounded by x=0, x=4, y=4 and
y =0 along the curve y* =4x and x* =4y into three equal parts for his wife, daughter

and son. Is it possible to divide? If so, find the area to be divided among them.
9. Thecurve y= (x—2)2 +1 has a minimum point at P. A point Q on the curve is such that the

slope of PQ is 2. Find the area bounded by the curve and the chord PQ.
10. Find the area of the region common to the circle x* + y*> =16 and the parabola y* = 6x.

9.9 Volume of a solid obtained by revolving area about an axis

Definite integrals have applications in finding volumes of solids of y X*+y*=a’
revolution about a fixed axis. By a solid of revolution about a fixed axis, , _ J “—a
we mean that a solid is generated when a plane region in a given plane
undergoes one full revolution about a fixed axis in the plane. For instance,
consider the semi circular plane region inside the circle x>+ y* = 4* and

above the x-axis. See Fig.9.34. Fig. 9.34

y
If this region is given one complete rotation (revolution for 360° =2x 4
radians) about x-axis, then a solid called a sphere is generated.
=0
In the same manner, if you want to generate a right-circular cylinder with o) 4 X
radius a and height h, you can consider the rectangular plane region bounded *=0 x=h
between the straight lines y=0, y=a, x=0 and x =/ in the xy-plane. See Fig. 9.35
ig. 9.

Fig.9.35. If this region is given one complete rotation (revolution for 360° =27
radians) about x-axis, then a solid called a cylinder is generated.

We restrict ourselves to obtain volume of solid of revolution about x-axis or y-axis. Whenever
solid of revolution about x-axis is considered, the plane region that is revolved about x-axis lies above
the x-axis. So, in this region y > 0. Whenever solid of revolution about y-axis is considered, the plane
region that is revolved about y-axis lies to the right of y-axis. So, in this region x>0 . We shall find
the formula for finding the volume of the solid of revolution of the plane region in the first quadrant
bounded by the curve y = f'(x), x-axis and the lines x = a and x = b > a about x-axis. The derivation
of the formula is based upon the formula that the volume of a cylinder of radius r and the height
his wr’h.

Assume that every line parallel to y-axis lying between the lines x=a and x=5b>a cuts the
curve y = f'(x) inthe first quadrant exactly at one point. Divide [a,b] into nsegments by x,, x,,...,x, ,
such that

b-a
n

a=x,<x<x,<..<x,,<x,=b, x;—x_, =Ax=

i

,i=12,...,n.

For each i=0,1,2,...,n—1, the region in the xy-plane between the ordinates at x, and x, + Ax
which lies between the x-axis and the curve y = f(x) can be approximated to an infinitesimal
rectangle having area y,Ax, where y = f(x). When the plane region bounded by the curve
y=f(x),x-axis, and lines x =g and x = is rotated by 360° about x-axis, each of the infinitesimal
rectangles at x = x, also revolves and generates an elementary solid which is approximately a thin

cylindrical disc with radius y, and height AX. See Fig.9.36. The volume of the cylindrical disc at
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x=x, isgivenby 7 y’Ax, i=0,1,2,...,n—1.Summingall these elementary y
volumes, we get the approximate volume of the solid of revolution as

n—1 —_
z 7 y; Ax . Letn become larger and larger (n — oo) such that Ax becomes /N/ y=1(x)

i=0

n-1 -\ X
smaller and smaller (Ax —0). Then > 7y Ax tends to the volume of ‘ O Ax x'i b
=0 X=a B
the solid of revolution. Hence the volume of the solid of revolution is Fig. 9.36
b
WJ. ydx.

Similarly, we can find the formula for finding the volume of the solid of y
revolution of the region bounded by the curve x = f(y), y-axis, and the lines y=d
y=c and y=d about y-axis. The curve x = /() lies to the right of y-axis Ay

X
between the lines y=c and y=d >c. Assume that every line parallel to 0] /
=C
x-axis between y=c¢ and y=d>c cuts the curve x=f(y) in the first /2_ ]z/( )
quadrant exactly at one point. See Fig.9.37. Then, the volume of the solid of Fio. 9 3; y
§ ig. 9.
revolution is given by w_[c x2dy.
Example 9.62
Find the volume of a sphere of radius a.
Solution
H . . - . YA (s
@ By revolving the upper semicircular region enclosed between the circle i @

x>+ y® = a® and the x-axis, we get a sphere of radius a. See Fig. 9.38.

The boundaries of the region are y =+a”* —x* , x-axis, the lines x = —a

and x = a. Hence, the volume of the sphere is given by
V= TEJ-_H yodx = TEJ._G (a2 —xz)dx

_ 2n_[:(a2 —x”)dx, since the integrand (a’ —x*) is an even function.

3\ 3
ol a’x-2 | =2n| - L :ﬂncf :
3 ), 3 3 -

Example 9.63

Find the volume of a right-circular cone of base radius r and height h.
Solution <t

Consider the triangular region in the first quadrant which is bounded y 4 x=0n 3 7
by the line =~ , x-axis, the lines x=0 and x=/. See Fig9.39.By
revolving the region about the x-axis, we get a cone of base radius r and R N Ly
height h. o~ / ~

Hence, the volume of the cone is given by K

h

2 2 21,3 2 .
ver| vac=n["Zx| ar=n( 2] ['var=n[Z]]|E _ Fig. 9.39
0 0 h h 0 h 3 3

0 |
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Example 9.64
Find the volume of the spherical cap of height h cut of from
a sphere of radius r.

Solution
If the region in the first quadrant bounded by the circle o)

A
2 2 2 . . . r o)

x4+ y° =r°, the x-axis, the lines x=r—h and x =r is revolved y \/

about the x-axis, then the solid generated is a spherical cap of

height h cut of from a sphere of radius r. See Fig. 9.40. Hence, Fig. 9.40
the required volume is given by

TEJ :_h yidx = TEJ :_h (rz —x’ ) dx=m (rzx - %31_}1

(r3 —(r—h)B) . rzh_(r3 —(r3 —3r’h+3rh’ —h3))
3 3

Vv

=n|r (r—(r—h))—

2 3
=7 MJ:lﬂhz(%—h).
3 3

Note
We can rewrite the above volume in terms of the radius of the cap.
If p is the radius of the cap, then p® +(r—h)" =2,

2 2

Then, we have r = p th

. Eliminating r, we get

2h
2 2 2 2
yoLap| s £y 2L | 20t =lnh(3p2+h2).
3 2h 3 2 6

Example 9.65
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Find the volume of the solid formed by revolving the region bounded by the parabola y = x*,

x-axis, ordinates X =0 and x =1 about the x-axis.

Solution
The region to be revolved about the x-axis is sketched as in y
Fig.9.41. Hence, the required volume is given by ‘ y =2
1 5 _ 1 2 2
V = choy dx—njo(x +4x+5) dx
= nf (x* +1627 +25+8x +40x+10x7 ) dx /ﬂd
o X
5 4 3 2 ! N
= x| 2 126X 1402 1 25x o
5 4 3 2 . x=1
1. 26 838 x=0
=7 —4+2+—+20+25 |=—n. i
( s 3 j s Fig. 9.41 ]
Example 9.66
Find the volume of the solid formed by revolving the region bounded by the ellipse
2 2
x—2 +y—2 =1,a > b about the major axis.
a b
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Solution
The ellipse is symmetric about both the axes. The major axis lies along x-axis. The region to be

revolved is sketched as in Fig.9.42. y
Hence, the required volume is given by KR
a a bz [
V=mn de=n| —(a®—-x")dx 2,0 0 0y~ %
[ yde=n]" ~(a*-x") BN
2nh’

= ==~ '(a® —=x*)dx  since the integrand is an even function. ~ Fig. 9.42

a
2xb*( , ¥ © ok’ , a 2nb* ( 24° Arab®
= 2 a X—— = 2 a ——— | = 3 =

a 3 ), a 3 a 3 3

Note ) 2 "
If the region bounded by ellipse —2+Zj—2 =1 is revolved about the y-axis, then the volume of
a
. .. 4ma’h - T
the solid of revolution is . The solid is called an ellipsoid.
3

Example 9.67
Find, by integration, the volume of the solid generated by revolving about y-axis the region
bounded between the parabola x = y* +1, the y-axis, and the lines y=1and y =-1.

Solution
The parabola x = y* +1 is y* =x—1. It is symmetrical about x-axis and has the vertex at (1,0)

and focus at GO) . The region for revolution is shaded in Fig.9.43. Hence, the required volume is

® ®
given by 1
V =T 71x2dy y
Yoo 12 )
- nj_l(y +1) dy e y=1
‘\
1 = X
4 2 . . . . >
= 275_[0()/ +2y* +1)dy  since the integrand is an even function. AN
5 3 ! x=y’+1
= Zn(y—+2y—+yJ :2n[l+%+lj:§n.
>3 T B3 Fig. 943 g
Example 9.68

Find, by integration, the volume of the solid generated by revolving about y-axis the region

bounded between the curve y = %\/ﬁ —16, x>4, the y-axis, and the lines y=1and y=6.

Solution
2 2
We note that y = %\/xz -16 = %_% =1. So, the given curve is a y
2 2
portion of the hyperbola %—% =1 between the lines y=1and y=6 and it S =b
y=1

lies above the x-axis. 0 X

The region to be revolved is sketched in Fig.9.44.

Since revolution is made about y-axis, we write the equation of the Fig. 9.44
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portion of the hyperbola as x = §\/9+y2 . So, the volume of the solid generated is given by

2
thléxzdy = th‘lé(§\/9+y2 ) dy = Tc(%)-"f(9+ yz)dy

16 N (16 1] 5600
n(?;)(9y+%%)l=ﬂ{é;)k54+72)—(9+§)]:—57—n

Example 9.69 u
Find, by integration, the volume of the solid generated by revolving about y-axis the region
bounded by the curves y=logx, y=0, x=0 and y=2.

\Y

=log x
Solution
The region to be revolved is sketched in Fig.9.45. =2
Since revolution is made about the y-axis, the volume of the solid
generated is given by
2 ) _ 2 ) .
V =] Xdy=n] e'dy Fig. 9.45
_ T (2
= ﬂ[eyl)—ﬂ(e —1). [ |
EXERCISE 9.9
@ 1. Find, by integration, the volume of the solid generated by revolving about the x-axis, the ®

region enclosed by y=2x*, y=0 and x=1.

2. Find, by integration, the volume of the solid generated by revolving about the x-axis, the
region enclosed by y=e® y=0, x=0andx =1

3. Find, by integration, the volume of the solid generated by revolving about the y-axis, the
region enclosed by x* =1+y and y =3.

4. The region enclosed between the graphs of y=x and y=x" is

denoted by R, Find the volume generated when R is rotated through F"H 2m
360° about x-axis.

2m
5. Find, by integration, the volume of the container which is in the shape
of aright circular conical frustum as shown in the Fig 9.46. & 1
6. A watermelon has an ellipsoid shape which can be obtained by Fig. 9.46

revolving an ellipse with major-axis 20 cm and minor-axis 10 cm about
its major-axis. Find its volume using integration.

@EXERClSE 9.10)

Choose the correct or the most suitable answer from the given four alternatives :
2

3 dx ]
1. The value of | —— is
J\/4—9x2
T T v
1) — 2) — 3) — 4 xipz212
(1) 5 (2) 5 (3) A (4) =
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2
2. The value of J_I|X| dx is

1 3
O @) 5

5
@)

3. For any value of n€Z, _[0 e cos® [(2n+1)x] dxis

5 @ =

T
3
4. The value of j sin? xcos x dx is
n
2

3 1
1) 5 (2) 5

(3) 0

®)0

2 4
5. The value of J44|:tan’l( f+1)+tan_1(x jl)]dx is
- x x

(1) = (2) 27 @) 3«
T 7 S 3
6. The value of J“n(zx 3 +27x _xHde is
- cos” x
1)4 )3 (3) 2
® 7.1f f(x) =] tcost dr then ¥ -
0 dx
(1) cos x — xsin X (2) sin X+ X cos X (3) xcosx
8. The area between y* =4x and its latus rectum is
1 2 2 4 3 8
O 5 @ 3 ®) 7
1
9. The value of JO x(1-x)"dx is
1 1 1
1) —— 2) —— 3) ——
@ 11000 @) 10100 ®) 10010
10. The value of _[n dx IS
0 1+5COSJC
s 37
1) - 2 3) 2L
1) 5 (2) = 3) 5
I'(n+2)
——==90 i
11. If (") then n is
(1) 10 (2)5 (3)8
12. The value of Jogcos3 3x dx is
2 2 1
1) — 2) — 3) —
1) 3 (2) 5 3) 5
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7
“) 5

(4) 2

2
@) 3
4) 4
40
(4) xsinx
>
OF

4) —
) 10001

4) 2=

(4)9

1
@) 3
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13. The value of J: sin® x dx is
3T 37 3T 3T
1) =—— 2) —/— 3) — 4) ——
()10 (2) 2 (3) 1 (4) 5

14. The value of f e x’dx is

7 5 4 2
1) — 2) — 3) — 4) —
()27 ()27 ()27 ()27
15. Ifja 1 5 de="then a is
0 4+x
(1)4 21 )3 (4)2
16. The volume of solid of revolution of the region bounded by »* = x(a—x) about x-axis is
3
; ma’ e’ ma
(1) =a | (2) = @) = 4 —5
17. If f(x):jl’“e du,x>1 and

u

sinx’

J] A - %[f(a)—f(l)], then one of the possible value of a is
X

(1) 3 (2) 6 (3)9 ®)
@ 18. The value of Jol (sin’1 x)2 dx is ®
71'2 71'2 71'2 77.'2
19. The value of J:(\/az —x’ )3dx is
na’ 3ra’ 3ra’ 3ra’
1) Te (2) T (3) 2 (4) 2

X 1
20. If [ f(6)dt=x+] tf(0)t, then the value of f (1) is

1 3
@3 (2) 2 @)1 @5
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SUMMARY

(1) Definite integral as the limit of a sum

if(a+(b—a)£)
r=l n

b—a
n

() [/G)d= lim

~ P -
(i) f S = lim-> 2 f

it

n—00 p =

(2) Properties of definite integrals

(W) [/(de=] f)du (i) [ fCo)ae =] oy
(iii) j'f(x)dxzjf(x)dx+j.f(x)dx (iv) j;bf(x)dx:j;bf(a+b—x)dx
W [ =]’ fla-x)ds wi) [ r@ds=[[f@+sa-»]d

(vii) If f(x) is an even function, then J_aaf(x) dx = 2J0af(x) dx.

(ix) If f(x) is an odd function, then J._:f(x) dx=0.
) If fQa—x)=f(x), then | f@)dx=2]"f(x)d
(xi) If f(2a—x)=—f(x), then fozaf(X)dx=0-

a

(xii) j X f(x)dx = %

S(x)dx 1t fla=x)=f(x)

O C——

(3) Bernoulli’s Formula
_ _, M @, _,0
fuvdX— UV —U Vo) U Vg = UV o

(4) Reduction Formulas

() f’-’sin“x dx =_[COS“de= n (n-2)
i (n-1) (n-3) 2 .
0 X X---X—, ifn=35,7,--
n (n-2) 3

(if) If nisevenand mis even,

_[%sin’“xcos“xdx = (-0) (-3 (-5 1 (m-Hh(m-3)(m-5 1x
0 (m+n) (M+n-2) (m+n-4) (mM+2) m (M-2)(m-4) 22

(iii) If n isodd and mis any positive integer (even or odd), then

= (=) (n=3) (=5 2 1

f sin™z cos"z dx = .

0 (m+n)y(m+n-2)(m+n—-4) (m+3)(m+1)
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(5) Gamma Formulas
(i) T = [ ex"dx =(n-1)

.. = n!
(i) J.o e “x"dx = —7
a

(6) Area of the region bounded by a curve and lines

(i) The area of the region bounded by a curve, above x -axis and the lines x=a and x=5

iISA= fabydx.
(i) The area of the region bounded by a curve, below x -axis and the lines x=a and x =5
b b
ISA= —f ydx = f ydx| .

(iii) Thus area of the region bounded by the curve to the right of y -axis, the lines y =c¢ and

y=dIisA= fcdxdy.
(iv) The area of the region bounded by the curve to the left of y -axis, the lines y=c¢ and
y=dis A= —dedy: dedy‘ :
(7) Volume of the solid of revolution

b
® (i) The volume of the solid of revolution about x-axis isV = WJ'ayde_

(i) The volume of the solid of revolution about y-axisis V = 71'I dxzdy.
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