
“Give me a place to stand and I will move the earth”
- Archimedes

Chapter

9 Applications of Integration

9.1.Introduction
       One of the earliest mathematicians who made wonderful discoveries to 
compute the areas and volumes of geometrical objects was Archimedes. 
Archimedes proved that the area enclosed by a parabola and a  straight line  
is 4

3
 times the area of an inscribed triangle  

(see Fig. 9.1).
 He obtained the area by segmenting it into 
infinitely many elementary areas and then finding 
their sum. This limiting concept is inbuilt in the 
definition of definite integral which we  are going 
to develop here and apply the same in finding 
areas and volumes of certain geometrical shapes.

Learning Objectives

 Upon completion of this Chapter, students will be able to
  • define a definite integral as the limit of a sum
  • demonstrate a definite integral geometrically
  • use the fundamental theorem of integral calculus
  • evaluate definite integrals by evaluating anti-derivatives
  • establish some properties of definite integrals
  • identify improper integrals and use the gamma integral
  • derive reduction formulae
  • apply definite integral to evaluate area of a plane region
  • apply definite integral to evaluate the volume of a solid of revolution

 We briefly recall what we have already studied about anti-derivative of  a given function f x( ) . 

If a function F x( )  can be found such that d
dx
F x f x( ) ( )= , then the function F x( )  is called an  

anti-derivative of f x( ) .

Fig. 9.1

Archimedes of Syracuse  
(288BC(BCE)-212BC(BCE))  
was a Greek mathematician, 
physicist, engineer, inventor
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Applications of Integration91

      It is not unique, because, for any arbitrary constant C , we get d
dx
F x C d

dx
F x f x[ ( ) ] [ ( )] ( )+ = = . 

That is, if F x( )  is an anti-derivative of f x( ) , then the function F x C( ) +  is also an anti-derivative of  
the same function f x( ) . Note that all anti-derivatives of  f x( )  differ by a constant only. The  
anti-derivative of f x( )  is usually called the indefinite integral of f x( )  with respect to x and is 
denoted  by f x dx( )ò .  

 A well-known property of indefinite integral is its linear property :

 α β α βf x g x dx f x dx g x dx( ) ( ) ( ) ( )+[ ] = +∫ ∫∫ , where α  and β  are constants.

 We list below some functions and their anti-derivatives (indefinite integrals): 

Function f x( ) Indefinite integral f x dx( )ò
K , a constant Kx C+  

( )ax b n+ ,where a ¹ 0  and b  are constants; and 
n ≠ −1

1

1

1

a
ax b
n

C
n( )+

+








 +

+

 

1
ax b+

, where a ¹ 0  and b  are constants 1

a
ax b Celog ( )+ +  

eax  , where a  is a non-zero constant
e
a

C
ax

+

sin( )ax b+ , where a ¹ 0  and b  are constants −
+

+
cos( )ax b

a
C

 

cos( )ax b+ , where a ¹ 0  and b  are constants
sin( )ax b

a
C+

+
 

tan( )ax b+ , where a ¹ 0  and b  are constants
1

a
ax b Clog sec( )+ +

 

cot( )ax b+ , where a ¹ 0  and b  are constants
1

a
ax b Clog sin( )+ +

sec( )ax b+ , where a ¹ 0  and b  are constants
1 log | sec( ) tan( ) |ax b ax b C
a

+ + + +

cosec( )ax b+ , where a ¹ 0  and b  are constants
 
− + − + +

1

a
ax b ax b Clog ( ) cot( )cosec

1
2 2a x+

, where a ¹ 0  is a constant 1 1

a
x
a

Ctan− 





 +

 
1

2 2a x−
, where a ¹ 0  is a constant 1

2a
a x
a x

Celog
+
−

+
 

1
2 2x a−

, where a ¹ 0  is a constant 1

2a
x a
x a

Celog
−
+

+
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Function f x( ) Indefinite integral f x dx( )ò  

1

2 2a x+
, where a  is a constant loge x a x C+ + +2 2

 

1

2 2a x−
, where a ¹ 0  is a constant sin− 






 +

1 x
a

C  

1

2 2x a−
, where a  is a constant loge x x a C+ − +2 2

 

a x2 2+ , where a  is a constant x a x a x a x Ce

2 2 2
2 2

2 2

+
+ + + +log

 

a x2 2− , where a  is a constant x a x a x
a

C
2 2 2

1

2 2

−
+ 






 +

−sin

 

x a2 2− , where a  is a constant x x a a x x a Ce

2 2 2
2 2

2 2

−
− + − +log

 

9.2 Definite Integral as the Limit of a Sum
9.2.1 Riemann Integral
 Consider a real-valued, bounded function f x( )  defined 
on the closed and bounded interval[ , ], .a b a b < The function 
f x( )  need not have the same sign on [ , ]a b ; that is, f x( )

may have positive as well as negative values on [ , ]a b . See 
Fig 9.2. Partition the interval [ , ]a b  into n  subintervals
[ , ],[ , ], ,[ , ],[ , ]x x x x x x x xn n n n0 1 1 2 2 1 1 − − −  such that

a x x x x x bn n= < < < < < =−0 1 2 1 .

 In each subinterval [ , ], , , , ,x x i ni i− =1 1 2   choose a real number ξi arbitrarily such that 
x xi i i− ≤ ≤1 ξ .

    Consider the sum f x xi i i
i

n

( )( )ξ − −
=
∑ 1

1

 = f x x f x x f x xn n n( )( ) ( )( ) ( )( )ξ ξ ξ1 1 0 2 2 1 1− + − + + − −  ….(1)

 The sum in (1) is called a Riemann sum of f x( )  corresponding to the partition  

[ , ],[ , ], ,[ , ]x x x x x xn n0 1 1 2 1 −  of [ , ].a b  Since there are infinitely many values ξi  satisfying the condition 

x xi i i− ≤ ≤1 ξ ,  there are infinitely many Riemann sums of f x( )  corresponding to the same partition  

[ , ],[ , ], ,[ , ]x x x x x xn n0 1 1 2 1 −  of [ , ].a b  If, under the limiting process n xi xi→∞ − −( )→ and max ,
1

0  

the sum in (1) tends to a finite value, say A,  then the value A  is called the definite integral of f x( )

with respect to x on [ , ]a b . It is also called the Riemann integral of f x( )  on [ , ]a b  and is denoted by 

 f x dx
a

b

( )ò and is read as the integral of f x( )  with respect to x from a to b . If a b= ,  then we have 

 f x dx
a

a

( ) .=∫ 0

x a=
x b=

xx1 x2

xn

y
f x

=
(

)

xi xn−1

x3
xi−1x0

ξ3

Fig. 9.2
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Note
 In the present chapter, we consider bounded functions f x( ) that are continuous  on[ , ]a b . 
However, the Riemann integral of  f x( )  on [ , ]a b also exists for bounded functions f x( ) that are 
piece-wise continuous  on[ , ]a b .We have used the same symbol ò both for definite integral and anti-
derivative (indefinite integral). The reason will be clear after we state the Fundamental Theorems of 
Integral Calculus. The  variable x  is dummy in the sense that it is selected at our choice only. So we 

can write  f x dx
a

b

( )ò as f u du
a

b

( )ò . So, we have  f x dx f u du
a

b

a

b

( ) ( )∫ ∫= . As max ,xi xi− −( )→1
0  all the  

three points x xi i i−1,ξ , and  of each subinterval [ , ]x xi i−1  are dragged into a single point. We have 

already indicated that there are infinitely many ways of choosing the evaluation point ξi  in the 

subinterval [ , ]x xi i−1 , i n=1 2, , , . By choosing ξi ix = −1 , i n=1 2, , , , we have 

 
  

 and max(x
f x dx f x x x

a

b

n x i i i
i

n

i i

( ) lim ( )( )
)

= −∫ ∑→∞ − →
− −

=−1 0
1 1

1

..  ...(2)

 Equation (2) is known as the left-end rule for evaluating the Riemann integral. 

 By choosing ξi ix = , i n=1 2, , , , we have 

 

  
 and max (x

f x dx f x x x
a

b

n x i i i
i

n

i i

( ) lim ( )( ).
)

= −∫ ∑→∞ − →
−

=−1 0
1

1  ...(3)

 Equation (3) is known as the right-end rule for evaluating the Riemann integral. 

 By choosing ξi i ix x
 = − +1

2
, i n=1 2, , , , we have 

 

  
 and max

f x dx f x x x x
a

b

n x x

i i
i i

i i

( ) lim (
( )

=
+






 −∫ →∞ − →

−

−1 0

1

2
−−

=
∑ 1

1

).
i

n

 ...(4)

 Equation (4) is known as the mid-point rule for evaluating the Riemann integral. 

Remarks

 (1) If the Riemann integral f x dx
a

b

( )ò  exists, then the Riemann integral f u du
a

x

( )ò is a  

well-defined real number for every x a b∈[ , ] . So, we can define a function F x( ) on [ , ]a b

such that F x f u du x a b
a

x

( ) ( ) , [ , ]= ∈∫ .

 (2) If f x( ) ≥ 0  for all x a b∈[ , ] , then the Riemann integral  

f x dx
a

b

( )ò is equal to the geometric area of the region bounded by 

the graph of y f x= ( ) , the x-axis, the lines x a= and x b= .  See 

Fig. 9.3.
Fig. 9.3
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 (3) If f x( )£ 0  for all x a b∈[ , ] , then the Riemann integral 

f x dx
a

b

( )ò is equal to the negative of the geometric area of the 

region bounded by the graph of y f x= ( ) , the x-axis, the  

lines x a= and x b= . See Fig. 9.4. In this case, the geometric 
area of  the region bounded by the graph of y f x= ( ) , 

the x-axis, the lines x a= and x b= is given by  f x dx
a

b

( )ò .

 (4) If f x( )  takes positive as well as negative values on [ , ]a b , then the interval [ , ]a b  can be  

divided into subintervals [ , ]a c1 , [ , ]c c1 2 , , [ , ]c bk such that f x( )  has the same sign 

throughout each of subintervals. So, the Riemann integral f x dx
a

b

( )ò is given by 

  f x dx
a

b

( )ò = f x dx f x dx f x dx
a

c

c

c

c

b

k

( ) ( ) ( )

1

1

2

∫ ∫ ∫+ + + . 

  In this case, the geometric area of the region bounded by the graph of y f x= ( ) , the x-axis, 

the lines x a= and x b= is given by 

f x dx f x dx f x dx
a

c

c

c

c

b

k

( ) ( ) ( )

1

1

2

∫ ∫ ∫+ + + .

 For instance, consider the following graph of a 
function f x x a b( ), [ , ]∈ . See Fig. 9.5. Here, A1 , A2 and, 
A3 denote geometric areas of the individual parts.  

Then, the definite  integral  f x dx
a

b

( )ò is given by 

 
f x dx

a

b

( )ò
 
=  f x dx f x dx f x dx

a

c

c

c

c

b

( ) ( ) ( )

1

1

2

2

∫ ∫ ∫+ +

  =  A A A1 2 3− + .

 The geometric area of the region bounded by the graph of y f x= ( ) , the  x − axis, the lines 
x a= and x b=  is given by A A A1 2 3+ + . In view of the above discussion, it is clear that a Riemann 
integral need not represent geometrical area.

Note
 Even if we do not mention explicitly, it is always understood that the areas are measured in 
square units and volumes are measured in cubic units.

Example 9.1

 Estimate the value of x dx2

0

0 5.

ò  using the Riemann sums corresponding to 5 subintervals of equal 

width and applying (i) left-end rule (ii) right-end rule (iii) the mid-point rule.

Fig. 9.4

y

O
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Solution
   Here a  =  0 0 5 5 2, . , , ( )b n f x x= = =  

 So, the width of each subinterval is 

   h  =  ∆x b a
n

=
−

=
−

=
0 5 0

5
0 1

.
. .

 The partition of the interval is given by the points

   x0  =  0,

   x1  =  x h0 0 0 1 0 1+ = + =. .  

   x2  =  x h1 0 1 0 1 0 2+ = + =. . .

   x3   = x h2 0 2 0 1 0 3+ = + =. . .

   x4  =  x h3 0 3 0 1 0 4+ = + =. . .

   x5  =  x h4 0 4 0 1 0 5+ = + =. . .

 (i) The left-end rule for Riemann sum with equal width Dx is 

   S  =  f x f x f x xn0 1 1( ) + ( ) + + ( )  ∆− .

    ∴S  =  f f f f f0 0 1 0 2 0 3 0 4 0 1( ) + ( ) + ( ) + ( ) + ( ) . . . . ( . )

    =  0 00 0 01 0 04 0 09 0 16 0 1 0 03. . . . . ( . ) .+ + + +[ ] =

   ∴ ∫ x dx2

0

0 5.

 is approximately 0 03. .

 (ii) The right-end rule for Riemann sum with equal width Dx is 

   S  =  f x f x f x xn1 2( ) + ( ) + + ( )  ∆ .

   ∴ S  =  f f f f f0 1 0 2 0 3 0 4 0 5 0 1. . . . . ( . )( ) + ( ) + ( ) + ( ) + ( ) 

    =  0 01 0 04 0 09 0 16 0 25 0 1 0 055. . . . . ( . ) .+ + + +[ ] = .

  ∴ ∫ x dx2

0

0 5.

 is approximately 0 055. .

 (iii) The mid-point rule for Riemann sum with equal width Dx is 

   S  =  f x x f x x f x x xn n0 1 1 2 1

2 2 2

+





 +

+





 + +

+















 ∆

−
  

   ∴ S  =  f f f f f0 05 0 15 0 25 0 35 0 45 0 1. . . . . ( . )( ) + ( ) + ( ) + ( ) + ( )   

 =  0 0025 0 0225 0 0625 0 1225 0 2025 0 1. . . . . ( . )+ + + +[ ]

 =  0 04125. .

  ∴ ∫ x dx2

0

0 5.

 is approximately 0 04125. .

Chapter 9 Applications of Integration.indd   95 7/25/2019   7:08:13 PM



96XII - Mathematics

EXERCISE 9.1

 1. Find an approximate value of xdx
1

1 5.

ò  by applying the left-end rule with the partition 

1 1 1 2 1 3 1 4 1 5. , . , . , . , .{ } .

 2. Find an approximate value of x dx2

1

1 5.

ò by applying the right-end rule with the partition 

1 1 1 2 1 3 1 4 1 5. , . , . , . , .{ } .

 3. Find an approximate value of ( )

.

2

1

1 5

−∫ x dx by applying the mid-point rule with the partition 

1 1 1 2 1 3 1 4 1 5. , . , . , . , .{ } .

9.2.2 Limit Formula to Evaluate  f x dx
a

b

( )ò  

 Divide the interval [ , ]a b  into n  equal subintervals  [ , ],[ , ], ,[ , ],[ , ]x x x x x x x xn n n n0 1 1 2 2 1 1 − − − such 

that a x x x x x bn n= < < < < < =−0 1 2 1 . Then, we have x x x x x x b a
nn n1 0 2 1 1− = − = = − =
−

− .Put

h b a
n

=
− .Then, we get x a ih i ni = + =, , , , .1 2 

 So, by the definition of definite integral, we get 

 
lim ( )( )

( )n x x i i i
i

n

i i

f x x x
→∞ − →

−
=−

−∑
 and max 1 0

1

1

(Right-end rule)

  =  limn i

nb a
n

f a i b a
n→∞

=

−
+

−





∑

1

.

 ∴      f x dx
a

b

( )ò  

 
=  lim ( )
n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

1

.

 Note. lim ( )
n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

0  
= lim ( ) ( )
n r

nb a
n

f a b a
n

f a b a r
n→∞

=

−
+

−
+ −
















∑

1

  =  lim ( )
n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

1

  =  f x dx
a

b

( )ò .

 ∴ f x dx
a

b

( )ò
 
=  lim ( )

n
r

nb a
n

f a b a r
n→∞

=

− + −



∑

1

  
=  lim ( )
n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

0

.

  If a = 0 and b =1, then we get    =f x dx
n

f r
n n

f r
nn

r

n

n
( ) lim lim=












∫ ∑

→∞
=

→∞
0

1

0

1 1 
=
∑
r

n

1

.
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Example 9.2

 Evaluate xdx,
0

1

ò  as the limit of a sum.

Solution
 Here f x x a b( ) , .= = =  and 0 1  Hence, we get

   
 f x dx
a

b

( )ò
 
=  lim lim

n r

n

n r

n

n
f r
n

xdx
n

r
n→∞

=
→∞

=







⇒ =∑ ∫ ∑1 1

1 0

1

1

    =  limn n
n

→∞
+ + +[ ]1

1 2
2



     =  lim
( )

lim
n nn

n n
n→∞ →∞

+
+






 =

1 1

2

1

2
1

1 1

22
= .

Example 9.3

 Evaluate x dx3

0

1

,ò  as the limit of a sum.

Solution
 Here f x x a b( ) , .= = =3 0 1  and   Hence, we get

   
 f x dx
a

b

( )ò
 
=  lim lim

n r

n

n r

n

n
f r
n

x dx
n

r
n→∞

=
→∞

=







⇒ =∑ ∫ ∑1 1

1

3

0

1 3

3
1

     =  lim lim
( )

n nn
n

n
n n

→∞ →∞
+ + +  =

+1
1 2

1 1

44

3 3 3

4

2 2



     =  lim
n n→∞

+





 =

1

4
1

1 1

4

2

.
Example 9.4

 Evaluate 2 32

1

4

x dx+( )∫ ,  as the limit of a sum.

Solution

 We use the formula

 
 f x dx
a

b

( )ò
 
=  lim ( )

n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

1

 Here f x x a b( ) ,= + = =2 3 1 42   and . 

 So, we get 

 
f a b a r

n
+ −






( )

 
=  f

r
n

1 4 1+ −





( ) = f r

n
1

3
+






 = 2 1

3
3

2

+





 +
r
n

= 5
18 122

2
+ +

r
n

r
n

.

Hence, we get 

 
( )2 32

1

4

x dx+∫
 
=  lim lim

n r

n

n r

n

n
r
n

r
n n n

r
→∞

=
→∞

=

+ +








 = + +∑ ∑3

5
18 12 15

1
54 362

2
1 1

3

2

nn
r

r

n

r

n

2
11 ==
∑∑






   =  limn n
n

n
n

n
n

→∞
+ + + +( ) + + + +( )





15 54
1 2

36
1 2

3

2 2 2

2
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  =  lim
( )( ) ( )

n n
n n n

n
n n

→∞
+

+ +
+

+





15
54 1 2 1

6

36 1

23 2

  =  limn n n n→∞
+ +






 +





 + +
















15 9 1

1
2

1
18 1

1

  =  15+9 1 0 2 0 18 1 0+( ) +( ) + +( ) = 51.

EXERCISE 9.2
 1. Evaluate the following integrals as the limits of sums:

   (i) ( )5 4
0

1

x dx+∫   (ii) ( )4 12

1

2

x dx−∫  

9.3 Fundamental Theorems of Integral Calculus and their Applications

 We observe in the above examples that evaluation of   f x dx
a

b

( )ò  as a limit of the sum is quite 

tedious, even if f x( )  is a very simple function. Both Newton and Leibnitz, more or less at the same 

time, devised an easy method for evaluating definite integrals. Their method is based upon two 
celebrated theorems known as First Fundamental Theorem and Second Fundamental  Theorem   
of   Integral Calculus.  These theorems establish the connection between a function and its  
anti-derivative (if it exists). In fact, the two theorems provide a link between differential calculus and 
integral calculus. We state below the above important theorems without proofs.

Theorem 9.1 (First Fundamental Theorem of Integral Calculus)

  If f x( )  be a continuous function defined on a closed interval [ , ]a b andF x f u du a x b
a

x

( ) ( ) ,= < <∫    

then, d
dx
F x f x( ) ( ).=  In other words, F x( )  is an anti-derivative of f x( ).

Theorem 9.2 (Second Fundamental Theorem of Integral Calculus)

 If f x( )  be a continuous function defined on a closed interval [ , ] ( )a b F x  and   is an  

anti-derivative of f x( ),  then,          

f x dx F b F a
a

b

( ) ( ) ( ).= −∫

Note

 SinceF b F a( ) ( )−  is the value of the definite integral (Riemann integral)  f x dx
a

b

( ) ,ò  any arbitrary 

constant added to the anti-derivative F x( ) cancels out and hence it is not necessary to  add an arbitrary 
constant to the anti-derivative, when we are evaluating definite integrals. As a  short-hand form, we 

write F b F a F x
a

b
( ) ( ) ( ) .− = [ ] The value of a definite integral is unique. 
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 By the second fundamental theorem of integral calculus, the following  properties of definite 
integrals  hold. They are stated here without proof.

 Property 1 : f x dx f u du
a

b

a

b

( ) ( )=∫ ∫ , a < b

 i.e., definite integral is independent of the change of variable.

 Property 2 : f x dx f x dx
b

a

a

b

( ) ( )= −∫∫
 i.e., the value of the definite integral changes by minus sign if the limits are interchanged.

 Property 3 :  f x dx f x dx f x dx
a

c

a

b

c

b

( ) ( ) ( )= +∫∫ ∫ , a < c < b

 Property 4 :  α β α βf x g x dx f x dx g x dx
a

b

a

b

a

b
( ) ( ) ( ) ( )+[ ] = +∫ ∫ ∫ , where α  and β  are constants.

 Property 5 : If x = g(u), then f x dx f g u dg u
du

du
a

b

c

d
( ) ( ( ))

( )∫ ∫=
 
 where  and g c a g d b( ) ( )= =

 
.

 This property is used for evaluating definite integrals by making substitution.
 We illustrate the use of the above properties by the following examples.

Example 9.5

 Evaluate :  ( )3 4 52

0

3

x x dx− +∫ .

Solution

   ( )3 4 52

0

3

x x dx− +∫  =  3 4 52

0

3

0

3

0

3

x dx x dx dx− + ∫∫∫

    =  3 4 52

0

3

0

3

0

3

x dx x dx dx− +∫ ∫ ∫

    =  3
3

4
2

5
3

0

3
2

0

3

0

3x x x








 −









 + [ ]

    =  ( ) ( ) ( )27 0 2 9 0 5 3 0− − − + −

    =  27 18 15− + = 24 .

Example 9.6

 Evaluate :  2 7

5 92

0

1 x
x

dx+
+∫  .

Solution

   

2 7

5 92

0

1 x
x

dx+
+∫

 
=  2

5 9
7

5 32

0

1

2 2

0

1x
x

dx
x+

+
+∫ ∫ ( )

=
1

5
5 9

7

5 3

5

2

0

1

2

2

0

1

log[ ]x dx

x
+ +

+ 







∫
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    =  1

5
14 9

7

5

5

3 3

5

1

5

14

9

1

0

1

[log log ] tan log− + ×
























= +− x 77

3 5

5

3

1tan− .

Example 9.7

 Evaluate :   [ ]2

0

1

x dxò where [ ]⋅  is the greatest integer function.

Solution

  [ ]2

0

1

x dxò =  [ ] [ ]2 2

0

1

2

1

2

1

x dx x dx+∫ ∫ = 0 1
1

2

1

0

1

2

dx dx+∫∫ = 0 1

2

1+ [ ]x = 1
1

2
− =

1

2
.

Example 9.8

 Evaluate  :   sec tan

sec

x x
x
dx

1 2

0

3

+∫
π

.

Solution

   Let I  =  sec tan

sec

x x
x
dx

1 2

0

3

+∫
π

.           Put sec x = u . Then, sec tanx x dx = du .

 When x =0,  u = =sec0 1 .  When x =
p
3

, u = =sec
p
3

2 .

   ∴ I  =  
du
u1 2

1

2

+∫ = [tan ]−1

1

2u =  tan ( ) tan− −−1 12 1 = tan ( )− −1 2
4

π .

Example 9.9

 Evaluate  : 1

0

9

x x
dx

+∫ .

Solution

 Let x = u . Then x u= 2 , and so dx = 2u du .

 When x = 0 , u = 0 . When x = 9 , u = 3 .

 ∴
+∫
1

0

9

x x
dx =

1
2

2

0

3

u u
u du

+∫ ( ) =  2
1

1
0

3

+∫ u
du = 2 1

0

3

log + u = 2 4 0[log ]− = log16 .

Example 9.10

 Evaluate: x
x x

dx
( )( )+ +∫ 1 2

1

2

.

Solution

   Let I  =  x
x x

dx
( )( )+ +∫ 1 2

1

2

. 
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   I  =  −
+

+
+









∫

1

1

2

2
1

2

( )x x
dx

                
(Using partial fractions)

     =  − + + +[ ]log( ) log( )x x1 2 2
1

2

    =  log
( )x

x
+
+











2

1

2

1

2

    =  log log
16

3

9

2
−

    =  log
32

27
.

Example 9.11

 Evaluate  :  cos

( sin )( sin )

θ
θ θ

θ

π

1 2
0

2

+ +∫ d .

Solution

   Let I  =  cos

( sin )( sin )

θ
θ θ

θ

π

1 2
0

2

+ +∫ d .    Put u = 1+ sinθ . Then, du d= cosθ θ .

   When θ  =  0 1, u = . When  θ π
= =

2
2, u .

   ∴ I  =  
du

u u( )1
1

2

+∫ =  ( )

( )

1

1
1

2 + −
+∫
u u

u u
du  =  

1 1

1
1

2

u u
du−

+






∫ = log log( )u u− +[ ]1

1

2

    =  (log log ) (log log )2 3 1 2− − − = 2 2 3log log− = log
4

3
.

Example 9.12

 Evaluate : sin

( )

−

−
∫

1

2

3

20

1

2

1

x

x
dx .

Solution

 Let I  =  
sin

( )

−

−
∫

1

2

3

20

1

2

1

x

x
dx .  

 Put u  =  sin−1 x . Then, x u= sin  and so, du = 1

1 2− x
dx .

 When x  =  0 0, u = . When  x =  1

2 4
, u = π .

 ∴ I  =  u
u
du

cos2

0

4

π

∫ = u u dusec2

0

4

π

∫  =  [ tan ] tan tan log cosu u u du u u u0
4

0

4

0
4

0
4

π
π

π π

− = [ ] + [ ]∫

  = π
4

1

2
+ log =

π
4

1

2
2− log .
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Example 9.13

 Evaluate : tan cotx x dx+( )∫
0

2

π

.

Solution

 Let I  =  tan cotx x dx+( )∫
0

2

π

. Then, we get 

 I  =  sin

cos

cos

sin

x
x

x
x
dx+









∫

0

2

π

 =  sin cos

sin cos

x x
x x

dx+
∫
0

2

π

= 2
20

2 sin cos

sin cos

x x
x x

dx+
∫
π

  =  2
1 2

0

2 (sin cos )

(sin cos )

x x dx
x x
+

− −
∫
π

.

 Put u  =  sin cosx x−  . Then, du x x dx= +(cos sin ) .

 When x  =  0 1, u = − . When  x =  π
2

1, u = .

 ∴ I  = 2
1 2

1

1 du
u−−

∫ = 2 1

1

1[sin ]−
−u  = 2 1 11 1sin ( ) sin ( ))− −− −  = p 2 .

Example 9.14

 Evaluate : x dx2

0

1 5

 ∫  

.

,  where [ ]x  is the greatest integer function.  

Solution

 We know that the greatest integer function [ ]x  is the largest integer less than or equal to x. In 
other words, it is defined by [ ]x n= , if  n x n≤ < +( )1 , where n  is an integer. 

So, we get     

if

if    

if

[ ]

.

x

x

x

x

2

0 0 1

1 1 2

2 2 1 5

=

≤ <

≤ <

≤ ≤









 We note that the above function is not continuous on [ , . ]0 1 5 . 

 But, it is continuous in each of the sub-intervals [ , )0 1 , [ , )1 2

and [ , . ]2 1 5 ; that is, it is piece-wise continuous on [ , . ]0 1 5 .  

See Fig. 9.6. Hence, we get

   x dx2

0

1 5

 ∫  

.

 =  x dx x dx x dx dx dx2

0

1

2

1

2

2

2

1 5

0

1

1

2

0 1 2  +   +   = + +∫ ∫ ∫ ∫ ∫     

.

22

1 5.

∫ dx

     =  0 2 2 1 3 2 2 2 2
1

2

2

1 5+ ( ) + ( ) = −( ) + −( ) = −x x .
.  

Example 9.15

 Evaluate : | |x dx+
−
∫ 3
4

4

 .

Fig. 9.6

y

xO

1

2

1 2 1 5.
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Solution

 By definition, we have  | |x
x x
x x

+ =
+ ≥ −

− − < −




3
3 3

3 3

        if  

    if  

  See Fig. 9.7 for the graph of  y x= +| |3  in − ≤ ≤4 4x .

 ∴ | |x dx+
−
∫ 3
4

4

 

 
=  | | | |x dx x dx+ + +

−

−

−
∫ ∫3 3
4

3

3

4

  = ( ) ( )− − + +
−

−

−
∫ ∫x dx x dx3 3
4

3

3

4

  

  =  − −








 + +











−

−

−

x x x x
2

4

3
2

3

4

2
3

2
3

 =  − +





 − − +






 + +






 − −








9

2
9

16

2
12

16

2
12

9

2
9 =

9

2
4 20

9

2







 − + + 






 = 25 .

 Next, we give examples to illustrate the application of Property 5.

Example 9.16

 Show that 
dx

x e
4 5

1

3
2

0

2

+
=∫ sin

log

π

.

Solution

  Put  u = tan
x
2

. Then, sin

tan

tan

, secx

x

x
u
u
du x dx dx du

u
=

+
=

+
= ⇒ =

+

2
2

1
2

2

1

1

2 2

2

12
2

2

2
.

           When x =  0 0 0, tanu = = .   When x u= = =
π π
2 4

1, tan .

 ∴ I  =  dx
x

du
u
u
u

du
u u

du
4 5

2

1

4 5
2

1

2 5 2

1

20

2
2

2

0

1

20

1

+
= +

+
+







=
+ +

=∫ ∫ ∫sin

π

uu u20

1

5

2
1+ +

∫  

  = 1
2 5

4

3

4

1

2

1

2
3

4

5

4

3

2 20

1 du

u

u

+



 − 





= ×
× 





+



 −

∫ log
44

5

4

3

4

1

3

1

2

2

0

1

u

u

u+



 +



































=
+

+











log























=

0

1

1

3
2log  .

Note

 To evaluate anti-derivatives of the type dx
a x b x ccos sin+ +∫ , we use the substitution method by 

putting u x
= tan

2
 so that cos ,sin ,x u

u
x u

u
dx du

u
=

−
+

=
+

=
+

1

1

2

1

2

1

2

2 2 2
. 

Example 9.17

 Prove that
sin

sin cos

2
4 40

4
x dx

x x
 

+∫
π

=
p
4

.

Fig. 9.7

x

y

( , )�3 0 O ( , )4 0( , )−4 0

y
x�
� 3

y
x

� �
�

(

)3
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Solution

 I  =  
sin

sin cos

2
4 40

4
x dx

x x
 

+∫
π

=
sin

sin cos sin cos

2

22 2
2

2 20

4
x dx

x x x x

 

+( ) −
∫

π

  =  
sin

sin cos

2

1
1

2
2

20

4
x dx

x x

 

− ( )
∫

π

=
2 2

2 220

4
sin

sin

x dx
x

 

−∫
π

=
2 2

1 220

4
sin

cos

x dx
x

 

+∫
π

.

 Put  u  =  cos 2x ,   Then, du x dx= −2 2sin  . 

 When  x  =  0 , we have u = =cos 0 1 . When x = π
4

, we have u = =cos
π
2

0 .

 ∴ I  =  
−
+

=
+

=   =∫ ∫ −du
u

du
u

u
1 1 421

0

20

1
1

0

1

tan
π .

Example 9.18

 Prove that  
dx

a x b x2 2 2 20

4

sin cos+∫
π

=
1 1

ab
a
b

tan− 





 , where a b,  > 0 . 

Solution

 Put I  =  
dx

a x b x2 2 2 20

4

sin cos+∫
π

=
sec

tan

2

2 2 20

4
x dx

a x b
 

+∫
π

.

 Put  u  =  tan x .  Then du x dx= sec2  . 

 When  x  =  0 ,  we have u = =tan 0 0 . When x = π
4

, we have u = =tan
π
4

1. 

 ∴ I  =  
du

a u b2 2 20

1

+∫ = 1
2

2

20

1

a
du

u b
a

+ 





∫ =
1

2

1

0

1

a
a
b

au
b

tan− 















 =

1 1

ab
a
b

tan− 





 .

 We derive some more properties of definite integrals. 

Property 6

 f x dx f a b x dx
a

b

a

b
( ) ( )∫ ∫= + −

Proof
   Let u  =  a b x+ − . Then, we get dx du= − .

   When  x  =  a , u a b a b= + − = . When x b= , we getu a b b a= + − = .

   ∴ f x dx
a

b
( )ò  

=  f a b u du
b

a
( )( )+ − −∫ = f a b u du

a

b
( )+ −∫

    
=  f a b x dx

a

b
( )+ −∫ .

Note

 Replace a  by 0  and b  by a  in the above property we get the following property

 f x dx f a x dx
a a

( ) ( )
0 0∫ ∫= − .
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Example 9.19

 Evaluate 1

0

4

sin cosx x
dx

+∫
π

 

Solution

   I  =  
1

0

4

sin cosx x
dx

+∫
π

 =
1

2
1

2

1

2

0

4

sin cosx x
dx

+





∫
π

 

    =  
1

2

1

4 4

0

4

cos cos sin sin
π π

π

x x
dx

+





∫  =
1

2

1

4

0

4

cos
π

π

−





∫
x
dx 

    =  1

2

1

0

4

cos x
dx

π

∫  , since f x dx f a x dx
a a

( ) ( )
0 0∫ ∫= −

    =  1

2

1

20

4

0
4sec log(sec tan )x dx x x

π π

∫ = +[ ]  

    =  1

2
2 1 1 0log( ) log( )+ − +



  

    =  1

2
2 1log( )+ .

Property 7

 f x dx f x f a x dx
a a

( ) ( ) ( ) .
0

2

0
2∫ ∫= + −[ ]

Proof
 By property 3, we have f x dx

a
( )

0

2

ò  
=  f x dx f x dx

a

a

a
( ) ( )

0

2

∫ ∫+ . (1)

 Let us make the substitution x  =  2a u−  in f x dx
a

a
( )

2

ò . Then, dx du= − .

 When  x  =  a , we haveu a a a= − =2 . When x a= 2 , we haveu a a= − =2 2 0 .So, we get 

 
f x dx

a

a
( )

2

ò  
=  f a u du

a
( )2

0

− −( )∫ = f a u du
a

( )2
0

−∫ = f a x dx
a

( )2
0

−∫ . ...(2)

 Substituting equation (2) in equation (1), we get 

 
f x dx

a
( )

0

2

ò  
=  f x dx f a x dx

a a
( ) ( )

0 0
2∫ ∫+ −

  
=  f x f a x dx

a
( ) ( )+ −[ ]∫ 2

0
.

Property 8
 If f x( )  is an even function, then f x dx f x dx

a

a a
( ) ( ) .

−∫ ∫= 2
0

 (Recall that a function f x( )  is an even function if and only if f x f x( ) ( ).− = )
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Proof

 By property 3, we have

 f x dx
a

a
( )

−∫  =  f x dx f x dx
a

a
( ) ( )

−∫ ∫+
0

0
.

 In the integral f x dx
a

( )
−∫
0

, let us make the substitution, x u= − .Then, dx du= − .

 When  x  =  −a , we get u a= , when x = 0 , we get u = 0 , So, we get 

 
f x dx

a
( )

−∫
0

 
=  f u du

a
( )( )− −∫

0

= f u du
a

( )−∫0
= f x dx

a
( )−∫0

= f x dx
a

( )
0
ò . ... (2)

 Substituting equation (2) in equation (1), we get 

 f x dx
a

a
( )

−∫  =  f x dx f x dx f x dx
a a a

( ) ( ) ( )
0 0 0

2∫ ∫ ∫+ = .

Property 9

 If f x( )  is an odd function, then f x dx
a

a
( ) .

−∫ = 0

 (Recall that a function f x( )  is an odd function if and only if f x f x( ) ( ).− = − )
Proof

 By property 3, we have 

 f x dx
a

a
( )

−∫  =  f x dx f x dx
a

a
( ) ( )

−∫ ∫+
0

0
. ... (1)

 Consider f x dx
a

( )
−∫
0

. In this integral, let us make the substitution, x u= − .Then, dx du= − .

 When  x  =  −a , we get u a= ; when x = 0 , we get u = 0 . So, we get

 
f x dx

a
( )

−∫
0

 
=  f u du

a
( )( )− −∫

0

= f u du
a

( )−∫0
= f x dx

a
( )−∫0

= −∫ f x dx
a

( )
0

. ... (2)

 Substituting equation (2) in equation (1), we get 

 f x dx
a

a
( )

−∫  =  f x dx f x dx
a a

( ) ( )
0 0

0∫ ∫− =  

Property 10

 If f a x f x( ) ( ),2 − =  then f x dx f x dx
a a

( ) ( ) .
0

2

0
2∫ ∫=

Proof

 By property 7, we have 

 
f x dx f x f a x dx

a a
( ) ( ) ( ) .

0

2

0
2∫ ∫= + −[ ]        ...(1)

 Setting the condition f a x f x( ) ( )2 − =  in equation (1), we get 

 
f x dx f x f x dx f x dx

a a a
( ) ( ) ( ) ( ) .

0

2

0 0
2∫ ∫ ∫= +[ ] =

Property 11

 If f a x f x( ) ( ),2 − = −  then f x dx
a

( ) .
0

2

0∫ =
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Proof

 By property 7, we have

 
f x dx f x f a x dx

a a
( ) ( ) ( ) .

0

2

0
2∫ ∫= + −[ ]   ... (1)

 Setting the condition f a x f x( ) ( )2 − = −  in equation (1), we get 

 
f x dx f x f x dx

a a
( ) ( ) ( ) .

0

2

0
0∫ ∫= −[ ] =

Property 12

 x f x dx a f x dx
a a

( ) ( )=∫ ∫2
0 0

 if f a x f x( ) ( )− = .

Proof

   Let  I  =  x f x dx
a

( )

0

ò  ... (1)

   Then  I  =  ( ) ( )a x f a x dx
a

− −∫
0

, since g x dx g a x dx
aa

( ) ( )= −∫∫
00

 =  ( ) ( )a x f x dx
a

−∫
0

,  since f a x f x( ) ( )− = .

   ∴ I  =  ( ) ( )a x f x dx
a

−∫
0

  ... (2)

 Adding (1) and (2), we get

   2I  =  ( ) ( )x a x f x dx
a

+ −∫
0

 =  a f x dx
a

( )

0

ò .

   ∴ I  =  a f x dx
a

2
0

( )ò .

Note
 This property help us to remove the factor x  present in the integrand of the  LHS.

Example 9.20

 Show that g x dx g x dx(sin ) (sin )=∫ ∫0 0

22
π π

, where g x(sin )  is a function of sin x .

Solution
 We know that
   f x dx

a
( )

0

2

ò  =  2
0
f x dx

a
( )ò  if f a x f x( ) ( )2 − = .

   Take  2a  = p  and f x g x( ) (sin )= .

   Then, f a x( )2 −  =  g x g x f x(sin( )) (sin ) ( )π − = = .
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    ∴∫ f x dx
a

( )
0

2

 =  2
0
f x dx

a
( )ò .

    g x dx(sin )
0

π

∫  =  2
0

2 g x dx(sin )

π

∫ .

Result 

 g x dx g x dx(sin ) (sin ) .=∫ ∫0 0

22
π π

Note
 The above result is useful in evaluating definite integrals of the type g x dx(sin )

0

π

∫ .

Example 9.21

 Evaluate x
x
dx

10 +∫ sin

π
.

Solution
  Let  I  =  x

x
dx

10 +∫ sin

π
.

   =  x
x
dx1

10 +∫ sin

π

  Let f x( )  =  1

1+ sin x
.  Then f x

x x
f x( )

sin( ) sin
( )π

π
− =

+ −
=

+
=

1

1

1

1
 

  ∴
+∫ x

x
dx

10 sin

π
 =  π π

2

1

10 +∫ sin x
dx ,  (  x f x dx a f x dx

a a

( ) ( )=∫ ∫2
0 0

 if f a x f x( ) ( ))− =

 =  2
1

10

2

+∫ sin x
dx

π

,   since g(sin ) g(sin )x dx x dx=∫ ∫0 0

22
π π

 = 2
1

1
2

0

2

+ −





∫
sin

π

π

x
dx   since f x dx f a x dx

a a
( ) ( )

0 0∫ ∫= −

 =  2
1

1
2

1

2
2

20

2

20

2 2

0

2

+
= =∫ ∫ ∫cos

cos

sec
x
dx x dx

x dx
π π π

 

 =  2
2

2
4

0 2
0

2

tan tan tan
x





= −




=

π

π .

Example 9.22

 Show that g x dx g x dx(cos ) (cos )=∫ ∫0

2

0
2

π π

, where g x(cos )  is a function of cos x .

Solution
   Take  2a  =  2p   and f x g x( ) (cos )= .
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   Then,  f a x( )2 −  =  f x g x g x f x( ) (cos( )) (cos ) ( )2 2π π− = − = =

   ∴ ∫ f x dx
a

( )
0

2

 =  2
0
f x dx

a
( )ò .

   ∴ ∫ g x dx(cos )
0

2p

 =   2
0
g x dx(cos )

π

∫ .
Result
 g x dx g x dx(cos ) (cos ) .=∫ ∫0

2

0
2

π π

Note
 The above result is useful in evaluating definite integrals of the type g x dx(cos ) .

0

2π

∫
Example 9.23
  If f x f a x( ) ( )= + , then f x dx

a
( )

0

2

ò = 2
0
f x dx

a
( )ò

Solution
 We write  f x dx

a
( )

0

2

ò = f x dx f x dx
a

a

a
( ) ( )

0

2

∫ ∫+         ... (1)

 Consider f x dx
a

a
( )

2

ò  

 Substituting x  =  a u+ , we have dx du= ; when x a u= =, 0 and when x a u a= =2 , .

  ∴∫ f x dx
a

a
( )

2

 =  f a u du f u du
a a

( ) ( )+ =∫ ∫0 0
, since f x f a x( ) ( )= +

                          = f x dx
a

( )
0
ò .     ... (2)

 Substituting (2) in (1), we get

   f x dx
a

( )
0

2

ò  
=  2

0
f x dx

a
( )ò .

Example 9.24

 Evaluate : x x dxcos . 

−

∫
π

π

2

2

Solution
  Let   f x( )  =  x xcos . Then f x x x x x f x( ) ( ) cos( ) cos ( ).− = − − = − = −

 So  f x( )  =  x xcos  is an odd function.

 Hence, applying the property, for odd function f(x), f x dx
a

a

( )
−
∫ =  0 , 

 ∴ we get x x dxcos . 

−

∫ =
π

π

2

2

0

Example 9.25

 Evaluate : e dxx−

−
∫ | |

log

log

2

2

 .

Solution
   Let  f x( )   =   e

x−| | . Then f x e e f xx x( ) ( )| | | |− = = =− − −
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 So f x( )  is an even function.

 Hence  e dxx−

−
∫ | |

log

log

2

2

 =  2 2 2 2 2
0

2

0

2

0

2 2 0e dx e dx e e e ex x x− − − −∫ ∫= = − = − + = −| |

log log

log log( ) ( )
llog

1

2 1+










    =  2
1

2
1 1− +






 = .

Example 9.26

 Evaluate :  f x
f x f a x

dx
a ( )

( ) ( )
.

+ −∫0

Solution
   Let  I  =  f x

f x f a x
dx

a ( )

( ) ( )+ −∫0
 ... (1)

 Applying the formula f x dx f a x dx
a a

( ) ( )= −∫ ∫0 0
in equation (1), we get

   I  =  f a x
f a x f a a x

dx
a ( )

( ) ( ( ))

−
− + − −∫0

    =  
f a x

f x f a x
dx

a ( )

( ) ( )

−
+ −∫0

. ... (2)

 Adding equations (1) and (2), we get  

   2I  =  
f x

f x f a x
dx f a x

f x f a x
dx

a a( )

( ) ( )

( )

( ) ( )+ −
+ −

+ −∫ ∫0 0
 

    =  
f x f a x
f x f a x

dx
a ( ) ( )

( ) ( )

+ −
+ −∫0

    =  dx a
a

0∫ = .

  Hence,  we get I  =  a
2

.

Example 9.27

 Prove that log( tan ) log .1
8

2
0

4 + =∫ x dx ππ

Solution
  Let us put  I  =  log( tan )1

0

4 +∫ x dx
π

  ... (1)

 Applying the property f x dx
a

( )
0
ò  =  f a x dx

a
( )−∫0

 in equation (1), we get

  I  =  log tan1
40

4 + −









∫ ππ

x dx = log

tan tan

tan tan

1 4

1
4

0

4 +
−

+

















∫
π

π

π x

x
dx

   =  log
tan

tan
1

1

10

4 + −
+





∫ x
x
dx

π

= log
tan tan

tan

1 1

10

4
+ + −

+




∫ x x

x
dx

π
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   =  log
tan

2

10

4

+




∫ x
dx

π

= − +[ ]∫ log log( tan )2 1
0

4 x dx
π

   =  log log( tan )2 1
0

4

0

4dx x dx
π π

∫ ∫− +  

  =  π
4

2log − I

  So, we get  2I  =  p
4

2log .  Hence, we get I = π
8

2log .

Example 9.28
 Show that tan tan ( ) log− −+ −( ) = −∫ 1 1

0

1

1
2

2x x dx e 
π .

Solution
   I  =  tan tan ( )− −+ −( )∫ 1 1

0

1

1x x dx 

    =  tan tan ( )− −∫ ∫+ −1

0

1
1

0

1

1x dx x dx  

    =  tan tan ( ( ))− −∫ ∫+ − −1

0

1
1

0

1

1 1x dx x dx  , since f x dx f a x dx
a a

( ) ( )
0 0∫ ∫= −

    =  tan tan− −∫ ∫+1

0

1
1

0

1

x dx x dx  

    =  2 1

0

1

tan−∫ x dx 

    =  2
0

1

udv∫ 
 , where u x= −tan 1  and dv dx=

    =  2
0

1

uv vdu−



∫ , applying  integration  by parts

    =  2
1

2
1

2
1

2

1

2

0

1

1 2

0

1

x x x dx
x

x x xtan tan log− −−
+







 = − +( )






 = −∫

π
llog 2  

Example 9.29

 Evaluate x
x x

dx
52

3

− +∫ .

Solution
 Let us put  I  =  x

x x
dx

52

3

− +∫  ... (1)

 Applying the formula f x dx
a

b
( )ò  =  f a b x dx

a

b
( )+ −∫ , we get

 I  =  
( )

( ) ( )

2 3

5 2 3 2 3

5

52

3

2

3+ −
− + − + + −

= −
+ −∫ ∫

x
x x

dx x
x x

dx   ... (2)
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 Adding (1) and (2), we get

 2I  =  x x
x x

dx dx x+ −
+ −

= = [ ] = − =∫ ∫5

5
3 2 1

2

3

2

3

2

3 .

 Hence, we get  I  =  1

2
.

Example 9.30

 Evaluate cos2

1

x
a
dxx+−

∫
π

π

Solution

    Let  I  =  cos2

1

x
a
dxx+−

∫
π

π

 ... (1)

   Using f x dx
a

b

( )ò  =  f a b x dx
a

b

( )+ −∫  we get,

   I  =  cos ( )2

1

π π
π π

π

π − −
+ − −

−
∫

x
a

dxx  

    =  cos ( )2

1

−
+ −

−
∫

x
a

dxx
π

π

     =  a x
a

dxx
x

cos2

1+










−
∫
π

π

 ... (2) 

 Adding (1) and (2) we get

   2I  =  cos
( )

2

1
1

x
a

a dxx
x

+
+

−
∫
π

π

= cos2 x dx
−
∫
π

π

    =  2 2

0

cos x dx 

π

∫ (since cos2 x  is  an   even function)

   Hence I  =  ( cos )1 2

2
0

+
∫

x dx
π

=
1

2

2

2 0

x x
+





sin
π

= 1

2
[ ]p =

p
2

 .

EXERCISE 9.3

 1. Evaluate the following definite integrals :

   (i)  
dx
x2

3

4

4−∫   (ii)   
dx

x x2

1

1

2 5+ +−
∫   (iii) 

1

1
0

1 −
+∫
x
x
dx  

  (iv) 1

1
0

2 +
+







∫

sin

cos

x
x
dx

π

  (v) cos sinθ θ θ

π

0

2
3∫ d   (vi)  

1

1

2

2
2

0

1 −

+( )∫
x

x
dx
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 2. Evaluate the following integrals using properties of integration :

   (i)  x e
e

dx
x

xcos
−
+











−
∫

1

1
5

5

 (ii)  ( cos tan )x x x x dx5 3

2

2

1+ + +
−

∫
π

π

 

   (iii) sin2

4

4

x dx
−

∫
π

π

 (iv) x x
x
dxlog

cos

cos

3

3
0

2 +
−







∫

π

   (v) sin cos4

0

2

3x dx
π

∫  (vi) 5 3
0

1

x dx−∫

   (vii) sin cos

cossin

− −+ ∫∫ 1 1

00

22

t dt t dt
xx

  (viii) log( )1

1 2

0

1 +
+∫

x
x

dx  

   (ix)  x x
x
dxsin

sin1
0
+∫

π

  (x) 1

18

3

8

+∫
tan x

dxπ

π

 

   (xi) x x x dxsin (sin ) cos (cos )2 2

0

+ ∫
π

9.4 Bernoulli’s Formula
 The evaluation of an indefinite integral of the form u x v x dx( ) ( )ò  becomes very simple, when u  

is a polynomial function of x (that is, u x a x a x an n
n( ) = + + +−

0 1

1
 ) and v x( )  can be easily integrated 

successively.  It is accomplished by a formula called Bernoulli’s formula. This formula is actually 
an extension of the formula of integration by parts. To derive the formula, we use the following 
notation: 

   u ( )1

 =  
du
dx

,   u ( )2 =
du
dx

( )1

,     u ( )3 =
du
dx

( )2

, 

   v( )1  =  
vdxò , v( )2 = v dx( )1ò , v( )3 = v dx( )2ò ,

 Then, we have 

   dv( )1  =  vdx , dv( )2 = v dx( )1 , dv( )3 = v dx( )2 , 

 Now, by integration by parts, we get 

   
uvdxò  

=
 

udv( )1ò = uv( )1 −∫ v du( )1 = uv( )1 −∫ v
du
dx
dx( )1

    =  uv( )1 −∫u dv( )

( )

1

2

    =  uv( )1 − −( )∫u v v du( )

( ) ( )

( )1

2 2

1

    =  uv( )1 − + ∫u v v du
dx
dx( )

( ) ( )

( )
1

2 2

1
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    =  uv( )1 − + ∫u v u dv( )

( )

( )

( )

1

2

2

3

    =  uv( )1 − + −( )∫u v u v v du( )

( )

( )

( ) ( )

( )1

2

2

3 3

2

    =  uv( )1 − + − ∫u v u v v du( )

( )

( )

( ) ( )

( )1

2

2

3 3

2 .

 Proceeding in this way, we get 

   
uvdxò  

=
 
uv( )1

− + − +u v u v u v( )

( )

( )

( )

( )

( )

1

2

2

3

3

4  .

 The above result is called the Bernoulli’s formula for integration of product of two functions.

Note
 Since u  is a polynomial function of x , the successive derivative u m( ) will be zero for some 
positive integer m and so all further derivatives will be zero only. Hence the  

right-hand-side of the above formula contains a finite number of terms only.

Example 9.31

 Evaluate x nx dx2

0

π

∫ cos , where n  is a positive integer.

Solution

 Taking u x= 2 and v nx= cos , and applying the Bernoulli’s formula, we get 

   I  =  x nx dx2

0

π

∫ cos = x nx
n

x nx
n

nx
n

2

2 3
2 2( )






 − ( ) −






 + −

















sin cos
( )

sin


0

π

    =  
2 1

2

π ( )− n

n
, since cos ( )n nπ = −1 and sin nπ = 0 .

Example 9.32

 Evaluate : e ( )− + −∫ 2 3

0

1

1 2x x x dx . 

Solution

 Taking u x x= + −1 2 3 and v x= −e 2 , and applying the Bernoulli’s formula, we get 

   I  =  e ( )− + −∫ 2 3

0

1

1 2x x x dx

    =  ( ) ( )1 2
2

1 6
4

12
8

3
2

2
2 2

+ −
−









 − −( )







 + −

−









− − −

x x e x e x ex x x

 − −




















−

( )12
16

2

0

1

e x

    =  
e x x x

x−

+ +( )









2
3 2

0

1

16
16 24 16

    =  
7

2 2e
.
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Example 9.33

 Evaluate :  x nx dx2

0

2π

∫ sin , where n  is a positive integer.

Solution
 Taking u x= 2 and v nx= sin , and applying the Bernoulli’s formula, we get 

   I  =  x nx dx2

0

2π

∫ sin = x nx
n

x nx
n

nx
n

2

2 3
2 2( ) −






 − ( ) −






 +


















cos sin
( )

cos


0

2π

    =  4
1

0 2
1

0 0 2
12

3 3
π( ) −






 − + 
















 − − + 
















n n n

( ) ( ) , since cos 2 1nπ = and sin 2 0nπ =

    =  − + −
4 2 22

3 3

π
n n n

= −
4 2π

n
.

Example 9.34

 Evaluate : e ( )−

−
−∫ λx x dx1 2

1

1

. 

Solution
 Taking u x= −1 2 and v x= −e λ , and applying the Bernoulli’s formula, we get 

   I  =  e ( )−

−
−∫ λx x dx1 2

1

1

= ( ) ( )1 2 22

2 3
−

−








 − −( )







 + −

−















− − −

x e x e ex x xλ λ λ

λ λ λ 

−1

1

    =  2 2 2 2
2 3 2 3

e e e e− −







 +









 +









 −











λ λ λ λ

λ λ λ λ

    =  
2 2

2 3λ λ
λ λ λ λe e e e+( ) − −( )− − .

EXERCISE 9.4
Evaluate the following:

 1. x e dxx3 2

0

1

−∫  2. sin( tan ) tan3

1

1 1

2

0

1 − −

+∫
x x
x

dx   3. e x
x

dx
a xsin sin

− −

−
∫

1 1

2
0

1

2

1
 4. x x dx2

0

2

2cos

π

∫

9.5 Improper Integrals
 In defining the Riemann integral f x dx

a

b
( )ò , the interval [ , ]a b  of integration is finite and f x( )  

is  finite at every point in [ , ]a b . In many physical applications, the following types of integrals arise:

f x dx
a

( )
∞

∫ , f x dx
a

( )
−∞∫ , f x dx( )

−∞

∞

∫ ,

where a  is a real number and f x( )  is a continuous function on the interval of integration. They  are 
defined as the limits of Riemann integrals as follows:
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 (i) f x dx
a

( )
∞

∫  
=  lim ( )

t
a

t

f x dx
→∞ ∫

 (ii) f x dx
a

( )
−∞∫  

=  lim ( )
t

t

a

f x dx
→−∞ ∫

 (iii) f x dx( )
−∞

∞

∫  
=  lim ( )

t
t

t

f x dx
→∞

−
∫

 They are called improper integrals of first kind. If the limits exist, then the improper 
integrals are said to be convergent. 

Note
 By the Fundamental theorem of integral calculus, there exists a function F t( )  such that

   
f x dx

a

t
( )ò  =  F t F a( ) ( )−

   ∴ f x dx
a

( )
∞

∫  
=  lim ( ) lim[ ( ) ( )] ( )

t a

t

t a
f x dx F t F a f x dx

→∞ →∞

∞

∫ ∫= − = 



 .

Example 9.35

 Evaluate 1
2 2a x

dx
b +

∞

∫ , a b> ∈0,  .

Solution

 We have  1
2 2a x

dx
b +

∞

∫ =
1 1

a
x
a b

tan−
∞







=
1 11 1

a a
b
a

tan tan− −∞ − =
1

2

1

a
b
a

π
−





−tan .

Note
 From the above example, we get

 (i) 1
2 2

0
a x

dx
+

∞

∫
 
=  1

2
01

a
π
−





−tan =
p
2a

.

 (ii) 1
2 2a x

dx
a +

∞

∫
 
=  1

2
11

a
π
−





−tan =
1

2 4a
π π
−




=

p
4a

.

 (iii) 1
2 2a x

dx
+−∞

∞

∫  =  lim lim
t t

t

t

t

a x
dx

a x
dx

→∞ − →∞+
=

+∫ ∫1
2

1
2 2 2 20

, since 1
2 2a x+

 is even function

   = 2
1

2 2

0
a x

dx
+

∞

∫ = 2
2
π
a







 =

p
a

.

Example 9.36

 Evaluate dx
x x4 52 2

0

2

sin cos+∫
π

.

Solution

 Let I  =  dx
x x x4 52 2

0

2

sin cos+∫
π
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  =  
sec

tan

2

2

0

2

4 5

x
x

dx
+∫

π

 
(

cos ).

Dividing both numerator and

denominator by 2 x




 Let u  =  tan x . Then du x dx= sec2

 When x  =  0 0 0, tanu = =

 When x  =  
π π
2 2

, tanu = = ∞ .

 ∴ I  =   du
u4 52

0
+

∞

∫ (This is an improper integral)

  = 1

4 5

2

20

du

u +






















∞

∫  = 1

4

2

5

1

0

5
2

×






















−

∞

tan
u =

1

2 5
01 1(tan tan )− −∞ − =

1

2 5 2

π





 =

p
4 5

.

EXERCISE 9.5
1. Evaluate the following: 

 (i) dx
x1 5 2

0

2

+∫ cos

π

   (ii)  dx
x5 4 2

0

2

+∫ sin

π

9.6 Reduction Formulae
 Certain definite integrals can be evaluated by an index-reduction method. In this section, 
 we obtain the values of the following definite integrals:

 
sinnx dx

0

2

π

∫  , cosnx dx
0

2

π

∫  , sinm nx x dx
0

2

π

∫  cos  , x x dxm n

0

1

1∫ −( ) .

 We also obtain the value of the improper integral e x dxx n−∞

∫0
.

 The method of obtaining a reduction formula has the following steps:

 Step 1 : Identify an index (positive integer) n in the integral.

 Step 2 : Put the integral as In .

 Step 3 : Applying integration by parts, obtain the equation for In in terms of  In−1 or In−2 . 

 The resulting equation is called the reduction formula for In . 

 We list below a few reduction formulae without proof:

 Reduction Formula I : If In = sinn xdx
0

2

p

ò , then In =
( )n
n

In
−

−

1
2 , n ≥ 2 .

 Reduction Formula II : If In = cosn xdx
0

2

p

ò , then In =
( )n
n

In
−

−

1
2 n ≥ 2 .

 Reduction Formula III : If Im n, = sin cosm nx x dx 
0

2

p

ò , then Im n, =
( )

,

n
m n

Im n
−
+ −

1
2 , n ≥ 2 .

 Reduction Formula IV : If Im n, = x x dxm n

0

1

1ò  ( - ) , then Im n, =
n

m n
Im n+ + −

1
1, , n ≥1.
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 Using the reduction formulas I and II, we obtain the following result (stated without proofs):   

 sinnx dx
0

2

π

 ∫  =  cosn x dx
0

2

π

∫  =  

( ) ( )
( )

, , , ,

( ) ( )
( )

n
n

n
n

n

n
n

n
n

− × −
−

× × × =

− × −
−

×

1 3
2

1
2 2

2 4 6

1 3
2

 



 if 

×× =










2
3

3 5 7, , , , if n 

π

Note
  As illustrations, we have 

   
cos5

0

2

π

∫ x dx 
 
=  sin5

0

2

π

∫ x dx =
4

5

2

3
1× ×

   
sin6

0

2

π

∫ x dx 
 
=  cos6

0

2

π

∫ x dx =
5

6

3

4

1

2 2
× × ×

π

Example 9.37

 Evaluate sin cos2 4

0

2 x x dx+( )∫
π

Solution

Given that I = sin cos2 4

0

2 x x dx+( )∫
π

= sin2

0

2 x dx 

π

∫ + cos4

0

2 x dx 

π

∫ =
1

2 2
×
π

+
3

4

1

2 2
× ×

π
=

7

16

p .

Example 9.38

 Evaluate
cos

sin

4

50

2
7

3

x
x

dx
π

∫ .

Solution
   I  =  3 74 5

0

2 cos sinx x dx−( )∫
π

= 3 4

0

2 cos x dx 

π

∫ − 7 5

0

2 sin x dx 

π

∫

    =  3
3

4

1

2 2
× × ×

π
− 7

4

5

2

3
× × =

9

16

p
−

56

15
.

 By applying the reduction formula III iteratively, we get the following results (stated without 
proof):
 (i) If n is even and m is even,  

sinm nx x dx
0

2

π

∫  cos  =
( )
( )

( )
( )

( )
( ) ( )

( ) ( )
( )

(n
m n

n
m n

n
m n m

m
m

m
m

−
+

−
+ −

−
+ − +

− −
−

1 3
2

5
4

1
2

1 3
2



mm
m
−
−

5
4

1
2 2

)
( )



π

 (ii) If n  is odd and m is any positive integer (even or odd), then 

sinm nx x dx
0

π
2∫  cos  =

( )

( )

( )

( )

( )

( ) ( ) ( )

n
m n

n
m n

n
m n m m

−
+

−
+ −

−
+ − + +

1 3

2

5

4

2

3

1

1
 .

Note
 If one of m and n  is odd, then it is convenient to get the power of cos x  as odd. For instance, if 
m is odd and n  is even, then 

sinm nx x dx
0

2

π

∫  cos  = sinn mx x dx
0

2

π

∫  cos  =
( )

( )

( )

( )

( )

( ) ( ) ( )

m
n m

m
n m

m
n m n n

−
+

−
+ −

−
+ − + +

1 3

2

5

4

2

3

1

1
 .

Example 9.39
 Find the values of the following:

  (i) sin5

0

2 4

π

∫ x x dx cos    (ii) sin4

0

2 6

π

∫ x x dx cos  
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Solution

 (i)   sin4

0

2 6

π

∫ x x dx cos  
 
=  

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

6 1

6 4

6 3

6 4 2

6 5

6 4 4

4 1

4

4 3

4 2

−
+

⋅ −
+ −

⋅ −
+ −

⋅ − ⋅ −
−

⋅ π
22

 

    =  
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

5

10

3

8

1

6

3

4

1

2 2

p
=

3

512

p

   Also, sin4

0

2 6

π

∫ x x dx cos  
 
=  sin6

0

2 4

π

∫ x x dx cos  =
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

3

10

1

8

5

6

3

4

1

2 2

p
=

3

512

p

 (ii)   sin5

0

2 4

π

∫ x x dx cos  
 
=  ( )

( )

( )

( )

( )

( )

( )

( )

3

9

1

7

4

5

2

3
=

( )

( )

( )

( )

( )

( )

4

9

2

7

1

5
=

8

315

   Also, sin5

0

2 4

π

∫ x x dx cos  
 
=  sin4

0

2 5

π

∫ x x dx cos  =
( )

( )

( )

( )

( )

( )

4

9

2

7

1

5
=

8

315

Example 9.40

 Evaluate x ax x dx
a

2 2

0

2

2 −∫ .

Solution
  Put  x  =  2 2a cos θ . Then, dx a d= −4 cos sinθ θ θ . 

  When  x  =  0 , 2 02a cos θ = and so θ π
=

2
. When x a= 2 , 2 22a acos θ = and so θ = 0 . 

 Hence, we get 

  I  =  x ax x dx
a

2 2

0

2

2 −∫

   = 4 4 4 42 2 2 2 2 4

2

0

a a a a dcos cos cos ( cos sin )θ θ θ θ θ θπ − −∫

   =  4 2 42 2

0

2 a a a dcos cos sin ( cos sin )θ θ θ θ θ θ
π

∫

   =  32 4 4 2

0

2a dcos sinθ θ θ
π

∫

   =  32
1

6

3

4

1

2 2

4a × × × ×
π

= pa4 .

Example 9.41

 Evaluate x x dx5 2
5

0

1

1−( )∫ .

Solution
  Put  x  =  sinθ .Then, dx d= cosθ θ . 

  When  x  =  0 , sinθ = 0 and so θ = 0 . When x =1, sinθ =1and so θ π
=

2
. 

 Hence, we get 

  I  =  sin sin cos5 2
5

0

2 1θ θ θ θ
π

−( )∫ d

   =  sin cos5

0

2 11θ θ θ
π

∫ d =
10

16

8

14

6

12

4

10

2

8

1

6
× × × × × =

1

336
.
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 By applying the reduction formula III iteratively, we get the following results (stated without 
proof):

 
x x dxm n

0

1

1ò  ( - )
 
=  

m n
m n

! !

( )!

×
+ +1

, where m and n are positive integers.

Example 9.42

 Evaluate x x dx3 4

0

1

1−( )∫ .
Solution
 x x dxm n

1
0

1

−( )∫  
=  

m n
m n

! !

( )!

×
+ +1

.

 ∴ x x dx3 4

0

1

1−( )∫  
=  

3 4

3 4 1

! !

( )!

×
+ +

=
3 4

8

! !

!

×
=

3 2 1 4 3 2 1

8 7 6 5 4 3 2 1

× × × × × ×
× × × × × × ×

=
1

280
.

EXERCISE 9.6
1. Evaluate the following: 

 (i) sin10

0

2

x dx

π

∫
 

(ii) cos7

0

2

x dx

π

∫  (iii) sin6

0

4

2x dx

π

∫
 

(iv) sin5

0

6

3x dx

π

∫

 (v) sin cos2 4

0

2

x x dx

π

∫
 

(vi) sin7

0

2

4

x dx
π

∫  (vii) sin cos3 5

0

2 θ θ θ
π

d∫  (viii)  x x dx2 3

0

1

1( )−∫   

9.7 Gamma Integral
 In this section, we study about a special improper integral of the  form e x dxx n−∞ −∫0

1 , where n is 

a positive integer. Here, we have 

   e∞  =  lim
x

xe
→∞

= ∞  and e e
ex

x

x

x
−∞

→∞

−

→∞

= = =
∞

=lim
lim

1 1
0  

 By L’Ho ̂pital’s rule, for every positive integer m , we get,

   lim
x

m xx e
→∞

−  =  lim lim
!

x

m

x x x

x
e

m
e→∞ →∞

= = 0 .

Example 9.43
 Prove that e x dx nx n−∞

∫ =
0

!, where n is a  positive integer. 

Solution
 Applying integration by parts, we get

  
e x dxx n−∞

∫0
 =  x e e nx dxn x x n−( )  − −( )( )− ∞ −∞ −∫0 0

1 = n e x dxx n− −∞

∫ 1

0
.

  Let  In  =  e x dxx n−∞

∫0
.Then, I nIn n= −1 . 

  So, we get In  =  n n In( )− −1 2 . 

 Proceeding in this way, we get ultimately, 
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  In  =  n n n I( )( ) ( )( )− −1 2 2 1 0 . 

  But, I0  =  e x dx ex x−∞ − ∞

∫ = −( ) = + =
0

0

0
0 1 1 . So, we get In = n n n n( )( ) ( )( ) !− − =1 2 2 1 .  

Hence, we get 
Result

 e x dxx n−∞

∫0
= n!, where n  is a nonnegative integer. 

Note
     The integral e x dxx n−∞ −∫0

1 defines a unique positive integer for every positive integer n ≥1. 

Definition 9.1

e x dxx n−∞ −∫0

1 is called the gamma integral. It is denoted by Γ( )n  and is read as  

“gamma of  n ”. 

Note
  Γ( )n +1  =  n nΓ( ) .

  Γ( )1  =  e x dx ex x−∞ − ∞

∫ = −( ) = + =
0

0

0
0 1 1 ,

           Γ( )n  =   e x dxx n−∞ −∫ 0

1 .

   =  ( )!n −1 , n =  1, 2, 3, ...

Example 9.44

 Evaluate e x dxax n−∞

∫0
,where a > 0 .

Solution
 Making the substitution t ax= , we get dt adx= and x t x t= ⇒ = = ∞⇒ = ∞0 0 and . 

 Hence, we get

  
e x dxax n−∞

∫0  
=  e t

a
dt
a

t
n

−∞ 



∫0

=
1

1 0a
e t dtn
t n

+
−∞

∫

   =  
1

1 0a
e x dxn
x n

+
−∞

∫ =
n
an

!
+1

.

   Thus
 e x dxax n−∞

∫0
 =  n

an
!
+1

Example 9.45

 Show that Γ( ) .n e x dxx n= − −
∞

∫2
2 2 1

0

Solution
 Using the substitution x  =  u , we get dx

u
du=

1

2
.

 When x  =  0 , we get u = 0 .When x = ∞ , we get u = ∞ .

 ∴ 2
2 2 1

0

e x dxx n− −
∞

∫
 
=  2

1

2

2 1

0

e u
u
duu n

−
−∞

( )∫ = − −
∞

∫ e u duu n 1

0

= Γ( )n .
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Example 9.46

 Evaluate x
n
dx

n

x
0

∞

∫ , where n is a positive integer≥ 2 . 

Solution

  Using the formula  n  =  e e nlog , we get

  I  =  
x
n
dx

n

x
0

∞

∫ = n x dxx n−
∞

∫
0

= e x dxn x nlog( )−
∞

∫
0

= e x dxx n n−
∞

∫ log

0

.

  Using the substitution u  =  x nlog , we get dx du
n

=
log

.

  When  x  =  0 , we get u = 0 .When x = ∞ , we get u = ∞ .

  ∴ I  =  e
u
n

du
n

u
n

−
∞ 







∫ log log

0

   =  
1

1

1 1

0
(log )

( )

n
e u dun
u n

+
− + −

∞

∫ =
Γ( )

(log )

n
n n
+

+

1
1
=

n
n n
!

(log ) +1
.

EXERCISE 9.7
Evaluate the following

 1. (i) x e dxx5 3

0

−
∞

∫  (ii)  
e

x
dx

x−

∫
tan

cos6

0

2

π

 2. If e x dxx−
∞

= >∫ a a
2 3

0

32 0, ,  find  α

9.8 Evaluation of a Bounded Plane Area by Integration
 In the beginning of this chapter, we have already introduced definite integral by a geometrical 
approach. In that approach, we have noted that, whenever the integrand of the definite integral is 
non-negative, the definite integral yields the geometrical area. In the present section, we apply the 
approach for finding areas of plane regions bounded by plane curves.

9.8.1 Area of the region bounded by a curve, x – axis and the lines x = a 
and  x = b.
Case (i)
 Let y f x a x b= ≤ ≤( ),  be the equation of the portion of the 
continuous curve that lies above the x − axis (that is, the portion  
lies either in the first quadrant or in the second quadrant) between 
the lines x a= and x b= . See Fig.9.8. Then, y ≥ 0  for every point of 
the portion of the curve. Consider the region bounded by the curve, 
x − axis, the ordinates x a=  and x b= . It is important to note that 
y does not change its sign in the region.  Then, the area A of  the region is found as follows:

Fig. 9.8

y f x= ( )

x a=
x b=

∆x

y

x
O
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 Viewing in the positive direction of the y − axis, divide the region into elementary vertical strips 

(thin rectangles) of height y and width Dx . Then, A is the limit sum of the areas of the vertical strips. 

Hence, we get A = lim − ∆
≤ ≤
∑ y x
a x b

=− =∫ ∫ydx ydx
a

b

a

b
.

Case (ii)

 Let y f x a x b= ≤ ≤( ),  be the equation of the portion of 

the continuous curve that lies below the x − axis (that is, the 

portion lies either in the third quadrant or in the fourth 

quadrant). Then, y £ 0  for every point of the portion of the 

curve. It is important to note that y does not change its sign in 

the region. Consider the region bounded by the curve,  

x − axis, the ordinates x a=  and x b= . See  Fig.9.9. Then, the 

area A  of  the region is found as follows:
 Viewing in the negative direction of the y − axis, divide the region into elementary vertical strips 

(thin rectangles) of height y y= −  and width Dx . Then, A is the limit of the sum of the areas of the 

vertical strips. Hence, we get A = lim − ∆
≤ ≤
∑ y x
a x b

= − =∫ ∫ydx ydx
a

b

a

b
.

Case (iii)
 Let y f x a x b= ≤ ≤( ),  be the equation of the portion 

of the continuous curve that lies above as well as below 
the x − axis (that is, the portion may lie in all quadrants). 
Draw the graph of y f x= ( )  in the XY −  plane. The  
graph lies alternately above and below the x − axis and it 
is intercepted between the ordinates  and  .x a x b= =  
Divide the interval[ , ]a b  into subintervals [ , ]a c1 , [ , ]c c1 2 ,
 , [ , ]c bk  such that f x( )  has the same sign on each of 
subintervals. Applying cases (i) and (ii),  we can obtain 
individually, the geometrical areas of the regions 
corresponding to the subintervals. 
 Hence the geometrical area of the region bounded by the graph of y f x= ( ) , the x-axis, the lines 

x a=  and x b= is given by f x dx f x dx f x dx
a

c

c

c

c

b

k

( ) ( ) ( )
1

1

2

∫ ∫ ∫+ + + . 

 For instance, consider the shaded region in Fig. 9.10.  Here A1 , A2 , A3 , and A4  denote geometric 
areas of the individual parts.  Then, the total area is given by 

A = A A A A1 2 3 4+ + + = f x dx f x dx f x dx f x dx
a

c

c

c

c

c

c

b

( ) ( ) ( ) ( )
1

1

2

2

3

3

∫ ∫ ∫ ∫+ + + .

Fig. 9.9

y

x
∆x

x a= x b=

O

−y

Fig. 9.10

c1 O
A2

c2

A3

A4 b x

y

x b=
x a=

a
A1
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9.8.2  Area of the region bounded by a curve, y– axis and the lines y = c 
and y = d.
Case (iv)
 Let x f y c y d= ≤ ≤( ),  be the equation of the portion of the 
continuous curve that lies to the right side of  
y − axis (that is, the portion lies either in the first quadrant or in the 
fourth quadrant). Then, x ≥ 0  for every point of the portion of the 
curve. It is important to note that x does not change its sign in the 
region. 
 Consider the region bounded by the curve, y − axis, the lines 
y c= and y d= . The region is sketched as in Fig. 9.11. Then, the area 
A of the region is found as follows:
 Viewing in the positive direction of the x − axis, divide the region into thin horizontal strips (thin 

rectangles) of length x and width Dy . Then, A is the limit of the sum of the areas of the horizontal 

strips. Hence, we get A = lim x y
c y d

∆
≤ ≤
∑ = xdy

c

d

ò .

Case (v)
 Let x f y c y d= ≤ ≤( ),  be the equation of the portion of 
the continuous curve that lies to the left side of y − axis (that 
is, the portion lies either in the second quadrant or in the third 
quadrant). Then, x £ 0  for every point of the portion of the 
curve. It is important to note that x does not change its sign in 
the region. Consider the region bounded by the curve,  
y − axis, the lines y c= and y d= . The region is sketched as 
in Fig. 9.12. Then, the area A of the region is found as follows:

 Viewing in the positive direction of the x − axis, divide 
the region into thin horizontal strips (thin rectangles) of length 
x x= − and width Dy . Then, A is the limit of the sum of the 

areas of the horizontal strips. 

 Hence, we get A = lim −( )∆
≤ ≤
∑ x y
c y d

= −∫ x dy
c

d
= x dy

c

d

ò .

Case (vi)
 Let x f y c y d= ≤ ≤( ),  be the equation of the portion of the continuous curve that lies to the 
right as well as to the left of the y − axis (that is, the portion may lie in all quadrants). Draw the graph 
of x f y= ( )  in the XY −  plane. The graph lies alternately to the right and to the left of the y − axis 
and it is intercepted between the lines y c= and y d= . Divide the interval [ , ]c d into subintervals 
[ , ]c a1 , [ , ]a a1 2 , , [ , ]a dk  such that f y( )  has the same sign on each of subintervals. Applying cases 

y

x
O

x f y= ( )

y c=

x
∆y

y d=

Fig. 9.12

y

x
O

x
f

y
=

(
) y c=

−x ∆y

y d=

Fig. 9.11
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(iii) and (iv),  we can obtain individually, the geometrical areas of the regions corresponding to the 
subintervals. 
 Hence the geometrical area A of the region bounded by the 
graph of x f y= ( ) , the y-axis, the lines y c= and y d= is given 

by A = f y dy f y dy f y dy
c

a

a

a

a

d

k

( ) ( ) ( )
1

1

2

∫ ∫ ∫+ + + . 

     For instance, consider the shaded region in Fig. 9.13. Here, B1 , B2 ,

B3 and B4 denote geometric areas of the individual parts.  Then, the 
total area B of the region bounded by the curve x f y= ( ) ,  
y − axis and the lines y c= and y d= is given by

 B    =  B B B B1 2 3 4+ + +

  =  f y dy f y dy f y dy f y dy
c

a

a

a

a

a

a

d

( ) ( ) ( ) ( )
1

1

2

2

3

3

∫ ∫ ∫ ∫+ + + .

Example 9.47
 Find the area of the region bounded by the line 6 5 30x y+ = , x − axis and the lines x = −1  and 
x = 3 .

Solution
 The region is sketched in Fig. 9.14.  It lies above the 
x − axis. Hence, the required area is given by 

 A  =  y dx
−∫ 1

3

=
30 6

51

3 −



−∫
x dx = 30 3

5

2

1

3

x x−








−

  =  
90 27

5

30 3

5

−





 −

− −





 =

96

5
.

Example 9.48

 Find the area of the region bounded by the line 7 5 35x y− = , x − axis and the lines x = −2  and 
x = 3 .
Solution
 The region is sketched in Fig. 9.15. It lies below the x − axis. Hence, the required area is given 
by 

 A  =  y dx x dx
− −∫ ∫= −



2

3

2

3 7 35

5
 

  =  
1

5
7

2
35

2

2

3

x x








 −










−

 

  =  
1

5

63

2
105 84

63

2







 −









 − =( ) .

Fig. 9.14

x=− 1

∆x

y

x( , )5 0

x= 3

O

(6,0)

6

5

30

x
y

�
�

Fig. 9.15

O x

y

y x
=

−7 35

5

x=− 2

( , )5 0

x= 3

( , )0 7−

∆x (3,0)

( , )−2 0

Fig. 9.13

y

x

y d=

y c=

O

a3

a2

a1

d
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Example 9.49

 Find the area of the region bounded by the ellipse x
a

y
b

2

2

2

2
1+ = .

Solution
 The ellipse is symmetric about both major and 
minor axes. It is sketched as in Fig.9.16. So, viewing in 
the positive direction of y -axis, the required area A is 

four times the area of the region bounded by the portion 

of the ellipse in the first quadrant y b
a
a x x a= − < <








2 2 0, ,  

x -axis, x = 0  and x a= .

 Hence, by taking vertical strips, we get 

 A =  4 4
0

2 2

0
y dx b

a
a x dx

a a
= −∫ ∫

  =  
4

2 2

4

4

2 2 2
1

0

2b
a
x a x a x

a
b
a

a ab
a

−
+ 



















= × =−sin

π
π  

Note
 Viewing in the positive direction of x -axis, the required 
area A is four times the area of the region bounded by the 
portion of the ellipse in the first quadrant 

x a
b
b y y b= − < <








2 2 0,  y-axis, y = 0  and y b= . Hence, by 

taking horizontal strips (see Fig.9.17), we get 

   A =  x dy a
b
b y dy

ba
= −∫∫ 4 2 2

00

    =  
4

2 2

4

4

2 2 2
1

0

2a
b

y b y b y
b

a
b

b ab
b

−
+ 



















= × =−sin

p
p .

Note
 Putting b a=  in the above result, we get that the area of the region enclosed by the circle

x y a2 2 2+ = is pa2 .

Example 9.50
 Find the area of the region bounded between the parabola y ax2 4=
and its latus rectum.
Solution
 The equation of the latus-rectum is x a= . It intersects the parabola at 
the points L a a( , )2  and L a a1 2( , )− . The required area is sketched in Fig. 
9.18. By symmetry, the required area A is twice the area bounded by the 
portion of the parabola

y a x x= 2 , -axis, x = 0   and x a=  .

x a
b

b y= −2 2

y= 0 (a,0)

y b=

∆y

y

x
O

( , )0 b

Fig. 9.17

Fig. 9.18

y

x
O

y a x= 2

( , )a a2

( , )a 0

( , )a a−2

∆x

x= 0

x a=

Fig. 9.16

y

x
O

y
b

a
a

x

=

−2

2

∆x

x= 0

x a=

(a,0)( , )−a 0

( , )0 b

( , )0 −b
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 Hence, by taking vertical strips, we get

   A  =  2 2 2 4
2

3

3

2

00
0

y dx a x dx a x
aa

a

= =








∫∫  

    =  4
2

3

8

3

3

2

2

a a a
× = . 

Note
 Viewing in the positive direction of x -axis, and making horizontal 

strips (see Fig. 9.19), we get 

     A =  2 2
4

2

0

2

0

2

( )a x dy a y
a
dy

aa
− = −





∫∫  

  =  2
12

2 2
8

12

8

3

3

0

2

2
3 2

ay y
a

a a
a

a
a

−






= −






= .

Note
 It is quite interesting to note that the above area is equal to 
two-thirds the base (latus-rectum) times the height (the distance between the focus and the vertex). 
This verifies Archimedes’ formula for areas of parabolic arches which states that the area under a 
parabolic arch  is two-thirds the area of the rectangle having base of the arch as length and height of 
the arch as the breadth.   It is also equal to four-thirds the area of the triangle with base (latus-rectum) 
and height (the distance between the focus and the vertex).

Example 9.51
 Find the area of the region bounded by the y -axis and the parabola x y y= − −5 4 2 .
Solution
 The equation of the parabola is ( ) ( )y x+ = − −2 92 . The parabola crosses 
the y  -axis at ( , )0 5−  and ( , )0 1  .The vertex is at ( , )9 2− and the axis of the 
parabola is y = −2 . The required area is sketched as in Fig. 9.20. 
 Viewing in the positive direction of x − axis, and making horizontal strips, 
the required area A is given by  

 A = xdy
−
∫
5

1

= ( )5 4 2

5

1

− −
−
∫ y y dy = 5 2

3

2
3

5

1

y y y
− −










−

=
8

3

100

3
− −





 = 36 .

Note
 As in the previous problem, we again verify Archimedes’ formula that the area of the parabolic  
arch is equal to two-thirds the base times the height. 

Example 9.52
 Find the area of the region bounded by x − axis, the sine curve y x= sin , the lines x = 0  and 
x = 2π .
Solution
 The required area is sketched in Fig. 9.21.  One portion of 
the region lies above the x − axis between x = 0 and x = π , and 
the other portion lies below x − axis between x = π and x = 2π .  
So, the required area is given by

y

x
O

( , )a a2

( , )a 0

( , )a a−2

∆x

y= 0

x a=

y a= 2

Fig. 9.19

( , )9 2�

(0,1)

x

y

( , )0 5�

O

Fig. 9.20

Fig. 9.21

x

y

x = 0 x = 2π

O ( , )π 0

x = π

( , )2 0π
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 A  =  ydx ydx
0

2π

π

π

∫ ∫+ = sin sinxdx xdx
0

2π

π

π

∫ ∫+ = −[ ] + −[ ]cos cosx x
0

2π

π

π

  =  − +[ ]+ − +[ ]cos cos cos cosπ π π0 2 = 2 2+ − = 4 .

Note

 If we compute the definite integral sin xdx
0

2π

∫ , we get 

 
sin xdx

0

2π

∫ = −[ ]cos x
0

2π = −[ ]− −[ ]cos cos2 0π = 0 .

 So f x dx( )
0

2π

∫ does not represent the area of the region bounded by the curve y x= sin , x − axis, 

the lines x = 0 and x = 2π . 

Example 9.53
 Find the area of the region bounded by x − axis, the curve y x= cos , the lines x = 0 and x = π .
Solution

 The given curve is y
x x

x x
=

≤ ≤

− ≤ ≤










  cos ,

cos ,

0
2

2

π

π
π

 It lies above the x − axis. The required area is sketched in 

Fig. 9.22. So, the required area is given by 

 A  =  ydx
0

π

∫ = cos cosxdx x dx
0

2

2

π

π

π

∫ ∫+ −( ) = sin sinx x[ ] −[ ]
0
2

2

π

π
π

  =  1 0 0 1−[ ]− −[ ] = 2 .

9.8.3 Area of the region bounded between two curves 
Case (i)
 Let y f x= ( ) and y g x= ( ) be the equations of two curves in the XOY −plane such that 

f x g x( ) ( )≥ for all x a b∈[ , ] . We want to find the area A of the 

region bounded between the two curves, the ordinates x a= and 

x b= . 

 The required area is sketched in Fig. 9.23. To compute A , we 

divide the region into thin vertical strips of width Dx and height 
f x g x( ) ( )− . It is important note that f x g x( ) ( )− ≥ 0  for all 

x a b∈[ , ] . As before, the required area is the limit of the sum of the 

areas of the vertical strips. Hence, we get A = [ ( ) ( )]f x g x dx
a

b
−∫ .

O ππ
2

x= 0

x

y

x= π
2

x= π

Fig. 9.22

Fig. 9.23

( , ( ))x f x
y f x= ( )

y g x= ( )

x b=
( , ( ))x g xx a=

y

x
O
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Note
 Viewing in the positive direction of y − axis, the curve y f x= ( ) can be termed as the upper 

curve (U) and the curve y g x= ( ) as the lower curve (L). Thus, we get A y y dxU La

b
= −∫ [ ] .

Case (ii) 
 Let x f y= ( ) and x g y= ( ) be the equations of two curves in 

the XOY −plane such that f y g y( ) ( )≥ for all y c d∈[ , ] . We want 
to find the area A of the region bounded between the two curves, 
the lines y c= and y d= . The required area is sketched in  

Fig. 9.24. To compute A , we view in the positive direction of the x −
axis and divide the region into thin horizontal strips of width Dy  and 
height f y g y( ) ( )− . It is important note that f y g y( ) ( )− ≥ 0  for all 
y c d∈[ , ] . As before, the required area is the limit of the sum of 
the areas of the horizontal strips. Hence, we get   

A = [ ( ) ( )]f y g y dy
c

d
−∫ .

Note
 Viewing in the positive direction of x − axis, the curve x f y= ( ) can be termed as the right curve 

(R) and the curve x f y= ( ) as the left curve (L). Thus, we get A x x dyR La

b
= −∫ [ ] .

Example 9.54
 Find the area of the region bounded between the parabolas y x2 4=  

and x y2 4=  .
Solution
 First, we get the points of intersection of the parabolas. For this, we 
solve y x2 4=  and x y2 4=  simultaneously: Eliminating y between them, 
we get x x4 64=  and so x = 0  and x = 4 . Then the points of intersection 

are ( , )0 0  and ( , )4 4 . The required region is sketched in Fig.9.25. 
 Viewing in the direction of y -axis, the equation of the upper boundary 

is y x= 2  for 0 4£ £x  and the equation of the lower boundary is y x
=

2

4
  

for 0 4£ £x . So, the required area D  is 

A y Y dx x x dx x x
U L= − = −







=






−








∫ ∫( )

/

0

4
2

0

4
3 2 3

0

2
4

2
2

3 12

44

2
2 8

3

64

12
0

16

3
= ×





−





− =  .

Note
 Viewing in the positive direction of x -axis, the right bounding 

curve is 2 4x y= and the left bounding curve is y x2 4=  . See Fig. 

9.26. The equation of the right boundary is x y= 2  for 0 4£ £y  

and  the equation of the left boundary is  x y
=

2

4
 for 0 4£ £y .  So, 

the required area A  is

y

x

( ( ), )f y y

y d=

( ( ), )g y y

x g y= ( )
x f y= ( )

y c=

O

Fig. 9.24

( , )0 0

( , )4 4y
x

= 2

y
x
=

2

4

x= 0

x= 4

y

x
( , )4 0

Fig. 9.26

( , )0 0

( , )4 4

x y= 2

x
y
=

2

4

y

x

y = 4( , )0 4

Fig. 9.25
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A x x dx y y dy y y
R L= − = −







=






−








∫ ∫( )

/

0

4
2

0

4
3 2 3

0

2
4

2
2

3 12

44

2
2 8

3

64

12
0

16

3
= ×





−





− =  .

Example 9.55
 Find the area of the region bounded between the parabola x y2 =  and the curve y x= .
Solution
 Both the curves are symmetrical about y -axis. 

 The curve y x=  is y
x x
x x

=
≥

− ≤




if  

if

0

0
.

 It intersects the parabola x y2 =  at ( , )1 1  and ( , )−1 1  . 
 The area of the region  bounded by the curves is 
sketched in Fig. 9.27.  It lies in the first quadrant as well as 
in the second quadrant.  By symmetry, the required area is 
twice the area in the first quadrant. 
 In the first quadrant, the upper curve is y x x= ≤ ≤,0 1  
and  the lower curve is y x x= ≤ ≤2 0 1, . Hence, the required 
area is given by 
   A  =  2 2

0

1
2

0

1

[ ] [ ]y y dx x x dxU L− = −∫ ∫  

    =  2
2 3

2 3

0

1

x x
−









  

    =  2 1

2

1

3

1

3
−






 = .

Example 9.56
 Find the area of the region bounded by y x y x= =cos , sin , the lines x = p

4
 and x = 5

4

p .

Solution
 The region is sketched in Fig. 9.28. The upper boundary of the region is y x= sin  for p p

4

5

4
£ £x  

and the lower boundary of the region is y x= cos   for p p
4

5

4
£ £x . So the required area A  is given 

by

 A  =  y y dx x x dx x xU L−( ) = − = − −[ ]∫∫ (sin cos ) cos sinπ

π

π

π

π

π

4

5
4

4

5
4

4

5
4

  =  − −





 − − −






sin cos sin cos

5

4

5

4 4 4

π π π π   

  =  − −





 − −
















 − −






 −



















1

2

1

2

1

2

1

2
 

  =  2
2

2
2

2 2+ = .

y
x=

2y
x

=(
, )

−1
1

( , )1 1y
x

= −

y

x
O (1,0)( , )−1 0

Fig. 9.27

Fig. 9.28

O π
4

π
2

x= 5

4

π

5

4

π3

4

π
π

y

x

x= π
4

Chapter 9 Applications of Integration.indd   130 7/25/2019   7:11:41 PM



Applications of Integration131

Example 9.57
 The region enclosed by the circle x y a2 2 2+ =  is divided into two segments by the line x h= . 

Find the area of the smaller segment.
Solution
 The smaller segment is sketched in Fig. 9.29. Here 0< <h a . By symmetry about the x -axis, 

the area of the smaller segment is given by 

 A  =  2 2
2 2

2 2
2 2 2

1a x dx x a x a x
ah

a

h

a

− = − + 

















−∫ sin  

  =  2 0
2

1 2
2 2

2
1

2 2 2
1+









 −

−
+ 




















− −a h a h a h
a

sin ( ) sin  

  =  a h a h a h
a

2 2 2 2 1

2

π





 − − − 








−sin  

  =  a
h
a

h a h2 1 2 2

2

π
− 
















 − −−sin  

  =  a
h
a

h a h2 1 2 2cos−






 − − .

Example 9.58
 Find the area of the region in the first quadrant bounded by the parabola y x2 4= , the line 
x y+ = 3  and y -axis.

Solution
 First, we find the points of intersection of x y+ = 3  and y x2 4− : 

 x y+ = 3  ⇒  y x= −3 .

 ∴ =y x2 4  ⇒  ( )3 42− =x x

  ⇒  x x2 10 9 0− + =

  ⇒  x x= =1 9, .

 ∴ =x 1 in x y y+ = ⇒ =3 2 , and x = 9  in x y y+ = ⇒ = −3 6 .

 ∴( , )1 2  and ( , )9 6−  are the points of intersection.

 The line x y+ = 3  meets the y -axis at ( , )0 3 .

 The required area is sketched in Fig. 9.30.
 Viewing in the direction of y -axis, on the right bounding curve is given by

  x  =  
y y

y y

2

4
0 2

3 2 3

,

,

≤ ≤

− ≤ ≤






 

  ∴A  =  x dy x dy y dy y dy+ = + −∫∫∫ ∫
2

0

2

2

3

0

2

2

3

4
3( )

   =  y y y3

0

2
2

2

3

12
3

2

8

12
0 9

9

2
6

4

2









 + −









 = −






 + −






 − −






 =

7

6
.

Fig. 9.30

x

y

x h=

O
x a=

( , )a 0

Fig. 9.29

( , )0 3

( , )0 2

y

y x2 4�

x

( ,
)

9
6�

x y� � 3

( , )1 2

O
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Example 9.59
 Find, by integration, the area of the region bounded by the lines 5 2 15x y− = ,  x y+ + =4 0  and 
the x-axis.

Solution
 The lines 5 2 15x y− = ,  x y+ + =4 0  intersect at 1 5,−( ) . The line 5 2 15x y− =   meets the x-axis 

at 3 0,( ) . The line x y+ + =4 0  meets the x-axis at −( )4 0, . The required area is shaded in Fig.9.31. 

It lies below the x-axis. It can be computed either by considering vertical strips or horizontal strips.

 When we do by vertical strips, the region has to be divided into two sub-regions by the line 
x =1. Then, we get

   A  =  ydx ydx
−
∫ ∫+
4

1

1

3

 

    =  − −( ) +
−








−
∫ ∫4

5 15

2
4

1

1

3

x dx x dx

    =  − −








 + −











−

4
2

5

4

15

2

2

4

1
2

1

3

x x x x  

    =  −





 − ( ) + −






 − −








9

2
8

45

4

25

4
 

    =  25

2
5+

    =  35

2
.

 
When we do by horizontal strips, there is no need to subdivide the region. In this case, the area 

is bounded on the right by the line 5 2 15x y− =  and on the left by x y+ + =4 0 . So, we get

   A  =  x x dy y y dyR L−[ ] =
+

− − −( )



− −

∫ ∫
5

0

5

0
15 2

5
4

    =  7
7

5
7

7

10
5

0 2

5

0

+





= +










− −
∫

y dy y y

    =  0 35
35

2

35

2
− − +




= .

Note
 The region is triangular with base 7 units and height 5 units. Hence its area is 35

2
 without using 

integration.
Example 9.60
 Using integration find the area of the region bounded by triangle ABC, whose vertices A, B, and 
C are −( )1 1, ,  3 2,( ) , and 0 5,( )  respectively.

Fig. 9.31

(
, )

−4 0

( , )1 5−

∆y

y

O
x( , )3 0

( , )1 0

x + y + 4 = 0 5x −2y = 15

Chapter 9 Applications of Integration.indd   132 7/25/2019   7:11:54 PM



Applications of Integration133

Solution
 See Fig. 9.32.

 Equation of AB is y x−
−

=
+
+

1

2 1

1

3 1
  or y x= +( )1

4
5

 Equation of BC is  y x−
−

=
−
−

5

2 5

0

3 0
  or y x= − + 5

 Equation of AC is  y x−
−

=
+
+

1

5 1

1

0 1
  or y x= +4 5

   ∴ Area of DABC  =  Area DACO+ Area of OCBE −  Area of DABE

    =  4 5 5
1

4
5

1

0

0

3

1

3

x dx x dx x dx+( ) + − +( ) − +( )
−

−∫ ∫ ∫  

    =  4

2
5

2
5

1

4 2
5

2

1

0
2

0

3
2

1

3

x x x x x x+








 + − +









 − +











− −

 

    =  0 2 5
9

2
15 0

1

4

9

2
15

1

4

1

2
5

15

2
− + −( ) + − +





− − +





+ −





=

Example 9.61
 Using integration, find the area of the region which is bounded by x-axis, the tangent and normal 

to the circle x y2 2 4+ =  drawn at 1 3,( ) .

Solution
 We recall that the equation of the tangent to the circle 
x y a2 2 2+ =  at x y1 1,( )  is xx yy a1 1

2+ =  . So, the equation of the 

tangent to the circle x y2 2 4+ =  at 1 3,( )  is x y+ =3 4 ; that is, 

y x= − −1

3
4( ) . The tangent meets the x-axis at the point (4,0). 

The slope of the tangent is − 1

3
. So the slope of the normal is −

1

3
 
and hence equation of the normal 

is y x− = −3 3 1( ) ; that is y x= 3  and it passes through the origin. The area to be found is shaded 

in the adjoining figure. It can be found by two methods.

Method 1
 Viewing in the postive direction of y-axis, the required area is the area of the region bounded by 

x-axis, y x= 3  and x y+ =3 4 . So it can be obtained by applying the formula ydx
a

b

ò . For this, we 

have to split the region into sub-regions, one sub-region bounded by x-axis, the normal y x= 3  and 

the line x =1 ; the other sub-region bounded by x-axis, the tangent x y+ =3 4  and the line x =1 

axis.
    ∴  Area required =  y dx y dx x dx x dx

0

1

1

4

0

1

1

4

3
1

3
4∫ ∫ ∫ ∫+ = + − −( )





    =  3
2

1

3 2
4

2

0

1
2

1

4

x x x








 + − −



















 =  3

2

8

3

7

2 3
2 3+ − = .

A( , )−1 1

B( , )3 2

O ED

C( , )0 5
y

x

Fig. 9.32

O (1,0) (2,0)

y

x

Tangent

N
or

m
al

(4
,0)

1 3,( )

Fig. 9.33
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Method 2
 Viewing in the direction of x-axis, the required area is the area of the region bounded between 

y x= 3  and x y+ =3 4 , y = 0  and y = 3 . So, it can be obtained by applying the formula  

x x dyR Lc

d
−( )∫  

 Here, c = 0 , d = 3 , xR  is the x-value on the tangent x y+ =3 4   and xL  is the x-value on the 

normal y x= 3 .

   ∴ Area required  =  x x dy y y dyR Lc

d
−( ) = −( ) −



∫ ∫ 4 3

30

3

 

    =  4
2

3
2 3

2 2

0

3

y y y
−









 −











    =  4 3
3

2
3

3

2 3
2 3− − = .

Working rule for finding area of the region bounded by y = f1(x), y = f2(x), the lines x a==  and 
x b== , where a b<<  :
 Draw an arbitrary line parallel to y-axis cutting the plane region. First, find the y-coordinate of 
the point where the line enters the region. Call it yENTRY . Next, find the y-coordinate of the point 

where the line exits the region. Call it yEXIT . Both yENTRY  and yEXIT  can be found from the equations 

of the bounding curves. Then, the required area is given by y y dxEXIT ENTRYa

b
−[ ]∫  .

Working rule for finding area of the region bounded by x = g1(y), x = g2(y), the lines y c==  and 
y d== , where c d<<  :

 Draw an arbitrary line parallel to x-axis cutting the plane region.
 First, find the x-coordinate of the point where the line enters the region. Call it xENTRY  .

 Next, find the x-coordinate of the point where the line exits the region. Call it xEXIT . Both 
xENTRY  and xEXIT  can be found from the equations of the bounding curves. Then, the required area is 

given by x x dyEXIT ENTRYc

d
−[ ]∫ . 

EXERCISE 9.8
 1. Find the area of the region bounded by 3 2 6 0x y− + = , x = −3 , x =1 and x-axis.

 2. Find the area of the region bounded by 2 1 0x y− + = , y = −1, y = 3  and y-axis.

 3. Find the area of the region bounded by the curve 2 02+ − + =x x y , x-axis, x = −3 and x = 3.
 4. Find the area of the region bounded by the line y x= +2 5  and the parabola y x x= −2 2 . 
 5. Find the area of the region bounded between the curves y x= sin  and y x= cos  and the 

lines x = 0  and x = π .
 6. Find the area of the region bounded by y x= tan , y x= cot  and the lines x = 0 , x = π

2
, y = 0.

 7. Find the area of the region bounded by the parabola y x2 =   and the line y x= − 2 .
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 8. Father of a family wishes to divide his square field bounded by x = 0 , x = 4 , y = 4  and 
y = 0  along the curve y x2 4=  and x y2 4=  into three equal parts for his wife, daughter 

and son. Is it possible to divide? If so, find the area to be divided among them.
 9. The curve y x= −( ) +2 1

2  has a minimum point at P. A point Q on the curve is such that the 

slope of PQ is 2. Find the area bounded by the curve and the chord PQ.
 10. Find the area of the region common to the circle x y2 2 16+ =  and the parabola y x2 6= .

9.9 Volume of a solid obtained by revolving area about an axis
 Definite integrals have applications in finding volumes of solids of 
revolution about a fixed axis. By a solid of revolution about a fixed axis, 
we mean that a solid is generated when a plane region in  a given plane 
undergoes one full revolution about a fixed axis in the plane. For instance, 
consider the semi circular plane region inside the circle x y a2 2 2+ =  and 
above the x-axis. See Fig.9.34.

 If this region is given one complete rotation (revolution for 360 2° = π
radians) about x-axis, then a solid called a sphere is generated.

 In the same manner, if you want to generate a right-circular cylinder with 
radius a and height h, you can consider the rectangular plane region bounded 
between the straight lines y = 0 , y a= , x = 0  and x h=  in the xy-plane.  See 
Fig.9.35. If this region is given one complete rotation (revolution for 360 2° = π  
radians) about x-axis, then a solid called a cylinder is generated.

 We restrict ourselves to obtain volume of solid of revolution about x-axis or y-axis. Whenever 
solid of revolution about x-axis is considered, the plane region that is revolved about x-axis lies above 
the x-axis. So, in this region y ≥ 0 . Whenever solid of revolution about y-axis is considered, the plane 
region that is revolved about y-axis lies to the right of y-axis. So, in this region x ≥ 0 . We shall find 
the formula for finding the volume of the solid of revolution of the plane region in the first quadrant 
bounded by the curve y f x= ( ) , x-axis and the lines x a=  and x b a= >  about x-axis. The derivation 
of the formula is based upon the formula that the volume of a cylinder of radius r and the height 
h is pr h2 . 
 Assume that every line parallel to y-axis lying between the lines x a=  and x b a= >   cuts the 
curve y f x= ( )  in the first quadrant exactly at one point. Divide a b,[ ]  into n segments by x x xn1 2 1, ,..., −  
such that

a x x x x x bn n= < < < < < =−0 1 2 1... , x x x b a
ni i− = =
−

−1 ∆ , i n=1 2, ,..., .

 For each i n= −0 1 2 1, , ,..., , the region in the xy-plane between the ordinates at xi  and x xi + ∆  
which lies between the x-axis and the curve y f x= ( )  can be approximated to an infinitesimal 
rectangle having area y xiD , where y f xi i= ( ) . When the plane region bounded by the curve 
y f x= ( ) , x-axis, and lines x a=  and x b=  is rotated by 360°  about x-axis, each of the infinitesimal 
rectangles at x xi=  also revolves and generates an elementary solid which is approximately a thin 

cylindrical disc with radius yi  and height Dx . See Fig.9.36. The volume of the cylindrical disc at 

x a= −
y

xO

x y a2 2 2+ =

x a=

Fig. 9.34

y a�

x 0�

y 0�

x h�
O x

y

Fig. 9.35
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x xi=  is given by π y xi
2∆ , i n= −0 1 2 1, , ,..., . Summing all these elementary 

volumes, we get the approximate volume of the solid of revolution as 

π y xi
i

n
2

0

1

∆
=

−

∑ . Let n become larger and larger n →∞( )  such that Dx becomes 

smaller and smaller ∆x →( )0 . Then  π y xi
i

n
2

0

1

∆
=

−

∑  tends to the volume of 

the solid of revolution. Hence the volume of the solid of revolution is

π y dx
a

b
2∫ .

 Similarly, we can find the formula for finding the volume of the solid of 
revolution of the region bounded by the curve x f y= ( ) , y-axis, and the lines 

y c=  and y d=  about y-axis. The curve x f y= ( )  lies to the right of y-axis 

between the lines y c=  and y d c= > . Assume that every line parallel to 

x-axis between y c=  and y d c= >  cuts the curve x f y= ( )  in the first 
quadrant exactly at one point. See Fig.9.37. Then, the volume of the solid of 

revolution is given byπ x dy
c

d
2∫ . 

Example 9.62
 Find the volume of a sphere of radius a.

Solution
 By revolving the upper semicircular region enclosed between the circle 
x y a2 2 2+ =  and the x-axis, we get a sphere of radius a. See Fig. 9.38.

 The boundaries of the region are y a x= −2 2 ,  x-axis, the lines x a= −  

and x a= . Hence, the volume of the sphere is given by 
V y dx a x dx

a

a

a

a
= = −( )

− −∫ ∫π π2 2 2  

  =  2 2 2

0
π a x dx

a
−( )∫ , since the integrand a x2 2−( )  is an even function.

  =  2
3

2
3

4

3

2
3

0

3
3

3π π πa x x a a a
a

−








 = −









 = .

Example 9.63
 Find the volume of a right-circular cone of base radius r and height h.
Solution
 Consider the triangular region in the first quadrant which is bounded 

by the line y r
h
x=  , x-axis, the lines x = 0  and x h= . See Fig.9.39. By 

revolving the region about the x-axis, we get a cone of base radius r and 
height h.
 Hence, the volume of the cone is given by 

V y dx r
h
x dx r

h
x dx r

h
xh

= = 





= 





= 













∫π π π π2

0

2 2

2

2 3

3
 =∫∫

0
00

2

3

h
hh r hπ

x

y

x a=
O ∆x

y f x= ( )

x b=
Fig. 9.36

Fig. 9.38

x

y

∆y

y d=

y c=
x f y= ( )

O

Fig. 9.37

y

xO

y
a

x

=

−2

2

x a=x a=−

z = 0

O h
r

y
r

h
x

=x h=

x

y

Fig. 9.39
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Example 9.64
 Find the volume of the spherical cap of height h cut of from 
a sphere of radius r.

Solution
 If the region in the first quadrant bounded by the circle 
x y r2 2 2+ = , the x-axis, the lines x r h= −  and x r=  is revolved 
about the x-axis, then the solid generated is a spherical cap of 
height h cut of from a sphere of radius r. See Fig. 9.40. Hence, 
the required volume is given by

   V  =  π π πy dx r x dx r x x
r h

r

r h

r

r h

r
2 2 2 2

3

3
= −( ) = −





−

−
− ∫∫

    =  π πr r r h
r r h

r h
r r r h rh h

2

3 3

2

3 3 2 2

3

3 3
− −( )( ) −

− −( )( )












= −

− − + − 33

3

( )( )













 

    =  π π
3

3

1

3
3

2 3
2rh h h r h−







 = −( ) .

Note
 We can rewrite the above volume in terms of the radius of the cap.
 If ρ  is the radius of the cap, then ρ 2 2 2+ −( ) =r h r .

 Then, we have r h
h

=
+ρ 2 2

2
. Eliminating r, we get

V h h
h

h h h h=
+







 −









 =

+

















 =

1

3
3

2

1

3

3

2

1

6

2
2 2 2 2

π
ρ

π
ρ

π 33 2 2ρ +( )h .

Example 9.65
 Find the volume of the solid formed by revolving the region bounded by the parabola y x= 2 , 
x-axis, ordinates x = 0  and x = 1 about the x-axis.
Solution
 The region to be revolved about the x-axis is sketched as in 
Fig.9.41. Hence, the required volume is given by

   V  =  π πy dx x x dx2 2
2

0

1

0

1

4 5= + +( )∫∫

    =  π x x x x x dx4 2 3 2

0

1

16 25 8 40 10+ + + + +( )∫
    =  π x x x x x

5 4 3 2

0

1

5
8

4
26

3
40

2
25+ + + +









  

    =  π π
1

5
2

26

3
20 25

838

15
+ + + +






 = .

Example 9.66
 Find the volume of the solid formed by revolving the region bounded by the ellipse 
x
a

y
b

a b
2

2

2

2
1+ = >,  about the major axis.

x

x
r
=

x
y

h
=

−

r
O

S

y

h S

O r

Fig. 9.40

x
O

y x= 2

x= 0
x= 1

y

Fig. 9.41
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Solution
 The ellipse is symmetric about both the axes. The major axis lies along x-axis. The region to be 
revolved is sketched as in Fig.9.42.
 Hence, the required volume is given by

   V  =  π πy dx b
a
a x dx

a

a

a

a2
2

2
2 2

− −∫ ∫= −( )
    =  2 2

2

2 2

0

πb
a

a x dx
a

−( )∫ , since the integrand is an even function.

    =  2

3

2

3

2 2

3

2

2

2
3

0

2

2

3
3 2

2

3π π πb
a

a x x b
a

a a b
a

a
a

−








 = −









 =









 =

44

3

2πab  

Note
 If the region bounded by ellipse x

a
y
b

2

2

2

2
1+ =   is revolved about the y-axis, then the volume of 

the solid of revolution is 4
3

2πa b . The solid is called an ellipsoid.

Example 9.67
 Find, by integration, the volume of the solid generated by revolving about y-axis the region 
bounded between the parabola x y= +2 1, the y-axis, and the lines y =1 and y = −1.
Solution
 The parabola x y= +2 1 is y x2 1= − . It is symmetrical about x-axis and has the vertex at 1 0,( )  

and focus at 5

4
0,







 . The region for revolution is shaded in Fig.9.43. Hence, the required volume is 

given by
  V  =  π x dy2

1

1

−∫
   =  π y dy2

2

1

1

1+( )
−∫

   =  2 2 14 2

0

1

π y y dy+ +( )∫ , since the integrand is an even function.

   =  2
5

2
3

2
1

5

2

3
1

56

15

5 3

0

1

π π π
y y y+ +









 = + +






 = .

Example 9.68
 Find, by integration, the volume of the solid generated by revolving about y-axis the region 

bounded between the curve y x= −
3

4
162 , x ≥ 4 , the y-axis, and the lines y =1 and y = 6 . 

Solution

 We note that y x x y
= − ⇒ − =

3

4
16

16 9
12

2 2

. So, the given curve is a 

portion of the hyperbola x y2 2

16 9
1− =  between the lines y =1 and y = 6  and it 

lies above the x-axis.

 The region to be revolved is sketched in Fig.9.44.
 Since revolution is made about y-axis, we write the equation of the 

O

y

x

(0, b)

(a,0)(-a,0)

Fig. 9.42

x y� �2 1

x

y

y = 1

y = -1

Fig. 9.43

Fig. 9.44

y b=
y =1
x

y

O
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portion of the hyperbola as x y= +
4

3
9 2 . So, the volume of the solid generated is given by

   V  =  π π πx dy y dy y dy2

1

6
2

2

1

6
2

1

64

3
9

16

9
9∫ ∫ ∫= +





= 





+( )

    =  π π16

9
9

3

16

9
54 72 9

1

3

563

1

6







+






= 





+( ) − +





=y y
( )

000

27
π  

Example 9.69
 Find, by integration, the volume of the solid generated by revolving about y-axis the region 
bounded by the curves y x= log , y = 0 , x = 0  and y = 2 .

Solution
 The region to be revolved is sketched in Fig.9.45.
 Since revolution is made about the y-axis, the volume of the solid 
generated is given by

   V  =  π πx dy e dyy2

0

2

0

2

= ∫∫

    =  π πe ey  = −( )
0

2
2 1 .

EXERCISE 9.9

 1. Find, by integration, the volume of the solid generated by revolving about the x-axis, the 
region enclosed by y x= 2 2 , y = 0  and x = 1.

 2. Find, by integration, the volume of the solid generated by revolving about the x-axis, the 
region enclosed by y e x= −2  y = 0,   x = 0 and x = 1

 3. Find, by integration, the volume of the solid generated by revolving about the y-axis, the 
region enclosed by x y2 1= +  and y = 3 .

 4. The region enclosed between the graphs of y x=  and y x= 2  is 
denoted by R, Find the volume generated when R is rotated through 
360°  about x-axis.

 5. Find, by integration, the volume of the container which is in the shape 
of a right circular conical frustum as shown in the Fig 9.46.

 6. A watermelon has an ellipsoid shape which can be obtained by 
revolving an ellipse with major-axis 20 cm and minor-axis 10 cm about 
its major-axis. Find its volume using integration.

EXERCISE 9.10
Choose the correct or the most suitable answer from the given four alternatives :

 1.  The value of dx
x4 9 2

0

2

3

−
∫  is

(1) p
6

  (2) p
2

  (3) p
4

  (4) p  

y = 0
x = 0

O

y

x
y = 2

y x= log

Fig. 9.45

1 m

2 m

2 m

Fig. 9.46
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 2. The value of x dx
−∫ 1

2

  is

(1) 1

2
 (2) 3

2
 (3) 5

2
 (4) 7

2

 3. For any value of  n e n x dxx∈ +[ ]∫, cos ( )cos2 3

0
2 1

π

is

  (1) p
2

  (2) p   (3) 0 (4) 2

 4. The value of sin cos2

2

2

x x dx
−

∫
π

π

 is

  (1) 
3

2
 (2) 

1

2
 (3) 0 (4) 

2

3

 5. The value of tan tan− −

− +






+ +













∫ 1

2

4

1
4

24

4

1

1x
x

x
x

dx  is

  (1) p  (2) 2p  (3) 3p  (4) 4p

 6. The value of 2 3 7 17 5 3

2

4

4
x x x x

x
dx− + − +



−∫ cos

π

π

 is

  (1) 4 (2) 3 (3) 2 (4) 0

 7. If f x t t dt
x

( ) cos= ∫  
0

, then df
dx

=

  (1) cos sinx x x−  (2) sin cosx x x+  (3) x xcos  (4) x xsin

 8. The area between y x2 4=  and its latus rectum is

  (1) 
2

3
 (2) 

4

3
 (3) 

8

3
 (4) 

5

3

 9.  The value of x x dx( )1 99

0

1

−∫  is

  (1) 1

11000
 (2) 1

10100
 (3) 1

10010
 (4) 1

10001

 10.  The value of dx
x1 50 +∫ cos

π
 is

  (1) p
2

 (2) p  (3) 3

2

p  (4) 2π

 11. If 
Γ

Γ
( )

( )

n
n
+ =2

90  then n  is

  (1) 10 (2) 5 (3) 8 (4) 9

 12.  The value of cos3

0

6 3x dx 

π

∫  is

  (1) 2

3
 (2) 2

9
 (3) 1

9
 (4) 1

3
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 13.  The value of sin4

0
x dx 

π

∫ = is

  (1) 3

10

p  (2) 3

8

p  (3) 3

4

p  (4) 3

2

p

 14. The value of e x dxx−∞
=∫ 3 2

0
 is

  (1) 7

27
 (2) 5

27
 (3) 4

27
 (4) 2

27

 15. If 1

4 820 +
=∫ x

dx
a π  then a   is

  (1) 4 (2) 1 (3) 3 (4) 2

 16. The volume of solid of revolution of the region bounded by y x a x2 = −( )  about x-axis is

  (1) pa3  (2) 
pa3

4
 (3) 

pa3

5
 (4) 

pa3

6

 17. If f x e
u
du x

ux
( ) ,

sin

= >∫ 1
1

 and 

  e
x
dx f a f

xsin

( ) ( ) ,

2

1

2
1

1

3

= −[ ]∫   then one of the possible value of a  is

  (1) 3 (2) 6 (3) 9 (5)

 18. The value of sin−( )∫ 1
2

0

1

x dx  is

  (1) π
2

4
1−  (2) π

2

4
2+  (3) π

2

4
1+   (4) π

2

4
2−

 19. The value of a x dx
a

2 2

0

3

−( )∫  is

  (1) pa3

16
  (2) 3

16

4pa   (3) 3

8

2pa   (4) 3

8

4pa  

 20. If f t dt x tf t dt
x

x
( ) ( )= + ∫∫

1

0
, then the value of f ( )1  is

  (1) 1

2
  (2) 2 (3) 1 (4) 3

4
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SUMMARY
(1) Definite integral as the limit of a sum

   (i) f x dx
a

b

( )ò =  lim ( )
n

r

nb a
n

f a b a r
n→∞

=

− + −



∑

1

   (ii)    =f x dx
n

f r
n n

f r
nn

r

n

n
( ) lim lim=












∫ ∑

→∞
=

→∞
0

1

0

1 1 
=
∑
r

n

1

.

(2) Properties of definite integrals

   (i)  f x dx f u du
a

b

a

b

( ) ( )=∫ ∫  (ii) f x dx f x dx
b

a

a

b

( ) ( )= −∫∫

   (iii) f x dx f x dx f x dx
a

c

a

b

c

b

( ) ( ) ( )= +∫∫ ∫   (iv) f x dx f a b x dx
a

b

a

b
( ) ( )∫ ∫= + −

   (v) f x dx f a x dx
a a

( ) ( )
0 0∫ ∫= −  (vi) f x dx f x f a x dx

a a
( ) ( ) ( ) .

0

2

0
2∫ ∫= + −[ ]

   (vii) If f (x) is an even function, then f x dx f x dx
a

a a
( ) ( ) .

−∫ ∫= 2
0

   (ix)  If f (x) is an odd function, then f x dx
a

a
( ) .

−∫ = 0

   (x)   If f a x f x( ) ( ),2 − =  then f x dx f x dx
a a

( ) ( ) .
0

2

0
2∫ ∫=

   (xi) If f a x f x( ) ( ),2 − = −  then f x dx
a

( ) .
0

2

0∫ =

   (xii) x f x dx a f x dx
a a

( ) ( )=∫ ∫2
0 0

 if f a x f x( ) ( )− =

(3) Bernoulli’s Formula

  uvdxò =
 
uv( )1

− + − +u v u v u v( )

( )

( )

( )

( )

( )

1

2

2

3

3

4  .

(4) Reduction Formulas

   (i) sinnx dx
0

2

π

 ∫ = cosn x dx
0

2

π

∫ =

( ) ( )
( )

, , , ,

( ) ( )
( )

n
n

n
n

n

n
n

n
n

− × −
−

× × × =

− × −
−

×

1 3
2

1
2 2

2 4 6

1 3
2

 



 if 

×× =










2
3

3 5 7, , , , if n 

π

   (ii) If n is even and m is even,  

    sinm nx x dx
0

2

π

∫  cos  = ( )
( )

( )
( )

( )
( ) ( )

( ) ( )
( )

(n
m n

n
m n

n
m n m

m
m

m
m

−
+

−
+ −

−
+ − +

− −
−

1 3
2

5
4

1
2

1 3
2



mm
m
−
−

5
4

1
2 2

)
( )



π

   (iii) If n  is odd and m is any positive integer (even or odd), then 

     sinm nx x dx
0

π
2∫  cos  =

( )

( )

( )

( )

( )

( ) ( ) ( )

n
m n

n
m n

n
m n m m

−
+

−
+ −

−
+ − + +

1 3

2

5

4

2

3

1

1
 .

Chapter 9 Applications of Integration.indd   142 7/25/2019   7:12:47 PM



Applications of Integration143

(5) Gamma Formulas
(i) Γ( )n  = e x dxx n−∞ −∫ 0

1 = −( )!n 1

  (ii) e x dxax n−∞

∫0
 =

n
an

!
+1

(6) Area of the region bounded by a curve and lines

(i) The  area of the region bounded by a curve, above x -axis and the lines x a=  and x b=

is A =  ydx
a

b

ò .

(ii) The  area of the region bounded by a curve, below x -axis and the lines x a=  and x b=

is A = − =∫ ∫ydx ydx
a

b

a

b
.

 (iii) Thus area of the region bounded by the curve to the right of y -axis, the lines y c=  and

y d=  is A = xdy
c

d

ò .

 (iv) The area of the region bounded by the curve to the left of y -axis, the lines y c=  and

y d=  is  A = − =∫ ∫xdy xdy
c

d

c

d
.

(7) Volume of the solid of revolution

(i) The volume of the solid of revolution about x-axis is V =  π y dx
a

b
2∫ .

(ii) The volume of the solid of revolution about y-axis is V =  π x dy
c

d
2∫ .
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