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“Nothing takes place in the world 
whose meaning is not that of some maximum or minimum”

- Leonhard Euler

Chapter

7 Applications of Differential Calculus

7.1 Introduction
7.1.1 Early Developments
	 The primary objective of differential calculus is to partition something 
into smaller parts (infinitesimal parts), in order to determine how it 
changes. For this reason today’s differential calculus was earlier named as 
infinitesimal calculus. Applications of differential calculus to problems 
in physics and astronomy was contemporary with the origin of science. All 
through the 18th century these applications were multiplied until Laplace 
and Lagrange, towards the end of the 18th century, had brought the whole 
range of the study of forces into the realm of analysis.
	 The development of applications of differentiation are also due 
to Lejeune Dirichlet, Riemann, von Neumann, Heine, Kronecker, 
Lipschitz, Christoffel, Kirchhoff, Beltrami, and many of the leading physicists of the century.
	 •		 Differential calculus has applications in geometry and dynamics.
	 •	 Derivatives of function, representing cost, strength, materials in a process, profit, etc., are 

used to determine the monotonicity of functions and there by to determine the extreme values 
of the quantities represented by those functions.

	 •	 Derivatives of a function do find a prominent place in many of the modelling problems in 
engineering and sciences.

	 •	 Differential calculus has applications in social sciences and medical sciences too.
	 Using just the first two derivatives of a function f x( ) ,  in this chapter, the nature of the function, 
sketching of curve y f x= ( ) , and local extrema (maxima or minima) of f x( )  are determined. Further, 
using certain higher derivatives of f x( )  (if they exist), series expansion of f x( )  about a point are 
also discussed.

Learning Objectives

	 Upon completion of this chapter, students will be able to
	 •	 apply derivatives to geometrical problems
	 •	 use derivatives to physical problems
	 •	 identify the nature of curves like monotonicity, convexity, and concavity
	 •	 model  real  time  problems  for  computing  the  extreme  values  using derivatives
	 •	 trace the curves for polynomials and other functions.

Rudolf Otto Sigismund Lipschitz
1832-1903

1
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2XII - Mathematics

7.2 Meaning of Derivatives
7.2.1 Derivative as slope
	 Slope or Gradient of a line: Let l  be any given non vertical line as in the figure. Taking a finite 

horizontal line segment of any length with the starting point in the given line l  and the vertical line 
segment starting from the end of the horizontal line to touch the given line.  It can be observed that 
the ratio of the vertical length to the horizontal length is always a constant. This ratio is called the 
slope of the line l  and it is denoted as m . 

	 The  slope  can  be  used  as  a  measure  to  determine  the increasing 
or decreasing nature of a line. The line is said to be increasing or decreasing 
according as m > 0  or m< 0   respectively. When m = 0 , the value of y  
does not change. Recall that y mx c= +  represents a straight line in the 
XY  plane where m  denotes the slope of the line.

	 Slope or Gradient of a curve: Let y f x= ( )  be a given curve. The slope of the line joining the 

two distinct points ( ( )),x f x  and the point ( ( )),x h f x h+ +  is

			   f x h f x
h

( ) ( )+ − . (Newton quotient).	 ...(1)

	 Taking the limit as h → 0  we get,

	 lim
( ) ( )

( )
h

f x h f x
h

f x
→

+ −
= ′

0
, (limit of Newton quotient)	 ... (2)

which is the slope of the curve at the point ( , )x y  or ( , ( ))x f x .

Remark

	 If θ  is the angle made by the tangent to the curve y f x= ( )  at the 

point ( , )x y , then the slope of the curve at ( , )x y  is ′ =f x( ) tanθ , 

where θ  is measured in the anti clock wise direction from the  

X -axis. Note that, ′f x( )  is also denoted by dy
dx

 and also called 

instanteous rate of change. The average rate of change in an interval is calculated using Newton 
quotient.

Example 7.1

	 For the function f x x x( ) , [ , ]= ∈2 0 2  compute the average rate of changes in the subintervals  

[ ] [ ] [ ] [ ], . , . , , , . , . ,0 0 5 0 5 1 1 1 5 1 5 2  and the instantaneous rate of changes at the points x = 0 5 1 1 5 2. , , . , .

Solution

	 The average rate of change in an interval [ , ]a b  is f b f a
b a

( ) ( )−
−

 whereas, the instantaneous rate 

of change at a point x  is ′f x( )  for the given function. They are respectively, b a+  and 2x .

y f x= ( )

tangent

Slope of a curve 

(x, y)

tan(θ)

θ
x

y

Fig. 7.2

Fig.7.1
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Applications of Differential Calculus3

Rate of changes

a b x
Average rate is
f b f a
b a

b a( ) ( )−
−

= +

Instantaneous 
rate is
′ =f x x( ) 2

0 0.5 0.5 0.5 1

0.5 1 1 1.5 2

1 1.5 1.5 2.5 3

1.5 2 2 3.5 4
Table 7.1

7.2.2 Derivative as rate of change
	 We have seen how the derivative is used to determine slope. The derivative can also be used to 
determine the rate of change of one variable with respect to another. A few examples are population 
growth rates, production rates, water flow rates, velocity, and acceleration.
	 A common use of rate of change is to describe the motion of an object moving in a straight line. 
In such problems, it is customary to use either a horizontal or a vertical line with a designated origin 
to represent the line of motion. On such lines, movements in the forward direction considered to be 
in the positive direction and movements in the backward direction is considered to be in the negative 
direction.
	 The function s(t) that gives the position (relative to the origin) of an object as a function of time 
t is called a position function. It is denoted by s f t= ( ) .  The velocity and the acceleration at time t is 

denoted as v t ds
dt

( ) = , and a t
dv
dt

d s
dt

( ) = =
2

2 .

Remark
	 The following remarks are easy to observe:

	 (1)	 Speed is the absolute value of velocity regardless of direction and hence, 

		  Speed = =v t ds
dt

( ) .

	 (2)	 •		 When the particle is at rest then v t( ) = 0 .
		  •		 When the particle is moving forward then v t( ) > 0 .
		  •		 When the particle is moving backward then v t( ) < 0 .
		  •		 When the particle changes direction, v t( )  then changes its sign.

	 (3)	 If tc  is the time point between the time points t1  and t2  ( )t t tc1 2< < where the particle changes 

direction then the total distance travelled from time t1  to time t2  is calculated as 

		  s t s t s t s tc c( ) ( ) ( ) ( )1 2− + − .

	 (4)	 Near the surface of the planet Earth, all bodies fall with the same constant acceleration. 
When air resistance is absent or insignificant and only force acting on a falling body is the 
force of gravity, we call the way the body falls is a free fall.

Chapter 7 Differential Calculus Original-new.indd   3 7/25/2019   6:27:33 PM



4XII - Mathematics

	 An object thrown at time t = 0  from initial height s0  with initial velocity v0  satisfies the equation.

	 a g v gt v s gt v t s= − = − + = − + +, ,0

2

0 0
2

.

	 where, g = 9 8 2. / sm or 32 2ft / s .

	 A few examples of  quantities which are the rates of change with respect to some other 
quantity in our daily life are given below:
	 1.	 Slope is the rate of change in vertical length with respect to horizontal length.
	 2.	 Velocity is the rate of displacement with respect to time.
	 3.	 Acceleration is the rate of change in velocity with respect to time.
	 4.	 The steepness of a hillside is the rate of change in its elevation with respect to linear 

distance.
	 Consider the following two situations:
	 •	 A person is continuously driving a car from Chennai to Dharmapuri. The distance (measured 

in kilometre) travelled is expressed as a function of time (measured in hours) by D t( ) . What 
is the meaning one can attribute to ′ =D ( )3 70 ?

		  It means that, “the rate of distance covered when t = 3 is 70 kmph”.
	 •	 A water source is draining with respect to the time t . The amount of water so drained after 

t  days is expressed as V t( ) . What is the meaning of the slope of the tangent to the curve 
y V t= ( )  at t = 7  is −3 ?

		  It means that, “the water is draining at the rate of 3 units per day on day 7”.
	 Likewise the rate of change concept can be used in our daily life problems. Let us now illustrate 
this with more examples.

Example 7.2
	 The temperature in celsius in a long rod of length 10 m, insulated at both ends, is a function of 
length x  given by T x x= −( )10 . Prove that the rate of change of temperature at the midpoint of the 
rod is zero.

Solution
	 We are given that, T x x= −10 2. Hence, the rate of change at any distance from one end is given 

by dT
dx

x= −10 2 . The mid point of the rod is at x = 5 . Substituting x = 5 , we get dT
dx

= 0 . 

Example 7.3
	 A person learnt 100 words for an English test. The number of words the person remembers in  
t  days after learning is given by W t t t( ) ( . ) ,= × − ≤ ≤100 1 0 1 0 102 . What is the rate at which the 
person forgets the words 2 days after learning?

Solution
	 We have,
		  d

dt
W t( ) 	= 	− × −20 1 0 1( . )t .

		  Therefore at t d
dt
W t= 2, ( ) 	= 	−16 .

	 That is, the person forgets at the rate of 16  words after 2  days of studying.

Chapter 7 Differential Calculus Original-new.indd   4 7/25/2019   6:27:37 PM



Applications of Differential Calculus5

Example 7.4

	 A particle moves so that the distance moved is according to the law s t t t( ) = − +
3

2

3
3 . At what 

time the velocity and acceleration are zero respectively?
Solution

		  Distance moved in time ' 't  is s 	= 	t t
3

2

3
3− + .

		  Velocity at time ' 't  is V 	= 	ds
dt

t t= −2 2 .

		  Acceleration at time ' 't  is A 	= 	dV
dt

t= −2 2 .

	 Therefore, the velocity is zero when t t2 2 0− = , that is t = 0 2, . The acceleration is zero when 
2 2 0t − = . That is at time at time t =1.

Example 7.5
		 A particle is fired straight up from the ground to reach a height of s  feet in t seconds,where 

s t t t( ) = −128 16 2 .
			  (1)	Compute the maximum height of the particle reached.
			  (2)	What is the velocity when the particle hits the ground?
Solution
	 (1)	 At the maximum height, the velocity v(t) of the particle is zero.
		 Now, we find the velocity of the particle at time t .

		  v t
ds
dt

t( ) = = −128 32  

		  v t t t( ) = ⇒ − = ⇒ =0 128 32 0 4 .
		 After 4 seconds, the particle reaches the maximum height.
		 The height at t = 4  is s( ) ( ) ( )4 128 4 16 4 2562= − =  ft.

	 (2)	When the particle hits the ground then s = 0 .
		  s t t= ⇒ − =0 128 16 02  
				  ⇒ =t 0 8, seconds.
		 The particle hits the ground at t = 8 seconds. The velocity when it hits the ground is  

v(8) = –128 ft /s.

Example 7.6
	 A particle moves along a horizontal line such that its position at any time t ≥ 0  is given by 

s t t t t( ) = − + +3 26 9 1 , where s  is measured in metres and t  in seconds?
	 (1)	 At what time the particle is at rest?
	 (2)	 At what time the particle changes direction?
	 (3)	 Find the total distance travelled by the particle in the first 2 seconds.
Solution
	 Given that s t t t t( ) = − + +3 26 9 1 . On differentiating, we get v t t t( )= − +3 12 92 and a t t( ) .= −6 12

	 (1)	 The particle is at rest when v t( ) = 0 . Therefore, v t t t( ) ( )( )= − − =3 1 3 0  gives t =1and t = 3 .

Chapter 7 Differential Calculus Original-new.indd   5 7/25/2019   6:27:42 PM



6XII - Mathematics

	 (2)	 The particle changes direction when v t( )  changes its sign. Now.

		  if 0 1≤ <t  then both ( )t −1  and ( )t − <3 0  and hence, v t( ) > 0 .
		  If 1 3< <t  then ( )t − >1 0  and ( )t − <3 0  and hence, v t( ) < 0 .
		  If t > 3  then both ( )t −1  and ( )t − >3 0  and hence, v t( ) > 0 .
		  Therefore, the particle changes direction when t =1 and t = 3 .
	 (3)	 The total distance travelled by the particle from time t = 0  to t = 2  is given by, 

s s s s( ) ( ) ( ) ( ) | | | |0 1 1 2 1 5 5 3 6− + − = − + − =  metres.

7.2.3  Related rates
	 A related rates problem is a problem which involves at least two changing quantities and asks 
you to figure out the rate at which one is changing given sufficient information on all of the others. 
For instance, when two vehicles drive in different directions we should be able to deduce the speed at 
which they are separating if we know their individual speeds and directions.

Example 7.7
	 If we blow air into a balloon of spherical shape at a rate of 1000 3cm per second. At what rate the 
radius of the baloon changes when the radius is 7cm? Also compute the rate at which the surface area 
changes.

Solution
	 The volume of the baloon of radius r  is V r=

4

3

3π . 

	 We are given dV
dt

=1000  and we need to find dr
dt

 when r = 7 . Now,

		  dV
dt

	= 	3 4

3

2× ×π r dr
dt

.

	 Substituting r = 7  and dV
dt

=1000 , we get 1000 4 49= × ×π
dr
dt

. 

		  Hence, dr
dt

	= 	 1000

4 49

250

49× ×
=

π π
.

	 The surface area S  of the baloon is S r= 4 2π . Therefore, dS
dt

r dr
dt

= × ×8π . 

	 Substituting dr
dt
=

250

49π
 and r = 7 , we get

			   dS
dt

	= 	8 7
250

49

2000

7
π

π
× × = .

	 Therefore, the rate of change of radius is 250

49p
  cm/sec and the rate of change of surface area is 

2000

7
 cm2 / sec.  

Fig.7.4

Chapter 7 Differential Calculus Original-new.indd   6 7/25/2019   6:27:48 PM



Applications of Differential Calculus7

Example 7.8

	 The price of a product is related to the number of units available (supply) by the equation 
Px P x+ − =3 16 234 , where P  is the price of the product per unit in Rupees(`) and x is the number of 
units. Find the rate at which the price is changing with respect to time when 90  units are available and 
the supply is increasing at a rate of 15  units/week.
Solution
	 We have,
		  P 	= 	234 16

3

+
+

x
x

		  Therefore, dP
dt

	= 	−
+

×
186

3 2( )x
dx
dt

.

	 Substituting x dx
dt

= =90 15, , we get dP
dt

= − × = − ≈ −186

93
15

10

31
0 32

2
. .  That is the price is 

changing, in fact decreasing at the rate of  ̀  0.32 per unit.

Example 7.9

	 Salt is poured from a conveyer belt at a rate of 30 cubic metre per minute forming a conical pile 
with a circular base whose height and diameter of base are always equal. How fast is the height of the 
pile increasing when the pile is 10 metre high?
Solution

	 Let h  and r  be the height and the base radius. Therefore h r= 2 . Let V  be the volume of the salt 
cone.

		  V 	= 	1
3

1

12
302 3 3p pr h h dV

dt
= =; min mtr / .

		  Hence, dV
dt

	= 	1
4

2ph dh
dt

		  Therefore, dh
dt

	= 	4 1
2

dV
dt h

⋅
π

 

		  That is, dh
dt

	= 	4 30
1

100
× ×

π

			  = 	 6

5p
 mtr / min.

Example 7.10 (Two variable related rate problem)

	 A road running north to south crosses a road going east to west at the point P . Car A  is driving 

north along the first road, and car B  is driving east along the second road. At a particular time car A  
i s  10 kilometres to the north of P  and traveling at  80 km/hr, while car B  is 15 kilometres to the east 

of P  and traveling at 100 km/hr. How fast is the distance between the two cars changing?

Fig.7.5

h

r
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8XII - Mathematics

Solution
	 Let a t( )  be the distance of car A  north of P  at time t  , and b t( )  the distance of car B  east of 
P  at time t , and let c t( )  be the distance from car A  to car B  at time t . By the Pythagorean Theorem, 
c t a t b t( ) ( ) ( )2 2 2= + . 
	 Taking derivatives, we get 2 2 2c t c t a t a t b t b t( ) ( ) ( ) ( ) ( ) ( )′ = ′ + ′ . 

		  So, ′c 	= 	aa bb
c

aa bb
a b

′ + ′
=

′ + ′

+2 2
 

	 Substituting known values, we get

		  ′c 	= 	 
( ) ( )

.
10 80 15 100

10 15

460

13
127 6

2 2

× + ×

+
= ≈  km/hr

	 at the time of intersect. 

EXERCISE 7.1
	 1.	A point moves along a straight line in such a way that after t  seconds its distance from the origin 

is s t t= +2 32  metres.
			  (i)	Find the average velocity of the points between t = 3  and t = 6 seconds.
			  (ii)	Find the instantaneous velocities at t = 3  and t = 6  seconds.
	 2.		A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance 

of s t=16 2  in t  seconds.
			  (i)	How long does the camera fall before it hits the ground?
			  (ii)	What is the average velocity with which the camera falls during the last 2 seconds?
			  (iii)	What is the instantaneous velocity of the camera when it hits the ground?
	 3.		A particle moves along a line according to the law s t t t t( ) = − + −2 9 12 43 2 , where t ≥ 0 .
			  (i)	At what times the particle changes direction?
			  (ii)	Find the total distance travelled by the particle in the first 4 seconds.
			  (iii)	Find the particle’s acceleration each time the velocity is zero.
	 4.		If the volume of a cube of side length x  is v x= 3 . Find the rate of change of the volume with 

respect to x  when x = 5  units.
	 5.		If the mass m x( )  (in kilograms) of a thin rod of length x  (in metres) is given by, m x x( ) = 3   

then what is the rate of change of mass with respect to the length when it is x = 3  and x = 27  
metres.

	 6.		A stone is dropped into a pond causing ripples in the form of concentric circles. The radius r  of 
the outer ripple is increasing at a constant rate at 2 cm per second. When the radius is 5 cm find 
the rate of changing of the total area of the disturbed water?

	 7.		A beacon makes one revolution every 10 seconds. It is located on a ship which is anchored 5 km 
from a straight shore line. How fast is the beam moving along the shore line when it makes an 
angle of 45°with the shore?

	 8.		A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If 
water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases 
when the water is 8 metres deep?

	 9.		A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from 
the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall.

			  (i)	How fast is the top of the ladder moving down the wall?
			  (ii)	At what rate, the area of the triangle formed by the ladder, wall, and the floor, is changing?

Fig.7.6
P

N
(0, a(t))

(b(t), 0)

c(t)

E
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Applications of Differential Calculus9

	 10,		A police jeep, approaching an orthogonal intersection from the northern direction, is chasing 
a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the 
intersection and the car is 0.8 km to the east. The police determine with a radar that the distance 
between them and the car is increasing at 20 km/hr. If the jeep is moving at 60 km/hr at the 
instant of measurement, what is the speed of the car?

7.2.4  Equations of Tangent and Normal
	 According to Leibniz, tangent is the line through a pair of very close points on the curve.

Definition 7.1

	 The tangent line (or simply tangent) to a 
plane curve at a given point is the straight 
line that just touches the curve at that point.

Definition 7.2

	 The normal at a point on the curve is the 
straight line which is perpendicular to the 
tangent at that point.

	 The tangent and the normal of a curve at a 
point are illustrated in the adjoining figure.

	 Consider the given curve y f x= ( ) .

	 The equation of the tangent to the curve at the point, say ( , )a b , is given by

y b x a dy
dx a b

− = − ×





( )

( , )

 or y b f a x a− = ′ ⋅ −( ) ( ) .

	 In order to get the equation of the normal to the same curve at the same point, we observe that 
normal is perpendicular to the tangent at the point. Therefore, the slope of the normal at ( , )a b  is the 

negative of the reciprocal of the slope of the tangent which is −










1
dy
dx a b( , )

. 

	 Hence, the equation of the normal is ,

( ) ( )

( , )

y b x ady
dx a b

− = −








 × −

1  or ( ) ( )
( , )

y b dy
dx

x a
a b

− ×





 = − − .

Remark

	 (i)	If the tangent to a curve is horizontal at a point, then the derivative at that point is 0. Hence, 
at that point x y1 1,( )  the equation of the tangent is y y= 1  and equation of the normal is x x= 1 .

	 (ii)	If the tangent to a curve is vertical at a point, then the derivative exists and infinite ∞( )  at 

the point. Hence, at that point x y1 1,( )  the equation of the tangent is x x= 1  and the equation 
of the normal is y y= 1 .

Fig.7.7

0

Curve  →

← Tangent

← Normal

x

y
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10XII - Mathematics

Example 7.11
	 Find the equations of tangent and normal to the curve y x x= + −2 3 2  at the point ( , )1 2 .

Solution

	 We have, dy
dx

x= +2 3 . Hence at ( , ),1 2 5
dy
dx

= . 

	 Therefore, the required equation of tangent is

	 ( ) ( )y x x y− = − ⇒ − − =2 5 1 5 3 0 .

	 The slope of the normal at the point ( , )1 2  is − 1

5
 and 

therefore, the required equation of normal is

	 ( ) ( )y x x y− = − − ⇒ + − =2
1

5
1 5 11 0 .

Example 7.12
	 For what value of x  the tangent of the curve y x x x= − + −3 23 2  is parallel to the line y x= .
Solution
	 The slope of the line y x=  is 1. The tangent to the given curve will be parallel to the line, if the 
slope of the tangent to the curve at a point is also 1. Hence,

		  dy
dx

	= 	3 6 1 12x x− + =

		  which gives 3 62x x− 	= 	0 .

		  Hence, x 	= 	0 and x = 2.

	 Therefore, at (0, –2) and (2, –4) the tangent is parallel to the line y x= .

Example 7.13
	 Find the equation of the tangent and normal to the Lissajous curve given by x t= 2 3cos  and 
y t t= ∈3 2sin ,  .

Solution
	 Observe that the given curve is neither a circle nor an ellipse. For your reference the curve is 
shown in Fig. 7.9.

		  Now, dy
dx

	= 	
dy
dt

dx
dt

			  = 	− = −6 2

6 3

2

3

cos

sin

cos

sin

t
t

t
t

.

	 Therefore, the tangent at any point is

		  y t−3 2sin 	= 	− −
cos

sin
( cos )

2

3
2 3

t
t
x t

	 That is,	 x t y tcos sin2 3+ 	= 	3 2 3 2 2 3sin sin cos cost t t t+ . Fig.7.9
Lissajous curve

x t y t= =2 3 3 2cos ; sin

Fig.7.8

y
x

x
�

�
�

2
3

2

�1�2�3�4�5

�4

�3

�2

�1

(1, 2)

3210

1

2

3

4

5

5
3

0
x

y
−

−
=

x y+ − =5 1 1 0

y
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Applications of Differential Calculus11

	 The slope of the normal is the negative of the reciprocal of the tangent which in this case is  
sin

cos

3

2

t
t

. Hence, the equation of the normal is

y t t
t
x t− = −3 2

3

2
2 3sin

sin

cos
( cos ) .

	 That is, x t y t t t t t t tsin cos sin cos sin cos sin sin3 2 2 3 3 3 2 2 6
3

2
4− = − = − .

7.2.5  Angle between two curves

Definition 7.3
	 Angle between two curves, if they intersect, is defined as the acute angle between the tangent 
lines to those two curves at the point of intersection.

	 For the given curves, at the point of intersection using the slopes of the tangents, we can measure 
the acute angle between the two curves. Suppose y m x c= +1 1  and y m x c= +2 2  are two lines, then the 
acute angle θ  between these lines is given by,

			   tanθ 	= 	 m m
m m

1 2

1 21

−
+

 	 ... (3)

	 where m1 and m2 are finite.

Remark
	 (i)	 If the two curves are parallel at x y1 1,( ) , then m m1 2= .

	 (ii)	 If the two curves are perpendicular at x y1 1,( )  and if m1  and m2  exists and finite then 
m m1 2 1= − .

Example 7.14
	 Find the acute angle between y x= 2  and y x= −( )3 2 .

Solution
	 Let us now find the point of intersection. Equating x x2 23= −( )  we get, x = 3

2
. Therefore, the 

point of intersection is 3

2

9

4
,







 . Let θ be the acute angle between the curves. The slopes of the curves 

are as follows :
		  For the curve y  	= 	x2,

		  dy
dx

	= 	2x .

		  m dy
dx1 =   at 3

2

9

4
,







 	= 	3.

		  For the curve y 	= 	( )x −3 2,

		  dy
dx

	= 	2 3( )x − .

		  m dy
dx2 =   at 3

2

9

4
,







 	= 	−3.

Fig.7.10
0 2 4

2

4

x

y

–2–4

θ

y =
 (

x –
 3

)2

y =
 x2
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	 Using (3), we get

		  tanθ 	= 	 3 3

1 9

3

4

− −
−

=
( )

		  Hence, θ 	= 	tan− 







1 3

4
.

Example 7.15

	 Find the acute angle between the curves y x= 2  and x y= 2  at their points of intersection 

( , ), ( , )0 0 1 1 .

Solution
	 Let us now find the slopes of the curves.  
	 The slope  m1  for the curve y x= 2.

			   m1 	= 	 dy
dx

x= 2  

	 and slope m2  for the curve x y= 2, 

			   m2 	= 	 dy
dx y

=
1

2
.

	 Let θ1 and θ2 be the acute angles at (0,0) and (1,1) respectively.
	 At ( , )0 0 , we come across the indeterminate form of 0×∞ in the denominator of 

tan

( )

θ1

2
1

2

1 2
1

2

=
−

+










x
y

x
y

 and so we follow the limiting process.

			   tanθ1 	= 	 lim

( )
( , ) ( , )x y

x
y

x
y

→

−

+










0 0

2
1

2

1 2
1

2

  

				   = 	 lim
( )( , ) ( , )x y

xy
y x→

−
+0 0

4 1

2
 

				   = 	 ¥  

		  which gives  θ1	= 	 tan ( )− ∞ =1

2

π .

	 At ( , )1 1 , m m1 22
1

2
= =,  

			   tanθ2 	= 	
2

1

2

1 2
1

2

−

+ 





( )

				   = 	 3

4

			  which gives θ2 	= 	tan− 







1 3

4
.

Fig.7.11
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�2
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�0 0.
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0.2

0.4
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0.8

1
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( , )0 0
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x y� 2

x

y

�
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Example 7.16

	 Find the angle of intersection of the curve y x= sin  with the positive x -axis.

Solution
	 The curve y x= sin  intersects the positive x -axis.  When y = 0  which gives,  x n n= =π , , , ,1 2 3  .

Now, dy
dx

x= cos . The slope at x = np  are cos( ) ( )n nπ = −1 . Hence, the required angle of intersection is

		  tan ( )− −1 1 n 	= 	

π

π
4

3

4

  , when  is even

 , when is  odd

n

n










.

Example 7.17

	 If the curves ax by2 2 1+ =  and cx dy2 2 1+ =  intersect each other orthogonally then,

1 1 1 1
a b c d
− = − .

Solution

	 The two curves intersect at a point ( , )x y0 0  if ( ) ( )a c x b d y− + − =0

2

0

2 0 .

	 Let us now find the slope of the curves at the point of intersection ( , )x y0 0 . The slopes of the 
curves are as follows :

		  For the curve ax by2 2+ 	= 	1,
dy
dx

ax
by

= −  .

		  For the curve cx dy2 2+ 	= 	1,
dy
dx

cx
dy

= −  .

	 Now, two curves cut orthogonally, if the product of their slopes, at the point of intersection 
( , )x y0 0 , is −1. Hence, for the above two curves to cut orthogonally at ( , )x y0 0  if

		  −








× −










ax
by

cx
dy

0

0

0

0

	= 	−1.

		  That is, acx bdy0

2

0

2+ 	= 	0 ,

		      together with ( ) ( )a c x b d y− + −0

2

0

2  = 	0

		  gives, a c
ac
− 	= 	b d

bd
− .

		  That is,  1 1
c a
− 	= 	 1 1

d b
− .

		  Hence,  1 1
a b
− 	= 	1 1

c d
− .

Remark
In the above example, the converse is also true. That is assuming the condition one can easily 

establish that the curves cut orthogonally. 
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Example 7.18

	 Prove that the ellipse x y2 24 8+ =  and the hyperbola x y2 22 4− =  intersect orthogonally.
Solution
	 Let the point of intersection of the two curves be ( , )a b . Hence,

		  a b2 24+ 	= 	8  and a b2 22 4− =  	 ... (4)
	 It is enough if we show that the product of the slopes of the two curves evaluated at ( , )a b  is −1.
	 Differentiation of x y2 24 8+ =  with respect x , gives

		  2 8x y dy
dx

+ 	= 	0

		  Therefore dy
dx

	= 	− x
y4

		  at ( , ),a b dy
dx

	= 	m a
b1

4
= − .

	 Differentiation of x y2 22 4− =  with respect to  x,  gives

		  2 4x y dy
dx

− 	= 	0

		  Therefore, dy
dx

	= 	 x
y2

		  at ( , ),a b dy
dx

	= 	m a
b2 2

= .

	 Therefore,	 m m1 2× 	= 	 −





×






 = −

a
b

a
b

a
b4 2 8

2

2
	 ... (5)

	 Applying the ratio of proportions in (4), we get

		  a2

16 16− −
	= 	 b2

8 4

1

2 4− +
=
− −

.

	 Therefore a
b

2

2

32

4
8= = . Substituting in (5), we get m m1 2 1× = − . Hence, the curves cut 

orthogonally.

EXERCISE 7.2
	 1.	Find the slope of the tangent to the curves at the respective given points.

			  (i)	 y x x x= + −4 22  at x =1  	 (ii)	 x a t y b t= =cos , sin3 3  at t = π
2

.

	 2.	Find the point on the curve y x x= − +2 5 4  at which the tangent is parallel to the line 3 7x y+ = .

	 3.	Find the points on the curve y x x x= − + +3 26 3  where the normal is parallel to the line 

x y+ =1729 .

	 4.	Find the points on the curve y xy x2 24 5− = +  for which the tangent is horizontal.
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Applications of Differential Calculus15

	 5.	Find the tangent and normal to the following curves at the given points on the curve.
			  (i)	 y x x= −2 4  at ( , )1 0 	 (ii)	 y x ex= +4 2  at ( , )0 2  

			  (iii)	 y x x= sin  at π π
2 2

,






 	 (iv)	 x t y t= =cos , sin2 2  at t = π

3

	 6.	Find the equations of the tangents to the curve y x= +1 3  for which the tangent is orthogonal 

with the line x y+ =12 12 .

	 7.	Find the equations of the tangents to the curve y x
x

=
+
−

1
1

 which are parallel to the line x y+ =2 6 .

	 8.	Find the equation of tangent and normal to the curve given by x t= 7cos  and y t t= ∈2sin ,   
at any point on the curve.

	 9.	Find the angle between the rectangular hyperbola xy = 2  and the parabola x y2 4 0+ = .

	 10.	Show that the two curves x y r2 2 2− =  and xy c= 2  where c r,  are constants, cut orthogonally.

7.3 Mean Value Theorem
	 Mean value theorem establishes the existence of a point, in between two points, at which the 
tangent to the curve is parallel to the secant joining those two points of the curve. We start this section 
with the statement of the intermediate value theorem as follows :

Theorem 7.1  (Intermediate value theorem)
	 If f  is continuous on a closed interval [ , ]a b , and c  is any number between f a( )  and f b( )  

inclusive, then there is at least one number x  in the closed interval [ , ]a b , such that f x c( ) = .

7.3.1 Rolle’s Theorem

Theorem 7.2 (Rolle’s Theorem)
	 Let f x( )  be continuous on a closed interval [ , ]a b  and differentiable on the open interval ( , )a b  

If f a f b( ) ( )= , then there is at least one point c a b∈ ( , )  where ′ =f c( ) 0 .

	 Geometrically this means that if the tangent is moving 
along the curve starting at x a=  towards x b=  then there 

exists a c a b∈( , )  at which the tangent is parallel to the  

x -axis. 

Example 7.19
	 Compute the value of ' 'c  satisfied by the Rolle’s theorem for the function 

	 f x x x x( ) ( ) , [ , ]= − ∈2 21 0 1 .
Solution
	 Observe that, f f f x( ) ( ), ( )0 0 1= =  is continuous in the interval [ , ]0 1  and is differentiable in  
( , )0 1 . Now,

′f x( )  =  2 1 1 2x x x( )( )− − .

Fig.7.12

′ =f c( ) 0
y f x
= ( )

x a= x c= x b= x

y
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			   Therefore, ′f c( ) 	= 	0  gives c = 0 1, , and 
1

2

			   which ⇒ c 	= 	 1

2
0 1∈ ( , ) .

Example 7.20

	 Find the values in the interval 1

2
2,







  satisfied by the Rolle's theorem for the function 

f x x
x
x( ) , ,= + ∈





1 1

2
2 .

Solution

	 We have, f x( )  is continuous in 1

2
2,







 and differentiable in 1

2
2,







  with f f1

2

5

2
2







 = = ( ) . By 

the Rolle’s theorem there must exist a c∈







1

2
2,  such that,

	 ′ = − = ⇒ =f c
c

c( ) 1
1

0 1
2

2  gives c = ±1,. As 1 1

2
2∈






, , we choose c =1. 

Example 7.21
	 Compute the value of ' 'c  satisfied by Rolle’s theorem for the function f x x

x
( ) log=

+









2 6

5
 in the 

interval [ , ]2 3 .
Solution
	 Observe that, f f( ) ( )2 0 3= =  and f x( )  is continuous in the interval [ , ]2 3  and differentiable in 
( , )2 3 . Now,

		  ′f x( ) 	= 	 x
x x

2

2

6

6

−
+( )

 

		  Therefore, ′f c( ) 	= 	0  gives

		  c
c c

2

2

6

6

−
+( )

	= 	0

			   which implies c 	= 	± 6

		  Now c 	= 	+ ∈6 2 3( , ) .

	 Observe that − ∉6 2 3( , )  and hence c = + 6  satisfies the Rolle’s theorem.

	 Rolle’s  theorem can also be used to compute the number of roots of an algebraic equation in an 
interval without actually solving the equation.

Example 7.22
	 Without actually solving show that the equation x x4 32 2 0+ − =  has only one real root in the 
interval ( , )0 1 .

Solution
	 Let f x x x( ) = + −4 32 2 . Then f x( )  is continuous in [ , ]0 1  and differentiable in ( , )0 1 . Now,

		  ′f x( ) 	= 	 4 63 2x x+ . If ′ =f x( ) 0  then, 
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		  2 2 32x x( )+ 	= 	0 . 

		  Therefore, x 	= 	0 3

2
,−  but 0

3

2
0 1, ( , )− ∉ .

		  Thus,  ′f x( ) 	> 	0 0 1, ( , )∀ ∈x .

	 Hence by the Rolle’s theorem there do not exist a b, ( , )∈ 0 1  such that, f a f b( ) ( )= =0 . Therefore 
the equation f x( ) = 0  cannot have two roots in the interval ( , )0 1 . But, f ( )0 2 0= − <  and f ( )1 1 0= >  
tells us the curve y f x= ( )  crosses the x -axis between 0  and 1 only once by the Intermediate value 
theorem. Therefore the equation x x4 32 2 0+ − =  has only one real root in the interval ( , )0 1 .

	 As an application of the Rolle’s theorem we have the following,

Example 7.23
	 Prove using the Rolle’s theorem that between any two distinct real zeros of the polynomial

a x a x a x an
n

n
n+ + + +−
−

1

1

1 0  

there is a zero of the polynomial
na x n a x an

n
n

n−
−

−+ − + +1

1

2

11( )  .

Solution

	 Let P x a x a x a x an
n

n
n( ) = + + + +−
−

1

2

1 0 . Let α β<  be two real zeros of P x( ) . Therefore,

P P( ) ( )α β= = 0 . Since P x( )  is continuous in [ , ]α β  and differentiable in ( , )α β  by an application 

of Rolle’s theorem there exists γ α β∈ ( , )  such that ′ =P ( )γ 0 . Since,

′ = + − + +−
−

−P x na x n a x an
n

n
n( ) ( )1

1

2

11 

which completes the proof.

Example 7.24

	 Prove that there is a zero of the polynomial, 2 9 11 123 2x x x− − +  in the interval ( , )2 7   given that 

2  and 7  are the zeros of the polynomial x x x x4 3 26 11 24 28− − + + .

Solution

	 Applying the above example 7.23 with
P x x x x x( ) , ,= − − + + = =4 3 26 11 24 28 2 7α β

	 and observing
′

= − − + =
P x x x x Q x( )

( )
2

2 9 11 123 2 , (say).

	 This implies that there is a zero of the polynomial Q x( )  in the interval ( , )2 7 .

	 For verification,
		  Q( )2 	= 	16 36 22 12 28 58 30 0− − + = − = − <

		  Q( )7  	= 	686 441 77 12 698 518 180 0− − + = − = >  

	 From this we may see that there is a zero of the polynomial Q x( )  in the interval ( , )2 7 .
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Remark
	 There are functions for which Rolle’s theorem may not be applicable.
	 (1)	 For the function f x x x( ) | |, [ , ]= ∈ −1 1  Rolle’s theorem is not applicable, even though 

f f( ) ( )− = =1 1 1   because f x( )  is not differentiable at x = 0 .

	 (2)	 For the function,

f x
x

x x
( )

,
=

=
< ≤





1 0

0 1

when 

  when 
.

		  even though f f( ) ( )0 1 1= = , Rolle's theorem is not applicable because the function f x( )  is 

not continuous at x = 0 .

	 (3)	 For the function f x x x( ) sin , ,= ∈





0
2

π
 Rolle’s theorem is not applicable, even though 

f x( )  is continuous in the closed interval 0
2

,
π





 and differentiable in the open interval 

0
2

,
π






  because, 0 0

2
1= ≠ 






 =f f( )

π .

	 If f x( )  is continuous in the closed interval [ , ]a b  and differentiable in the open interval ( , )a b  

and even if f a f b( ) ( )¹  then the Rolle’s theorem can be generalised as follows. 

7.3.2 Lagrange’s Mean Value Theorem

Theorem 7.3

	 Let f x( )  be continuous in a closed interval [ , ]a b  and 

differentiable in the open interval ( , )a b   (where f (a), f (b) are  
not necessarily equal). Then there exist at least one point 
c a b∈ ( , )  such that,

		  ′f c( ) 	 = 	 f b f a
b a

( ) ( )−
−

 	 ... (6)

Remark
	 If f a f b( ) ( )=  then Lagrange’s Mean Value Theorem gives the Rolle’s 

theorem. It is also known as rotated Rolle’s Theorem.

Remark

	 A physical meaning of the above theorem is the number f b f a
b a

( ) ( )−
−

 can be 

thought of as the average rate of change in f x( )  over ( , )a b  and ′f c( )  as an instantaneous change.

	 A geometrical meaning of the Lagrange’s mean value theorem is that the instantaneous rate of 
change at some interior point is equal to the average rate of change over the entire interval. This is 
illustrated as follows :

x a= x c= x b=

y f x= ( )

f a( )
f b( )

′ =

−
−

f c
f b

f a

b a
( )

( )
( )

x

y

Fig.7.13
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	 If a car accelerating from zero takes just 8 seconds to travel 200 m, its average velocity for the 8 

second interval is 200

8
25=  m/s. The Mean Value Theorem says that at some point during the travel 

the speedometer must read exactly 90 km/h which is equal to 25  m/s.

 Theorem 7.4
	 If f x( )  is continuous in [ , ]a b  and differentiable in ( , )a b  and if ′ > ∀ ∈f x x a b( ) , ( , )0 , then 

for, x x a b1 2, [ , ]∈ , such that x x1 2<  we have, f x f x( ) ( )1 2< .

Proof 
	 By the mean value theorem, there exists a c x x a b∈ ⊂( , ) ( , )1 2  such that,

		  f x f x
x x

( ) ( )2 1

2 1

−
−

	= 	 ′f c( )  

		  Since ′f c( ) 	> 	0 , and

		  x x2 1− 	> 	0  

	 We conclude that, whenever x x1 2< , we have f x f x( ) ( )1 2< .

Remark

	 If ′ < ∀ ∈f x x a b( ) , ( , )0 , then for, x x a b1 2, [ , ]Î , such that x x1 2<  we have, f x f x( ) ( )1 2< .
	 The proof is similar.

Example 7.25
	 Find the values in the interval ( , )1 2  of the mean value theorem satisfied by the function 

f x x x( ) = − 2  for 1 2£ £x .
Solution

	 f ( )1 0=  and f ( )2 2= − . Clearly f x( )  is defined and differentiable in 1 2< <x . Therefore, by 

the Mean Value Theorem, there exists a c∈ ( , )1 2  such that

		  ′f c( ) 	= 	 f f c( ) ( )2 1

2 1
1 2

−
−

= −

		  That is,  1 2− c 	= 	− ⇒ =2
3

2
c .

Geometrical meaning

	 Geometrically, the mean value theorem says the secant to the curve 

y f x= ( )  between x a=  and x b=  is parallel to a tangent line of the 

curve, at some point c a b∈ ( , ) .

Consequences of Lagrange’s Mean Value Theorem
	 There are three important consequences of MVT for derivatives.
	 (1)	 To determine the monotonicity of the given function (Theorem 7.4)
	 (2)	 If ′ =f x( ) 0  for all x  in ( , )a b , then f  is constant on ( , )a b .
	 (3)	If ′ = ′f x g x( ) ( )  for all x , then f x g x C( ) ( )= +  for some constant C .

Tangent

Seca
nt

x a= x c= x b=

y f x= ( )

f a( )
f b( )

′ =

−
−

f c
f b

f a

b a
( )

( )
( )

x

y

Fig.7.14
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7.3.3 Applications

Example 7.26
	 A truck travels on a toll road with a speed limit of 80 km/hr. The truck completes a  
164 km journey in 2 hours. At the end of the toll road the trucker is issued with a speed violation 
ticket. Justify this using the Mean Value Theorem.

Solution

	 Let f t( )  be the distance travelled by the trucker in ' 't  hours. This is a continuous function in 
[ , ]0 2  and differentiable in ( , )0 2 . Now, f ( )0 0=  and f ( )2 164= . By an application of the Mean 
Value Theorem, there exists a time c  such that,

′ =
−
−

= >f c( )
164 0

2 0
82 80 .

	 Therefore at some point of time, during the travel in 2 hours the trucker must have travelled with 
a speed more than 80 km which justifies the issuance of a speed violation ticket.

Example 7.27
	 Suppose f x( )  is a differentiable function for all x  with ′ ≤f x( ) 29  and f ( )2 17= . What is the 
maximum value of f ( )7 ?

Solution
	 By the mean value theorem we have, there exists ' ' ( , )c ∈ 2 7  such that,

		  f f( ) ( )7 2

7 2

−
−

	= 	 ′ ≤f c( ) 29 .

		  Hence, f ( )7 5 29 17≤ × + 	= 	162

	 Therefore, the maximum value of f ( )7  is 162 .

Example 7.28

	 Prove, using mean value theorem, that
| sin sin | | |, ,α β α β α β− ≤ − ∈ .

Solution

	 Let f x x( ) sin=  which is a differentiable function in any open interval. Consider an interval 

[ , ]α β . Applying the mean value theorem  there exists c∈ ( , )α β  such that,

		  sin sinβ α
β α
−
−

	= 	 ′ =f c c( ) cos( )

		  Therefore,  sin sinα β
α β
−
−

	= 	 cos( )c £1 

		  Hence, | sin sin |α β− 	£ 	| |α β− .

Remark
	 If we take β = 0  in the above problem, we get | sin | | |α α≤ .
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Example 7.29
	 A thermometer was taken from a freezer and placed in a boiling water. It took 22 seconds for the 
thermometer to raise from − °10 C  to 100°C . Show that the rate of change of temperature at some 
time t is5°C  per second.

Solution
	 Let  f t( )  be the temperature at time t. By the mean value theorem, we have 

		  ¢f c( ) 	= 	
f b f a
b a

( ) ( )−
−

			  = 	100 10

22

− −( )

			  = 	
110

22

			  = 	5°C  per second.
	 Hence the instantaneous rate of change of temperature at some time t should be 5°C  per 
second.

EXERCISE 7.3
	 1.	Explain why Rolle’s theorem is not applicable to the following functions in the respective 

intervals.

			  (i)	 f x
x
x( ) , [ , ]= ∈ −

1
1 1  	 (ii)	 f x x x( ) tan , [ , ]= ∈ 0 π

		 (iii)		  f x x x x( ) log , [ , ]= − ∈2 2 7 	

	 2.	Using the Rolle’s theorem, determine the values of x  at which the tangent is parallel to the  

x -axis for the following functions :

			  (i)	 f x x x x( ) , [ , ]= − ∈2 0 1  	 (ii)	 f x x x
x

x( ) , [ , ]=
−
+

∈ −
2 2

2
1 6  

			  (iii)	 f x x x x( ) , [ , ]= − ∈
3

0 9

	 3.	Explain why Lagrange’s mean value theorem is not applicable to the following functions in the 
respective intervals :

			  (i)	 f x x
x

x( ) , [ , ]=
+

∈ −
1

1 2  	 (ii)	 f x x x( ) | |, [ , ]= + ∈ −3 1 1 3

	 4.	Using the Lagrange’s mean value theorem determine the values of x  at which the tangent is 
parallel to the secant line  at the end points of the given interval:

			  (i)	 f x x x x( ) , [ , ]= − + ∈ −3 3 2 2 2  	 (ii)	 f x x x x( ) ( )( ), [ , ]= − − ∈2 7 3 11  

	 5.	Show that the value in the conclusion of the mean value theorem for

			  (i)	 f x
x

( ) =
1  on a closed interval of positive numbers [ , ]a b  is ab

			  (ii)	 f x Ax Bx C( ) = + +2  on any interval [ , ]a b  is a b+
2

.

	 6.	A race car driver is racing at 20th km. If his speed never exceeds 150 km/hr, what is the maximum 
distance he can cover in the next two hours.

	 7.	Suppose that for a function f x f x( ), ( )′ ≤1 for all 1 4£ £x . Show that f f( ) ( )4 1 3− ≤ .
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	 8.	Does there exist a differentiable function f x( )  such that f f( ) , ( )0 1 2 4= − =  and ′ ≤f x( ) 2  for 

all x . Justify your answer.

	 9.	Show that there lies a point on the curve f x x x e x( ) ( ) ,= + − ≤ ≤
−

3 3 02

π

 where tangent drawn is 

parallel to the x -axis.
	 10.	Using mean value theorem prove that for,  a b e e a ba b> > − < −− −0 0, , | | | | .

7.4 Series Expansions
	 Taylor’s series and Maclaurin's series expansion of a function which are infinitely differentiable.

 Theorem 7.5
(a) Taylor’s Series
	 Let f x( )  be a function infinitely differentiable at x a= . Then f x( )  can be expanded as a 
series, in an interval ( , )x a x a− + , of the form

		  f x( ) 	= 	 f a
n

x a f a f a x a f a
n

x a
n

n

n
n

n
( ) ( )( )

!
( ) ( )

( )

!
( )

( )

!
( )

=

∞

∑ − = + ′ − + + − +
0 1

  .

(b) Maclaurin’s series
	 If a = 0 , the expansion takes the form

		  f x( ) 	= 	 f
n

x f f x f
n

x
n

n

n
n

n
( ) ( )( )

!
( )

( )

!

( )

!
.

0
0

0

1

0

0=

∞

∑ = +
′

+ + +   

Proof 
	 The series of f x( ) , in powers of ( )x a− , be given by

		  f x( ) 	= 	 A A x an
n

n
0

1

+ −
=

∞

∑ ( )  	 ... (7)

	 Then A f a0 = ( ) . Differentiation of (7) gives

		  ′f x( ) 	= 	1 1

1

2

! ( )A nA x an
n

n
+ − −

=

∞

∑  	 ... (8)

	  Substituting x a=  gives A f a1 = ′( ) . Differentiation of (8) gives

		  ′′f x( ) 	= 	 2 12

2

3

! ( ) ( )A n n A x an
n

n
+ − − −

=

∞

∑  	 ... (9)

	  Substituting x a=  gives A f a
2

2
=

′′( )

!
. Differentiation of (9) gives

		  ′′′f x( ) 	= 	3 1 23

3

4

! ( )( ) ( )A n n n A x an
n

n
+ − − − −

=

∞

∑  	 ... (10)

	 Differentiation of (10) ( )k −3  times gives

		  f xk( ) ( ) 	= 	k A n n n k A x ak n
n k

n k
! ( )...( ) ( )+ − − + − −

= +

∞

∑ 1 1
1

	 ...(11)
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	 Substituting x a=  gives A f a
kk

k

=
( ) ( )

!
 which completes the proof of the theorem.

	 In order to expand a function around a point say x a= , equivalently in powers of ( )x a−  we 

need to differentiate the given function as many times as the required powers and evaluate at x a= . 

This will give the value for the coefficients of the required powers of ( )x a− .

Example 7.30
	 Expand log( )1+ x  as a Maclaurin’s series upto 4 non-zero terms for  –1 < x ≤ 1.

Solution

	 Let f x x( ) log( )= +1 , then the Maclaurin series of f x( )  is f x a xn
n

n

n
( ) =

=

=∞∑ 0
, where, 

a f
nn

n

=
( ) ( )

!

0   various derivatives of the function f x( )  evaluated at x = 0  are given below:

Function and its 
derivatives

log( )1++ x  and its 

derivatives
value at x = 0

f x( ) log( )1+ x 0

′f x( )
1

1+ x 1

′′f x( ) −
+
1

1 2( )x −1

′′′f x( )
2

1 3( )+ x 2

f xiv( ) ( ) −
+
6

1 4( )x −6

Table 7.2

	 Substituting the values and on simplification we get the required expansion of the function given 
by,

log( )1
2 3 4

2 3 4

+ = − + − +x x x x x
  ; –1 < x ≤ 1.

Example 7.31
	 Expand tan x in ascending powers of x  upto 5th power for − < <p p

2 2
x .

Solution
	 Let f x x( ) tan= , then the Mclaurin series of f x( )  is

f x a xn
n

n

n

( ) =
=

=∞

∑
0

, where, a f
nn

n

=
( ) ( )

!

0  .

	 Various derivative’s of the function f x( )  evaluated at x = 0  is given below :
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	 Now,

		  ′f x( ) 	= 	 d
dx

x x(tan ) sec ( )= 2

		  ′′f x( ) 	= 	
d
dx

x x x x x x(sec ( )) sec sec tan sec tan2 22 2= ⋅ ⋅ = ⋅
   

		  ′′′f x( ) 	= 	 d
dx

x x x x x x x x( sec ( ) tan ) sec ( ) sec tan sec sec tan2 2 42 2 2⋅ = ⋅ + ⋅ ⋅ ⋅

			  = 	 2 44 2 2sec sec tanx x x+ ⋅
		  f xiv( ) ( )

	= 	
8 4 2 83 2 2 2sec sec tan sec tan sec sec sec tan tanx x x x x x x x x x⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅

			  = 	16 84 2 3sec tan sec tanx x x x+ ⋅  

		  f xv( ) ( ) 	= 	16 64 8 34 2 3 2 2 2sec sec sec sec tan tan sec tan secx x x x x x x x x⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅

				    + ⋅ ⋅ ⋅16 3sec sec tan tanx x x x
			  = 	16 88 166 4 2 2 4sec sec tan sec tanx x x x x+ ⋅ + ⋅ .

Function and 
its derivatives

tan x  
and its derivatives

value at x = 0

f x( ) tan x  0

′f x( ) sec2 x  1

′′f x( ) 2 2sec tanx x  0

′′′f x( ) 2 44 2 2sec sec tanx x x+ ⋅  2

f xiv( ) ( ) 16 84 2 3sec tan sec tanx x x x⋅ + ⋅  0

f xv( ) ( ) 16 88 166 4 2 2 4sec sec tan sec tanx x x x x+ ⋅ + ⋅  16  

Table 7.3
	 Substituting the values and on simplification we get the required expansion of the function as

tan x x x x= + + +
1

3

2

15

3 5
  ; − < <p p

2 2
x .

Example 7.32

	 Write the Taylor series expansion of 1
x

 about x = 2  by finding the first three non-zero terms.

Solution

	 Let f x
x

( ) =
1 , then the Taylor series of f x( )  is

f x a xn
n

n

n

( ) ( )= −
=

=∞

∑ 2
0

, where a f
nn

n

=
( ) ( )

!

2 .
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	 Various derivatives of the function f x( )  evaluated at x = 2  are given below.

Functions and its 
derivatives

1
x

 and its 

derivatives
value at x = 2

f x( )
1
x

 1

2
 

′f x( ) −
1

2x
 −

1

4
 

′′f x( )
2

3x
 1

4
 

′′′f x( ) −
6

4x
 − 3

8
 

Table 7.4
	 Substituting these values, we get the required expansion of the function as

		  1
x

	= 	 1

2

1

4

2

1

1

4

2

2

3

8

2

3

2 3

− − + − − − +( )

!

( )

!

( )

!

x x x
  

	 which is,	 1
x

	= 	
1

2

2

4

2

8

2

16

2 3

− − + − − − +( ) ( ) ( )x x x
 

EXERCISE 7.4
	 1.	Write the Maclaurin series expansion of the following functions:

			  (i)	ex 			   (ii)	 sin x 			   (iii)	 cos x

			  (iv)	 log( )1- x ; –1 ≤ x < 1	 (v)	 tan ( )-1 x  ; –1 ≤ x ≤ 1	 (vi)	 cos2 x

	 2.	Write down the Taylor series expansion, of the function log x  about x =1  upto three non-zero 
terms for x > 0.

	 3.	Expand sin x  in ascending powers x − π
4

 upto three non-zero terms.

	 4.	Expand the polynomial f (x) = x2 – 3x + 2 in powers of x – 1.

7.5 Indeterminate Forms
	 In this section, we shall discuss various “indeterminate forms” and methods of evaluating the 
limits when we come across them.

7.5.1 A Limit Process
	 While computing the limits

lim ( )
x
R x

→α

	 of certain functions R x( ) , we may come across the following situations like,
0

0
0 1 00 0, , , , , ,

∞
∞

×∞ ∞−∞ ∞∞ .

Chapter 7 Differential Calculus Original-new.indd   25 7/25/2019   6:29:18 PM



26XII - Mathematics

	 We say that they have the form of a number. But values cannot be assigned to them in a way that is  
consistent with the usual rules of addition and mutiplication of numbers. We call these expressions 
Indeterminate forms. Although they are not numbers, these indeterminate forms play a useful role in 
the limiting behaviour of a function.
	 John (Johann) Bernoulli discovered a rule using derivatives to compute the limits of fractions 
whose numerators and denominators both approach zero or ¥ . The rule is known today as l’Hôpital’s 
Rule (pronounced as Lho pi tal Rule), named after Guillaume de l’Hospital’s, a French nobleman who 
wrote the earliest introductory differential calculus text, where the rule first appeared in print.

7.5.2  The l’Hôpital’s Rule 
	 Suppose f x( )  and g x( )  are differentiable functions and ′ ≠g x( ) 0  with

		  lim ( )
x a

f x
→

	= 	0 =
→

lim ( )
x a
g x . Then lim

( )

( )
lim

( )

( )x a x a

f x
g x

f x
g x→ →

=
′
′

 

		  lim ( )
x a

f x
→

	= 	±∞ =
→

lim ( )
x a
g x . Then lim

( )

( )
lim

( )

( )x a x a

f x
g x

f x
g x→ →

=
′
′

 

7.5.3  Indeterminate forms  0

0
0, , ,

∞
∞

×∞ ∞−∞

Example 7.33

	 Evaluate : lim
x

x x
x x→

− +
− +











1

2

2

3 2

4 3
 .

Solution
	 If we put directly x =1  we observe that the given function is in an indeterminate form 0

0
. As the 

numerator and the denominator functions are polynomials of degree 2 they both are differentiable. 
Hence, by an application of the l’Hôpital Rule, we get

		  lim
x

x x
x x→

− +
− +











1

2

2

3 2

4 3
	= 	lim

x

x
x→

−
−









1

2 3

2 4
 

			  = 	1
2

.

	 Note that this limit may also be evaluated through the factorization of the numerator and 

denominator as x x
x x

x x
x x

2

2

3 2

4 3

1 2

1 3

− +
− +

=
− −
− −

( )( )

( )( )
 .

Example 7.34

	 Compute the limit   lim
x a

n nx a
x a→

−
−









 .

Solution
	 If we put directly x a=  we observe that the given function is in an indeterminate form  
0
0

. As the numerator and the denominator functions are polynomials they both are differentiable. 
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	 Hence by an application of the l’Hôpital Rule we get,

		  lim
x a

n nx a
x a→

−
−









 	= 	lim

x a

nn x
→

−×









1

1
 

			   = 	n an× −1 .
Example 7.35

	 Evaluate the limit lim
sin

x

mx
x→









0
 .

Solution

	 If we directly substitute x = 0  we get an indeterminate form 0
0

 and hence we apply the l’Hôpital’s 

rule to evaluate the limit as,

		  lim
sin

x

mx
x→









0
	= 	lim cos

x

m mx
→

×







0 1

			  = 	m
	 The next example tells that the limit does not exist.

Example 7.36

	 Evaluate the limit lim
sin

x

x
x→









0 2
 .

Solution
	 If we directly substitute x = 0  we get an indeterminate form 0

0
 and hence we apply the l’Hôpital’s 

rule to evaluate the limit as,

			   lim
sin

x

x
x→ +









0
2

	= 	 lim cos

x

x
x→ +







 = ∞

0 2
 

			   lim
sin

x

x
x→ −









0
2

	= 	 lim cos

x

x
x→ −







 = −∞

0 2
 

	 As the left limit and the right limit are not the same we conclude that the limit does not exist.

Remark

	 One may be tempted to use the l’Hôpital’s rule once again in lim
cos

x

x
x→ +









0 2
 to conclude

		  lim
cos

x

x
x→ +









0 2
	= 	 lim

sin

x

x
→ +

−





=
0 2

0 .

	 which is not true because it was not an indeterminate form.
Example 7.37

	 If lim
cos

cosθ

θ
θ→

−
−







 =

0

1

1
1

m
n

, then prove that m n= ± .

Solution

	 As this is an indeterminate form 0
0






 , using the l’Hôpital’s Rule

		  lim
cos

cosθ

θ
θ→

−
−









0

1

1

m
n

	= 	lim sin

sinθ

θ
θ→









0

m m
n n
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	 Now using the example 7.35, we have

		  lim
sin

sinθ

θ
θ
θ

θ
→

×










0

m
n

m

n
	= 	m
n

2

2

		  Therefore m2 	= 	n2  
		  That is m 	= 	±n .
Example 7.38

	 Evaluate : lim
log( )

cot( )x

x
x→ −

−









1

1

π
 .

Solution
	 This is an indeterminate form ¥

¥
 and hence we use the l’Hôpital’s Rule to evaluate

		  lim
log( )

cot( )x

x
x→ −

−
1

1

π
	= 	lim

( )x

x

x→

−
−

−
−










∞
∞








1

1
1

2π πcosec

	 On Simplication,	
			  = 	lim sin ( )

( )x

x
x→ − −











1

2

1

π
π

      0
0






  

	 again applying the l’Hôpital Rule

			  = 	lim sin( ) cos( )

x

x x
→ −

⋅
−









1

2π π π
π

 

			  = 	lim sin( ) cos( )
x

x x
→ −

− ⋅( )
1

2 π π  

			  = 	0 .
Example 7.39

	 Evaluate : lim
x xx e→ +

−
−









0

1 1

1
.

Solution
	 This is an indeterminate of the form ∞−∞ . To evaluate this limit we first simplify and bring it in 

the form 0
0






  and applying the l’Hôpital Rule, we get

		  lim
x xx e→ +

−
−









0

1 1

1
	= 	 lim

( )x

x

x

e x
x e→ +

− −
−



















0

1

1

0

0
 

	 Now,

		  lim
( )x

x

x

e x
x e→ +

− −
−











0

1

1
	= 	 lim

x

x

x x

e
xe e→ +

−
+ −


















0

1

1

0

0
 

			  = 	 lim
x

x

x x

e
xe e→ + +









 =

0 2

1

2
.
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Example 7.40

	 Evaluate : lim log
x

x x
→ +0

.

Solution
	 This is an indeterminate of the form ( )0×∞ . To evaluate this limit, we first simplify and bring it 

to the form ∞
∞






  and apply l’Hôpital Rule

		  lim log
x

x x
→ +0

	= 	 lim log

x
x

x
→ +











∞
∞








0 1
 

			  = 	 lim
x

x

x
→ + −









0

1

1
2

  =  lim ( )
x

x
→ +

− =
0

0 .

Example 7.41

	 Evaluate : lim
x

x x
x→∞

+ +









2

4

17 29 .

Solution

	 This is an indeterminate of the form ∞
∞






 . To evaluate this limit, we apply l’Hôpital Rule.

		  lim
x

x x
x→∞

+ +









2

4

17 29 	= 	lim
x

x
x→∞

+







2 17

4 3

			  = 	lim
x x→∞









2

12 2
  =  0 .

Example 7.42

	 Evaluate : lim ,
x

x

m

e
x

m N
→∞









 ∈ .

Solution

	 This is an indeterminate of the form ∞
∞






 . 

	 To evaluate this limit, we apply l’Hôpital Rule m  times

		  lim
x

x

m

e
x→∞

	= 	lim
!x

xe
m→∞

 

			  =  ¥ .

7.5.4  Indeterminate forms 00,1∞ and ∞0

	 In order to evaluate the indeterminate forms like this, we shall first state the theorem on the limit 
of a composite function.

 Theorem 7.6

	 Let lim ( )
x
g x

→α
 exist and let it be L  and let f x( )  be a continuous function at x L= . Then,

		  lim ( ( ))
x

f g x
→α

	= 	 f g x
x
lim ( )
→( )α

.
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The evaluation procedure for evaluating the limits

	 (1)	 Let A g x
x a

=
→

lim ( ) . Then taking logarithm, with the assumption that A > 0  to ensure the 

continuity of the logarithm function, we get, log lim log( ( ))A g x
x a

=
→

. Therefore using the above 

theorem with f x x( ) log=  we have the limit

			   lim log( ( ))
x a

g x
→

	= 	 log lim ( )
x a
g x

→( ) .

	 (2)	 We have the limit limlog( ( ))
x a

g x
→

into either 0
0






  or ∞

∞






  evaluate it using l’Hôpital Rule.

	 (3)	 Let that evaluated limit be say α . Then the required limit is eα .

Example 7.43

	 Using the l’Hôpital Rule prove that, lim ( )
x

xx e
→ +

+ =
0

1

1 .

Solution

	 This is an indeterminate of the form 1¥ . Let g x x x( ) ( )= +1
1

. Taking the logarithm, we get

		  log ( )g x 	= 	 log( )1+ x
x

 

		  lim log( ( )
x

g x
→ +0

	= 	 lim
log( )

x

x
x→ +

+














0

1 0

0

			  = 	 lim
x

x

→

+
+









0

1
1

1
         (by l’Hôpital Rule)

			  = 	1 .

		  But, lim log ( )
x

g x
→ +0

	= 	 log lim ( )
x

g x
→ +( )

0
 

		  Therefore, log lim ( )
x

g x
→ +( )

0
	= 	1.

	 Hence by exponentiating, we get lim ( )
x

g x e
→ +

=
0

.

Example 7.44

	 Evaluate : lim( ) log

x

xx
→∞

+1 2

1

2 .

Solution
	 This is an indeterminate of the form ¥0 . 

		  Let  g x( ) 	= 	 ( ) log1 2

1

2+ x x .

	 Taking the logarithm, we get

		  log ( )g x 	= 	 log( )

log

1 2

2

+ x
x
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		  lim log ( )
x

g x
→∞

	= 	 lim log( )

logx

x
x→∞

+









∞
∞








1 2

2
 

			  = 	 lim
x

x

x
→∞

+









2
1 2

2
    (by l’Hôpital Rule)

			  = 	 lim
x

x
x→∞ +









∞
∞








1 2
 

			  = 





 =→∞

lim
x

1

2

1

2
  but,

		  lim log ( )
x

g x
→∞

	= 	 log lim ( )
x
g x

→∞( ) .

	 Hence by exponentiating, we get the required limit as e .

Example 7.45

	 Evaluate : lim
x

xx
→

−

1

1

1 .

Solution

	 Let g x x x( ) = −
1

1 . This is an indeterminate of the form 1¥ . Taking the logarithm,

		  log ( )g x 	= 	log x
x1−

.

		  Therefore, lim log ( )
x

g x
→1

	= 	lim log

x

x
x→ −
















1 1

0

0
.

	 An application of l’Hôpital rule,

		  lim
x

x

→ −








1

1

1
	= 	−1

		  But,  lim log ( )
x

g x
→1

	= log lim ( )
x
g x

→( )
1

	 Hence on exponentiating, we get

		  lim
x

xx
→

−

1

1

1 	= 	e
e

− =1 1 .

EXERCISE 7.5
Evaluate the following limits, if necessary use l’Hôpital Rule :

	 1.	 lim
cos

x

x
x→

−
0 2

1  	 2.	 lim
x

x
x x→∞

−
− +

2 3

5 3

2

2
	 3.	 lim

logx

x
x→∞

	 4.	 lim
sec

tanx

x
x→

−π
2

	 5.	 lim
x

xe x
→∞

− 	 6.	 lim
sinx x x→

−







0

1 1  

	 7.	 lim
x x

x
x→ + −

−
−









1
2

2

1 1 	
8.	 lim

x

xx
→ +0

	 9.	 lim
x

x

x→∞
+






1

1 	
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	 10.	 lim(sin )tan

x

xx
→p

2

	 11.	 lim (cos )
x

xx
→ +0

1
2

	 12.	If an initial amount A0 of money is invested at an interest rate r compounded n  times a year, 

the value of the investment after t years is A A r
n

nt

= +





0 1 .  If the  interest is compounded 

continuously, (that is as n →∞ ), show that the amount after t years is A A ert= 0

7.6 Applications of First Derivative
	 Using the first derivative we can test a function f x( )  for its monotonicity  
(increasing or decreasing), focusing on a particular point in its domain and  
the local extrema (maxima or minima) on a domain.

7.6.1 Monotonicity of functions
	 Monotonicity of functions are its behaviour of increasing or decreasing.

Definition 7.4

	 A function f x( )  is said to be an increasing function in an interval I  
	 if a b f a f b a b I< ⇒ ≤ ∀ ∈( ) ( ), , .

Definition 7.5

	 A function f x( )  is said to be a decreasing function in an interval I  
	 if a b f a f b a b I< ⇒ ≥ ∀ ∈( ) ( ), , .

	 The function f x x( ) =  is an increasing function in the entire real line, whereas the function 

f x x( ) = −  is a decreasing function in the entire real line. In general, a given function may be increasing 

in some interval and decreasing in some other interval, say for instance, the function f x x( ) | |=  is 

decreasing in ( , ]−∞ 0  and is increasing in [ , )0 ¥ . These functions are simple to observe for their 
monotonicity. But given an arbitrary function how we determine its monotonicity in an interval of a 
real line? That is where following theorem will be useful, which is stated here.

 Theorem 7.7

	 If the function f x( )  is differentiable in an open interval ( , )a b  then we say,
	 (1)	 if

			   d
dx

f x( ( )) 	≥ 	0, ( , )∀ ∈x a b .	 ... (1)

		  then f x( )  is increasing in the interval ( , )a b .

	 (2)	 if

			   d
dx

f x( ( )) 	> 	0, ( , )∀ ∈x a b .	 ... (2)

		  then f x( )  is strictly increasing in the interval ( , )a b .

		  The proof of the above can be observed from Theorem 7.3.
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	 (3)	 f x( )  is decreasing in the interval ( , )a b  if

			   d
dx

f x( ( )) 	£ 	0, ( , )∀ ∈x a b .	 ...(3)

	 (4)	 f x( )  is strictly decreasing in the interval ( , )a b  if

			   d
dx

f x( ( )) 	< 	0, ( , )∀ ∈x a b .	 ... (4)

Remark
	 It is very important to note the following fact. It is false to say that if a differentiable function 
f x( )  on I  is strictly increasing on I , then ′ >f x( ) 0  for all x I∈ . For instance, consider 
y x x= ∈ −∞ ∞3, ( , ) . It is strictly increasing on ( , )−∞ ∞ . To prove this, let a b> . Then we have to 
prove that f a f b( ) ( )> . For this purpose, we have to prove a b3 3 0− > .

	 Now,
		  a b3 3− 	= 	( )( )a b a ab b− + +2 2

			  = 	( ) ( )a b a ab b− + +
1

2
2 2 22 2

			  = 	( ) ( )a b a b a b− + + +( )1

2

2 2 2  

			  >  0  since a b− > 0  and other terms inside the bracket are > 0 .
	 Hence it is clear that the quadratic expression is always positive (it is equal to zero only if 
a b= = 0 , which contradicts the condition a b< ). Therefore the function is y x= 3  is strictly increasing 
in ( , )−∞ ∞ . But ′ =f x x( ) 3 2  which is equal to zero at x = 0 .

Definition 7.6

	 A stationary point ( , ( ))x f x0 0  of a differentiable function f x( )  is where ′ =f x( )0 0 .

Definition 7.7

	 A critical point ( , ( ))x f x0 0  of a function f x( )  is where ′ =f x( )0 0  or does not exist.

	 Every stationary point is a critical point however all critical points need not be stationary points. 
As an example, the function f x x( ) | |= −17  has a critical point at ( , )17 0  but ( , )17 0  is not a stationary 
point as the function has no derivative at x =17 .
Example 7.46
	 Prove that the function f x x( ) = +2 2  is strictly increasing in the interval ( , )2 7  and strictly 
decreasing in the interval ( , )−2 0 .
Solution
	 We have, 
		  ′f x( ) 	= 	 2 0 2 7x x> ∀ ∈, ( , )  and
		  ′f x( ) 	= 	 2 0 2 0x x< ∀ ∈ −, ( , )  
	 and hence the proof is completed.
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Example 7.47
	 Prove that the function f x x x( ) = − −2 2 3  is strictly increasing in ( , )2 ¥ .

Solution
	 Since f x x x( ) = − −2 2 3 , ′ = − > ∀ ∈ ∞f x x x( ) ( , )2 2 0 2 . Hence f x( )  is strictly increasing in 
( , )2 ¥ .

7.6.2 Absolute maxima and minima
	 The absolute maxima and absolute minima are referred to describing the largest and smallest 
values of a function on an interval.

Definition 7.8
	 Let x0  be a number in the domain D of a function f x( ) . Then f x( )0  is the absolute 

maximum value of f x( ) on D , if  f x f x x D0( ) ≥ ( )∀ ∈ and f x( )0  is the absolute minimum 

value of f x( )  on D  if f x f x x D0( ) ≤ ( )∀ ∈ .

	 In general, there is no guarantee that a function will actually have an absolute maximum or 
absolute minimum on a given interval. The following figures show that a continuous function may or 
may not have absolute maxima or minima on an infinite interval or on a finite open interval.

	 However, the following theorem shows that a continuous function must have both an absolute 
maximum and an absolute minimum on every closed interval.

	 Fig. 7.15	 Fig. 7.16

x

y

x

y

f x( )  has an absolute minimum but no absolute 
maximum on −∞ ∞( ), f x( ) has no absolute extrema on −∞ ∞( ), .

f x( )  has an 
absolute maximum and 
an absolute minimum 

on −∞ ∞( ),

f x( ) has no absolute 
extrema on a b,( ) .

f x( )  has an 
absolute maximum and 
an absolute minimum 

on a,b[ ]

x

y

x

y

x

y

(a )b [a ]b

Fig. 7.18 Fig. 7.19Fig. 7.17
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Theorem 7.8 (Extreme Value Theorem)
	 If f x( ) is continuous on a closed interval a b,[ ] , then f has both an absolute maximum and 
an absolute minimum on a b,[ ] .

	 The absolute extrema of f x( ) occur either at the endpoints of closed interval a b,[ ]or inside 

the open interval a b,( ) .If the absolute extrema occurs inside, then it must occur at critical numbers 

of f x( ) . Thus, we can use the following procedure to find the absolute extrema of a continuous 

function on closed interval a b,[ ] .

	 A procedure for finding the absolute extrema of a continuous function f x( ) on closed 

interval a b,[ ] . 

	 Step 1	 :	 Find the critical numbers of f x( )  in a b,( )

	 Step 2	 :	 Evaluate f x( ) at all the critical numbers and at the endpoints a and b

	 Step 3	 :	 The largest and the smallest of the values in step 2 is the absolute maximum and 
absolute minimum of f x( )  respectively on the closed interval a b,[ ] .  

Example 7.48
	 Find the absolute maximum and absolute minimum values of the function f x x x x( ) = + −2 3 123 2

on −[ ]3 2,

Solution
	 Differentiating the given function,  we get
			   ′( )f x 	= 	6 6 122x x+ −
				   = 	6 22x x+ −( )
			   ′( )f x 	= 	6 2 1x x+( ) −( )
		  Thus, 	 ′( ) = ⇒ = − ∈ −( )f x x0 2 1 3 2, , .

	 Therefore, the critical numbers are x = −2 1, . Evaluating f x( ) at the endpoints x = −3 2, and at 
critical numbers x = −2 1, , we get f −( ) =3 9 , f 2 4( ) = , f −( ) =2 20  and f 1 7( ) = − . 

	 From these  values, the absolute maximum is 20  which occurs at x = −2 , and the absolute 
minimum is −7 which occurs at x =1.

Example 7.49
	 Find the absolute extrema of the function f x x( ) = 3cos on the closed interval 0 2, π[ ] .
Solution
	 Differentiating the given function,  we get ′( ) = −f x x3sin .

	 Thus, ′( ) = ⇒ = ⇒ = ∈( )f x x x0 0 0 2sin ,π π . Evaluating f x( ) at the endpoints x = 0 2, π and 
at critical number x = π , we get f 0 3( ) = , f 2 3π( ) = , and f π( ) = −3 .

	 From these values, the absolute maximum is 3 which occurs at x = 0 2, π , and the absolute 
minimum is −3 which occurs at x = π .
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7.6.3  Relative Extrema on an Interval
	 A function f x( ) is said to have a relative maximum at x0 , if there is an open interval containing 
x0  on which f x( )0 is the largest value. Similarly, f x( ) is said to have a relative minimum at x0 , if 
there is an open interval containing x0  on which f x( )0  is the smallest value.
	 A relative maximum need not be the largest value on the entire domain, while a relative minimum 
need not be the smallest value on the entire domain. Therefore, there may be more than one relative 
maximum or relative minimum on the entire domain.
	 A relative extrema of a function is the extreme values (maximum or minimum) of the functions 
among all the evaluated values of f x x I D( ),∀ ∈ ⊂  where I  may be open or closed. Usually the 
local extreme value of a function is attained at a critical point. Note that, a function may have a critical 
point at x c=  without having a local extreme value there. For instance, both of the functions y x= 3  

and y x=
1

3  have critical points at the origin, but neither function has a local extreme value at the 
origin. 

Theorem 7.9 (Fermat)
	 If f x( )  has a relative extrema at x c=  then c  is a critical number. Invariably there will be 
critical numbers of the function obtained as solutions of the equation ′ =f x( ) 0  or as values of x 
at which ′f x( )  does not exist.

7.6.4 Extrema using First Derivative Test
	 After we have determined the intervals on which a function is increasing or decreasing, it is not 
difficult to locate the relative extrema of the function. The location or points at which the relative 
extrema occurs for a given function f x( )  can be observed through the graph y f x= ( ) . However to 
find the exact point and the value of the extrema of functions we need to use certain test on functions. 
One such test is the first derivative test, which is stated in the following theorem.

 Theorem 7.10 (First Derivative Test)

	 Let ( , ( ))c f c  be a critical point of 

function f x( )  that is continuous on 

an open interval I  containing c . If 

f x( )  is differentiable on the 

interval, except possibly at c , then 

f c( )  can be classified as follows:

(when moving across the interval I 
from left to right)

	 (i)	 If ′f x( )  changes from negative to positive at c , then f x( )  has a local minimum f c( ) .

	 (ii)	 If ′f x( )  changes from positive to negative at c , then f x( )  has a local maximum f c( ) .

	(iii)	 If ′f x( )  is positive on both sides of c  or negative on both sides of c , then f c( )  is neither 
a local minimum nor a local maximum.

Fig. 7.20

c1 c2 c3

y f x= ( )
( , ( ))c f c1 1

( , ( ))c f c2 2

( , ( ))c f c3 3

′ =f c( )1 0

′ =f c( )2 0

′f c( )3 does not exist

f c( )1 is a local maximum

f c( )2

is not a
local 

extremum f c( )3
is a local minimum

0 0+ + + + + + + + + + + + + + + + + + + +– – – – – – – – – – – –
′ >f x( ) 0 ′ >f x( ) 0′ <f x( ) 0 ′ <f x( ) 0
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Example 7.50

	 Find the intervals of monotonicity and hence find the local extrema for the 

function f x x x( ) = − +2 4 4 .
Solution
	 We have,
		  f x( ) 	= 	 ( )x − 2 2 , then
			   ′f x( ) 	= 	 2 2 0( )x − =  gives x = 2  .

	 The intervals of monotonicity are ( , )−∞ 2  and ( , )2 ¥ . Since ′ <f x( ) 0 , for x∈ −∞( , )2  the 
function f x( )  is strictly decreasing on ( , )−∞ 2 . As ′ >f x( ) 0 , for x∈ ∞( , )2  the function f x( )  is 
strictly increasing on ( , )2 ¥ . Because ¢f x( ) changes its sign from negative to positive when passing 
through x = 2  for the function f x( ) , it has a local minimum at x = 2 . The local minimum value is 
f ( )2 0= .

Example 7.51
	 Find the intervals of monotonicity and hence find the local extrema for the function f x x( ) =

2
3 .

Solution

	 We have, f x x( ) =
2
3 , then ′( ) = =−f x x

x
2

3

2

3

1
3

1
3

. ′ ( ) ≠ ∀ ∈f x x0   and ′( )f x  does not exist at 

x = 0 . Therefore, there are no stationary points but there is a critical point at x = 0 .

Interval (-∞, 0) (0, ∞)

Sign of ′ ( )f x  _ +
Monotonicity strictly decreasing strictly increasing

	 Table 7.5

	 Because ′( )f x changes its sign from negative to positive when passing through x = 0 for the 

function f x( ) , it has a local minimum at x = 0 .The local minimum value is f 0 0( ) = . Note that here 
the local minimum occurs at a critical point which is not a stationary point.    

Example 7.52
	 Prove that the function f x x x( ) sin= −  is increasing on the real line. Also discuss for the existence 
of local extrema.
Solution
	 Since ′ = − ≥f x x( ) cos1 0  and zero at the points x n n= ∈2 π , 

and hence the function is 
increasing on the real line.
	 Since there is no sign change in ′f x( )  when passing through x n n= ∈2 π , 

 by the first derivative 

test there is no local extrema.

Example 7.53
	 Discuss the monotonicity and local extrema of the function

f x x x
x
x( ) log( ) ,= + −

+
> −1

1
1 and hence find the domain where, log( )1

1
+ >

+
x x

x
.

Fig.7.21

x

y
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Solution
	 We have,
		  f x( ) 	= 	 log( )1

1
+ −

+
x x

x

		  Therefore,  ′f x( ) 	= 	 1

1

1

1 2+
−

+x x( )

			  = 	 x
x( )1 2+

.

	 Hence,

′f x( )  is 
< − < <
= =
> >









0 1 0

0 0

0 0

when

when

 when  

x
x
x

 

	 Therefore f x( )  is strictly increasing for x > 0  and strictly decreasing for x < 0 . Since ′f x( )  
changes from negative to positive when passing through x = 0 , the first derivative test tells us there 
is a local minimum at x = 0  which is f ( )0 0= . Further, for x > 0 , f x f( ) ( )> =0 0  gives

log( ) log( )1
1

0 1
1

+ −
+

> ⇒ + >
+

x x
x

x x
x

  on ( , )0 ¥ .

Example 7.54
	 Find the intervals of monotonicity and local extrema of the function f x x x x( ) log= + 3 .
Solution
	 The given function is defined and is differentiable at all x∈ ∞( , )0 .

		  f x( ) 	= 	x x xlog + 3 .

		  Therefore ′f x( ) 	= 	log logx x+ + = +1 3 4 .

	 The stationary points are given by	 4+ log x 	= 	0 .
		  That is  x 	= 	e−4 .
	 Hence the intervals of monotonicity are ( , )0 4e−  and ( , )e− ∞4 .

	 At x e e f e= ∈ ′ = − <− − −5 4 50 1 0( , ), ( )  and hence in the interval ( , )0 4e−  the function is strictly 

decreasing.
	 At x e e f e= ∈ ∞ ′ = >− − −3 4 3 1 0( , ), ( )  and hence strictly increasing in the interval ( , )e− ∞4 . Since 
′f x( )  changes from negative to positive when passing through x e= −4 , the first derivative test tells 

us there is a local minimum at x e= −4  and it is f e e( )− −= −4 4 .

Example 7.55
	 Find the intervals of monotonicity and local extrema of the function f x

x
( ) =

+
1

1 2
 .

Solution
	 The given function is defined and is differentiable at all x∈ −∞ ∞( , ) . As

		  f x( ) 	= 	 1

1 2+ x
.

		  We have ′f x( ) 	= 	−
+
2

1 2 2

x
x( )

.
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	 The stationary points are given by	 −
+
2

1 2 2

x
x( )

	= 	0  that is x = 0 .

	 Hence the intervals of monotonicity are  ( , )−∞ 0 and ( , )0 ¥ .

	 On the interval  ( , )−∞ 0 the function strictly increases because ′ >f x( ) 0  in that interval.

	 The function f x( )  strictly decreases in the interval  ( , )0 ¥ because ′ <f x( ) 0  in that interval. 
Since ′f x( )  changes from positive to negative when passing through x = 0 , the first derivative test 
tells us there is local maximum at x = 0  and the local maximum value is f ( )0 1= .

Example 7.56
	 Find the intervals of monotonicity and local extrema of the function f x x

x
( ) =

+1 2
.

Solution
	 The given function is defined and differentiable at all x∈ −∞ ∞( , ) , As

		  f x( ) 	= 	 x
x1 2+

		  ′f x( ) 	= 	 1

1

2

2 2

−
+

x
x( )

	 The stationary points are give by	 1 2− x 	= 	0   that is x = ±1
	 Hence the intervals of monotonicity are ( , ), ( , )−∞ − −1 1 1 and ( , )1 ¥ .

Interval (-∞, -1) (-1, 1) (1, ∞)

Sign of ′ ( )f x  _ + _

Monotonicity strictly decreasing strictly increasing strictly decreasing

Table 7.6

	 Therefore, f x( ) strictly increasing on ( , )−∞ −1

and ( , )1 ¥ , strictly decreasing on ( , )-1 1 .

	 Since ′f x( )  changes from negative to positive 

when passing through x = −1 , the first derivative test 

tells us there is a local minimum at x = −1  and the local 

minimum value is f ( )− = −1
1

2
. As ′f x( )  changes from positive to negative when passing through 

x =1 , the first derivative test tells us there is a local maximum at x =1 and the local maximum value 

is f ( )1
1

2
= .

f x x
x

( ) �
�1 2

0�1�2�3 1 2 3

�1

1
y

x

Fig.7.22
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EXERCISE 7.6
	 1.	Find the absolute extrema of the following functions on the given closed interval.

			  (i)	 f x x x( ) = − +2 12 10 	 ;	 1 2,[ ] 	 (ii)	 f x x x( ) = −3 44 3 	 ;	 −[ ]1 2,

			  (iii)	 f x x x( )= −6 3
4

3

1

3 	 ;	 [ , ]-1 1 	 (iv)	 f x x x( ) cos sin= +2 2 	 ;	 0
2

,
π





	 2.	Find the intervals of monotonicities and hence find the local extremum for the following 
functions:

	 (i)	 f x x x x( ) = + −2 3 123 2 	 (ii)	 f x x
x

( ) =
−5

	 (iii)	 f x e
e

x

x( ) =
−1

	 (iv)	 f x x x( ) log= −
3

3

	 (v)	 f x x x x( ) sin cos , ( , )= + ∈5 0 2π

7.7 Applications of Second Derivative
	 Second derivative of a function is used to determine the concavity, convexity, the points of 
inflection, and local extrema of functions.

7.7.1 Concavity, Convexity, and Points of Inflection
	 A graph is said to be concave down (convex up) 
at a point if the tangent line lies above the graph in 
the vicinity of the point. It is said to be concave up 
(convex down) at a point if the tangent line to the 
graph at that point lies below the graph in the vicinity 
of the point. This may be easily observed from the adjoining graph. 

Definition 7.8

	 Let f x( )  be a function whose second derivative exists in an open interval I a b= ( , ) . Then the 
function f x( )  is said to be 
	 (i)	 If ′f x( )  is strictly increasing on I , then the function is concave up on an open interval I .
	 (ii)	 If ′f x( )  is strictly decreasing on I , then the function is concave down on an open interval I.

	 Analytically, given a differentiable function whose graph y f x= ( ) , then the concavity is given 
by the following result.

 Theorem 7.11 (Test of Concavity)
	 (i)	 If ′′ >f x( ) 0  on an open interval I , then f x( )  is concave up on I .
	 (ii)	 If ′′ <f x( ) 0  on an open interval I , then f x( )  is concave down on I .

Remark
	 (1)	Any local maximum of a convex upward function defined on the interval [ , ]a b  is also its 

absolute maximum on this interval.
	 (2)	 Any local minimum of a convex downward function defined on the interval [ , ]a b  is also its 

absolute minimum on this interval.

Fig.7.23

Concave
Down

Concave
Up
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	 (3)	 There is only one absolute maximum (and one absolute minimum) but there can be more 
than one local maximum or minimum.

Points of Inflection

Definition 7.9
	 The points where the graph of the function changes from “concave up to concave down” or 
“concave down to concave up” are called the points of inflection of f x( ) .

 Theorem 7.12 (Test for Points of Inflection)

	 (i)	 If ′′f c( )  exists and ′′f c( )  changes sign when passing through x c= , then the point 

( , ( ))c f c  is a point of inflection of the graph of f . 

	 (ii)	 If ′′f c( )  exists at the point of inflection, then ′′ =f c( ) 0 .

Remark 
	 To determine the position of points of inflexion on the curve y f x= ( )  it is necessary to find the 
points where ′′f x( )  changes sign. For ‘smooth’ curves (no sharp corners), this may happen when 
either
	 (i)	 ′′ =f x( ) 0  or
	 (ii)	 ′′f x( )  does not exist at the point.

Remark
	 (1)	 It is also possible that ′′f c( )  may not exist, but ( , ( ))c f c  could be a point of inflection. For 

instance, f x x( ) =
1

3  at c = 0 .

	 (2)	 It is possible that ′′ =f c( ) 0  at a point but ( , ( ))c f c  need not be a point of inflection. For 

instance, f x x( ) = 4  at c = 0 .

	 (3)	 A point of inflection need not be a stationary point. For instance, if f x x( ) sin=  then, 
′ =f x x( ) cos  and ′′ = −f x x( ) sin   and hence ( , )p 0  is a point of inflection but not a stationary 

point for f x( ) .

Example 7.57
	 Determine the intervals of concavity of the curve f x x x x( ) ( ) ( ),= − ⋅ − ∈1 53

  and, points of 
inflection if any.

Solution
	 The given function is a polynomial of degree 4. Now,
		  ′f x( )  	= 	 ( ) ( ) ( )x x x− + − ⋅ −1 3 1 53 2  
			  = 	 4 1 42( ) ( )x x− ⋅ −

		  ′′f x( ) 	= 	 4 1 2 1 42(( ) ( ) ( ))x x x− + − ⋅ −

			  = 	12 1 3( ) ( )x x− ⋅ −

	 Now,
			   ′′f x( ) 	= 	0   ⇒ = =x x1 3, . Fig.7.24
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40
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80
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	 The intervals of concavity are tabulated in the table 7.7.

Interval (-∞, 1) (1, 3) (3, ∞)

Sign of ′′ ( )f x  + _ +

Concavity concave up concave down concave up

	 The curve is concave upwards on ( , )−∞ 1  and ( , )3 ¥ .
	 The curve is concave downwards on ( , )1 3 .
	 As ′′f x( )  changes its sign when it passes through x =1 and x f= =3 1 1 1 0, ( , ( )) ( , )  and 
( , ( )) ( , )3 3 3 16f = −  are points of inflection for the graph y f x= ( ) . This may be observed from the 

adjoining figure of the curve ′′f x( ) . 

Example 7.58
	 Determine the intervals of concavity of the curve y x= +3 sin .
Solution
	 The given function is a periodic function with period 2p  and hence there will be stationary 
points and points of inflections in each period interval. We have,

		  dy
dx

	= 	 cos x  and d y
dx

x
2

2
= −sin  

		  Now,  d y
dx

2

2 	= 	 − = ⇒ =sin x x n0 π .

	 We now consider an interval, ( , )−π π  by splitting into two sub 
intervals ( , )−π 0  and ( , )0 p .

	 In the interval ( , )−π 0 , d y
dx

2

2
0>  and hence the function is concave upward.

	 In the interval ( , ),0 0
2

2
π
d y
dx

<   and hence the function is concave downward. Therefore ( , )0 3  is 

a point of inflection. The general intervals need to be considered to discuss the concavity of the curve 
are ( , ( ) )n nπ π+1 , where n  is any integer which can be discussed as before to conclude that ( , )np 3  
are also points of inflection.

7.7.2 Extrema using Second Derivative Test
	 The Second Derivative Test: The Second Derivative Test relates the concepts of critical points, 
extreme values, and concavity to give a very useful tool for determining whether a critical point on 
the graph of a function is a relative minimum or maximum.

Theorem 7.13 (The Second Derivative Test)

   Suppose that c  is a critical point at which ′ =f c( ) 0 , that ′f x( )  exists in a neighborhood of c , 

and that ′f c( )  exists. Then f  has a relative maximum value at c  if ′′ <f c( ) 0  and a relative 

minimum value at c  if ′′ >f c( ) 0 . If ′′ =f c( ) 0 , the test is not informative.

2.0

2.5

3.0

3.5

4.0

-2π -π 0 π 2π
x

y

Fig.7.25

Table 7.7

Chapter 7 Differential Calculus Original-new.indd   42 7/25/2019   6:30:47 PM



Applications of Differential Calculus43

Example 7.59

	 Find the local extremum of the function f x x x( ) = +4 32 .
Solution

	 We have,
		  ′f x( ) 	= 	 4 32 03x + =  gives x3 8= −

		  ⇒ x 	= 	 −2

		  and  ′′f x( ) 	= 	12 2x .

	 As ′′ − >f ( )2 0 , the function has local minimum at x=−2 . The local minimum value is
f ( )− =−2 48 . Therefore, the extreme point is ( , )− −2 48 .

Example 7.60

	 Find the local extrema of the function f x x x( )= −4 66 4 .

Solution

	 Differentiating with respect to x, we get 

		  ′( )f x  	= 	 24 245 3x x-

			  = 	24 13 2x x −( )

			  = 	24 1 13x x x+( ) −( )

	 ′( )=f x 0 Þ x=−1 0 1, , . Hence the critical 
numbers are x = −1 0 1, ,    
	 Now, ′′( )= − = −( )f x x x x x120 72 24 5 34 2 2 2 .
	 Þ ′′ −( )=f 1 48 , ′′( )=f 0 0 , ′′( )=f 1 48 .   

As ′′ −( )f 1 and ′′( )f 1  are positive by the second derivative test, the function f x( )has local 
minimum. But at x = 0 , ′′ =f ( )0 0 . That is the second derivative test does not give any information 
about local extrema at x = 0 . Therefore, we need to go back to the first derivative test. The intervals 
of monotonicity is tabulated in the table 7.8.

Interval ( , )−∞ −1 ( , )−1 0 ( , )0 1 ( , )1 ∞

Sign of ′f x( ) - + - +

Monotonicity
strictly 

decreasing
strictly 

increasing
strictly 

decreasing
strictly 

increasing

Table 7.8

By the first derivative test f x( )  has local minimum at x = −1, its local minimum value is −2 . 
At x = 0 , the function f x( )  has local maximum at x = 0 , and its local maximum value is 0 . At x = 1 ,  
the function f x( )  has local minimum at x = 1 , and its local minimum value is −2 .
Remark
	 When the second derivative vanishes, we have no information about extrema. We have used the 
first derivative test to find out the extrema of the function!

y

x

Fig.7.26
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Example 7.61
	 Find the local maximum and minimum of the function x y2 2  on the line x y+ =10 .
Solution

	 Let the given function be written as f x x x( ) ( )= −2 210 . Now,

		  f x( ) 	 = 	 x x x x x x2 2 4 3 2100 20 20 100( )− + = − +

		  Therefore,  ′f x( ) 	 = 	 4 60 200 4 15 503 2 2x x x x x x− + = − +( )

		  ′f x( ) 	 = 	 4 15 50 0 0 5 102x x x x( ) , ,− + = ⇒ =  

		  and  ′′f x( ) 	 = 	 12 120 2002x x− +

	 The stationary points of f x( )  are x = 0 5 10, ,  at these points the values of ′′f x( )  are respectively 
200 100,−  and 200 . At x = 0 , it has local minimum and its value is f ( )0 0= . At x = 5 , it has local 
maximum and its value is f ( )5 625= . At x =10 , it has local minimum and its value is f ( )10 0= .

EXERCISE 7.7
	 1.	Find intervals of concavity and points of inflexion for the following functions:
			  (i)	 f x x x( ) ( )= − 4 3  	 (ii)	 f x x x x( ) sin cos ,= + < <0 2π 		 (iii)	 f x e ex x( ) ( )= − −1

2

	 2.	Find the local extrema for the following functions using second derivative test :
			  (i)	 f x x x( ) = − +3 55 3  	 (ii)	 f x x x( ) log=  		 (iii) f x x e x( ) = −2 2  

	 3.	For the function f x x x x( ) = + − +4 3 6 13 2  find the intervals of monotonicity, local extrema, 
intervals of concavity and points of inflection.

7.8 Applications in Optimization
	 Optimization is a process of finding an extreme value (either maximum 
or minimum) under certain conditions.
	 A procedure for solving for an extremum or optimization problems.
	 Step 1	 :	 Draw an appropriate figure and label the quantities relevant to the problem.
	 Step 2	 :	 Find  a experssion for the quantity to be maximized or minimized.
	 Step 3	 :	 Using the given conditions of the problem, the quantity to be extremized .
	 Step 4	 :	 Determine the interval of possible values for this variable from the conditions given in 

the problem.
	 Step 5	 :	 Using the techniques of extremum (absolute extrimum, first derivative test or second 

derivative test) obtain the maximum or minimum.

Example 7.62

	 We have a 12 square unit piece of thin material and want to make an open box by cutting small 
squares from the corners of our material and folding the sides up. The question is, which cut produces 
the box of maximum volume?
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Solution
	 Let 	 x 	 = 	 length of the cut on each side of the little squares.
		  V 	= 	 the volume of the folded box.
	 The length of the base after two cuts along each edge of size x  is 12 2− x . The depth of the box 
after folding is x , so the volume is V x x= × −( )12 2 2 . Note that, when x = 0  or 6 , the volume is zero 

and hence there cannot be a box. Therefore the problem is to maximize, V x x x= × − ∈( ) , ( , )12 2 0 62 . 

Now,	 dV
dx

	 = 	 ( ) ( )12 2 4 12 22− − −x x x

			   = 	 ( )( )12 2 12 6− −x x .
	 dV

dx
= 0  gives the stationary points x = 2 6, . Since 

6 0 6∉ ( , )  the only stationary point is at x = ∈2 0 6( , ) . 

Further, 
dV
dx

changes its sign from postive to negative 

when passing through x = 2 . Therefore at x = 2  the 

volume V  is local maximum. The local maximum volume 
value is V =128  units. Hence the maximum cut can only be 2 units.

Example 7.63

	 Find the points on the unit circle x y2 2 1+ =  nearest and farthest from ( , )1 1 .

Solution

	 The distance from the point ( , )1 1  to any point ( , )x y  is d x y= − + −( ) ( )1 12 2 . Instead of 

extremising  d , for convenience we extremise D d x y= = − + −2 2 21 1( ) ( ) , subject to the condition 

x y2 2 1+ = . Now, dD
dx

x y dy
dx

= − + − ×2 1 2 1( ) ( )  , where the dy
dx

 will be computed by differentiating 

x y2 2 1+ =  with respect to x . Therefore we get, 2 2 0x y dy
dx

+ =  which gives us dy
dx

x
y

=− .

	 Substituting this, we get 
dD
dx

x y x
y

= − + − −







2 1 2 1( ) ( )  

			  = 	
2[ ]xy y xy x

y
− − +

			  = 	 2 0
x y
y
−







 =

			  ⇒  x y=

	 Since ( , )x y  lie on the circle x y2 2 1+ =   we get, 2 12x =  gives x=± 1

2
. Hence the points at 

which the extremum distance occur are, 1

2

1

2

1

2

1

2
, , ,









 − −








. 

Fig.7.28
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	 To find the extrema, we apply second derivative test. So,

		  d D
dx

2

2 	= 	 2
2 2

3

y x
y
+

.

	 The value of 
d D
dx

d D
dx

2

2
1

2

1

2

2

2
1

2

1

2

0 0






>






<






− −





, ,

; .

	 This implies the nearest and farthest points are 1

2

1

2

1

2

1

2
, ,







− −





and .

	 Therefore, the nearest and the farthest distances are respectively  2 1-  and 2 1+ .

Example 7.64

	 A steel plant is capable of producing x tonnes per day of a low-grade steel and y tonnes per day 

of a high-grade steel, where y x
x

=
−
−

40 5

10
. If the fixed market price of low-grade steel is half that of 

high-grade steel, then what should be optimal productions in low-grade steel and high-grade steel in 
order to have maximum receipts.
Solution

	 Let the price of low-grade steel be `p per tonne. Then the price of high-grade steel is `2p per 
tonne. 

	 The total receipt per day is given by R px py px p x
x

= + = +
−
−







2 2

40 5

10
. Hence the problem is 

to maximise R . Now, simplifying and differentiating R  with respect to x , we get

			   R 	= 	p
x
x

80

10

2−
−











		  dR
dx

	= 	p
x x

x

2

2

20 80

10

− +
−









( )

		  d R
dx

2

2 	= 	-
-

40

10 3

p
x( )

		  Now,  dR
dx

	= 	0 20 80 02⇒ − + =x x  and hence x =  10 2 5±

		  At x d R
dx

= −10 2 5
2

2
, 	< 	0

and hence R   will be maximum. If x = 10 2 5-  then y = 5 5− . Therefore the steel plant must 
produce low-grade and high-grade steels respectively in tonnes per day are

10 2 5-  and 5 5− .

Example 7.65
	 Prove that among all the rectangles of the given area square has the least perimeter.

Solution
	 Let x y,  be the sides of the rectangle. Hence the area of the rectangle is xy k=  (given). The 

perimeter of the rectangle P is 2( )x y+ . So the problem is to minimize 2( )x y+  suject to the condition 

xy k= . Let P x x k
x

( ) = +





2 .
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		  ′ ( )P x 	= 	2 1
2

−








k
x

		  ′ ( )P x 	= 	0   gives 1 0
2

−






=

k
x

 

		  Therefore x 	= 	 k

	 Substituting x k=  in  xy k=  we get y k= . Therefore the minimum perimeter rectangle of 

a given area is a square.

EXERCISE 7.9
	 1.	Find two positive numbers whose sum is 12 and their product is maximum.

	 2.	Find two positive numbers whose product is 20 and their sum is minimum.

	 3.	Find the smallest possible value of x y2 2+ given that x y+ =10 . 

	 4.	A garden is to be laid out in a rectangular area and protected by wire fence. What is the largest 
possible area of the fenced garden with 40 metres of wire.

	 5.	A rectangular page is to contain 24 cm2 of print. The margins at the top and bottom of the page 
are 1.5 cm and the margins at other sides of the page is 1 cm. What should be the dimensions 
of the page so that the area of the paper used is minimum.

	 6.	A farmer plans to fence a rectangular pasture adjacent to a river. The pasture must contain 
1,80,000 sq.mtrs in order to provide enough grass for herds. No fencing is needed along the 
river. What is the length of the minimum needed fencing material?

	 7.	Find the dimensions of the rectangle with maximum area that can be inscribed in a circle of 
radius 10 cm.

	 8.	Prove that among all the rectangles of the given perimeter, the square has the maximum area.

	 9.	Find the dimensions of the largest rectangle that can be inscribed in a semi circle of radius  
r  cm.

	 10.	A manufacturer wants to design an open box having a square base and a surface area of  
108 sq.cm. Determine the dimensions of the box for the maximum volume.

	 11.	The volume of a cylinder is given by the formula V r h= π 2 . Find the greatest and least values 
of V if r h+ = 6 .

	 12.	A hollow cone with base radius a cm and height b cm is placed on a table. Show that the 

volume of the largest cylinder that can be hidden underneath is 4

9
times volume of the cone.

7.9 Symmetry and Asymptotes
7.9.1 Symmetry
	 Consider the following curves and observe that each of them is having some special properties, 
called symmetry with respect to a point, with respect to a line.
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	 Fig.7.29	 Fig.7.30	 Fig. 7.31
	 We now formally define the symmetry as follows :
	 If an image or a curve is a mirror reflection of another image with respect to a line, we say the 
image or the curve is symmetric with respect to that line. The line is called the line of symmetry.
	 A curve is said to have a θ  angle rotational symmetry with respect to a point if the curve is 
unchanged by a rotation of an angle  θ  with respect to that point.
	 A curve may be symmetric with respect to many lines. Specifically, we consider the symmetry 
with respect to the co-ordinate axes and symmetric with respect to the origin. Mathematically, a curve 
f x y( , ) = 0  is said to be 

	 •	 Symmetric with respect to the y-axis if f x y f x y( , ) ( , )= −  ∀x y,  or if  ( , )x y  is a point on 
the graph of the curve then so is ( , )−x y . If we keep a mirror on the y-axis the portion of the 
curve on one side of the mirror is the same as the portion of the curve on the other side of the 
mirror.

	 •	 Symmetric with respect to the x-axis  if f x y f x y x y( , ) ( , ) ,= − ∀  or if ( , )x y  is a point on 
the graph of the curve then so is ( , )x y− . If we keep a mirror on the x -axis the portion of the 
curve on one side of the mirror is the same as the portion of the curve on the other side of the 
mirror.

	 •	 Symmetric with respect to the origin if f x y f x y x y( , ) ( , ) ,= − − ∀  or if ( , )x y  is a point on 
the graph of the curve then so is ( , )− −x y . That is the curve is unchanged if we rotate it by 

180°  about the origin.
	 For instance, the curves mentioned above x y y x= =2 2,  and y x=  are symmetric with respect to  
x-axis, y-axis and origin respectively.

7.9.2 Asymptotes
	 An asymptote for the curve y f x= ( )   is a straight line which is a tangent at ¥  to the curve. In 
other words the distance between the curve and the straight line tends to zero when the points on the 
curve approach infinity.  There are three types of asymptotes. They are 

	 1.	Horizontal asymptote, which is parallel to the x -axis. The line y L=  is said to be a horizontal 

asymptote for the curve y f x= ( )  if either lim ( )
x

f x L
→+∞

=  or lim ( )
x

f x L
→−∞

= .

	 2.	Vertical asymptote, which is parallel to the y -axis. The line x a=  is said to be vertical 

asymptote for the curve y f x= ( )  if  lim ( )
x a

f x
→ −

= ±∞  or lim ( )
x a

f x
→ +

= ±∞ .

	 3.	Slant asymptote, A slant (oblique) asymptote occurs when the polynomial in the numerator is 
a higher degree than the polynomial in the denominator.

		 To find the slant asymptote you must divide the numerator by the denominator using either long 
division or synthetic division.

-1 0. -0 5.

-0 5.

-1 0.

0.5 1.0

0.5

1.0
y
x=

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-1 0. -0 5. 0.5 1.0

y
x

=
2

-2

-1

-2

2

2 4

1

y

x
y= 2

0
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Example 7.66

	 Find the asymptotes of the function f x
x

( ) =
1 .

Solution

	 We have, lim
x x→ −

= −∞
0

1  and  lim
x x→ +

= ∞
0

1 . Hence, 

the required vertical asymptote is x = 0  or the  
y -axis.
	 As the curve is symmetric with respect to both 
the axes, y = 0  or the x -axis is also an asymptote. 
Hence this (rectangular hyperbola) curve has both 
the vertical and horizontal asymptotes.

Example 7.67
	 Find the slant (oblique) asymptote for the function f x x x

x
( ) =

− +
+

2 6 7

5
.

Solution
	 Since the polynomial in the numerator is a higher degree (2nd) than the denominator (1st), we 
know we have a slant asymptote. To find it, we must divide the numerator by the denominator. We 
can use long division to do that:

)x x x
x x

x
x

x
+ − +

+
− +
− −

−
5 6 7

5

11 7

11 55

62

11
2

2

	 Notice that we don't need to finish the long division 
problem to find the remainder. We only need the terms that 
will make up the equation of the line. The slant asymptote 
is  y x= −11.

	 As you can see in this graph of the function, the curve approaches the slant asymptote y x= −11
but never crosses it: 
Example 7.68

	 Find the asymptotes of the curve f x x
x

( ) = −
−

2 8

16

2

2
.

Solution

	 As lim
x

x
x→− +

−
−

= −∞
4

2

2

2 8

16
 and lim

x

x
x→ +

−
−

= ∞
4

2

2

2 8

16
. 

	 Therefore x=−4  and x = 4  are vertical asymptotes.

		  As  lim
x

x
x→∞

−
−

2 8

16

2

2
	= 	lim

x

x

x
→∞

−

−

2
8

1
16

2

2

= 2

Fig.7.32
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		  and  lim
x

x
x→−∞

−
−

2 8

16

2

2
	= 	 lim

x

x

x
→−∞

−

−

2
8

1
16

2

2

= 2

	 Therefore, y = 2 is a horizontal asymptote. This can also be obtained by synthetic division.

7.10 Sketching of Curves
	 When we are sketching the graph of functions either by hand or through any graphing software 
we cannot show the entire graph. Only a part of the graph can be sketched. Hence a crucial question 
is which part of the curve we need to show and how to decide that part. To decide on this we use the 
derivatives of functions. We enlist few guidelines for determining a good viewing rectangle for the 
graph of a function. They are :
	 (i)	 The domain and the range of the function.	 (ii)	The intercepts of the cure (if any).
	 (iii)	 Critical points of the function.	 (iv)	Local extrema of the function.
	 (v)	 Intervals of concavity.	 (vi)	Points of inflexions (if any).
	 (vii)	 Asymptotes of the curve (if exists)

Example 7.69
	 Sketch the curve y f x x x= = − −( ) 2 6 .
Solution
	 Factorising the given function, we have 
	 y f x x x= = − +( ) ( )( )3 2 .
	 (1)	 The domain of the given function f x( )  is the entire 

real line.
	 (2)	 Putting y = 0  we get x = −2 3, . Therefore the x

-intercepts are ( , )−2 0  and ( , )3 0  putting x = 0  we get 
y = −6 . Therefore the y -intercept is ( , )0 6− .

	 (3)	 ′ = −f x x( ) 2 1  and hence the critical point of the curve 

occurs at x = 1

2
.

	 (4)	 ′′ = > ∀f x x( ) ,2 0 . Therefore at x = 1

2
 the curve has a 

local minimum which is f 1

2

25

4







 = − .

	 (5)	 The range of the function is y≥− 25

4

	 (6)	 Since ′′ = > ∀f x x( ) ,2 0  the function is concave upward in the entire real line.
	 (7)	 Since f x x( ) ,= ≠ ∀2 0  the curve has no points of inflection.
	 (8)	 The curve has no asymptotes.
	 The rough sketch of the curve is shown on the right side.

Fig.7.35
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  Example 7.70
	 Sketch the curve y f x x x= = − −( ) 3 6 9 .
Solution
	 Factorising the given function, we have

y f x x x x= = − + +( ) ( )( )3 3 32 .
	 (1)	 The domain and the range of the given function f x( )  are 

the entire real line.

	 (2)	 Putting y = 0 , we get the x = 3 . The other two roots are 

imaginary. Therefore, the x -intercept is ( , )3 0 . Putting x = 0

, we get y = −9. Therefore, the y-intercept is ( , )0 9− .

	 (3)	 ′ = −f x x( ) ( )3 22  and hence the critical points of the curve 

occur at x = ± 2 .

	  (4)	 ′′ =f x x( ) 6 . Therefore at x = 2  the curve has a local 

minimum because ′′( ) = >f 2 6 2 0 . The local minimum 

is f 2 4 2 9( ) = − − . Similarly x = − 2  the curve has a 

local maximum because ′′ −( ) = − <f 2 6 2 0 . The local 

maximum is f −( ) = −2 4 2 9 .

	 (5)	 Since ′′( ) = > ∀ >f x x x6 0 0,  the function is concave upward in the positive real line. As 
′′( ) = < ∀ <f x x x6 0 0,  the function is concave downward in the negative real line.

	  (6)	 Since ′′( ) =f x 0  at x = 0  and ′′f x( )  changes its sign when passing through x = 0 . Therefore 

the point of inflection is 0 0 0 9, ,f ( )( ) = ( ) .

	 (7)	 The curve has no asymptotes.

	 The rough sketch of the curve is shown on the right side.

Example 7.71

	 Sketch the curve y x x
x

=
−
−

2 3

1( )
.

Solution
	 Factorising the given function we have,

y f x x x
x

= =
−
−

( )
( )

( )

3

1
.

	 (1)	 The domain and the range of f x( )   are respectively 

R \{ }1   and the entire real line.

	 (2)	 Putting y = 0  we get the x = 0 3, . Therefore the  

x -intercept is ( , )3 0 . Putting x = 0 , we get y = 0 . 

Therefore the curve passes through the origin.

Fig.7.36
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	 (3)	 ′ =
− +
−

f x x x
x

( )
( )

2

2

2 3

1
 and hence the critical point of the curve occurs at x =1 as ′f ( )1  does not 

exist. But x x2 2 3 0− + =  has no real solution. Hence the only critical point occurs at x =1.
	 (4)	 x =1 is not in the domain of the function and ′ ≠ ∀ ∈f x x( ) \{ }0 1 , there is no local 

maximum or local minimum.

	 (5)	 ′′ = −
−

∀ ∈f x
x

x( )
( )

\{ }
4

1
1

3
 . Therefore when x f x< ′′ >1 0, ( )  the curve is concave upwards 

in ( , )−∞ 1  and when x f x> ′′ <1 0, ( )  the curve is concave downwards in ( , )1 ¥ . Since 
′′ ≠ ∈f x x( ) \{ }0 1  there is no point of infection for f x( ) . 

	 (6)	 Since, lim
( )x

x x
x→ −

−
−

= +∞
1

2 3

1
 and lim

( )
,

x

x x
x

x
→ +

−
−

= −∞ =
1

2 3

1
1 is a vertical asymptote.

		  The rough sketch is shown on the right side.

Example 7.72
	 Sketch the graph of the function y x

x
=

−
3

12
.

Solution

	 (1)	 The domain of f x( ) is  \ ,−{ }1 1 .

	 (2)	 Since f x y f x y− −( ) = ( ), , , the curve is symmetric about the origin.

	 (3)	 Putting y = 0 , we get x = 0 . Hence the x -intercept is 0 0,( ) .

	 (4)	 Putting x = 0 , we get y = 0 . Hence the y -intercept is 0 0,( ) . 

	 (5)	 To determine monotonicity, we find the first derivative as ′( ) = − +( )

−( )
f x x

x

3 1

1

2

2
2

.

		  Hence, ′( )f x does not exist at x = −1 1, . Therefore, critical numbers are x = −1 1, . 

The intervals of monotonicity is tabulated in Table 7.9.

Interval (-∞, -1) (-1, 1) (1, ∞)

Sign of ′ ( )f x  _ _ _

Monotonicity strictly decreasing strictly decreasing strictly decreasing

Table 7.9

	 (6)	 Since there is no sign change in ′( )f x when passing through critical numbers. There is no 
local extrema.

	 (7)	 To determine the concavity, we find the second derivative as ′′( ) = +( )

−( )
f x x x

x

6 3

1

2

2
3

 . 

′′( ) = ⇒ =f x x0 0 and ′′( )f x does not exist at x = −1 1, .
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		  The intervals of concavity is tabulated in Table 7.10.

Interval (-∞, -1) (-1, 0) (0, 1) (1, ∞)

Sign of ′′ ( )f x  _ + _ +

Concavity concave 
down concave up concave 

down concave up

  

Table  7.10

	 (8)	 As x = −1  and 1are not in the domain of f x( ) and at x = 0 ,the second derivative is zero and 

′′( )f x  changes its sign from positive to negative when passing through x = 0 . .Therefore, 

the point of inflection is 0 0 0 0, ,f ( )( ) = ( ) .

	 (9)	 lim lim lim
x x x

f x x
x x

x
→±∞ →±∞ →±∞

( ) =
−

=
−

=
3

1

3

1
0

2
. Therefore y = 0  is a horizontal asymptote. Since 

the denominator is zero, when x = ±1 .

	 lim
x

x
x→− − −

= −∞
1

2

3

1
,	 lim

x

x
x→− + −

= +∞
1

2

3

1
,

	 lim
x

x
x→ − −

= −∞
1

2

3

1
,	 lim

x

x
x→ + −

= ∞
1

2

3

1
.

	 Therefore x = −1  and x =1  are 

vertical asymptotes. 

	 The rough sketch of the curve is 

shown on the right side.

EXERCISE 7.9
	 1.	 Find the asymptotes of the following curves : 

	 (i)	 f x x
x

( ) =
−

2

2 1
	 (ii)	 f x

x
x

( ) =
+

2

1
	 (iii)	 f x

x
x

( ) =
+

3

22

	 (iv)	 f x x x
x

( ) =
− −
+

2 6 1

3
	 (v)	 f x x x

x
( ) =

+ −
−

2 6 4

3 6

	 2.	 Sketch the graphs of the following functions:

	 (i)	 y x x= − − +
1

3
3 23( ) 	 (ii)	 y x x= −4 	 (iii)	 y x

x
=

+
−

2

2

1

4

	 (iv)	 y
e x=

+ −

1
1

	 (v)	  y x x= −
3

24
log

Fig.7.38
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EXERCISE 7.10

Choose the correct or the most suitable answer from the given four alternatives :
	 1.	The volume of a sphere is increasing in volume at the rate of  3 3p cm / sec .  

The rate of change of its radius when radius is 1

2
 cm 

		 (1) 3 cm/s	 (2) 2 cm/s	 (3) 1 cm/s	 (4) 1
2

 cm/s

	 2.	A balloon rises straight up at 10 m/s. An observer is 40 m away from the spot where the 
balloon left the ground. Find the rate of change of the balloon’s angle of elevation in radian 
per second when the balloon is 30 metres above the ground.

		 (1) 3

25
 radians/sec	 (2) 4

25
 radians/sec	 (3) 1

5
 radians/sec	 (4) 1

3
 radians/sec

	 3.	The position of a particle moving along a horizontal line of any time t is given by 
s t t t( ) = − −3 2 82 .  The time at which the particle is at rest is

		 (1) t = 0  	 (2) t = 1

3
 	 (3) t =1 	 (4) t = 3  

	 4.	A stone is thrown up vertically. The height it reaches at time t seconds is given by x t t= −80 16 2 . 
The stone reaches the maximum height in time t seconds is given by

		 (1) 2		 (2) 2.5	 (3) 3	 (4) 3.5

	 5.	Find the point on the curve 6 23y x= +  at which y-coordinate changes 8 times as fast as 
x-coordinate is

		 (1) ( , )4 11  	 (2) ( , )4 11−  	 (3) ( , )−4 11  	 (4) ( , )− −4 11  

	 6.	The abscissa of the point on the curve f x x( ) = −8 2   at which the slope of the tangent is  

−0 25. ?
		 (1) −8 	 (2) −4  	 (3) −2  	 (4) 0

	 7.	The slope of the line normal to the curve f x x( ) cos= 2 4  at x = π
12

 is

		 (1) −4 3  	 (2) −4  	 (3) 3

12
 	 (4) 4 3  

	 8.	The tangent to the curve y xy2 9 0− + =  is vertical when

		 (1)  y = 0 	 (2) y = ± 3 	 (3) y = 1

2
	 (4) y = ±3

	 9.	Angle between y x2 =  and x y2 =  at the origin is

		 (1) tan−1 3

4
 	 (2) tan− 








1 4

3
 	 (3) p

2
 	 (4) p

4
 

	 10.	What is the value of the limit lim cot
x

x
x→

−







0

1 ?

		 (1) 0	 (2) 1	 (3) 2	 (4) ∞
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	 11.	The function sin cos4 4x x+  is increasing in the interval

		 (1) 5

8

3

4

π π
,







 	 (2) π π
2

5

8
,







 	 (3) π π
4 2

,






 	 (4) 0
4

,
π





 

	 12.	The number given by the Rolle’s theorem for the function x x x3 23 0 3− ∈, [ , ]  is

		 (1) 1	 (2) 2  	 (3) 3

2
 	 (4) 2

	 13.	The number given by the Mean value theorem for the function 
1

1 9
x

x, [ , ]∈  is

		 (1) 2	 (2) 2.5	 (3) 3	 (4) 3.5
	 14.	The minimum value of the function | |3 9− +x  is

		 (1) 0	 (2) 3	 (3) 6	 (4) 9
	 15.	The maximum slope of the tangent to the curve y e x xx= ∈sin , [ , ]0 2π  is at

		 (1) x = π
4

 	 (2) x = π
2

 	 (3) x = π  	 (4) x = 3

2

π  

	 16.	The maximum value of the function x e xx2 2 0− >,  is

		 (1) 1
e

 	 (2) 1

2e
 	 (3) 1

2e
 	 (4) 4

4e
 

	 17.	One of the closest points on the curve x y2 2 4− =  to the point ( , )6 0  is 

		 (1) ( , )2 0  	 (2) 5 1,( )  	 (3) 3 5,( )  	 (4) 13 3,−( )  

	 18.	The maximum product of two positive numbers, when their sum of the squares is 200, is
		 (1) 100  	 (2) 25 7  	 (3) 28  	 (4) 24 14  

	 19.	The curve y ax bx= +4 2  with ab > 0  

		 (1) has no horizontal tangent	 (2) is concave up
		 (3) is concave down 	 (4) has no points of inflection
	 20.	The point of inflection of the curve y x= −( )1 3  is

		 (1) ( , )0 0  	 (2) ( , )0 1  	 (3) ( , )1 0  	 (4) ( , )1 1  
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SUMMARY
	 •	 If y f x= ( ) ,then dy

dx
represents instantaneous rate of change of y with respect to x .

	 •	 If y f g t= ( )( ) , then dy
dt

f g t g t= ′ ( )( )⋅ ′ ( ) which is called the chain rule.

	 •	 The equation of tangent at  a b,( ) to the curve y f x= ( ) is given by y b dy
dx

x a
a b

− = 



 −( )

( ),

 or 

y b f a x a− = ′ ( ) −( ) .

	 •	 Rolle’s Theorem
		  Let f x( ) be continuous in a closed interval a b,[ ] and differentiable on the open interval 

a b,( ) . If f a f b( ) = ( ) , then there is at least one point c a b∈( ), where ′ ( ) =f c 0 .

	 •	 Lagrange’s Mean Value Theorem

		  Let f x( ) be continuous in a closed interval a b,[ ] and differentiable on the open interval a b,( )  
(where f (a) and f (b) are not necessarily equal). Then there is at least one point c a b∈( ), such 

that ′ ( ) =
( ) − ( )

−
f c f b f a

b a
.     

	 •	 Taylor’s series
		  Let f x( ) be a function infinitely differentiable at x a= . Then f x( ) can be expanded as a 

series in an interval x a x a− +( ), ,of the form

		  f x f a
n

x a f a f a x a f a
n

x a
n

n

n
n

n( ) =
( )

−( ) = ( ) + ′ ( )
−( ) + +

( )
−( )

( )

=

∞ ( )

∑
0 1

 ++         

	 •	 Maclaurin’s series

		  In the Taylor’s series if a = 0 , then the expansion takes the form

		  f x f
n

x f f x f
n

x
n

n

n
n

n( ) =
( ) ( ) = ( ) + ′ ( ) ( ) + +

( ) ( ) +
( )

=

∞ ( )

∑ 0
0

0

1

0

0

 

     

	 •	 The l’Hôpital’s rule

		  Suppose f x( ) and g x( ) are differentiable functions and ′ ( ) ≠g x 0 with       

		  lim lim
x a x a

f x g x
→ →

( ) = = ( )0 . Then lim lim
x a x a

f x
g x

f x
g x→ →

( )
( ) = ′ ( )

′ ( )  

		  lim lim
x a x a

f x g x
→ →

( ) = ±∞ = ( ) . Then lim lim
x a x a

f x
g x

f x
g x→ →

( )
( ) = ′ ( )

′ ( )
  

	 •	 If the function f x( ) is differentiable in an open interval a b,( ) then we say,  if d
dx

f x( )( ) > 0 , 

∀ ∈( )x a b, then f x( )  is strictly increasing in the interval a b,( ) .
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if d
dx

f x( )( ) < 0 , ∀ ∈( )x a b, then f x( )  is strictly decreasing in the interval a b,( )

• A procedure for finding the absolute extrema of a continous function f x( ) on a closed interval
a b,[ ] .

Step 1	 : 	 Find the critical numbers of f x( )  in a b,( ) .

Step 2	 :	 Evaluate f x( ) at all critical numbers and at the endpoints a and b .
Step 3	 :	 The largest and the smallest of the values in Step 2 is the absolute maximum 

and absolute minimum of f x( ) respectively on the closed interval a b,[ ] .

• First Derivative Test

Let c f c, ( )( ) be a critical point of function f x( )  that is continuous on an open interval I
containing c . If f x( ) is differentiable on the interval, except  possibly at c , then f c( )  can
be classified as follows:(when moving across I from left to right)

(i) If ′ ( )f x  changes from negative to positive at c , then f x( )  has a local minimum
f (c).

(ii) If ′ ( )f x  changes from positive to negative at c , then f x( )  has a local maximum
f (c).

(iii) If ′ ( )f x  is positive on both sides of c , or negative on both sides of c  then f x( )  has
neither a local minimum nor a local minimum.

• Second Derivative Test

Suppose that c is a critical point at which ′ ( ) =f c 0 , that ′′ ( )f x exists in a neighbourhood of
c , and that ′ ( )f c exists. Then f has a relative maximum value at c if ′′ ( ) <f c 0  and a
relative minimum value at c if ′′ ( ) >f c 0 . If ′′ ( ) =f c 0 , the test is not informative.
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“He who hasn’t tasted bitter things hasn’t earned sweet things”
-  Gottfried Wilhelm Leibniz

Chapter

8 Differentials and Partial Derivatives

Motivation
	 In real life we have to deal with many functions. Many times we have to estimate the change in 
the function due to change in the independent variable. Here are some real life situations.

	 •	 Suppose that a thin circular metal plate is heated uniformly. Then it’s radius increases and 
hence its area also increases. Suppose we can measure the approximate increase in the 
radius. How can we estimate the increase in the area of a circular plate?

	 •	 Suppose water is getting filled in water tank that is in the shape of an inverted right circular 
cone. In this process the height of the water level changes, the radius of the water level 
changes and the volume of the water in the tank changes as time changes. In a small 
interval of time, if we can measure the change in the height, change in the radius, how can 
we estimate the change in the volume of the water in the interval?

	 •	 A satellite is launched into the space from a launch pad. A camera is being set up, to 
observe the launch, at a safe distance from the launch pad. As the satellite lifts up, camera’s 
angle of elevation changes. If we know the two consecutive angles of elevation, within a 
small interval of time, how can we estimate the distance traveled by the satellite during that 
short interval of time?

	 To address these type of questions, we shall use the ideas of derivatives and partial derivatives 
to find linear approximations and differentials of the functions involved.

8.1 Introduction
	 In the earlier chapters we have learnt the concept of derivative of a real-
valued function of a single real variable. We have also learnt its applications in 
finding extremum of a function on its domain, and sketching the graph of a 
function. In this chapter, we shall see one more application of the derivative in 
estimating values of a function at some point. We know that linear functions, 
y mx b= + , are easy to work with; whereas nonlinear functions are 
computationally a bit tedious to work with.

Godfried W Leibniz
(1646 - 1716)

58
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Differentials and Partial Derivatives59

	 For instance, if we have two functions, say f x x g x x( ) , ( )= + = −1 2 7  and suppose that we 

want to evaluate these functions at say x = 3 25. . Which one will be easy to evaluate? Obviously, 
g( . )3 25  will be easier to calculate than f ( . )3 25 . If we are ready to accept some error in calculating 
f ( . )3 25 , then we can find a linear function that approximates f  near x = 3  and use this linear 

function to obtain an approximate value of f ( . )3 25 .We know that the graph of a function is a 
nonvertical line if and only if it is a linear function. Out of infinitely many straight lines passing 
through any given point on the graph of the function, only tangent line gives a good approximation to 
the function, because the graph of f looks approximately a straight line on the vicinity  
of the point ( , )3 2 .

	 Fig. 8.1	 Fig. 8.2  Tangent Line
	 From the figures above it is clear that among these straight lines, only the tangent line to the 
graph of f x( )  at x = 3   gives a good approximation near the point x = 3 . Basically we are “linearizing” 
the given function at a selected point ( , )3 2 . This idea helps us in estimating the change in the function 
value near the chosen point through the change in the input. We shall use “derivative” to introduce 
the concept of “differential” which approximates the change in the function and will also be useful 
in calculating approximate values of a function near a chosen point. The derivative measures the 
instantaneous rate of change where as the differential approximates the change in the function values. 
Also, differentials are useful later in solving differential equations and evaluating definite integrals by 
the substitution method.

	 After learning differentials, we will focus on real valued functions of several variables. For 
functions of several variables, we shall introduce “partial derivatives”, a generalization of the 
concept of “derivative” of real-valued function of one variable. Why should we consider functions 
of more than one variable? Let us consider a simple situation that will explain the need. Suppose that 
a company is producing say pens and notebooks. This company is interested in maximizing its profit; 
then it has to find out the production level that will give maximum profit. To determine this, it has 
to analyze its revenue, cost, and profit functions, which are, in this case, functions of two variables 
(pen, notebook). Similarly, if we want to consider the volume of a box, then it will be a function 
of three variables namely length, width, and height. Also, the economy of a country depends on so 
many sectors and hence it depends on many variables. Thus it is necessary and important to consider 
functions involving more than one variable and develop the “concept of derivative” for functions of 
more than one variable. We shall also develop “differential” for functions of two and three variables 
and consider some of its applications. In this chapter, we shall consider only real-valued functions.
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Learning Objectives

Upon completion of this chapter,  students will be able to
	 •	 calculate the linear approximation of a function of one variable at a point
	 •	 approximate the value of a function using its linear approximation without calculators
	 •	 calculate the differential of a function
	 •	 apply linear approximation, differential in problems from real life situations
	 •	 find partial derivatives of a function of more than one variable
	 •	 calculate the linear approximation of a function of two or more variables
	 •	 determine if a given function of several variables is homogeneous or not
	 •	 apply Euler’s theorem for homogeneous functions.

8.2 Linear Approximation and Differentials

8.2.1 Linear Approximation
	 In this section, we introduce linear approximation of a function at a point. Using the linear 
approximation, we shall estimate the function value near a chosen point. Then we shall introduce 
differential of a real-valued function of one variable, which is also useful in applications.

	 Let f a b: ( , ) →   be a differentiable function and x a b∈ ( , ) . Since f  is differentiable at x , we 
have

			   lim
( ) ( )

∆ →

+ ∆ −
∆x

f x x f x
x0

 	= 	 ′f x( ) 	 ... (1)

	 If Dx  is small, then by (1) we have
			   f x x f x( ) ( )+ ∆ − 	 » 	 ′ ∆f x x( ) ;	 ... (2)

which is equivalent to
			   f x x( )+ ∆ 	 » 	 f x f x x( ) ( )+ ′ ∆ ,	 ... (3)

where »  means “approximately” equal. Also, observe that as the independent variable changes from 
x  to x x+ ∆ , the function value changes from f x( )  to f x x( )+ ∆ . Hence if Dx  is small and the 
change in the output is denoted by Df  or Dy , then (2) can be rewritten as

			   change in the output	= 	∆ = ∆ = + ∆ − ≈ ′ ∆y f f x x f x f x x( ) ( ) ( ) .

	 Note that (3) helps in approximating the value of f x x( )+ ∆  using f x( )  and ′ ∆f x x( ) . Also, for 
a fixed x y x f x f x x x x0 0 0 0, ( ) ( ) ( )( ),= + ′ − ∈ , gives the tangent line for the graph of f  at ( , ( ))x f x0 0  
which gives a good approximation to the function f  near x0 . This leads us to define

Definition 8.1 (Linear Approximation)

	 Let f a b: ( , ) →   be a differentiable function and x a b0 ∈ ( , ) . We define the linear approximation 
L  of f  at x0  by
			   L x( ) 	= 	 f x f x x x x a b( ) ( )( ), ( , )0 0 0+ ′ − ∀ ∈  	 ... (4)
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	 Note that by (3) and (4) we see that
	 f x x( )+ ∆  »  f x f x x( ) ( )+ ′ ∆ ,

which is useful in approximating the value of 
f x x( )+ ∆ .

	 Note that linear approximation for f  at 

x0  gives a good approximation to f x( )  if x  

is close to x0 , because

			   Error	=	 f x L x f x f x f x x x( ) ( ) ( ) ( ) ( )( )− = − − ′ −0 0 0 	 ... (5)

approaches zero as x  approaches to x0  by continuity of f  at x0 . Also, if f x mx c( ) = + , then its 
linear approximation is L x mx c m x x mx c f x( ) ( ) ( ) ( )= + + − = + =0 0 , for any point x a b∈ ( , ) . That is, 
the linear approximation, in this case, is the original function itself (is it not surprising?).

Example 8.1
	 Find the linear approximation for f x x x( ) ,= + ≥ −1 1, at x0 3= . Use the linear approximation 
to estimate f ( . )3 2 .

Solution

	 We know from (4), that L x f x f x x x( ) ( ) ( )( )= + ′ −0 0 0 . We have x x0 3 0 2= =, .∆  and hence 

f ( )3 1 3 2= + = . Also,

			   ′f x( ) 	= 	 1

2 1+ x
 and hence ′ =

+
=f ( )3

1

2 1 3

1

4
.

			   Thus, L x( ) 	= 	2 1

4
3

4

5

4
+ − = +( )x x  gives the required linear approximation.

			   Now,   f ( . )3 2 	= 	 4 2 3 2
3 2

4

5

4
2 050. ( . )

.
.≈ = + =L .

	 Actually, if we use a calculator to calculate we get 4 2 2 04939. .= .

8.2.2 Errors: Absolute Error, Relative Error, and Percentage Error
	 When we are approximating a value, there occurs an error. In this section, we consider the error, 
which occurs by linear approximation, given by (4). We shall consider different types of errors. 
Taking h x x= − 0 ,  we get x x h= +0 , then (5) becomes

			   E h( ) 	= 	 f x h f x f x h( ) ( ) ( )0 0 0+ − − ′ .	 ... (6)

	 Note that E( )0 0=  and as we have already observed lim ( )
h
E h

→
=

0
0  follows from the continuity of 

f  at x0 . In addition, if f  is differentiable, then from (1), it follows that

Fig. 8.3
Linear Approximation by Tangent Line

}
f x x( )0 + ∆

f x( )0

∆y

Tangent line
x f x f x x x= + ′ −( ) ( )( )0 0 0

y f x= ( )

( , ( ))x f x0 0

x0 x x0 + ∆O
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			   lim
( )

h

E h
h→0

	= 	lim ( ) ( )
( )

h

f x h f x
h

f x
→

+ −
− ′ =

0
0 .

	 Thus when f  is differentiable at x0 , then the above equation shows that E h( )  actually approaches 
zero faster than h  approaching zero. Now, we define

Definition 8.2

	 Suppose that certain quantity is to be determined. It’s exact value is called the actual value. 
Some times we obtain its approximate value through some approximation process. In this case, 
we define

Absolute error = Actual value − Approximate value.

	 So (6) gives the absolute error that occurs by a linear approximation. Let us look at an example 
illustrating the use of linear approximation.

Example 8.2
	 Use linear approximation to find an approximate value of 9 2.  without using a calculator.
Solution

	 We need to find an approximate value of 9 2.  using linear approximation. Now by (3), we have 

f x x f x f x x( ) ( ) ( )0 0 0+ ∆ ≈ + ′ ∆ . To do this, we have to identify an appropriate function f , a point x0  

and Dx . Our choice should be such that the right side of the above approximate equality, should be 

computable without the help of a calculator. So, we choose f x x x( ) ,= =0 9  and ∆ =x 0 2. . Then, 

′ =f x( )0

1

2 9
 and hence

			   9 2. 	» 	 f f( ) ( )( . )
.

.9 9 0 2 3
0 2

6
3 03333+ ′ = + = .

	 Now if we use a calculator, just to compare, we find 9 2 3 03315. .= . We see that our approximation 

is accurate to three decimal places and the error is 3 03315 3 03333 0 00018. . .− = − . [Also note that one 

could choose f x x x( ) ,= + =1 80  and ∆x = 0 2. . So the choice of f  and x0  are not necessarily 
unique].
	 So in the above example, the absolute error is 3 03315 3 03333 0.00018.. . . Note that the 
absolute error says how much the error; but it does not say how good the approximation is. For 
instance, let us consider two simple cases.
	 Case 1 : Suppose that the actual value of something is 5  and its approximated value is 4 , then 
the absolute error is 5 4 1− =  .

	 Case 2 : Suppose that the actual value of something is 100  and its approximated value is  
95 . In this case, the absolute error is 100 95 5− = . So the absolute error in the first case is smaller 
when compared to the second case.

	 Among these two approximations, which is a better approximation; and why? The absolute error 
does not give a clear picture about whether an approximation is a good one or not. On the other hand, 
if we calculate relative error or percentage of error (defined below), it will be easy to see how good 
an approximation is. If the actual value is zero, then we do know how close our approximate answer 
is to the actual value. So if the actual value is not zero, then we define,
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Definition 8.3 
	 If the actual value is not zero, then 

			   Relative error	= 	Actual value  Approximate value

Actual value

−

			   Percentage error	= 	Relative error ×100 .

	 Note: Absolute error has unit of measurement where as relative error and percentage error are units free.
	 Note that, in the case of the above examples

	 The relative error = =
1

5
0 2. ; and the percentage error = × =

1

5
100 20% .

	 In the second case

	 The relative error = 5

100
; and the percentage error = × =

5

100
100 5% .

	 So the second approximation is a better approximation than the first one. Note that, in order to 
calculate the relative error or the percentage error one should know the actual value of what we are 
approximating.
	 Let us consider some examples.
Example 8.3
	 Let us assume that the shape of a soap bubble is a sphere. Use linear approximation to approximate 
the increase in the surface area of a soap bubble as its radius increases from 5 cm to 5.2 cm. Also, 
calculate the percentage error.
Solution 
	 Recall that surface area of a sphere with radius r  is given by S r r( ) = 4 2π . Note that even though 
we can calculate the exact change using this formula, we shall try to approximate the change using 
the linear approximation. So, using (4), we have
			   Change in the surface area	= 	S S S( . ) ( ) ( )( . )5 2 5 5 0 2− ≈ ′

				   = 	8 5 0 2p( )( . )

				   = 	8p  cm2

	 Exact calculation of the change in the surface gives
			   S S( . ) ( )5 2 5− 	= 	108 16 100 8 16 2. .  cm .

			   Percentage error	= 	relative error × =
−

× =100
8 16 8

8 16
100 1 9607

.

.
. %

π π
π

 

Example 8.4
	 A right circular cylinder has radius r =10  cm. and height h = 20  cm. Suppose that the radius of 
the cylinder is increased from 10  cm to 10 1.  cm and the height does not change. Estimate the change 
in the volume of the cylinder. Also, calculate the relative error and percentage error.

Solution
	 Recall that volume of a right circular cylinder is given by V r h= π 2 , where r  is the radius and h  

is the height. So we have V r r h r( ) = =π π2 220 .

			   V V( . ) ( )10 1 10− 	» 	dV
dt r 10

10 1 10 20 2 10 0 1( . ) ( ( . )) .
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	 Thus the estimate for the change in the volume is 40p cm3 .
	 Exact calculation of the volume change gives

			   V V( . ) ( )10 1 0− 	= 	2040 2 2000 40 2 3. .π π π− = cm .

			   So relative error	= 	 40 2 40

40 2

1

201
0 00497

.

.
.

π π
π
−

= = ; and hence

			    the percentage error	= 	relative error × = × =100
1

201
100 0 497. % .

EXERCISE 8.1
	 1.	 Let f x x( ) = 3 . Find the linear approximation at x = 27 . Use the linear approximation to 

approximate 27 23 . .
	 2.	 Use the linear approximation to find approximate values of

			   (i)	 ( )123
2

3 	 (ii)	 154  	 (iii)	 263  

	 3.	 Find a linear approximation for the following functions at the indicated points.

			   (i)	 f x x x x( ) ,= − + =3

05 12 2  	 (ii)	 g x x x( ) ,= + = −2

09 4  

			  (iii)	h x x
x

x( ) ,=
+

=
1

10  

	 4.	 The radius of a circular plate is measured as 12 65.  cm instead of the actual length 12 5.  cm. 
find the following in calculating the area of the circular plate:

			   (i)	Absolute error	 (ii)	Relative error	 (iii)	Percentage error
	 5.	 A sphere is made of ice having radius 10  cm. Its radius decreases from 10  cm to  

9 8.  cm. Find approximations for the following:
			   (i)	change in the volume			  (ii)	 change in the surface area
	 6.	 The time T , taken for a complete oscillation of a single pendulum with length l , is given by 

the equation T
l
g

= 2p , where g  is a constant. Find the approximate percentage error in 

the calculated value of T  corresponding to an error of 2  percent in the value of l .

	 7.	 Show that the percentage error in the n th root of a number is approximately 1
n

 times the 

percentage error in the number 
8.2.3 Differentials
	 Here again, we use the derivative concept to introduce “Differential”. Let us take another look 
at (1),

			   df
dx

	= 	 lim
( ) ( )

( ) lim
∆ → ∆ →

+ ∆ −
∆

= ′ =
∆
∆x x

f x x f x
x

f x f
x0 0

.	 ...(7)

	 Here df
dx

is a notation, used by Leibniz, for the limit of the difference quotient, which is called the 

differential coefficient of y with respect to x .Will it be meaningful to treat df
dx

 as a quotient of df  

and dx ? In other words, is it possible to assign meaning to df  and dx  so that derivative is equal to 
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the quotient of df  and dx .Well, in some cases yes. For instance, if f x mx c m c( ) , ,= +  are constants, 
then, y f x= ( ) .

			   Dy 	= 	 f x x f x m x f x x( ) ( ) ( )+ ∆ − = ∆ = ′ ∆   for all x∈   and Dx  

and hence equality in both (2), and (3). In this case changes in x  and y f( )=  are taking place along 

straight lines, in which case we have,

			   change in 

change in 

f
x

	= 	 ∆
∆

= ′ = =
y
x

f x df
dx

dy
dx

( ) .

	 Thus in this case the derivative df
dx

 is truly a quotient of df dxand , if we take df f dy= ∆ =  and 

dx x= ∆ . This leads us to define the differential of f  as follows:

Definition 8.4
	 Let f a b: ( , ) →   be a differentiable function, for x a b∈ ( , )  and  the increment given to x , 
we define the differential of f  by
			   df f x x= ′( )∆ .	 ... (8)

	 First we note that if f x x( ) = , then by (8) we get dx f x x x= ′ =( )∆ ∆1  which means that the 
differential dx x= ∆ , which is the change in 
x -axis. So the differential given by (8) is 
same as df f x dx= ′( ) .

	 Next we explore the differential for an 
arbitrary differentiable function y f x= ( ) . 
Then ∆f f x dx f x= + −( ) ( )  gives the 
change in output along the graph of 
y f x= ( )  and ′f x( )  gives the slope of the 

tangent line at ( , ( ))x f x . Let dy  or df  
denote the increment in f  along the tangent 

line. Then by the above observation, we 
have  dy f x dx= ′( ) .

	 From the figure it is clear that ∆ ≈ = = ′f dy df f x dx( )  and hence ′f x( )  can be viewed 

approximately as the quotient of Df  and Dx . So we may interpret df
dx

 as the quotient of df  and dx . 

Remark

	 We know that derivative of a function is again a function. On the other hand, differential df  of a 

function f  is not only a function of the independent variable but also depends on the change in the 

input namely dx x= ∆ . So df  is a function of two changing quantities namely x xand d . Observe that 

∆ ≈f df , which can be observed from the Fig. 8.4.

{ }
{

∆y y f t= ( )

f x dx( )+

y f x= ( )

dy f x dx= ′( )

Tangent line

x x+dx
dx

O

Fig. 8.4
Linear Approximation and Differential
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	 In the table below we give some functions, their derivatives and their differentials side by side 
for comparative purpose.

S.
No.

Function Derivative Differential

1 f x xn( ) =  ′ = −f x nxn( ) 1  df nx dxn= −1  

2 f x x x( ) cos( )= +2 7  f x x x x( ) sin( )( )2 7 2 7  df x x x dx= − + +sin( )( )2 7 2 7  

3 f x x( ) cot( )= 2  f x x x( ) cosec2 ( )2 2  dxf x x x( ) cosec2 ( )2 2  

4 f x x( ) sin-1( )�  
′ =

−
f x

x
( )

1

1 2
 df

x
dx=

−

1

1 2
 

5 f x x( ) tan= −1  ′ =
+

f x
x

( )
1

1 2
 df

x
dx=

+
1

1 2
 

6 f x ex x( ) = − +3 5 7  ′ = −− +f x e xx x( ) ( )
3 5 7 23 5  df e x dxx x= −− +3 5 7 23 5( )  

7 f x x( ) log( )= +2 1  ′ =
+

f x x
x

( )
2

12
 df x

x
dx=

+
2

12
 

	 Next we look at the properties of differentials. These results easily follow from the definition of 
differential and the rules for differentiation. We give a proof for (5) below and the other proofs are left 
as exercises.

Properties of Differentials
	 Here we consider real-valued functions of real variable.

	 (1)	 If f  is a constant function, then df = 0 .

	 (2)	 If f x x( ) =  identity function, then df dx=1 .

	 (3)	 If f  is differentiable and c∈ , then d cf cf x dx( ) ( )= ′ .

	 (4)	 If f g,  are differentiable, then d f g df dg f x dx g x dx( ) ( ) ( )+ = + = ′ + ′ .

	 (5)	 If f g,  are differentiable, then d fg fdg gdf f x g x f x g x dx( ) ( ( ) ( ) ( ) ( )) .

	 (6)	 If f g,  are differentiable, then d f g gdf fdg
g

g x f x f x g x
g x

dx( / )
( ) ( ) ( ) ( )

( )
=

−
=

′ − ′
2 2

, where 

g x( ) ¹ 0 .

	 (7)	 If f g,  are differentiable and h f g=   is defined, then dh f g x g x dx= ′ ′( ( )) ( ) .

	 (8)	 If h x e f x( ) ( )= , then dh e f x dxf x= ′( ) ( ) .

	 (9)	 If f x( ) > 0  for all x  and g x f x( ) log( ( ))= , then dg f x
f x

dx=
′( )

( )
. 

Chapter 8 Differentials and Partial Derivatives.indd   66 7/25/2019   5:34:28 PM



Differentials and Partial Derivatives67

Example 8.5
	 Let f g a b, : ( , ) →   be differentiable functions. Show that d fg fdg gdf( ) = + .

Solution
	 Let f g a b, : ( , ) →   be differentiable functions and h x f x g x( ) ( ) ( )= . Then h , being product 

differentiable functions, is differentiable on ( , )a b  . So by definition dh h x dx= ′( ) . Now by using 

product rule we have ′ = ′ + ′h x f x g x f x g x( ) ( ) ( ) ( ) ( ) . 

	 Thus	 dh h x dx= ′( ) 	= 	 ( ( ) ( ) ( ) ( )) ( ) ( ) ( ) ( )f x g x f x g x dx f x g x dx f x g x dx′ + ′ = ′ + ′

				   = 	 f x dg g x df fdg gdf( ) ( )+ = +

Example 8.6
	 Let g x x x( ) sin= +2 . Calculate the differential dg .

Solution
	 Note that g  is differentiable and ′ = +g x x x( ) cos2 .
	 Thus dg x x dx= +( cos )2 .

Example 8.7
	 If the radius of a sphere, with radius 10  cm, has to decrease by 0 1.  cm, approximately how much 
will its volume decrease?

Solution 
	 We know that volume of a sphere is given by V r=

4

3

3π ,  where r > 0  is the radius. So the 

differential dV r dr= 4 2π  and hence

			   ∆ ≈V dV 	= 	 4 10 2 3p( ) (9.9-10)cm  
				   = 	 4 10 0 12 3( . ) cm  
				   = 	 − 40 3π cm .

	 Note that we have used dr = −( . )9 9 10 cm,  because radius decreases from 10 to 9.9. Again the 

negative sign in the answer indicates that the volume of the sphere decreases about 40 3cm .

EXERCISE 8.2
	 1.	Find differential dy  for each of the following functions :

			  (i)	 y x
x

=
−
−

( )1 2

3 4

3

 	 (ii)	 y x= +( sin( )) /3 2 2 3 	 (iii)	 y e xx x2 5 7 2cos ( )1  

	 2.	Find df  for f x x x( ) = +2 3  and evaluate it for
			  (i)	 x = 2  and dx = 0 1.  	(ii)	 x = 3  and dx = 0 02.

	 3.	Find Df  and df  for the function f  for the indicated values of  and compare

			  (i)	 f x x x x x dx( ) ; , .= − = = =3 22 2 0 5∆

			  (ii)	 f x x x x x dx( ) ; . , .= + + = − = =2 2 3 0 5 0 1∆

	 4.	Assuming log .10 0 4343e = , find an approximate value of log10 1003 .
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	 5.	The trunk of a tree has diameter 30 cm. During the following year, the circumference grew 
6 cm. 

		 (i)  Approximately, how much did the tree’s diameter grow?
		 (ii) What is the percentage increase in area of the tree’s cross-section?
	 6.	An egg of a particular bird is very nearly spherical. If the radius to the inside of the shell is 5 

mm and radius to the outside of the shell is 5.3 mm, find the volume of the shell approximately.
	 7.	Assume that the cross section of the artery of human is circular. A drug is given to a patient 

to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1 mm, how much 
is cross-sectional area increased approximately?

	 8.	In a newly developed city, it is estimated that the voting population (in thousands) will 
increase according to V t t t t( ) ,= + − ≤ ≤30 12 0 82 3  where t  is the time in years. Find the 

approximate change in voters for the time change from 4 to 4
1

6
  year.

	 9.	The relation between the number of words y  a person learns in x  hours is given by 

y x x= ≤ ≤52 0 9,  . What is the approximate number of words learned when x  changes 

from
			  (i)	 1 to 1.1 hour?	 (ii)	 4 to 4.1 hour?
	 10.	A circular plate expands uniformly under the influence of heat. If it’s radius increases from 

10.5 cm to 10.75 cm, then find an approximate change in the area and the approximate 
percentage change in the area.

	 11.	A coat of paint of thickness 0 2.  cm is applied to the faces of a cube whose edge is 10  cm. 
Use the differentials to find approximately how many cubic centimeters of paint is used to 
paint this cube. Also calculate the exact amount of paint used to paint this cube.

8.3 Functions of several Variables
	 Recall that given a function f  of x ; we sketch the graph of y f x= ( )  to understand it better. 
Generally, the graph of y f x= ( )  gives a curve in the xy -plane. Also, the derivative ′f a( )  of f  at 
x a=  represents the slope of the tangent at x a= , to the graph of f . In the introduction we have seen 
the need for considering functions of more than one variable. Here we shall develop some concepts 
to understand functions of more than one variable. First we shall consider functions of two variables. 
Let F x y( , )  be a function of x  and y . To obtain graph F , we graph z F x y= ( , )  in the xyz -space. 
Also, we shall develop the concepts of continuity, partial derivatives of a function of two variables.
	 Let us look at an example, g x y x y( , ) ,= − −30 2 2  for x y, ∈ . Given a point ( , )x y ∈2 , then 
z x y= − −30 2 2  gives the z  coordinate of the point on the graph. Thus the point ( , , )x y x y30 2 2− −  
lies 30 2 2− −x y  high just above the point ( , )x y  in xy -plane. For instance, for ( , )2 3 2∈ , the point 
( , , ) ( , , )2 3 30 2 3 2 3 172 2− − =  lies on the graph of g . If we fix the value y = 3 , then g x x( , )3 212= − +  
which is a function that depends only on x  variable; so its graph must be a curve. Similarly, if we fix 
value x = 2 , then we have g y y( , )2 26 2= −  which is a function that depends only on y . In each case 
the graph, as the resulting function being quadratic, will be a parabola. The surface we obtain from 
z g x y= ( , )  is called paraboloid.
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z = 30 - x2 - y2

z = 30 - x2 - y2

y = 3 x = 2

	 Note that g x x( , )3 21 2= −  represents a parabola; which is obtained by intersecting the surface of 
z x y= − −30 2 2  with the plane y = 3  [see Fig. 8.5). Similarly g y y( , )2 26 2= −  represents a parabola; 
which is obtained by intersecting the surface of z x y= − −30 2 2  with the plane x = 2  [see Fig. 8.6). 
Following graphs describes the above discussion.

	 Fig. 8.5	 Fig. 8.6 
	 In the same way, given a function F  of a two variables say x y, , we can visualize it in the three 
space by considering the equation z F x y= ( , ) . Generally, this will represent a surface in 3 .

8.3.1 Recall of Limit and Continuity of Functions of One Variable
	 Next we shall look at continuity of a function of two variables. Before that, it will be beneficial 
for us to recall the continuity of a function of single variable. We have seen the following definition 
of continuity in XI Std.
	 A function f a b: ( , ) →   is said to be continuous at a point x a b0 ∈ ( , )  if the following hold:

	 (1)	 f  is defined at x0 .	 (2)	 lim ( )
x x

f x L
→

=
0

 exists       (3) xL
0

	 The key idea in the continuity lies in understanding the second condition given above. We write 

lim ( )
x x

f x L
→

=
0

 whenever the value f x( )  gets closer and closer to L  as x  gets closer and closer to x0 .

	 To make it clear and precise, let us rewrite the second condition in terms of neighbourhoods. This 
will help us when we talk about continuity of functions of two variables.

Definition 8.5 (Limit of a Function)

	 Suppose that f a b: ( , ) →   and x a b0 ∈ ( , ) . We say that f  has a limit L  at x x= 0  if for every 

neighbourhood ( , ),L L− + >ε ε ε 0  of L , there   exists  a  neighbourhood ( , ) ( , ),x x a b0 0 0− + ⊂ >δ δ δ  

of x0  such that
f x L L( ) ( , )∈ − +ε ε  whenever x x x x∈ − +( , ) \{ }0 0 0δ δ .

	 The above condition in terms of neighbourhoods can also be equivalently stated using modulus 
(or absolute value) notation as follows:
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 such that | ( ) |f x L  whenever 0 0< − <| |x x δ .

	 This means whenever x x¹ 0  and is within δ  distance from x0 , then f x( )  is within  distance 
from L . Following figures explain the interplay between ε  and δ . 

	 Fig. 8.7	 Fig. 8.8 
	 We also know, from XI Std, that a function f  defined in the neighbourhood of x0  except possibly 

at x0  has a limit at x0  if the following hold :

	 (1)	 lim ( )
x x

f x L
→ +

=
0

1  (right hand limit) exists	 (2)	 lim ( )
x x

f x L
→ −

=
0

2  (left hand limit) exists

	 (3)	
0

0( ) , lim ( )
x x

f x L and f x L
→

= = (say).

	 The function f  is continuous at x= x0  if L = L1 = L2 .Note that in the limit and continuity of a 

single variable functions, neighbourhoods play an important role. In this case a neighbourhood of a 

point x0 ∈  looks like ( , )x r x r0 0− + , where r > 0 . In order to develop limit and continuity of 

functions of two variables, we need to define neighbourhood of a point ( , )u v ∈2 . So, for ( , )u v ∈2  

and r > 0 , a r -neighbourhood of the point ( , )u v  is the set

B u v x y x u y v rr (( , )) {( , ) | ( ) ( ) }= ∈ − + − <

2 2 2 2 .

	 So a r -neighbourhood of a point ( , )u v  is an open disc with centre ( , )u v  and radius r > 0 . If the 
centre is removed from the neighbourhood, then it is called a deleted neighbourhood.

8.4 Limit and Continuity of Functions of Two Variables
Definition 8.6 (Limit of a Function)

	 Suppose that A x y a x b c y d F A( , ) , , :� �2 . We say that F  has a limit L at 

( , )u v  if the following hold :
	 For every neighboourhood ( , ),L L− + >e e e 0 , of L , there exists a δ -neighbourhood 
B u v Aδ (( , )) ⊂  of ( , )u v  such that ( , ) (( , )) \{( , )}, ( ) ( , )x y B u v u v f x L L∈ > ⇒ ∈ − +d d e e0 .
	 We denote this by lim ( , )

( , ) ( , )x y u v
F x y L

→
=  if such a limit exists.

y

x

f x x
x
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�
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Fig. 8.9 Limit of a function

	 When compared to the case of a function of single variable, for a function of two variables, there is 
a subtle depth in the limiting process. Here the values of F x y( , )  should approach the same value L ,  
as ( , )x y  approaches ( , )u v  along every possible path to ( , )u v  (including paths that are not straight 
lines). Fig.8.9 explains the limiting process.

	 All the rules for limits (limit theorems) for functions of one variable also hold true for 
functions of several variables.

	 Now, following the idea of continuity for functions of one variable, we define continuity of a 
function of two variables.

Definition 8.7 (Continuity)

	 Suppose that A x y a x b c y d F A= < < < <{ } ⊂ →( , ) , , : 

2 . We say that F  is continuous 

at ( , )u v  if the following hold :

	 (1)	 F  is defined at ( , )u v  	 (2)	 lim ( , )
( , ) ( , )x y u v

F x y L
→

=  exists	 (3)	 L F u v= ( , ) .

y

O x
a b

f

R

f x y( , )0 0 +ε

f x y( , )0 0

f x y( , )0 0 −ε

( , )x y0 0

d

c

�2

Fig. 8.10 Continuity of a function
Remark
	 (1)	 In Fig. 8.10 taking L F x y= ( , )0 0  will illustrate continuity at ( , )x y0 0 .
	 (2)	 Continuity for f x x xn( , , , )1 2   is also defined similarly as defined above.
		 Let us consider few examples as illustrations to understand continuity of functions of two 
variables.

Example 8.8

	 Let f x y x y
x y

( , ) =
− +
+ +

3 5 8

12 2
 for all ( , )x y ∈2 . Show that f  is continuous on 2 .

y

O x
a b

f

R

L( , )x y0 0

L +ε

L −ε

d

c

�2
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Solution
Let ( , )a b ∈2  be an arbitrary point. We shall investigate continuity of f  at ( , )a b . 
That is, we shall check if all the three conditions for continuity hold for f  at ( , )a b .

To check first condition, note that f a b a b
a b

( , ) =
− +
+ +

3 5 8

12 2
 is defined. 

Next we want to find if lim ( , )
( , ) ( , )x y a b

f x y
→  

exists or not.

So we calculate lim ( )
( , ) ( , )x y a b

x y a b
→

− + = − +3 5 8 3 5 8  and lim ( )
( , ) ( , )x y a b

x y a b
→

+ + = + + ≠2 2 2 21 1 0 .

Thus, by the properties of limits, we see that

lim ( , )
lim ( )

lim( , ) ( , )

( , ) ( , )

( , ) ( , )

x y a b

x y a b

x y a b

f x y
x y

→

→

→

=
− +3 5 8

(( )
( , )

x y
a b
a b

f a b
2 2 2 21

3 5 8

1+ +
= − +

+ +
=  = L exists.

Now we note that lim ( , ) ( , )
, ( , )x y a b

f x y L f a b
→

= = . Hence f  satisfies all the three conditions for 

continuity of f  at ( , )a b . Since ( , )a b  is an arbitrary point in R2 , we conclude that f  is continuous 
at every point of 2 .

Example 8.9
	 Consider f x y xy

x y
( , ) =

+2 2
 if ( , ) ( , )x y ¹ 0 0  and f ( , )0 0 0= . Show that f  is not continuous at 

( , )0 0  and continuous at all other points of 2 .

Solution
	 Note that f  is defined for every ( , )x y ∈2 . First let us check the continuity at ( , ) ( , )a b ¹ 0 0 . 

Let us say, just for instance, ( , ) ( , )a b = 2 5 . Then f ( , )2 5
10

29
= . Then, as in the above example, we 

calculate lim ( )
( , ) ( . )x y

xy
→

= =
2 5

2 5 10  and lim
( , ) ( . )x y

x y
→

+ = + = ≠
2 5

2 2 2 22 5 29 0 .

Hence   lim
( , ) ( , )x y

xy
x y→ +

=
2 5 2 2

10

29
.

	 Since f xy
x yx y

( , ) lim
( , ) ( , )

2 5
10

29 2 5 2 2
= =

+→
, it follows that f  is continuous at ( , )2 5 .

	 Exactly by similar arguments we can show that f  is continuous at every point  
( , ) ( , )a b ¹ 0 0 . Now let us check the continuity at ( , )0 0 . Note that f ( , )0 0 0=  by definition. Next we 

want to find if lim
( , ) ( , )x y

xy
x y→ +0 0 2 2

 exists or not.

	 First let us check the limit along the straight lines y mx= , passing through ( , )0 0 .

lim lim
( )

( , )
( , ) ( , )x y x

xy
x y

mx
m x

m
m

f
→ →+

=
+

=
+

≠
0 0 2 2 0

2

2 2 21 1
0 0 , if m 0.

	 So for different values of m , we get different values m
m1 2+

 and hence we conclude that 

lim
( , ) ( , )x y

xy
x y→ +0 0 2 2

 does not exist. Hence f  cannot be continuous at ( , )0 0 .

Chapter 8 Differentials and Partial Derivatives.indd   72 7/25/2019   5:34:54 PM



Differentials and Partial Derivatives73

Example 8.10

	 Consider g x y x y
x y

( , ) =
+

2 2

2 2
 if ( , ) ( , )x y ¹ 0 0  and g( , )0 0 0= . Show that g  is continuous on 2 .

Solution
	 Observe that the function g  is defined for all ( , )x y ∈2 . It is easy to check, as in the above 

examples, that g  is continuous at all point ( , ) ( , )x y ¹ 0 0 . Next we shall check the continuity of g  at 

( , )0 0 . For that we see if g  has a limit L  at ( , )0 0  and if L g= =( , )0 0 0 . So we consider

			   g x y g( , ) ( , )− 0 0 	= 	 2
0

2 22

2 2

2

2 2 2 2

2 2

2 2

x y
x y

x y
x y

xy x
x y

x y x
x y

x
+

− =
+

=
+

≤
+
+

≤
( )

 	 ... (9)

	 Note that in the final step above we have used 2 2 2xy x y≤ +  (which follows by considering 

0 2≤ −( )x y ) for all x y, ∈ . Note that ( , ) ( , )x y → 0 0  implies x → 0 . Then from (9) it follows that 

lim ( , )
( , ) ( , )x y

x y
x y

g
→ +

= =
0 0

2

2 2

2
0 0 0 ; which proves that g is continuous at ( , )0 0 . So g  is continuous at 

every point of 2 .

EXERCISE 8.3
	 1.	Evaluate lim ( , )

( , ) ( , )x y
g x y

→ 1 2
, if the limit exists, where g x y x xy

x y
( , ) =

−
+ +

3

3

2

2 2
.

	 2.	Evaluate lim cos
( , ) ( , )x y

x y
x y→

+
+ +











0 0

3 2

2
. If the limit exists.

	 3.	Let f x y y xy
x y

( , ) = −
−

2

 for ( , ) ( , )x y ¹ 0 0 . Show that lim ( , )
( , ) ( , )x y

f x y
→

=
0 0

0 .

	 4.	Evaluate lim cos
sin

( , ) ( , )x y

xe y
y→











0 0
, if the limit exists.

	 5.	Let g x y x y
x y

( , ) =
+

2

4 2
 for ( , ) ( , )x y ¹ 0 0  and f ( , )0 0 0= .

			   (i)	Show that lim ( , )
( , ) ( , )x y

g x y
→

=
0 0

0  along every line y mx m= ∈,  .

			   (ii)	Show that lim ( , )
( , ) ( , )x y

g x y k
k→

=
+0 0 21

 along every parabola y kx k= ∈2 0, \{ } .

	 6.	  Show that f x y x y
y

( , ) =
−
+

2 2

2 1
 is continuous at every ( , )x y ∈2 .

	 7.	Let g x y e x
x

y

( , )
sin

= , for x ¹ 0  and g( , )0 0 1= . Show that g  is continuous at ( , )0 0 .
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8.5 Partial Derivatives
	 In this section, we shall see how the concept of derivative for functions of one variable may be 
generalized to real-valued function of several variables. First we consider functions of two variables. 
Let A x y a x b c y d= < < < <{ } ⊂( , ) , 

2 , and F A: →   be a real-valued function. Suppose that 

( , )x y A0 0 ∈ ; and we are interested in finding the rate of change of F  at ( , )x y0 0  with respect to the 
change only in the variable x . As we have seen above F x y( , )0  is a function of x  alone and it will 
represent a curve obtained by intersecting the surface z F x y= ( , )  with y y= 0  plane. So we can 
discuss the slope of the tangent to the curve z F x y= ( , )0  at x x= 0  by finding derivative of F x y( , )0  
with respect to x  and evaluating it at x x= 0 . Similarly, we can find the slope of the curve z F x y= ( , )0  
at y y= 0  by finding derivative of F x y( , )0  with respect to y  and evaluating it at y y= 0 . These are 
the key ideas that motivate us to define partial derivatives below.

	 Fig. 8.11	 Fig. 8.12

Definition 8.8

	 Let A x y a x b c y d F A= < < < <{ } ⊂ →( , ) , , : 

2  and ( , )x y A0 0 ∈ .

	 (i)	 We say that F  has a partial derivative with respect to x  at ( , )x y A0 0 ∈  if

			   lim
( , ) ( , )

h

F x h y F x y
h→

+ −
0

0 0 0 0  	 ... (10)

		  exists. In this case, the limit value is denoted by ∂
∂
F
x
x y( , )0 0 .

	 (ii)	 We say F  has a partial derivative with respect to y  at ( , )x y A0 0 ∈  if

			   lim
( , ) ( , )

k

F x y k F x y
k→

+ −
0

0 0 0 0  	 ... (11)

		  exists. In this case, the limit value is denoted by ∂
∂
F
x
x y( , )0 0 .

Remarks
	 1.	Partial derivatives for functions of three or more variables are defined exactly in a similar 

manner.
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	 2.	We read ∂F  as “partial F ” and ∂x  as “partial x ”. And we read ∂
∂
F
x

 as “partial F  by 

partial x ”. It is also read as “dho F  by dho x ”.

	 3.	Similarly, we read ∂
∂
F
x

 as “partial F  by partial y ” or as “dho F  by dho y .

	 4.	Sometimes ∂
∂
F
x
x y( , )0 0  is also denoted by F x yx ( , )0 0  or ∂

∂
F
x
x y( , )( , ). ( , ) ( , ),x y y

F
y

x y F x y
0 0 0 0 0 0 Similarly  is denoted by  or

�
�

  
�
�
F
y

x y
x y

( , )
( , )0 0

 

( , ). ( , ) ( , ),x y y
F
y

x y F x y
0 0 0 0 0 0 Similarly  is denoted by  or

�
�

  
�
�
F
y

x y
x y

( , )
( , )0 0

	 5.	An important thing to notice is that while finding partial derivative of F  with respect to x , 
we treat the y  variable as a constant and find derivative with respect to x . That is, except 
for the variable with respect to which we find partial derivative, all other variables are treated 
as constants. That is why we call them as “partial derivative”.

	 6.	 If F  has a partial derivative with respect to x  at every point of A , then we say that ∂
∂
F
x
x y( , )  

exists on A . Note that in this case ∂
∂
F
x
x y( , )  is again a real-valued function defined on A .

	 7.	 In the light of ( )4 , it is easy to see that all the rules (Sum, Product, Quotient, and Chain rules) 
of differentiation and formulae that we have learnt earlier hold true for the partial differentiation 
also.

	 Recall that for a function of one variable, differentiability at a point always implies continuity at 

that point. For a function F  of two variables x y,  we have defined ∂
∂
F
x
u v( , )  and ∂

∂
F
y
u v( , ) . Do the 

existence of partial derivatives of F  at a point ( , )u v  implies continuity of F  at ( , )u v ? Following 
example illustrates that this may not necessarily happen always.

Example 8.11
	 Let f x y( , ) = 0  if xy¹ 0  and f x y( , ) =1  if xy = 0 .

	 (i)	 Calculate : 
∂
∂

∂
∂

f
x

f
y

( , ), ( , )0 0 0 0 .

	 (ii)	 Show that f  is not continuous at ( , )0 0 .

Solution
	 Note that the function f  takes value 1 on the x y, -axes and 0  everywhere else on 2 . So let us 
calculate

			   ∂
∂
f
x

( , )0 0 	= 	 lim ( , ) ( , )
lim

h h

f h f
h h→ →

+ −
=

−
=

0 0

0 0 0 0 1 1
0 ;

			   ∂
∂
f
y

( , )0 0 	= 	 lim ( , ) ( , )
lim

k k

f k f
k k→ →

+ − = − =
0 0

0 0 0 0 1 1
0 .

This completes (i).
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Now for (ii) let us calculate the limit of f  as ( , ) ( , )x y → 0 0  along the line y x= . Then 

lim ( , )
( , ) ( , )x y

f x y
→

=
0 0

0 ; because along the line y x=  when x f x y≠ =0 0, ( , ) , But f ( , )0 0 1 0= ≠ ; hence 

f  cannot be continuous at ( , )0 0 .

Example 8.12
	 Let F x y x y y x( , ) = + +3 2 7  for all ( , )x y ∈2 . Calculate ∂

∂
−

F
x

( , )1 3  and ∂
∂

−
F
y

( , )2 1 .

Solution

	 First we shall calculate ∂
∂
F
x
x y( , ) , then we evaluate it at ( , )−1 3 . As we have already observed, 

we find the derivative with respect to x  holding y  as a constant. That is,

			   ∂
∂

= ∂ + +
∂

F
x
x y x y y x

x
( , )

( )3 2 7 	 = 	 ∂
∂

+ ∂
∂

+ ∂
∂

( ) ( ) ( )x y
x

y x
x x

3 2 7

				    = 	 3 02 2x y y+ +

				    = 	 3 2 2x y y+ .

	 So ∂
∂

− = − + =
F
x

( , ) ( )1 3 3 1 3 3 182 2 .

	 Next similarly we find partial derivative with respect to y.

			   ∂
∂

= ∂ + +
∂

F
y
x y x y y x

y
( , )

( )3 2 7 	 = 	 ∂
∂

+ ∂
∂

+ ∂
∂

( ) ( ) ( )x y
y

y x
y y

3 2 7

				    = 	 x yx3 2 0+ +

				    = 	 x yx3 2+ .

	 Hence we have ∂
∂

− = − + − = −
F
y

( , ) ( ) ( )( )2 1 2 2 1 2 123 .

Note that in the above example ∂
∂

= +
F
x
x y x y y( , ) 3 2 2 , which is again a function of two variables. So 

we can take the partial derivative of this function with respect to x  or y . For instance, if we take 

G x y x y y( , ) = +3 2 2 , then we find ∂
∂

=
G
x

xy6 . Since G x y F
x

( , ) =
∂
∂

, we have ∂
∂

=
∂
∂

∂
∂







 =

G
x x

F
x

xy6 . 

We denote this as ∂
∂

2

2

F
x

; which is called the second order partial derivative of F  with respect to x  . 

Also, ∂
∂

= +
G
y

x y3 22 . Since G x y F
x

( , ) =
∂
∂

, we have ∂
∂

=
∂
∂

∂
∂







 = +

G
y y

F
x

x y3 22 . We denote this as 

∂
∂ ∂

2F
y x

; which is called the mixed partial derivative of F  with respect to x y, . Similarly we can also 

calculate ∂
∂

∂
∂









 = +

x
F
y

x y3 22 .
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	 Also, if we differentiate ∂
∂
F
y
x y( , )  partially with respect to y  we obtain ∂

∂

2

2

F
y

; which is called the 

second order partial derivatives of F  with respect to y . So for any function F  defined on any subset  
{(x,y) | a < x < b, c < y < d} ⊂ 2  we have the following notation :

			   ∂
∂

2

2

F
x

	=	 ∂
∂

∂
∂







= ∂
∂ ∂

= ∂
∂

∂
∂







=
x

F
x

F F
x y x

F
y

Fxx xy,
2

			   ∂
∂ ∂

2F
y x

	= 	 ∂
∂

∂
∂







= ∂
∂

= ∂
∂

∂
∂







=
y

F
x

F F
y y

F
y

Fyx yy,
2

2
 

	 All the above are called second order partial derivatives of F . Similarly we can define higher 

order partial derivatives. For example, ∂
∂ ∂

=
∂
∂

∂
∂

∂
∂



















3

2

F
y x y y

F
x

, and ∂
∂ ∂ ∂

= ∂
∂

∂
∂

∂
∂













3F
x y x x y

F
x

. 

	 Next we shall see more examples on partial differentiation.

Example 8.13

	 Let f x y xy ex y( , ) sin( )= + +2 53

 for all ( , )x y ∈2 . Calculate ∂
∂

∂
∂

f
x

f
y

, , ∂
∂ ∂

2 f
y x

 and ∂
∂ ∂

2 f
x y

.

Solution
	 First we shall calculate ∂

∂
f
x
x y( , ) . Note that f  is a sum of two functions and so

			   ∂
∂
f
x

	= 	 ∂
∂

+
∂
∂ ( )+

x
xy

x
ex ysin( )2 53

 

				   = 	cos( ) ( ) ( )xy
x
xy e

x
x yx y2 2 5 33

5
∂
∂

+
∂
∂

++

				   = 	cos( )xy y e xx y2 2 5 23

3+ + .

	 Similarly,

			   ∂
∂
f
y

	= 	 ∂
∂

+
∂
∂ ( )+

y
xy

y
ex ysin( )2 53

 

				   = 	cos( ) ( ) ( )xy
y
xy e

y
x yx y2 2 5 33

5
∂
∂

+
∂
∂

++

				   = 	cos( )xy xy ex y2 52 5
3

+ + .

	 Next we consider,

			   ∂
∂ ∂

2 f
y x

	= 	 ∂
∂

∂
∂







 =

∂
∂

+( )+

y
f
x y

y xy x ex y2 2 2 53
3

cos( )

				   = 	 ∂
∂

+
∂
∂ ( )+

y
y xy

y
x ex y( cos( ))2 2 2 53

3

				   = 	2 2 3 52 2 2 2 53

y xy y xy xy x ex ycos( ) sin( )+ −( ) + +

				   = 	2 2 152 3 2 2 53

y xy xy xy x ex ycos( ) sin( )− + + . 
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Finally,	

			   ∂
∂ ∂

2 f
x y

	= 	 ∂
∂

∂
∂








 =

∂
∂

+( )+

x
f
y x

xy xy ex ycos( )2 52 5
3

				   = 	− + + +sin( ) cos( )xy y xy xy y e xx y2 2 2 5 22 2 5 3
3

				   = 	2 2 152 3 2 2 53

y xy xy xy x ex ycos( ) sin( )− + + .

Note that we have first used sum rule, then in the next step we have used chain rule. In the third step, 
product rule is used. Also, we see that f fxy yx= . Is it a coincidence? or is it always true? Actually, 

there are functions for which f fxy yx¹  at some points. The following theorem gives conditions under 

which f fxy yx= .

Theorem 8.1 (Clairaut’s Theorem)
	 Suppose that A x y a x b c y d= < < < <{ } ⊂( , ) | , 

2 , F A: →  .  If fxy  and f yx  exist in A  are 
continuous in A , then f fxy yx=  in A .

We omit the discussion on the proof at this stage.

Example 8.14

	 Let w x y xy e
y

y

( , ) = +
+2 1

 for all ( , )x y ∈2 . Calculate ∂
∂ ∂

2w
y x

 and ∂
∂ ∂

2w
x y

.

Solution

	 First we calculate ∂
∂

=
∂
∂

+
∂

+










∂
w
x
x y xy

x

e
y
x

y

( , )
( )

2 1
. 

	 This gives ∂
∂

= +
w
x
x y y( , ) 0  and hence ∂

∂ ∂
=

2

1
w
y x

x y( , ) . On the other hand,

			   ∂
∂
w
y
x y( , ) 	= 	∂

∂
+
∂

+










∂
( )xy
y

e
y
y

y

2 1
.

				   = 	x y e e y
y

y y

+
+ −

+
( )

( )

2

2 2

1 2

1
.

	 Hence ∂
∂ ∂

=
2

1
w
x y

x y( , ) .

Definition 8.9

	 Let A x y a x b c y d= < < < <{ } ⊂( , ) | , 

2 . A function u A: → 

2  is said to be harmonic in 

A  if it satisfies ∂
∂

+
∂
∂

= ∀ ∈
2

2

2

2
0

u
x

u
y

x y A, ( , ) . This equation is called Laplace’s equation.

Laplace’s equation occurs in the study of many natural phenomena like heat conduction, electrostatic 
field, fluid flows etc.
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Example 8.15
	 Let u x y e xy( , ) cos( )= −2 2  for all ( , )x y ∈2 . Prove that u  is a harmonic function in 2 .

Solution
	 We need to show that u  satisfies the Laplace’s equation in 2 . Observe that 

u x y e xx
y( , ) ( )sin( )= −−2 2 2  and hence u x y e xxx

y( , ) ( )( ) cos( )= −−2 2 2 2 .

Similarly, u x y e xy
y( , ) ( ) cos( )= −−2 2 2  and u x y e xyy

y( , ) ( )( ) cos( )= − − −2 2 22 .

Thus, u u e x e xxx yy
y y+ = − + =− −4 2 4 2 02 2cos( ) cos( ) .

EXERCISE 8.4
	 1.	Find the partial derivatives of the following functions at the indicated points.

			   (i)	 f x y x xy y x( , ) , ( , )= − + + + −3 2 5 2 2 52 2  

			   (ii)	 g x y x y x( , ) , ( , )= + + + −3 5 2 1 22 2  

			  (iii)	 h x y z x xy z x( , , ) sin( ) , , ,= + 





2 2
4

1
p   

			   (iv)	G x y e x yx y( , ) log( ), ( , )= + −+3 2 2 1 1  

	 2.	For each of the following functions find the f fx y, , and show that f fxy yx= .

		  (i)	 f x y x
y x

( , )
sin

=
+
3 	 (ii) f x y x

y
( , ) tan=











−1 	 (iii) f x y x xy( , ) cos( )= −2 3

	 3.	 If U x y z x y
xy

z y( , , ) =
+

+
2 2

23 , find ∂
∂

∂
∂

U
x

U
y

, , and ∂
∂
U
z

.

	 4.	 If U x y z x y z( , , ) log( )= + +3 3 3 , find U
x

U
y

U
z

.

	 5.	For each of the following functions find the g g gxy xx yy, ,  and gyx .

			   (i)	 g x y xe x yy( , ) = + 3 2  	 (ii) g x y x y( , ) log( )= +5 3

			  (iii)	 g x y x xy y x( , ) cos( )= + − +2 3 7 5

	 6.	Let w x y z
x y z

x y z( , , ) , ( , , ) ( , , )=
+ +

≠1
0 0 0

2 2 2
. Show that ∂

∂
+
∂
∂

+
∂
∂

=
2

2

2

2

2

2
0

w
x

w
y

w
z

. 

	 7.	 If V x y e x y y yx( , ) ( cos sin )= − , then prove that ∂
∂

+
∂
∂

=
2

2

2

2
0

V
x

V
y

.

	 8.	 If w x y xy xy( , ) sin( )= + , then prove that 
2 2w

y x
w

x y
.
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	 9.	 If v x y z x y z xyz( , , ) = + + +3 3 3 3 , show that ∂
∂ ∂

=
∂
∂ ∂

2 2v
y z

v
z y

.

	 10.	A firm produces two types of calculators each week, x  number of type A  and y  number of 

type B . The weekly revenue and cost functions (in rupees) are 

R x y x y xy x y( , ) . . .= + + − −80 90 0 04 0 05 0 052 2  and C x y x y( , ) = + +8 6 2000  respectively.

	 	 	 (i)	Find the profit function P x y( , ) , 

			   (ii)	Find ∂
∂
P
x

( , )1200 1800  and ∂
∂
p
y

( , )1200 1800  and interpret these results. 

8.6 Linear Approximation and Differential of a function of several variables
	 Earlier in this chapter, we have seen that linear approximation and differential of a function of 
one variable. Here we introduce similar ideas for functions of two variables and three variables. In 
general for functions of several variables these concepts can be defined similarly.

Definition 8.10

	 Let A x y a x b c y d F A= < < < <{ } ⊂ →( , ) | , , : 

2 , and ( , )x y A0 0 ∈ .

	 (i)	 The linear approximation of F  at ( , )x y A0 0 ∈  is defined to be

		  F x y F x y F
x

x x( , ) ( , ) ( )0 0 0
y y( )0

x y( , )0 0

F
x x y( , )0 0

 	 ... (12)

	 (ii)	 The differential of F  is defined to be

		  dF F
x
x y dx F

y
x y dy=

∂
∂

+
∂
∂

( , ) ( , ) ,	 ... (13)

		  where dx x= ∆  and dy y= ∆ ,

Here we shall outline the linear approximations and differential for the functions of three variables. 
Actually, we can define linear approximations and differential for real valued function having more 
variables, but we restrict ourselves to only three variables.

Definition 8.11

	 Let A x y z a x b c y d e z f F A= < < < < < <{ } ⊂ →( , , ) | , , , : 

3  and ( , , )x y z A0 0 0 ∈ .

	 (i)	 The linear approximation of F  at ( , , )x y z A0 0 0 ∈  is defined to be

      F x y z F x y z F
x

x x F
y

y
x y z x y z

( , , ) ( , , ) ( ) (
( , , ) ( , , )

= + ∂
∂

− + ∂
∂0 0 0 0

0 0 0 0 0 0

−− + ∂
∂

−y F
z

z z
x y z

0 0

0 0 0

) ( );
( , , )

 

						      ...(14)
	 (ii)	 The differential of F  is defined by

			  dF F
x
x y z dx F

y
x y z dy F

z
x y z dz=

∂
∂

+
∂
∂

+
∂
∂

( , , ) ( , , ) ( , , ) ,	 ...(15))	

		  where dx x dy y= =∆ ∆,  and dz z= ∆ ,
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Geometrically, in the case of function f  of one 

variable, the linear approximation at a point x0  

represents the tangent line to the graph of y f x= ( )  at 

x0 . Similarly, in the case of a function F  of two 

variables, the linear approximation at a point ( , )x y0 0  

represents the tangent plane to the graph of z F x y= ( , )  

at ( , )x y0 0 .

Example 8.16
	 If w x y z x y y z z x x y z( , , ) , , ,= + + ∈2 2 2

 , find the differential dw .

Solution
	 First let us find w wx y, , and wz .

	 Now w xy z w yz xx y= + = +2 22 2,  and w zx yz = +2 2 .

	 Thus,by (15), the differential is
dw xy z dx yz x dy zx y dz= + + + + +( ) ( ) ( )2 2 22 2 2 .

Example 8.17
	 Let U x y z x xy z x y z( , , ) sin , , ,= − + ∈2 3  . Find the linear approximation for U  at  

( , , )2 1 0− .

Solution
	 By (14), Linear approximation is given by

	 L x y z U x y z U
x

x x U
y

y
x y z x y z

( , , ) ( , , ) ( ) (
( , , ) ( , , )

= + ∂
∂

− + ∂
∂0 0 0 0

0 0 0 0 0 0

−− + ∂
∂

−y U
z

z z
x y z

0 0

0 0 0

) ( )
( , , )

.

	 Now U x y U xx y= − = −2 ,  and U zz = 3cos .

	 Here ( , , ) ( , , )x y z0 0 0 2 1 0= − , hence U Ux y( , , ) , ( , , )2 1 0 5 2 1 0 2− = − = −  and Uz ( , , )2 1 0 3− = .

	 Thus L x y z x y z x y z( , , ) ( ) ( ) ( )= + − − + + − = − + −6 5 2 2 1 3 0 5 2 3 6  is the required linear 

approximation for U  at ( , , )2 1 0− .

EXERCISE 8.5
	 1.	If w x y x xy y x y( , ) , ,= − + ∈3 23 2  , find the linear approximation for w  at ( , )1 1− .

	 2.	Let z x y x y xy x y( , ) , ,= + ∈2 43  . Find the linear approximation for z  at ( , )2 1− .

	 3.	If v x y x xy y x y R( , ) , ,= − + + ∈2 21

4
7 , find the differential dv .

Fig. 8.13
Linear Approximation by Tangent Plane
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Fig. 8.14

w x t y t( ( ), ( ))

dw
dt

∂w
∂x

dx
dt

∂w
∂y

dy
dt

� �

dx
dt

dy
dt

dw
dx

dw
dy

x y

	 4.	Let W x y z x xy z x y z( , , ) sin , , ,= − + ∈2 3  . Find the linear approximation at ( , , )2 1 0− .

	 5.	Let V x y z xy yz zx x y z( , , ) , , ,= + + ∈ . Find the differential dV .

8.6.1 Function of Function Rule
	 Let F  be a function of two variables x y, . Sometimes these variables may be functions of a 

single variable having same domain. In this case, the function F  ultimately depends only on one 

variable. So we should be able to treat this F  as a function of single variable and study about dF
dt

. In 

fact, this is not a coincidence, it can be proved that

Theorem 8.2
Suppose that W x y( , )  is a function of two variables x y,  having 

partial derivatives ∂
∂

∂
∂

W
x

W
y

, . If both the variables x y,  are 

differentiable functions of a single variable t , then W  is a differentiable 

function of t  and

			   ∂
=
∂
∂

+
∂
∂

W
dt

W
x
dx
dt

W
y
dy
dt

	 ...(16)

	 Let us consider an example illustrating the above theorem.

Example 8.18

	 Verify the above theorem for F x y x y xy( , ) = − +2 22 2  and  
x t t y t t t( ) cos , ( ) sin , [ , ]= = ∈ 0 2π .

Solution

	 Let F(x,y) = x2 – 2y2 + 2xy and x(t) = cost, y(t) = sint.

	 Then F x y t t t t( , ) cos sin cos sin= − +2 22 2  and thus F  has becomes a function of one variable 
t . So by using chain rule, we see that

			   dF
dt

	= 	2 4 2 2 2cos ( sin ) sin cos ( sin cos )t t t t t t− − + − +

				   = 	− + − +6 2 2 2cos sin ( sin cos )t t t t .
	 On the other hand if we calculate

			   ∂
∂

+
∂
∂

F
x
dx
dt

F
y
dy
dt

	= 	( ) ( )2 2 2 4x y dx
dt

x y dy
dt

+ + −

				   = 	2 2 2(cos sin )( sin ) (cos sin )(cos )t t t t t t+ − + −

				   = 	− + − +6 2 2 2cos sin ( sin cos )t t t t  

				   = 	dF
dt

.
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Example 8.19
	 Let g x y x yx x y x t e y t t tt( , ) sin( ), ( ) , ( ) ,= − + + = = ∈2 3 2    . Find dg

dt
.

Solution
	 We shall follow the tree diagram to calculate.

So first we need to find ∂
∂

∂
∂

g
x

g
y

dx
dt

, ,   and dy
dt

.

Now ∂
∂

= − + + ∂
∂

= − + + =g
x

x y x y g
y

x x y dx
dt

e t2 3 3cos( ), cos( ),   and dy
dt

t= 2 .

Thus
			   dg

dt
	= 	

∂
∂

+ ∂
∂

g
x
dx
dt

g
y
dy
dt

 

				   = 	 2 3 23x y x y e x x y tt− + +( ) + − + +( )( )cos( ) cos( )

				   = 	( cos( )) ( cos( ))( )2 3 23 2 3 2 3 3 3 2e t e t e e e t tt t t t t− + + + − + +

				   = 	6 3 3 2 26 2 3 3 3 2 3 3 2e t e e e t te t e tt t t t t t− + + − + +cos( ) cos( ) .
	 Also, some times our W x y( , )  will be such that x x s t= ( , ) , and y y s t= ( , )  where s t, ∈ . Then 
W  can be considered as a function that depends on s  and t . If x y,  both have partial derivatives with 
respect to s t,  and W  has partial derivatives with respect to x yand , then we can calculate the partial 
derivatives of W  with respect to s  and t  using the following theorem.

Theorem 8.3
	 Suppose that W x y( , )  is a function of two variables x y,  

having partial derivatives ∂
∂

∂
∂

W
x

W
y

, . If both variables x = x(s,t) 

and y = y(s,t), where s t, ∈ , have partial derivatives with 
respect to both s and t, then 

	 ∂
∂
W
s

	 = 	 ∂
∂

∂
∂
+
∂
∂

∂
∂

W
x
x
s

W
y
y
s

,	 ... (17)

	 ∂
∂
W
t

	 = 	 ∂
∂

∂
∂
+
∂
∂

∂
∂

W
x
x
t

W
y
y
t

.	 ... (18)

We omit the proof. The above theorem is very useful. For instance, consider the situation in which 
x r= cosθ , and y r= ≥sin ,θ 0  and θ ∈ , (change from cartesian co-ordinate to polar  
co-ordinate system). The above theorem can be generalized for functions having n  number of variables.
	 Let us consider an example.

Example 8.20
	 Let g x y y x x r s y r s r s( , ) , , , ,= + = − = + ∈2 2 22 2

 . Find ∂
∂

∂
∂

g
r

g
s

, .

Solution
	 Here again we shall use the tree diagram to calculate ∂

∂
∂
∂

g
r

g
s

,

	 Hence we find 	 ∂
∂
g
x

	= 	2 2 2 1 2x g
y

x
r

x
s

y
r

r, , , ,    
∂
∂

= ∂
∂

= ∂
∂

= − ∂
∂

=  , and ∂
∂

=
y
s

2 .

Fig. 8.15
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	 Now	 ∂
∂
g
r

	= 	 ∂
∂

∂
∂

+ ∂
∂

∂
∂

= + = −g
x
x
r

g
y
y
r

x r r s2 2 2 2 12 4( ) ( ) .

	 also,	 ∂
∂
g
s

	= 	 ∂
∂

∂
∂

+ ∂
∂

∂
∂

= − + = − +g
x
x
s

g
y
y
s

x s r2 1 2 2 2 4 4( ) ( ) .

EXERCISE 8.6

	 1.	If u x y x y xy x et( , ) ,= + =2 43   and y t= sin ,  find du
dt

 and evaluate it at t = 0 .

	 2.	If u x y z xy z x t y t z e du
dt

t( , , ) , sin , cos , ,= = = = +2 3 21   find .

	 3.	If w x y z x y z x e y e tt t( , , ) , , sin= + + = =2 2 2    and z e tt= cos , find dw
dt

.

	 4.	Let U x y z xyz x e y e t z t tt t( , , ) , , cos , sin ,= = = = ∈− −     . Find dU
dt

.

	 5.	If w x y x xy y x e y s ss( , ) , , cos ,= − + = = ∈6 3 23 2     , find dw
ds

, and evaluate at s = 0 ,

	 6.	If z x y x xy x t y se tt( , ) tan ( ), , , s,= = = ∈−1 2   . Find ∂
∂
z
s

 and ∂
∂
z
t

 at s = t = 1.

	 7.	Let U x y e yx( , ) sin= , where x st y s t s t= = ∈2 2, , ,    . Find ∂
∂

∂
∂

U
s

U
t

,  and evaluate  
them at s = t = 1.

	 8.	Let z x y x x y( , ) = −3 2 33 , where x se y se s tt t= = ∈−, , ,  . Find ∂
∂
z
s

 and ∂
∂
z
t

.

	 9.	W x y z xy yz zx x u v y uv z u v u v( , , ) , , , , ,= + + = − = = + ∈    . Find ∂
∂

∂
∂

W
u

W
v

, , and 

evaluate them at 1

2
1,







 .

8.6.2 Homogeneous Functions and Euler’s Theorem

Definition 8.12

	 (a)	 Let A x y a x b c y d F A= < < < < ⊂ →{( , ) | , } , :   

2 , we say that F  is a homogeneous 

function on A , if there exists a constant p  such that F x y F x yp( , ) ( , )λ λ λ=  for all λ∈  

such that ( , )λ λx y A∈ . This constant p  is called degree of F .

	 (b)	 Let B x y z a x b c y d u z v G B= < < < < < < ⊂ →{( , , ) | , , } , :    

3 , we say that G  is a 

homogeneous function on B , if there exists a constant p such that G x y z G x y zp( , , ) ( , , )λ λ λ λ=  

for all λ∈  such that ( , , )λ λ λx y z B∈ . This constant p  is called degree of G . 
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	 These types of functions are important in Ordinary differential equations (Chapter 10). Let us 
consider some examples.
	 Consider	 F x y( , ) 	= 	x y xy x y3 3 2 22 5− + ∈, ( , )  . Then

			   F x y( , )λ λ 	= 	( ) ( ) ( )( ) ( )λ λ λ λ λx y x y x y xy3 3 2 3 3 3 22 5 2 5− + = − +

and hence F  is a homogeneous function of degree 3.
	 On the other hand, 
			   G x y( , ) 	= 	e yx2

3+ 2  is not a homogeneous function because,

			   G x y( , )λ λ 	= 	e y G x yx p( ) ( ) ( , )λ λ λ
2

3 2+ ≠  
	 for any λ ≠1 and any p .

Example 8.21

	 Show that F x y x xy y
x y

( , ) =
+ −

+

2 25 10

3 7
 is a homogeneous function of degree 1. 

Solution

	 We compute

			   F x y( , )λ λ 	= 	 ( ) ( )( ) ( )λ λ λ λ
λ λ

λ
λ

λx x y y
x y

x xy y
x y

2 2 2 2 25 10

3 7

5 10

3 7

+ −
+

= + −
+







= FF x y( , )

for all λ∈ . So F  is a homogeneous function of degree 1.
We state the following theorem of Leonard Euler on homogeneous functions.

Definition 8.13 (Euler)
Suppose that A x y a b c y d F A= < < <{ } ⊂ →( , ) | , , :   

2 2 . If F  is having continuous partial 
derivatives and homogeneous on A , with degree p , then

	 x F
x
x y y F

f
x y pF x y x y A∂

∂
+ ∂

∂
= ∀ ∈( , ) ( , ) ( , ) ( , )  .

	 Suppose that B x y z a x b c y d u z v F B= < < < < < <{ } ⊂ →( , , ) | , , , :    

3 3 . If F  is having 
continuous partial derivatives and homogeneous on B , with degree p , then

			  x F
x
x y z y F

f
x y z z F

y
x y z pF x y z x y z∂

∂
+ ∂

∂
+ ∂

∂
= ∀( , , ) ( , , ) ( , , ) ( , , ) ( , , )  ∈∈B .

We omit the proof. The above theorem is also true for any homogeneous function of n variables; and 
is useful in certain calculations involving first order partial derivatives.

Example 8.22

	 If u x y
x y

=
+
+











−sin 1 , Show that x u
x

y u
y

u∂
∂

+
∂
∂

=
1

2
tan .

Solution
	 Note that the function u  is not homogeneous. So we cannot apply Euler’s Theorem for u . 

However, note that f x y x y
x y

u( , ) sin=
+
+

=  is homogeneous; because
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f tx ty tx ty
tx ty

t
t
t f x y x y t( , ) ( , ), , ,/= +

+
= = ∀ ≥1 2 0  .

	 Thus f  is homogeneous with degree 1

2
, and so by Euler’s Theorem we have

			   x f
x
y f
y

∂
∂

+
∂
∂

	= 	 1
2
f x y( , ) .

	 Now substituting f u= sin  in the above equation, we obtain

			   x u
x

y u
y

∂
∂

+
∂
∂

(sin ) (sin ) 	= 	 1

2
sin u

			   x u u
x

y u u
y

cos cos
∂
∂

+
∂
∂

	= 	 1

2
sin u 	 ... (19)

	 Dividing both sides by cosu  we obtain

			   x u
x

y u
y

∂
∂

+
∂
∂

	= 	 1

2
tan u .

	 Note: 
	 Solving this problem by direct calculation will be possible; but will involve lengthy calculations.

EXERCISE 8.7

	 1.	In each of the following cases, determine whether the following function is homogeneous or 
not. If it is so, find the degree.

			  (i)	 f x y x y x( , ) = + +2 36 7 	 (ii)	 h x y x y y x y
x y

( , ) =
− +
+

6 9

2020 2019

2 3 5 4

2 2

π  

			  (iii)	 g x y z
x y z
x y

( , , ) =
+ +
+

3 5

4 7

2 2 2

 	 (iv)	U x y z xy y z
xy

( , , ) sin= + −





2 22
.

	 2.	Prove that f x y x x y xy y( , ) = − + +3 2 2 32 3  is homogeneous; what is the degree? Verify 

Euler’s Theorem for f .

	 3.	Prove that g x y x y
x

( , ) log= 





  is homogeneous; what is the degree? Verify Euler’s Theorem 

for g .

	 4.	If u x y x y
x y

( , ) =
+
+

2 2

, prove that x u
x

y u
y

u∂
∂

+
∂
∂

=
3

2
.

	 5.	If v x y x y
x y

( , ) log=
+
+











2 2

, prove that x v
x
y v
y

∂
∂
+

∂
∂

=1.

	 6.	If w x y z x y y xz y z
x y

( , , ) log=
+ −

+










5 7 753 4 2 4 3 4

2 2
, find x w

x
y w
y

z w
z

∂
∂

+ ∂
∂

+ ∂
∂

 .
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EXERCISE 8.8

Choose the correct or the most suitable answer from the given four alternatives :
	 1.	 A circular template has a radius of  10 cm. The measurement of radius has an approximate 

error of 0.02 cm. Then the percentage error in calculating area of this template is
		  (1) 0.2%	 (2) 0.4%	 (3) 0.04%	 (4) 0.08%
	 2.	 The percentage error of fifth root of 31 is approximately how many times the percentage 

error in 31?

		  (1) 1

31
 	 (2) 1

5
	 (3) 5	 (4) 31

	 3.	 If u x y ex y( , ) = +2 2

, then ∂
∂
u
x

 is equal to 

		  (1) ex y2 2+  	 (2) 2xu 	 (3) x u2  	 (4) y u2  

	 4.	 If v x y e ex y( , ) log( )= + , then ∂
∂
+
∂
∂

v
x

v
y

 is equal to

		  (1) e ex y+         (2) 1
e ex y+

        (3) 2        (4) 1

	 5.	 If w x y x xy( , ) ,= > 0 , then ∂
∂
w
x

 is equal to

		  (1) x xy log 	 (2) y xlog  	 (3) yxy−1 	 (4) x ylog

	 6.	 If f x y exy( , ) = , then ∂
∂ ∂

2 f
x y

 is equal to

		  (1) xyexy 	 (2) ( )1+ xy exy  	 (3) ( )1+ y exy 	 (4) ( )1+ x exy

	 7.	 If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our 
calculation of the volume is

		  (1) 0.4 cu.cm	 (2) 0.45 cu.cm	 (3) 2 cu.cm	 (4) 4.8 cu.cm
	 8.	 The change in the surface area S x= 6 2  of a cube when the edge length varies from x0  to 

x dx0 +  is

		  (1) 12 0x dx+  	 (2) 12 0x dx  	 (3) 6 0x dx  	 (4) 6 0x dx+  

	 9.	 The approximate change in the volume V of a cube of side x  metres caused by increasing 

the side by 1%  is
		  (1) 0 3 3. xdxm  	 (2) 0 03 3. xm  	 (3) 0 03 2 3. x m  	 (4) 0 03 3 3. x m

	 10.	 If g x y x y y x t et( , ) , ( )= − + =3 5 22 2  and y t t( ) cos= , then dg
dt

 is equal to

		  (1) 6 5 42e t t tt + −sin cos sin 	 (2) 6 5 42e t t tt − +sin cos sin

		  (3) 3 5 42e t t tt + +sin cos sin 	 (4) 3 5 42e t t tt − +sin cos sin
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	 11.	 If f x x
x

( ) =
+1

, then its differential is given by

		  (1) −
+
1

1 2( )x
dx  	 (2) 1

1 2( )x
dx

+
 	 (3) 1

1x
dx

+
 	 (4) −

+
1
1x
dx  

	 12.	 If u x y x xy y( , ) = + + −2 3 2019 , then ∂
∂ −

u
x ( , )4 5

 is equal to

		  (1) −4  	 (2) −3  	 (3) −7  	 (4) 13

	 13.	 Linear approximation for g x x( ) cos=  at x = π
2

 is

		  (1) x + π
2

 	 (2) − +x π
2

 	 (3) x − π
2

 	 (4) − −x π
2

 

	 14.	 If w x y z x y z y z x z x y( , , ) ( ) ( ) ( )= − + − + −2 2 2 , then ∂
∂

+
∂
∂

+
∂
∂

w
x

w
y

w
z

 is

		  (1) xy yz zx+ +  	 (2) x y z( )+  	 (3) y z x( )+  	 (4) 0

	 15.	 If f x y z xy yz zx( , , ) = + + , then f fx z−  is equal to

		  (1) z x−  	 (2) y z−  	 (3) x z−  	 (4) y x−  

SUMMARY
	 •	 Let f a b R: ( , ) ®  be a differentiable function and x a b0 Î ( , )  then linear approximation L 

of f at x0  is given by
		  L x f x f x x x x a b( )= + ′( ) −( )∀ ∈( )( ) ,0 0 0

	 •	 Absolute error =Actual value – Approximate value

		  Relative error= Absolute error

Actual error

		  Percentage error= ×Relative error 100

		  (or)

		  Absolute error

Acutal error
100´

	 •	 Let f a b: ,( )→   be a differentiable function. For x a b∈( ),  and Dx  the increment given 

to x, the differential of f is defined by df f x x= ′( )∆ .

	 •	 All the rules for limits (limit theorems) for functions of one variable also hold true for 

functions of several variables.

	 •	 Let A x y a x b c y d R F A= ( ) < < < <{ }⊂ →, , , :2
  and x y A0 0,( )∈ .
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(i) F has a partial derivative with respect to x at x y A0 0,( )∈  if lim
, ,

h

F x h y F x y
h→

+( )− ( )
0

0 0 0 0

exists and it is denoted by ∂
∂ ( )

F
x x y0 0,

.

F has a partial derivative with respect to y at x y A0 0,( )∈  if lim
, ,

k

F x y k F x y
k→

+( )− ( )
0

0 0 0 0

exists and limit value is defined by ∂
∂ ( )

F
y x y0 0,

.

• Clariant’s Theorem: Suppose that A x y a x b c y d= ( ) < < < <{ }⊂, , 

2 , F A: ®  . If 

fxy  and f yx  exist in A and are continuous in A, then f fxy yx=  in A.

• Let A x y a x b c y d= ( ) < < < <{ }⊂, , 

2 . A function U A: ®   is said to be harmonic 

in A if it satisfies ∂
∂
+
∂
∂
= ∀( )∈

2

2

2

2
0

u
x

u
y

x y A, , . This equation is called Laplace’s equation.

• Let A x y a x b c y d= ( ) < < < <{ }⊂, , 

2 , F A: ®   and x y A0 0,( )∈ .

(i) The linear approximation of F at x y A0 0,( )∈  is defined to be

		 L x y F x y F
x

x x F
y

y y
x y x y

, ,
, ,

( )= ( )+ ∂
∂

−( )+ ∂
∂

−( )
( ) ( )

0 0 0 0

0 0 0 0

(ii) The differential of F is defined to be dF F
x
dx F

y
dy=

∂
∂

+
∂
∂

 where ∆x dx=  and ∆y dy= .

• Suppose w is a function of two variables x, y where x and y are functions of a single variable

‘t’ then dw
dt

w
x
dx
dt

w
y
dy
dt

=
∂
∂
⋅ +

∂
∂
⋅

• Suppose w is a function of two variables x and y where x and y are functions of two variables

s and t then, ∂
∂
=
∂
∂
⋅
∂
∂
+
∂
∂
⋅
∂
∂

w
s

w
x

x
s

w
y

y
s

,  ∂
∂
=
∂
∂
⋅
∂
∂
+
∂
∂
⋅
∂
∂

w
t

w
x

x
t

w
y

y
t

•	 Suppose that A x y a x b c y d= ( ) < < < <{ }⊂, , 

2 , F A: ® 

2 . If  F is having continuous 

partial derivatives and homogeneous on A, with degree p, then x F
x

y F
y

pF∂
∂
+
∂
∂
= .
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“Give me a place to stand and I will move the earth”
- Archimedes

Chapter

9 Applications of Integration

9.1.Introduction
       One of the earliest mathematicians who made wonderful discoveries to 
compute the areas and volumes of geometrical objects was Archimedes. 
Archimedes proved that the area enclosed by a  parabola  and a  straight line  
is 4

3
 times the area of an inscribed  triangle  

(see Fig. 9.1).
	 He obtained the area by segmenting it into 
infinitely many elementary areas and then finding 
their sum. This limiting concept is inbuilt in the 
definition of definite integral which we  are going 
to develop here and apply the same in finding 
areas and volumes of certain geometrical shapes.

Learning Objectives

	 Upon completion of this Chapter, students will be able to
		  •	 define a definite integral as the limit of a sum
		  •	 demonstrate a definite integral geometrically
		  •	 use the fundamental theorem of integral calculus
		  •	 evaluate definite integrals by evaluating anti-derivatives
		  •	 establish some properties of definite integrals
		  •	 identify improper integrals and use the gamma integral
		  •	 derive reduction formulae
		  •	 apply definite integral to evaluate area of a plane region
		  •	 apply definite integral to evaluate the volume of a solid of revolution

	 We briefly recall what we have already studied about anti-derivative of  a given function f x( ) . 

If a function F x( )  can be found such that d
dx
F x f x( ) ( )= , then the function F x( )  is called an  

anti-derivative of f x( ) .

Fig. 9.1

Archimedes of Syracuse  
(288BC(BCE)-212BC(BCE))  
was a Greek mathematician, 
physicist, engineer, inventor

B( , )2 4

C
1

2

1

4
,









( , )−1 1 A
1

2

3

4

−2 −1 O 1 2
x

y

y
x=
2

90

Chapter 9 Applications of Integration.indd   90 7/25/2019   7:07:37 PM



Applications of Integration91

      It is not unique, because, for any arbitrary constant C , we get d
dx
F x C d

dx
F x f x[ ( ) ] [ ( )] ( )+ = = . 

That is, if F x( )  is an anti-derivative of f x( ) , then the function F x C( ) +  is also an anti-derivative of  
the same function f x( ) . Note that all anti-derivatives of  f x( )  differ by a constant only. The  
anti-derivative of f x( )  is usually called the indefinite integral of f x( )  with respect to x and is 
denoted  by f x dx( )ò .  

	 A well-known property of indefinite integral is its linear property :

	 α β α βf x g x dx f x dx g x dx( ) ( ) ( ) ( )+[ ] = +∫ ∫∫ , where α  and β  are constants.

	 We list below some functions and their anti-derivatives (indefinite integrals): 

Function f x( ) Indefinite integral f x dx( )ò
K , a constant Kx C+  

( )ax b n+ ,where a ¹ 0  and b  are constants; and 
n ≠ −1

1

1

1

a
ax b
n

C
n( )+

+








 +

+

 

1
ax b+

, where a ¹ 0  and b  are constants 1

a
ax b Celog ( )+ +  

eax  , where a  is a non-zero constant
e
a

C
ax

+

sin( )ax b+ , where a ¹ 0  and b  are constants −
+

+
cos( )ax b

a
C

 

cos( )ax b+ , where a ¹ 0  and b  are constants
sin( )ax b

a
C+

+
 

tan( )ax b+ , where a ¹ 0  and b  are constants
1

a
ax b Clog sec( )+ +

 

cot( )ax b+ , where a ¹ 0  and b  are constants
1

a
ax b Clog sin( )+ +

sec( )ax b+ , where a ¹ 0  and b  are constants
1 log | sec( ) tan( ) |ax b ax b C
a

+ + + +

cosec( )ax b+ , where a ¹ 0  and b  are constants
 
− + − + +

1

a
ax b ax b Clog ( ) cot( )cosec

1
2 2a x+

, where a ¹ 0  is a constant 1 1

a
x
a

Ctan− 





 +

 
1

2 2a x−
, where a ¹ 0  is a constant 1

2a
a x
a x

Celog
+
−

+
 

1
2 2x a−

, where a ¹ 0  is a constant 1

2a
x a
x a

Celog
−
+

+
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Function f x( ) Indefinite integral f x dx( )ò  

1

2 2a x+
, where a  is a constant loge x a x C+ + +2 2

 

1

2 2a x−
, where a ¹ 0  is a constant sin− 






 +

1 x
a

C  

1

2 2x a−
, where a  is a constant loge x x a C+ − +2 2

 

a x2 2+ , where a  is a constant x a x a x a x Ce

2 2 2
2 2

2 2

+
+ + + +log

 

a x2 2− , where a  is a constant x a x a x
a

C
2 2 2

1

2 2

−
+ 






 +

−sin

 

x a2 2− , where a  is a constant x x a a x x a Ce

2 2 2
2 2

2 2

−
− + − +log

 

9.2 Definite Integral as the Limit of a Sum
9.2.1 Riemann Integral
	 Consider a real-valued, bounded function f x( )  defined 
on the closed and bounded interval[ , ], .a b a b < The function 
f x( )  need not have the same sign on [ , ]a b ; that is, f x( )

may have positive as well as negative values on [ , ]a b . See 
Fig 9.2. Partition the interval [ , ]a b  into n  subintervals
[ , ],[ , ], ,[ , ],[ , ]x x x x x x x xn n n n0 1 1 2 2 1 1 − − −  such that

a x x x x x bn n= < < < < < =−0 1 2 1 .

	 In each subinterval [ , ], , , , ,x x i ni i− =1 1 2   choose a real number ξi arbitrarily such that 
x xi i i− ≤ ≤1 ξ .

    Consider the sum f x xi i i
i

n

( )( )ξ − −
=
∑ 1

1

 = f x x f x x f x xn n n( )( ) ( )( ) ( )( )ξ ξ ξ1 1 0 2 2 1 1− + − + + − − �….(1)

	 The sum in (1) is called a Riemann sum of f x( )  corresponding to the partition  

[ , ],[ , ], ,[ , ]x x x x x xn n0 1 1 2 1 −  of [ , ].a b  Since there are infinitely many values ξi  satisfying the condition 

x xi i i− ≤ ≤1 ξ ,  there are infinitely many Riemann sums of f x( )  corresponding to the same partition  

[ , ],[ , ], ,[ , ]x x x x x xn n0 1 1 2 1 −  of [ , ].a b  If, under the limiting process n xi xi→∞ − −( )→ and max ,
1

0  

the sum in (1) tends to a finite value, say A,  then the value A  is called the definite integral of f x( )

with respect to x on [ , ]a b . It is also called the Riemann integral of f x( )  on [ , ]a b  and is denoted by 

 f x dx
a

b

( )ò and is read as the integral of f x( )  with respect to x from a to b . If a b= ,  then we have 

 f x dx
a

a

( ) .=∫ 0

x a=
x b=

xx1 x2

xn

y
f x

=
(

)

xi xn−1

x3
xi−1x0

ξ3

Fig. 9.2
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Note
	 In the present chapter, we consider bounded functions f x( ) that are continuous  on[ , ]a b . 
However, the Riemann integral of  f x( )  on [ , ]a b also exists for bounded functions f x( ) that are 
piece-wise continuous  on[ , ]a b .We have used the same symbol ò both for definite integral and anti-
derivative (indefinite integral). The reason will be clear after we state the Fundamental Theorems of 
Integral Calculus. The  variable x  is dummy in the sense that it is selected at our choice only. So we 

can write  f x dx
a

b

( )ò as f u du
a

b

( )ò . So, we have  f x dx f u du
a

b

a

b

( ) ( )∫ ∫= . As max ,xi xi− −( )→1
0  all the  

three points x xi i i−1,ξ , and  of each subinterval [ , ]x xi i−1  are dragged into a single point. We have 

already indicated that there are infinitely many ways of choosing the evaluation point ξi  in the 

subinterval [ , ]x xi i−1 , i n=1 2, , , . By choosing ξi ix = −1 , i n=1 2, , , , we have 

	
  

 and max(x
f x dx f x x x

a

b

n x i i i
i

n

i i

( ) lim ( )( )
)

= −∫ ∑→∞ − →
− −

=−1 0
1 1

1

.. 	 ...(2)

	 Equation (2) is known as the left-end rule for evaluating the Riemann integral. 

	 By choosing ξi ix = , i n=1 2, , , , we have 

	

  
 and max (x

f x dx f x x x
a

b

n x i i i
i

n

i i

( ) lim ( )( ).
)

= −∫ ∑→∞ − →
−

=−1 0
1

1 	 ...(3)

	 Equation (3) is known as the right-end rule for evaluating the Riemann integral. 

	 By choosing ξi i ix x
 = − +1

2
, i n=1 2, , , , we have 

	

  
 and max

f x dx f x x x x
a

b

n x x

i i
i i

i i

( ) lim (
( )

=
+






 −∫ →∞ − →

−

−1 0

1

2
−−

=
∑ 1

1

).
i

n

	 ...(4)

	 Equation (4) is known as the mid-point rule for evaluating the Riemann integral. 

Remarks

	 (1)	 If the Riemann integral f x dx
a

b

( )ò  exists, then the Riemann integral f u du
a

x

( )ò is a  

well-defined real number for every x a b∈[ , ] . So, we can define a function F x( ) on [ , ]a b

such that F x f u du x a b
a

x

( ) ( ) , [ , ]= ∈∫ .

	 (2)	 If f x( ) ≥ 0  for all x a b∈[ , ] , then the Riemann integral  

f x dx
a

b

( )ò is equal to the geometric area of the region bounded by 

the graph of  y f x= ( ) , the x-axis, the lines x a= and x b= .  See 

Fig. 9.3.
Fig. 9.3

y

x
x a=

x b=

y f x= ( )

∆x

f
x(
)

O
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	 (3)	 If f x( )£ 0  for all x a b∈[ , ] , then the Riemann integral 

f x dx
a

b

( )ò is equal to the negative of the geometric area of the 

region bounded by the graph of  y f x= ( ) , the  x-axis, the  

lines x a= and x b= . See Fig. 9.4. In this case, the geometric 
area of  the region bounded by the graph of  y f x= ( ) , 

the x-axis, the lines x a= and x b= is given by  f x dx
a

b

( )ò .

	 (4)	 If f x( )  takes positive as well as negative values on [ , ]a b , then the interval [ , ]a b  can be  

divided into subintervals [ , ]a c1 , [ , ]c c1 2 , , [ , ]c bk such that f x( )  has the same sign 

throughout each of subintervals. So, the Riemann integral f x dx
a

b

( )ò is given by 

		  f x dx
a

b

( )ò = f x dx f x dx f x dx
a

c

c

c

c

b

k

( ) ( ) ( )

1

1

2

∫ ∫ ∫+ + + . 

		  In this case, the geometric area of the region bounded by the graph of  y f x= ( ) , the x-axis, 

the lines x a= and x b= is given by 

f x dx f x dx f x dx
a

c

c

c

c

b

k

( ) ( ) ( )

1

1

2

∫ ∫ ∫+ + + .

	 For instance, consider the following graph of a 
function f x x a b( ), [ , ]∈ . See Fig. 9.5. Here, A1 , A2 and, 
A3 denote geometric areas of the individual parts.  

Then, the definite  integral  f x dx
a

b

( )ò is given by 

	
f x dx

a

b

( )ò
	
= 	 f x dx f x dx f x dx

a

c

c

c

c

b

( ) ( ) ( )

1

1

2

2

∫ ∫ ∫+ +

		 = 	 A A A1 2 3− + .

	 The geometric area of the region bounded by the graph of  y f x= ( ) , the   x − axis, the lines 
x a= and x b=  is given by A A A1 2 3+ + . In view of the above discussion, it is clear that a Riemann 
integral need not represent geometrical area.

Note
	 Even if we do not mention explicitly, it is always understood that the areas are measured in 
square units and volumes are measured in cubic units.

Example 9.1

	 Estimate the value of x dx2

0

0 5.

ò  using the Riemann sums corresponding to 5 subintervals of equal 

width and applying (i) left-end rule (ii) right-end rule (iii) the mid-point rule.

Fig. 9.4

y

O

x a= x b=
− f x( )

∆x
x

Fig. 9.5

y f x
= ( )

x

y

x b=x a=

a Oc1
c2

A2

b

A1

A3
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Solution
			   Here a 	= 	0 0 5 5 2, . , , ( )b n f x x= = =  

	 So, the width of each subinterval is 

			   h 	= 	∆x b a
n

=
−

=
−

=
0 5 0

5
0 1

.
. .

	 The partition of the interval is given by the points

			   x0 	= 	0,

			   x1 	= 	x h0 0 0 1 0 1+ = + =. .  

			   x2 	= 	x h1 0 1 0 1 0 2+ = + =. . .

			   x3  	= x h2 0 2 0 1 0 3+ = + =. . .

			   x4 	= 	x h3 0 3 0 1 0 4+ = + =. . .

			   x5 	= 	x h4 0 4 0 1 0 5+ = + =. . .

	 (i)	The left-end rule for Riemann sum with equal width Dx is 

			   S 	= 	 f x f x f x xn0 1 1( ) + ( ) + + ( )  ∆− .

			    ∴S 	= 	 f f f f f0 0 1 0 2 0 3 0 4 0 1( ) + ( ) + ( ) + ( ) + ( ) . . . . ( . )

				   = 	 0 00 0 01 0 04 0 09 0 16 0 1 0 03. . . . . ( . ) .+ + + +[ ] =

		   ∴ ∫ x dx2

0

0 5.

 is approximately 0 03. .

	 (ii)	The right-end rule for Riemann sum with equal width Dx is 

			   S 	= 	 f x f x f x xn1 2( ) + ( ) + + ( )  ∆ .

			   ∴ S 	= 	 f f f f f0 1 0 2 0 3 0 4 0 5 0 1. . . . . ( . )( ) + ( ) + ( ) + ( ) + ( ) 

				   = 	 0 01 0 04 0 09 0 16 0 25 0 1 0 055. . . . . ( . ) .+ + + +[ ] = .

		  ∴ ∫ x dx2

0

0 5.

 is approximately 0 055. .

	 (iii)	The mid-point rule for Riemann sum with equal width Dx is 

			   S 	= 	 f x x f x x f x x xn n0 1 1 2 1

2 2 2

+





 +

+





 + +

+















 ∆

−
  

			   ∴ S 	= 	 f f f f f0 05 0 15 0 25 0 35 0 45 0 1. . . . . ( . )( ) + ( ) + ( ) + ( ) + ( )   

	 =  0 0025 0 0225 0 0625 0 1225 0 2025 0 1. . . . . ( . )+ + + +[ ]

	 =  0 04125. .

		  ∴ ∫ x dx2

0

0 5.

 is approximately 0 04125. .
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EXERCISE 9.1

	 1.	 Find an approximate value of xdx
1

1 5.

ò  by applying the left-end rule with the partition 

1 1 1 2 1 3 1 4 1 5. , . , . , . , .{ } .

	 2.	 Find an approximate value of x dx2

1

1 5.

ò by applying the right-end rule with the partition 

1 1 1 2 1 3 1 4 1 5. , . , . , . , .{ } .

	 3.	 Find an approximate value of ( )

.

2

1

1 5

−∫ x dx by applying the mid-point rule with the partition 

1 1 1 2 1 3 1 4 1 5. , . , . , . , .{ } .

9.2.2 Limit Formula to Evaluate  f x dx
a

b

( )ò  

	 Divide the interval [ , ]a b  into n  equal subintervals  [ , ],[ , ], ,[ , ],[ , ]x x x x x x x xn n n n0 1 1 2 2 1 1 − − − such 

that a x x x x x bn n= < < < < < =−0 1 2 1 . Then, we have x x x x x x b a
nn n1 0 2 1 1− = − = = − =
−

− .Put

h b a
n

=
− .Then, we get x a ih i ni = + =, , , , .1 2 

	 So, by the definition of definite integral, we get 

	
lim ( )( )

( )n x x i i i
i

n

i i

f x x x
→∞ − →

−
=−

−∑
 and max 1 0

1

1

(Right-end rule)

		 = 	limn i

nb a
n

f a i b a
n→∞

=

−
+

−





∑

1

.

	 ∴      f x dx
a

b

( )ò  

	
= 	lim ( )
n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

1

.

	 Note. lim ( )
n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

0 	
= lim ( ) ( )
n r

nb a
n

f a b a
n

f a b a r
n→∞

=

−
+

−
+ −
















∑

1

		 = 	lim ( )
n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

1

		 = 	 f x dx
a

b

( )ò .

	 ∴ f x dx
a

b

( )ò
	
= 	lim ( )

n
r

nb a
n

f a b a r
n→∞

=

− + −



∑

1

		
= 	lim ( )
n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

0

.

		  If a = 0 and b =1, then we get    =f x dx
n

f r
n n

f r
nn

r

n

n
( ) lim lim=












∫ ∑

→∞
=

→∞
0

1

0

1 1 
=
∑
r

n

1

.
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Example 9.2

	 Evaluate xdx,
0

1

ò  as the limit of a sum.

Solution
	 Here f x x a b( ) , .= = =  and 0 1  Hence, we get

			 
 f x dx
a

b

( )ò
	
= 	lim lim

n r

n

n r

n

n
f r
n

xdx
n

r
n→∞

=
→∞

=







⇒ =∑ ∫ ∑1 1

1 0

1

1

				   = 	limn n
n

→∞
+ + +[ ]1

1 2
2



					    = 	lim
( )

lim
n nn

n n
n→∞ →∞

+
+






 =

1 1

2

1

2
1

1 1

22
= .

Example 9.3

	 Evaluate x dx3

0

1

,ò  as the limit of a sum.

Solution
	 Here f x x a b( ) , .= = =3 0 1  and   Hence, we get

			 
 f x dx
a

b

( )ò
	
= 	 lim lim

n r

n

n r

n

n
f r
n

x dx
n

r
n→∞

=
→∞

=







⇒ =∑ ∫ ∑1 1

1

3

0

1 3

3
1

					     = 	 lim lim
( )

n nn
n

n
n n

→∞ →∞
+ + +  =

+1
1 2

1 1

44

3 3 3

4

2 2



					     = 	 lim
n n→∞

+





 =

1

4
1

1 1

4

2

.
Example 9.4

	 Evaluate 2 32

1

4

x dx+( )∫ ,  as the limit of a sum.

Solution

	 We use the formula

	
 f x dx
a

b

( )ò
	
= 	 lim ( )

n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

1

	 Here f x x a b( ) ,= + = =2 3 1 42   and . 

	 So, we get 

	
f a b a r

n
+ −






( )

	
= 	 f

r
n

1 4 1+ −





( ) = f r

n
1

3
+






 = 2 1

3
3

2

+





 +
r
n

= 5
18 122

2
+ +

r
n

r
n

.

Hence, we get 

	
( )2 32

1

4

x dx+∫
	
= 	lim lim

n r

n

n r

n

n
r
n

r
n n n

r
→∞

=
→∞

=

+ +








 = + +∑ ∑3

5
18 12 15

1
54 362

2
1 1

3

2

nn
r

r

n

r

n

2
11 ==
∑∑






			  = 	limn n
n

n
n

n
n

→∞
+ + + +( ) + + + +( )





15 54
1 2

36
1 2

3

2 2 2

2
 
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		 = 	lim
( )( ) ( )

n n
n n n

n
n n

→∞
+

+ +
+

+





15
54 1 2 1

6

36 1

23 2

		 = 	limn n n n→∞
+ +






 +





 + +
















15 9 1

1
2

1
18 1

1

		 = 	15+9 1 0 2 0 18 1 0+( ) +( ) + +( ) = 51.

EXERCISE 9.2
	 1.	 Evaluate the following integrals as the limits of sums:

			  (i)	 ( )5 4
0

1

x dx+∫  	 (ii)	 ( )4 12

1

2

x dx−∫  

9.3 Fundamental Theorems of Integral Calculus and their Applications

	 We observe in the above examples that evaluation of   f x dx
a

b

( )ò  as a limit of the sum is quite 

tedious, even if f x( )  is a very simple function. Both Newton and Leibnitz, more or less at the same 

time, devised an easy method for evaluating definite integrals. Their method is based upon two 
celebrated theorems known as First Fundamental Theorem and Second Fundamental  Theorem   
of   Integral Calculus.  These theorems establish the connection between a function and its  
anti-derivative (if it exists). In fact, the two theorems provide a link between differential calculus and 
integral calculus. We state below the above important theorems without proofs.

Theorem 9.1 (First Fundamental Theorem of Integral Calculus)

  If f x( )  be a continuous function defined on a closed interval [ , ]a b andF x f u du a x b
a

x

( ) ( ) ,= < <∫    

then, d
dx
F x f x( ) ( ).=  In other words, F x( )  is an anti-derivative of f x( ).

Theorem 9.2 (Second Fundamental Theorem of Integral Calculus)

	 If f x( )  be a continuous function defined on a closed interval [ , ] ( )a b F x  and   is an  

anti-derivative of f x( ),  then,          

f x dx F b F a
a

b

( ) ( ) ( ).= −∫

Note

	 SinceF b F a( ) ( )−  is the value of the definite integral (Riemann integral)  f x dx
a

b

( ) ,ò  any arbitrary 

constant added to the anti-derivative F x( ) cancels out and hence it is not necessary to  add an arbitrary 
constant to the anti-derivative, when we are evaluating definite integrals. As a  short-hand form, we 

write F b F a F x
a

b
( ) ( ) ( ) .− = [ ] The value of a definite integral is unique. 
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	 By the second fundamental theorem of integral calculus, the following  properties of definite 
integrals  hold. They are stated here without proof.

	 Property 1	 :	 f x dx f u du
a

b

a

b

( ) ( )=∫ ∫ , a < b

	 i.e., definite integral is independent of the change of variable.

	 Property 2	 :	 f x dx f x dx
b

a

a

b

( ) ( )= −∫∫
	 i.e., the value of the definite integral changes by minus sign if the limits are interchanged.

	 Property 3	 :	 	 f x dx f x dx f x dx
a

c

a

b

c

b

( ) ( ) ( )= +∫∫ ∫ , a < c < b

	 Property 4	 :	 	 α β α βf x g x dx f x dx g x dx
a

b

a

b

a

b
( ) ( ) ( ) ( )+[ ] = +∫ ∫ ∫ , where α  and β  are constants.

	 Property 5	 :	 If x = g(u), then f x dx f g u dg u
du

du
a

b

c

d
( ) ( ( ))

( )∫ ∫=
 
 where  and g c a g d b( ) ( )= =

 
.

	 This property is used for evaluating definite integrals by making substitution.
	 We illustrate the use of the above properties by the following examples.

Example 9.5

	 Evaluate :  ( )3 4 52

0

3

x x dx− +∫ .

Solution

			   ( )3 4 52

0

3

x x dx− +∫ 	 = 	 3 4 52

0

3

0

3

0

3

x dx x dx dx− + ∫∫∫

				    = 	3 4 52

0

3

0

3

0

3

x dx x dx dx− +∫ ∫ ∫

				    = 	3
3

4
2

5
3

0

3
2

0

3

0

3x x x








 −









 + [ ]

				    = 	 ( ) ( ) ( )27 0 2 9 0 5 3 0− − − + −

				    = 	 27 18 15− + = 24 .

Example 9.6

	 Evaluate :  2 7

5 92

0

1 x
x

dx+
+∫  .

Solution

			 

2 7

5 92

0

1 x
x

dx+
+∫

	
= 	 2

5 9
7

5 32

0

1

2 2

0

1x
x

dx
x+

+
+∫ ∫ ( )

=
1

5
5 9

7

5 3

5

2

0

1

2

2

0

1

log[ ]x dx

x
+ +

+ 







∫
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	 			  = 	 1

5
14 9

7

5

5

3 3

5

1

5

14

9

1

0

1

[log log ] tan log− + ×
























= +− x 77

3 5

5

3

1tan− .

Example 9.7

	 Evaluate :   [ ]2

0

1

x dxò where [ ]⋅  is the greatest integer function.

Solution

		  [ ]2

0

1

x dxò = 	 [ ] [ ]2 2

0

1

2

1

2

1

x dx x dx+∫ ∫ = 0 1
1

2

1

0

1

2

dx dx+∫∫ = 0 1

2

1+ [ ]x = 1
1

2
− =

1

2
.

Example 9.8

	 Evaluate  :   sec tan

sec

x x
x
dx

1 2

0

3

+∫
π

.

Solution

			   Let I 	= 	 sec tan

sec

x x
x
dx

1 2

0

3

+∫
π

.           Put sec x = u . Then, sec tanx x dx = du .

	 When x =0,  u = =sec0 1 .  When x =
p
3

, u = =sec
p
3

2 .

			   ∴ I 	= 	
du
u1 2

1

2

+∫ = [tan ]−1

1

2u =  tan ( ) tan− −−1 12 1 = tan ( )− −1 2
4

π .

Example 9.9

	 Evaluate  : 1

0

9

x x
dx

+∫ .

Solution

	 Let x = u . Then x u= 2 , and so dx = 2u du .

	 When x = 0 , u = 0 . When x = 9 , u = 3 .

	 ∴
+∫
1

0

9

x x
dx =

1
2

2

0

3

u u
u du

+∫ ( ) = 	2
1

1
0

3

+∫ u
du = 2 1

0

3

log + u = 2 4 0[log ]− = log16 .

Example 9.10

	 Evaluate: x
x x

dx
( )( )+ +∫ 1 2

1

2

.

Solution

			   Let I 	= 	 x
x x

dx
( )( )+ +∫ 1 2

1

2

. 
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	 		  I 	= 	 −
+

+
+









∫

1

1

2

2
1

2

( )x x
dx

                
(Using partial fractions)

	  			  = 	 − + + +[ ]log( ) log( )x x1 2 2
1

2

				   = 	 log
( )x

x
+
+











2

1

2

1

2

				   = 	 log log
16

3

9

2
−

				   = 	 log
32

27
.

Example 9.11

	 Evaluate  :  cos

( sin )( sin )

θ
θ θ

θ

π

1 2
0

2

+ +∫ d .

Solution

			   Let I 	= 	 cos

( sin )( sin )

θ
θ θ

θ

π

1 2
0

2

+ +∫ d .    Put u = 1+ sinθ . Then, du d= cosθ θ .

			   When θ 	= 	0 1, u = . When  θ π
= =

2
2, u .

			   ∴ I 	= 	
du

u u( )1
1

2

+∫ =  ( )

( )

1

1
1

2 + −
+∫
u u

u u
du  =  

1 1

1
1

2

u u
du−

+






∫ = log log( )u u− +[ ]1

1

2

				   = 	 (log log ) (log log )2 3 1 2− − − = 2 2 3log log− = log
4

3
.

Example 9.12

	 Evaluate : sin

( )

−

−
∫

1

2

3

20

1

2

1

x

x
dx .

Solution

	 Let I 	= 	
sin

( )

−

−
∫

1

2

3

20

1

2

1

x

x
dx . 	

	 Put u 	= 	 sin−1 x . Then, x u= sin  and so, du = 1

1 2− x
dx .

	 When x 	= 	 0 0, u = . When  x =  1

2 4
, u = π .

	 ∴ I 	= 	 u
u
du

cos2

0

4

π

∫ = u u dusec2

0

4

π

∫  =  [ tan ] tan tan log cosu u u du u u u0
4

0

4

0
4

0
4

π
π

π π

− = [ ] + [ ]∫

		 =	 π
4

1

2
+ log =

π
4

1

2
2− log .
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Example 9.13

	 Evaluate : tan cotx x dx+( )∫
0

2

π

.

Solution

	 Let I 	= 	 tan cotx x dx+( )∫
0

2

π

. Then, we get 

	 I 	= 	 sin

cos

cos

sin

x
x

x
x
dx+









∫

0

2

π

 =  sin cos

sin cos

x x
x x

dx+
∫
0

2

π

= 2
20

2 sin cos

sin cos

x x
x x

dx+
∫
π

		 = 	 2
1 2

0

2 (sin cos )

(sin cos )

x x dx
x x
+

− −
∫
π

.

	 Put u 	= 	sin cosx x−  . Then, du x x dx= +(cos sin ) .

	 When x 	= 	0 1, u = − . When  x =  π
2

1, u = .

	 ∴ I 	= 2
1 2

1

1 du
u−−

∫ = 2 1

1

1[sin ]−
−u  = 2 1 11 1sin ( ) sin ( ))− −− −  = p 2 .

Example 9.14

	 Evaluate : x dx2

0

1 5

 ∫  

.

,  where [ ]x  is the greatest integer function. 	

Solution

	 We know that the greatest integer function [ ]x  is the largest integer less than or equal to x. In 
other words, it is defined by [ ]x n= , if  n x n≤ < +( )1 , where n  is an integer. 

So, we get     

if

if    

if

[ ]

.

x

x

x

x

2

0 0 1

1 1 2

2 2 1 5

=

≤ <

≤ <

≤ ≤









	 We note that the above function is not continuous on [ , . ]0 1 5 . 

	 But, it is continuous in each of the sub-intervals [ , )0 1 , [ , )1 2

and [ , . ]2 1 5 ; that is, it is piece-wise continuous on [ , . ]0 1 5 .  

See Fig. 9.6. Hence, we get

			   x dx2

0

1 5

 ∫  

.

	= 	 x dx x dx x dx dx dx2

0

1

2

1

2

2

2

1 5

0

1

1

2

0 1 2  +   +   = + +∫ ∫ ∫ ∫ ∫     

.

22

1 5.

∫ dx

					    = 	 0 2 2 1 3 2 2 2 2
1

2

2

1 5+ ( ) + ( ) = −( ) + −( ) = −x x .
.  

Example 9.15

	 Evaluate : | |x dx+
−
∫ 3
4

4

 .

Fig. 9.6

y

xO

1

2

1 2 1 5.
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Solution

	 By definition, we have  | |x
x x
x x

+ =
+ ≥ −

− − < −




3
3 3

3 3

        if  

    if  

		 See Fig. 9.7 for the graph of  y x= +| |3  in − ≤ ≤4 4x .

	 ∴ | |x dx+
−
∫ 3
4

4

 

	
= 	 | | | |x dx x dx+ + +

−

−

−
∫ ∫3 3
4

3

3

4

  = ( ) ( )− − + +
−

−

−
∫ ∫x dx x dx3 3
4

3

3

4

  

		 = 	 − −








 + +











−

−

−

x x x x
2

4

3
2

3

4

2
3

2
3

	 =  − +





 − − +






 + +






 − −








9

2
9

16

2
12

16

2
12

9

2
9 =

9

2
4 20

9

2







 − + + 






 = 25 .

	 Next, we give examples to illustrate the application of Property 5.

Example 9.16

	 Show that 
dx

x e
4 5

1

3
2

0

2

+
=∫ sin

log

π

.

Solution

		 Put  u = tan
x
2

. Then, sin

tan

tan

, secx

x

x
u
u
du x dx dx du

u
=

+
=

+
= ⇒ =

+

2
2

1
2

2

1

1

2 2

2

12
2

2

2
.

          	When x =  0 0 0, tanu = = .   When x u= = =
π π
2 4

1, tan .

	 ∴ I 	= 	 dx
x

du
u
u
u

du
u u

du
4 5

2

1

4 5
2

1

2 5 2

1

20

2
2

2

0

1

20

1

+
= +

+
+







=
+ +

=∫ ∫ ∫sin

π

uu u20

1

5

2
1+ +

∫  

 	 =	1
2 5

4

3

4

1

2

1

2
3

4

5

4

3

2 20

1 du

u

u

+



 − 





= ×
× 





+



 −

∫ log
44

5

4

3

4

1

3

1

2

2

0

1

u

u

u+



 +



































=
+

+











log























=

0

1

1

3
2log  .

Note

	 To evaluate anti-derivatives of the type dx
a x b x ccos sin+ +∫ , we use the substitution method by 

putting u x
= tan

2
 so that cos ,sin ,x u

u
x u

u
dx du

u
=

−
+

=
+

=
+

1

1

2

1

2

1

2

2 2 2
. 

Example 9.17

	 Prove that
sin

sin cos

2
4 40

4
x dx

x x
 

+∫
π

=
p
4

.

Fig. 9.7

x

y

( , )�3 0 O ( , )4 0( , )−4 0

y
x�
� 3

y
x

� �
�

(

)3

Chapter 9 Applications of Integration.indd   103 7/25/2019   7:08:52 PM



104XII - Mathematics

Solution

	 I 	= 	
sin

sin cos

2
4 40

4
x dx

x x
 

+∫
π

=
sin

sin cos sin cos

2

22 2
2

2 20

4
x dx

x x x x

 

+( ) −
∫

π

		 = 	
sin

sin cos

2

1
1

2
2

20

4
x dx

x x

 

− ( )
∫

π

=
2 2

2 220

4
sin

sin

x dx
x

 

−∫
π

=
2 2

1 220

4
sin

cos

x dx
x

 

+∫
π

.

	 Put  u 	= 	 cos 2x ,   Then, du x dx= −2 2sin  . 

	 When  x 	= 	 0 , we have u = =cos 0 1 . When x = π
4

, we have u = =cos
π
2

0 .

	 ∴ I 	= 	
−
+

=
+

=   =∫ ∫ −du
u

du
u

u
1 1 421

0

20

1
1

0

1

tan
π .

Example 9.18

	 Prove that  
dx

a x b x2 2 2 20

4

sin cos+∫
π

=
1 1

ab
a
b

tan− 





 , where a b,  > 0 . 

Solution

	 Put I 	= 	
dx

a x b x2 2 2 20

4

sin cos+∫
π

=
sec

tan

2

2 2 20

4
x dx

a x b
 

+∫
π

.

	 Put  u 	= 	tan x .  Then du x dx= sec2  . 

	 When  x 	= 	0 ,  we have u = =tan 0 0 . When x = π
4

, we have u = =tan
π
4

1. 

	 ∴ I 	= 	
du

a u b2 2 20

1

+∫ = 1
2

2

20

1

a
du

u b
a

+ 





∫ =
1

2

1

0

1

a
a
b

au
b

tan− 















 =

1 1

ab
a
b

tan− 





 .

	 We derive some more properties of definite integrals. 

Property 6

	 f x dx f a b x dx
a

b

a

b
( ) ( )∫ ∫= + −

Proof
			   Let u 	= 	 a b x+ − . Then, we get dx du= − .

			   When  x 	= 	 a , u a b a b= + − = . When x b= , we getu a b b a= + − = .

			   ∴ f x dx
a

b
( )ò 	

= 	 f a b u du
b

a
( )( )+ − −∫ = f a b u du

a

b
( )+ −∫

				  
= 	 f a b x dx

a

b
( )+ −∫ .

Note

	 Replace a  by 0  and b  by a  in the above property we get the following property

	 f x dx f a x dx
a a

( ) ( )
0 0∫ ∫= − .
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Example 9.19

	 Evaluate 1

0

4

sin cosx x
dx

+∫
π

 

Solution

			   I 	= 	
1

0

4

sin cosx x
dx

+∫
π

 =
1

2
1

2

1

2

0

4

sin cosx x
dx

+





∫
π

 

				   = 	
1

2

1

4 4

0

4

cos cos sin sin
π π

π

x x
dx

+





∫  =
1

2

1

4

0

4

cos
π

π

−





∫
x
dx 

				   = 	 1

2

1

0

4

cos x
dx

π

∫  , since f x dx f a x dx
a a

( ) ( )
0 0∫ ∫= −

				   = 	 1

2

1

20

4

0
4sec log(sec tan )x dx x x

π π

∫ = +[ ]  

				   = 	 1

2
2 1 1 0log( ) log( )+ − +



  

				   = 	 1

2
2 1log( )+ .

Property 7

	 f x dx f x f a x dx
a a

( ) ( ) ( ) .
0

2

0
2∫ ∫= + −[ ]

Proof
	 By property 3, we have f x dx

a
( )

0

2

ò 	
= 	 f x dx f x dx

a

a

a
( ) ( )

0

2

∫ ∫+ .	 (1)

	 Let us make the substitution x 	= 	2a u−  in f x dx
a

a
( )

2

ò . Then, dx du= − .

	 When  x 	= 	 a , we haveu a a a= − =2 . When x a= 2 , we haveu a a= − =2 2 0 .So, we get 

	
f x dx

a

a
( )

2

ò 	
= 	 f a u du

a
( )2

0

− −( )∫ = f a u du
a

( )2
0

−∫ = f a x dx
a

( )2
0

−∫ .	 ...(2)

	 Substituting equation (2) in equation (1), we get 

	
f x dx

a
( )

0

2

ò 	
= 	 f x dx f a x dx

a a
( ) ( )

0 0
2∫ ∫+ −

		
= 	 f x f a x dx

a
( ) ( )+ −[ ]∫ 2

0
.

Property 8
	 If f x( )  is an even function, then f x dx f x dx

a

a a
( ) ( ) .

−∫ ∫= 2
0

	 (Recall that a function f x( )  is an even function if and only if f x f x( ) ( ).− = )
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Proof

	 By property 3, we have

	 f x dx
a

a
( )

−∫ 	= 	 f x dx f x dx
a

a
( ) ( )

−∫ ∫+
0

0
.

	 In the integral f x dx
a

( )
−∫
0

, let us make the substitution, x u= − .Then, dx du= − .

	 When  x 	= 	−a , we get u a= , when x = 0 , we get u = 0 , So, we get 

	
f x dx

a
( )

−∫
0

	
= 	 f u du

a
( )( )− −∫

0

= f u du
a

( )−∫0
= f x dx

a
( )−∫0

= f x dx
a

( )
0
ò .	 ... (2)

	 Substituting equation (2) in equation (1), we get 

	 f x dx
a

a
( )

−∫ 	= 	 f x dx f x dx f x dx
a a a

( ) ( ) ( )
0 0 0

2∫ ∫ ∫+ = .

Property 9

	 If f x( )  is an odd function, then f x dx
a

a
( ) .

−∫ = 0

	 (Recall that a function f x( )  is an odd function if and only if f x f x( ) ( ).− = − )
Proof

	 By property 3, we have 

	 f x dx
a

a
( )

−∫ 	= 	 f x dx f x dx
a

a
( ) ( )

−∫ ∫+
0

0
.	 ... (1)

	 Consider f x dx
a

( )
−∫
0

. In this integral, let us make the substitution, x u= − .Then, dx du= − .

	 When  x 	= 	 −a , we get u a= ; when x = 0 , we get u = 0 . So, we get

	
f x dx

a
( )

−∫
0

	
= 	 f u du

a
( )( )− −∫

0

= f u du
a

( )−∫0
= f x dx

a
( )−∫0

= −∫ f x dx
a

( )
0

.	 ... (2)

	 Substituting equation (2) in equation (1), we get 

	 f x dx
a

a
( )

−∫ 	= 	 f x dx f x dx
a a

( ) ( )
0 0

0∫ ∫− =  

Property 10

	 If f a x f x( ) ( ),2 − =  then f x dx f x dx
a a

( ) ( ) .
0

2

0
2∫ ∫=

Proof

	 By property 7, we have 

	
f x dx f x f a x dx

a a
( ) ( ) ( ) .

0

2

0
2∫ ∫= + −[ ]  			     	 ...(1)

	 Setting the condition f a x f x( ) ( )2 − =  in equation (1), we get 

	
f x dx f x f x dx f x dx

a a a
( ) ( ) ( ) ( ) .

0

2

0 0
2∫ ∫ ∫= +[ ] =

Property 11

	 If f a x f x( ) ( ),2 − = −  then f x dx
a

( ) .
0

2

0∫ =
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Proof

	 By property 7, we have

	
f x dx f x f a x dx

a a
( ) ( ) ( ) .

0

2

0
2∫ ∫= + −[ ] 	�  ... (1)

	 Setting the condition f a x f x( ) ( )2 − = −  in equation (1), we get 

	
f x dx f x f x dx

a a
( ) ( ) ( ) .

0

2

0
0∫ ∫= −[ ] =

Property 12

	 x f x dx a f x dx
a a

( ) ( )=∫ ∫2
0 0

 if f a x f x( ) ( )− = .

Proof

			   Let  I 	= 	 x f x dx
a

( )

0

ò 	 ... (1)

			   Then  I 	= 	 ( ) ( )a x f a x dx
a

− −∫
0

, since g x dx g a x dx
aa

( ) ( )= −∫∫
00

	 =  ( ) ( )a x f x dx
a

−∫
0

,  since f a x f x( ) ( )− = .

			   ∴ I 	= 	 ( ) ( )a x f x dx
a

−∫
0

 	 ... (2)

	 Adding (1) and (2), we get

			   2I 	= 	 ( ) ( )x a x f x dx
a

+ −∫
0

	 =  a f x dx
a

( )

0

ò .

			   ∴ I 	= 	a f x dx
a

2
0

( )ò .

Note
	 This property help us to remove the factor x  present in the integrand of the  LHS.

Example 9.20

	 Show that g x dx g x dx(sin ) (sin )=∫ ∫0 0

22
π π

, where g x(sin )  is a function of sin x .

Solution
	 We know that
			   f x dx

a
( )

0

2

ò 	= 	2
0
f x dx

a
( )ò  if f a x f x( ) ( )2 − = .

			   Take  2a 	= p  and f x g x( ) (sin )= .

			   Then, f a x( )2 − 	= 	g x g x f x(sin( )) (sin ) ( )π − = = .
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	 			   ∴∫ f x dx
a

( )
0

2

	= 	2
0
f x dx

a
( )ò .

				    g x dx(sin )
0

π

∫ 	= 	2
0

2 g x dx(sin )

π

∫ .

Result 

	 g x dx g x dx(sin ) (sin ) .=∫ ∫0 0

22
π π

Note
	 The above result is useful in evaluating definite integrals of the type g x dx(sin )

0

π

∫ .

Example 9.21

	 Evaluate x
x
dx

10 +∫ sin

π
.

Solution
		  Let  I 	= 	 x

x
dx

10 +∫ sin

π
.

			  = 	 x
x
dx1

10 +∫ sin

π

		  Let f x( ) 	= 	 1

1+ sin x
.  Then f x

x x
f x( )

sin( ) sin
( )π

π
− =

+ −
=

+
=

1

1

1

1
 

		  ∴
+∫ x

x
dx

10 sin

π
	= 	 π π

2

1

10 +∫ sin x
dx ,  (  x f x dx a f x dx

a a

( ) ( )=∫ ∫2
0 0

 if f a x f x( ) ( ))− =

	 =  2
1

10

2

+∫ sin x
dx

π

,   since g(sin ) g(sin )x dx x dx=∫ ∫0 0

22
π π

	 = 2
1

1
2

0

2

+ −





∫
sin

π

π

x
dx   since f x dx f a x dx

a a
( ) ( )

0 0∫ ∫= −

	 =  2
1

1
2

1

2
2

20

2

20

2 2

0

2

+
= =∫ ∫ ∫cos

cos

sec
x
dx x dx

x dx
π π π

 

	 =  2
2

2
4

0 2
0

2

tan tan tan
x





= −




=

π

π .

Example 9.22

	 Show that g x dx g x dx(cos ) (cos )=∫ ∫0

2

0
2

π π

, where g x(cos )  is a function of cos x .

Solution
			   Take  2a 	= 	 2p   and f x g x( ) (cos )= .
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			   Then,  f a x( )2 − 	= 	 f x g x g x f x( ) (cos( )) (cos ) ( )2 2π π− = − = =

			   ∴ ∫ f x dx
a

( )
0

2

	= 	 2
0
f x dx

a
( )ò .

			   ∴ ∫ g x dx(cos )
0

2p

	= 	 2
0
g x dx(cos )

π

∫ .
Result
	 g x dx g x dx(cos ) (cos ) .=∫ ∫0

2

0
2

π π

Note
	 The above result is useful in evaluating definite integrals of the type g x dx(cos ) .

0

2π

∫
Example 9.23
	  If f x f a x( ) ( )= + , then f x dx

a
( )

0

2

ò = 2
0
f x dx

a
( )ò

Solution
	 We write  f x dx

a
( )

0

2

ò = f x dx f x dx
a

a

a
( ) ( )

0

2

∫ ∫+        	 ... (1)

	 Consider f x dx
a

a
( )

2

ò  

	 Substituting	 x 	= 	 a u+ , we have dx du= ; when x a u= =, 0 and when x a u a= =2 , .

		  ∴∫ f x dx
a

a
( )

2

	= 	 f a u du f u du
a a

( ) ( )+ =∫ ∫0 0
, since f x f a x( ) ( )= +

				                          = f x dx
a

( )
0
ò .    	 ... (2)

	 Substituting (2) in (1), we get

	 		  f x dx
a

( )
0

2

ò  
=  2

0
f x dx

a
( )ò .

Example 9.24

	 Evaluate : x x dxcos . 

−

∫
π

π

2

2

Solution
		  Let   f x( ) 	= 	 x xcos . Then f x x x x x f x( ) ( ) cos( ) cos ( ).− = − − = − = −

	 So  f x( ) 	= 	 x xcos  is an odd function.

	 Hence, applying the property, for odd function f(x), f x dx
a

a

( )
−
∫ =  0 , 

	 ∴ we get x x dxcos . 

−

∫ =
π

π

2

2

0

Example 9.25

	 Evaluate : e dxx−

−
∫ | |

log

log

2

2

 .

Solution
			   Let  f x( )  	= 	 e

x−| | . Then f x e e f xx x( ) ( )| | | |− = = =− − −
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	 So f x( )  is an even function.

	 Hence 	 e dxx−

−
∫ | |

log

log

2

2

	= 	2 2 2 2 2
0

2

0

2

0

2 2 0e dx e dx e e e ex x x− − − −∫ ∫= = − = − + = −| |

log log

log log( ) ( )
llog

1

2 1+










				   =  2
1

2
1 1− +






 = .

Example 9.26

	 Evaluate :  f x
f x f a x

dx
a ( )

( ) ( )
.

+ −∫0

Solution
			   Let  I 	= 	 f x

f x f a x
dx

a ( )

( ) ( )+ −∫0
	 ... (1)

	 Applying the formula f x dx f a x dx
a a

( ) ( )= −∫ ∫0 0
in equation (1), we get

			   I 	= 	 f a x
f a x f a a x

dx
a ( )

( ) ( ( ))

−
− + − −∫0

				   = 	
f a x

f x f a x
dx

a ( )

( ) ( )

−
+ −∫0

.	 ... (2)

	 Adding equations (1) and (2), we get  

			   2I 	= 	
f x

f x f a x
dx f a x

f x f a x
dx

a a( )

( ) ( )

( )

( ) ( )+ −
+ −

+ −∫ ∫0 0
 

				   = 	
f x f a x
f x f a x

dx
a ( ) ( )

( ) ( )

+ −
+ −∫0

				   = 	 dx a
a

0∫ = .

		  Hence,  we get I 	= 	 a
2

.

Example 9.27

	 Prove that log( tan ) log .1
8

2
0

4 + =∫ x dx ππ

Solution
		  Let us put  I 	= 	 log( tan )1

0

4 +∫ x dx
π

 	 ... (1)

	 Applying the property	 f x dx
a

( )
0
ò 	= 	 f a x dx

a
( )−∫0

 in equation (1), we get

		  I 	= 	 log tan1
40

4 + −









∫ ππ

x dx = log

tan tan

tan tan

1 4

1
4

0

4 +
−

+

















∫
π

π

π x

x
dx

			  = 	 log
tan

tan
1

1

10

4 + −
+





∫ x
x
dx

π

= log
tan tan

tan

1 1

10

4
+ + −

+




∫ x x

x
dx

π
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	 		 = 	 log
tan

2

10

4

+




∫ x
dx

π

= − +[ ]∫ log log( tan )2 1
0

4 x dx
π

	 		 = 	log log( tan )2 1
0

4

0

4dx x dx
π π

∫ ∫− + 	

		  = 	π
4

2log − I

		  So, we get  2I 	= 	p
4

2log .  Hence, we get I = π
8

2log .

Example 9.28
	 Show that tan tan ( ) log− −+ −( ) = −∫ 1 1

0

1

1
2

2x x dx e 
π .

Solution
			   I 	= 	 tan tan ( )− −+ −( )∫ 1 1

0

1

1x x dx 

				   = 	 tan tan ( )− −∫ ∫+ −1

0

1
1

0

1

1x dx x dx  

				   = 	 tan tan ( ( ))− −∫ ∫+ − −1

0

1
1

0

1

1 1x dx x dx  , since f x dx f a x dx
a a

( ) ( )
0 0∫ ∫= −

				   = 	 tan tan− −∫ ∫+1

0

1
1

0

1

x dx x dx  

				   = 	 2 1

0

1

tan−∫ x dx 

				   = 	 2
0

1

udv∫ 
 , where u x= −tan 1  and dv dx=

				   = 	 2
0

1

uv vdu−



∫ , applying  integration  by parts

				   = 	 2
1

2
1

2
1

2

1

2

0

1

1 2

0

1

x x x dx
x

x x xtan tan log− −−
+







 = − +( )






 = −∫

π
llog 2  

Example 9.29

	 Evaluate x
x x

dx
52

3

− +∫ .

Solution
	 Let us put  I 	= 	 x

x x
dx

52

3

− +∫ 	 ... (1)

	 Applying the formula f x dx
a

b
( )ò 	= 	 f a b x dx

a

b
( )+ −∫ , we get

	 I 	= 	
( )

( ) ( )

2 3

5 2 3 2 3

5

52

3

2

3+ −
− + − + + −

= −
+ −∫ ∫

x
x x

dx x
x x

dx  	 ... (2)
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	Adding (1) and (2), we get

	 2I 	= 	 x x
x x

dx dx x+ −
+ −

= = [ ] = − =∫ ∫5

5
3 2 1

2

3

2

3

2

3 .

	 Hence, we get  I 	= 	 1

2
.

Example 9.30

	 Evaluate cos2

1

x
a
dxx+−

∫
π

π

Solution

		   	 Let  I 	= 	 cos2

1

x
a
dxx+−

∫
π

π

	 ... (1)

			   Using f x dx
a

b

( )ò 	= 	 f a b x dx
a

b

( )+ −∫  we get,

			   I 	= 	 cos ( )2

1

π π
π π

π

π − −
+ − −

−
∫

x
a

dxx  

				   = 	 cos ( )2

1

−
+ −

−
∫

x
a

dxx
π

π

				    =  a x
a

dxx
x

cos2

1+










−
∫
π

π

	 ... (2)	

	 Adding (1) and (2) we get

			   2I 	= 	 cos
( )

2

1
1

x
a

a dxx
x

+
+

−
∫
π

π

= cos2 x dx
−
∫
π

π

				   = 	2 2

0

cos x dx 

π

∫ (since cos2 x  is  an   even function)

			   Hence I 	= 	 ( cos )1 2

2
0

+
∫

x dx
π

=
1

2

2

2 0

x x
+





sin
π

= 1

2
[ ]p =

p
2

 .

EXERCISE 9.3

	 1.	 Evaluate the following definite integrals :

			   (i)	 
dx
x2

3

4

4−∫  	 (ii)	   
dx

x x2

1

1

2 5+ +−
∫  	 (iii)	

1

1
0

1 −
+∫
x
x
dx  

		  (iv)	 1

1
0

2 +
+







∫

sin

cos

x
x
dx

π

 	 (v)	 cos sinθ θ θ

π

0

2
3∫ d  	 (vi)	  

1

1

2

2
2

0

1 −

+( )∫
x

x
dx
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	 2.	 Evaluate the following integrals using properties of integration :

			   (i)	  x e
e

dx
x

xcos
−
+











−
∫

1

1
5

5

	 (ii)	  ( cos tan )x x x x dx5 3

2

2

1+ + +
−

∫
π

π

 

			   (iii)	 sin2

4

4

x dx
−

∫
π

π

	 (iv)	 x x
x
dxlog

cos

cos

3

3
0

2 +
−







∫

π

			   (v)	 sin cos4

0

2

3x dx
π

∫ 	 (vi)	 5 3
0

1

x dx−∫

			  (vii)	 sin cos

cossin

− −+ ∫∫ 1 1

00

22

t dt t dt
xx

 	 (viii)	 log( )1

1 2

0

1 +
+∫

x
x

dx  

			   (ix)	  x x
x
dxsin

sin1
0
+∫

π

 	 (x)	 1

18

3

8

+∫
tan x

dxπ

π

 

			   (xi)	 x x x dxsin (sin ) cos (cos )2 2

0

+ ∫
π

9.4 Bernoulli’s Formula
	 The evaluation of an indefinite integral of the form u x v x dx( ) ( )ò  becomes very simple, when u  

is a polynomial function of x (that is, u x a x a x an n
n( ) = + + +−

0 1

1
 ) and v x( )  can be easily integrated 

successively.  It is accomplished by a formula called Bernoulli’s formula. This formula is actually 
an extension of the formula of integration by parts. To derive the formula, we use the following 
notation: 

			   u ( )1

	= 	
du
dx

,   u ( )2 =
du
dx

( )1

,     u ( )3 =
du
dx

( )2

, 

			   v( )1 	= 	
vdxò , v( )2 = v dx( )1ò , v( )3 = v dx( )2ò ,

	 Then, we have 

			   dv( )1 	= 	 vdx , dv( )2 = v dx( )1 , dv( )3 = v dx( )2 , 

	 Now, by integration by parts, we get 

			 
uvdxò 	

=
	

udv( )1ò = uv( )1 −∫ v du( )1 = uv( )1 −∫ v
du
dx
dx( )1

				   = 	 uv( )1 −∫u dv( )

( )

1

2

				   = 	 uv( )1 − −( )∫u v v du( )

( ) ( )

( )1

2 2

1

				   = 	 uv( )1 − + ∫u v v du
dx
dx( )

( ) ( )

( )
1

2 2

1
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				   = 	 uv( )1 − + ∫u v u dv( )

( )

( )

( )

1

2

2

3

				   = 	 uv( )1 − + −( )∫u v u v v du( )

( )

( )

( ) ( )

( )1

2

2

3 3

2

				    = 	 uv( )1 − + − ∫u v u v v du( )

( )

( )

( ) ( )

( )1

2

2

3 3

2 .

	 Proceeding in this way, we get 

			 
uvdxò 	

=
	
uv( )1

− + − +u v u v u v( )

( )

( )

( )

( )

( )

1

2

2

3

3

4  .

	 The above result is called the Bernoulli’s formula for integration of product of two functions.

Note
	 Since u  is a polynomial function of x , the successive derivative u m( ) will be zero for some 
positive integer m and so all further derivatives will be zero only. Hence the  

right-hand-side of the above formula contains a finite number of terms only.

Example 9.31

	 Evaluate x nx dx2

0

π

∫ cos , where n  is a positive integer.

Solution

	 Taking u x= 2 and v nx= cos , and applying the Bernoulli’s formula, we get 

			   I 	= 	 x nx dx2

0

π

∫ cos = x nx
n

x nx
n

nx
n

2

2 3
2 2( )






 − ( ) −






 + −

















sin cos
( )

sin


0

π

				   = 	
2 1

2

π ( )− n

n
, since cos ( )n nπ = −1 and sin nπ = 0 .

Example 9.32

	 Evaluate : e ( )− + −∫ 2 3

0

1

1 2x x x dx . 

Solution

	 Taking u x x= + −1 2 3 and v x= −e 2 , and applying the Bernoulli’s formula, we get 

			   I 	= 	 e ( )− + −∫ 2 3

0

1

1 2x x x dx

				   = 	 ( ) ( )1 2
2

1 6
4

12
8

3
2

2
2 2

+ −
−









 − −( )







 + −

−









− − −

x x e x e x ex x x

 − −




















−

( )12
16

2

0

1

e x

				   = 	
e x x x

x−

+ +( )









2
3 2

0

1

16
16 24 16

				   = 	
7

2 2e
.
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Example 9.33

	 Evaluate :  x nx dx2

0

2π

∫ sin , where n  is a positive integer.

Solution
	 Taking u x= 2 and v nx= sin , and applying the Bernoulli’s formula, we get 

			   I 	= 	 x nx dx2

0

2π

∫ sin = x nx
n

x nx
n

nx
n

2

2 3
2 2( ) −






 − ( ) −






 +


















cos sin
( )

cos


0

2π

				   = 	 4
1

0 2
1

0 0 2
12

3 3
π( ) −






 − + 
















 − − + 
















n n n

( ) ( ) , since cos 2 1nπ = and sin 2 0nπ =

				   = 	− + −
4 2 22

3 3

π
n n n

= −
4 2π

n
.

Example 9.34

	 Evaluate : e ( )−

−
−∫ λx x dx1 2

1

1

. 

Solution
	 Taking u x= −1 2 and v x= −e λ , and applying the Bernoulli’s formula, we get 

			   I 	= 	 e ( )−

−
−∫ λx x dx1 2

1

1

= ( ) ( )1 2 22

2 3
−

−








 − −( )







 + −

−















− − −

x e x e ex x xλ λ λ

λ λ λ 

−1

1

				   = 	 2 2 2 2
2 3 2 3

e e e e− −







 +









 +









 −











λ λ λ λ

λ λ λ λ

				   = 	
2 2

2 3λ λ
λ λ λ λe e e e+( ) − −( )− − .

EXERCISE 9.4
Evaluate the following:

	 1.	 x e dxx3 2

0

1

−∫ 	 2.	 sin( tan ) tan3

1

1 1

2

0

1 − −

+∫
x x
x

dx 	  3.	 e x
x

dx
a xsin sin

− −

−
∫

1 1

2
0

1

2

1
	 4.	 x x dx2

0

2

2cos

π

∫

9.5 Improper Integrals
	 In defining the Riemann integral f x dx

a

b
( )ò , the interval [ , ]a b  of integration is finite and f x( )  

is  finite at every point in [ , ]a b . In many physical applications, the following types of integrals arise:

f x dx
a

( )
∞

∫ , f x dx
a

( )
−∞∫ , f x dx( )

−∞

∞

∫ ,

where a  is a real number and f x( )  is a continuous function on the interval of integration. They  are 
defined as the limits of Riemann integrals as follows:
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	 (i)	 f x dx
a

( )
∞

∫ 	
= 	lim ( )

t
a

t

f x dx
→∞ ∫

	 (ii)	 f x dx
a

( )
−∞∫ 	

= 	 lim ( )
t

t

a

f x dx
→−∞ ∫

	 (iii)	 f x dx( )
−∞

∞

∫ 	
= 	lim ( )

t
t

t

f x dx
→∞

−
∫

	 They are called improper integrals of first kind. If the limits exist, then the improper 
integrals are said to be convergent. 

Note
	 By the Fundamental theorem of integral calculus, there exists a function F t( )  such that

			 
f x dx

a

t
( )ò 	 = 	 F t F a( ) ( )−

			  ∴ f x dx
a

( )
∞

∫ 	
=  lim ( ) lim[ ( ) ( )] ( )

t a

t

t a
f x dx F t F a f x dx

→∞ →∞

∞

∫ ∫= − = 



 .

Example 9.35

	 Evaluate 1
2 2a x

dx
b +

∞

∫ , a b> ∈0,  .

Solution

	 We have  1
2 2a x

dx
b +

∞

∫ =
1 1

a
x
a b

tan−
∞







=
1 11 1

a a
b
a

tan tan− −∞ − =
1

2

1

a
b
a

π
−





−tan .

Note
	 From the above example, we get

	 (i)	 1
2 2

0
a x

dx
+

∞

∫
	
= 	1

2
01

a
π
−





−tan =
p
2a

.

	 (ii)	 1
2 2a x

dx
a +

∞

∫
	
= 	1

2
11

a
π
−





−tan =
1

2 4a
π π
−




=

p
4a

.

	 (iii)	 1
2 2a x

dx
+−∞

∞

∫ 	= 	lim lim
t t

t

t

t

a x
dx

a x
dx

→∞ − →∞+
=

+∫ ∫1
2

1
2 2 2 20

, since 1
2 2a x+

 is even function

			  = 2
1

2 2

0
a x

dx
+

∞

∫ = 2
2
π
a







 =

p
a

.

Example 9.36

	 Evaluate dx
x x4 52 2

0

2

sin cos+∫
π

.

Solution

	 Let I 	 = 	 dx
x x x4 52 2

0

2

sin cos+∫
π
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		  = 	
sec

tan

2

2

0

2

4 5

x
x

dx
+∫

π

	
(

cos ).

Dividing both numerator and

denominator by 2 x




	 Let u 	 = 	 tan x . Then du x dx= sec2

	 When x 	 = 	 0 0 0, tanu = =

	 When x 	 = 	
π π
2 2

, tanu = = ∞ .

	 ∴ I 	= 	 du
u4 52

0
+

∞

∫ (This is an improper integral)

		 = 1

4 5

2

20

du

u +






















∞

∫  = 1

4

2

5

1

0

5
2

×






















−

∞

tan
u =

1

2 5
01 1(tan tan )− −∞ − =

1

2 5 2

π





 =

p
4 5

.

EXERCISE 9.5
1. Evaluate the following: 

	 (i) dx
x1 5 2

0

2

+∫ cos

π

  	 (ii)  dx
x5 4 2

0

2

+∫ sin

π

9.6 Reduction Formulae
	 Certain definite integrals can be evaluated by an index-reduction method. In this section, 
	 we obtain the values of the following definite integrals:

	
sinnx dx

0

2

π

∫  , cosnx dx
0

2

π

∫  , sinm nx x dx
0

2

π

∫  cos  , x x dxm n

0

1

1∫ −( ) .

	 We also obtain the value of the improper integral e x dxx n−∞

∫0
.

	 The method of obtaining a reduction formula has the following steps:

	 Step 1	 :	 Identify an index (positive integer) n in the integral.

	 Step 2	 :	 Put the integral as In .

	 Step 3	 :	 Applying integration by parts, obtain the equation for In in terms of  In−1 or In−2 . 

	 The resulting equation is called the reduction formula for In . 

	 We list below a few reduction formulae without proof:

	 Reduction Formula I	 :	 If In = sinn xdx
0

2

p

ò , then In =
( )n
n

In
−

−

1
2 , n ≥ 2 .

	 Reduction Formula II	 :	 If In = cosn xdx
0

2

p

ò , then In =
( )n
n

In
−

−

1
2 n ≥ 2 .

	 Reduction Formula III	 :	 If Im n, = sin cosm nx x dx 
0

2

p

ò , then Im n, =
( )

,

n
m n

Im n
−
+ −

1
2 , n ≥ 2 .

	 Reduction Formula IV	 :	 If Im n, = x x dxm n

0

1

1ò  ( - ) , then Im n, =
n

m n
Im n+ + −

1
1, , n ≥1.
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	 Using the reduction formulas I and II, we obtain the following result (stated without proofs):   

	 sinnx dx
0

2

π

 ∫  =  cosn x dx
0

2

π

∫  =  

( ) ( )
( )

, , , ,

( ) ( )
( )

n
n

n
n

n

n
n

n
n

− × −
−

× × × =

− × −
−

×

1 3
2

1
2 2

2 4 6

1 3
2

 



 if 

×× =










2
3

3 5 7, , , , if n 

π

Note
	  As illustrations, we have 

			 
cos5

0

2

π

∫ x dx 
	
= 	 sin5

0

2

π

∫ x dx =
4

5

2

3
1× ×

			 
sin6

0

2

π

∫ x dx 
	
= 	 cos6

0

2

π

∫ x dx =
5

6

3

4

1

2 2
× × ×

π

Example 9.37

	 Evaluate sin cos2 4

0

2 x x dx+( )∫
π

Solution

Given that I = sin cos2 4

0

2 x x dx+( )∫
π

= sin2

0

2 x dx 

π

∫ + cos4

0

2 x dx 

π

∫ =
1

2 2
×
π

+
3

4

1

2 2
× ×

π
=

7

16

p .

Example 9.38

	 Evaluate
cos

sin

4

50

2
7

3

x
x

dx
π

∫ .

Solution
			   I 	= 	 3 74 5

0

2 cos sinx x dx−( )∫
π

= 3 4

0

2 cos x dx 

π

∫ − 7 5

0

2 sin x dx 

π

∫

				   = 	3
3

4

1

2 2
× × ×

π
− 7

4

5

2

3
× × =

9

16

p
−

56

15
.

	 By applying the reduction formula III iteratively, we get the following results (stated without 
proof):
	 (i)	 If n is even and m is even,  

sinm nx x dx
0

2

π

∫  cos  =
( )
( )

( )
( )

( )
( ) ( )

( ) ( )
( )

(n
m n

n
m n

n
m n m

m
m

m
m

−
+

−
+ −

−
+ − +

− −
−

1 3
2

5
4

1
2

1 3
2



mm
m
−
−

5
4

1
2 2

)
( )



π

 (ii)	 If n  is odd and m is any positive integer (even or odd), then 

sinm nx x dx
0

π
2∫  cos  =

( )

( )

( )

( )

( )

( ) ( ) ( )

n
m n

n
m n

n
m n m m

−
+

−
+ −

−
+ − + +

1 3

2

5

4

2

3

1

1
 .

Note
	 If one of m and n  is odd, then it is convenient to get the power of cos x  as odd. For instance, if 
m is odd and n  is even, then 

sinm nx x dx
0

2

π

∫  cos  = sinn mx x dx
0

2

π

∫  cos  =
( )

( )

( )

( )

( )

( ) ( ) ( )

m
n m

m
n m

m
n m n n

−
+

−
+ −

−
+ − + +

1 3

2

5

4

2

3

1

1
 .

Example 9.39
	 Find the values of the following:

		  (i) sin5

0

2 4

π

∫ x x dx cos   	 (ii) sin4

0

2 6

π

∫ x x dx cos  
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Solution

	 (i) 		 sin4

0

2 6

π

∫ x x dx cos  
	
= 	

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

6 1

6 4

6 3

6 4 2

6 5

6 4 4

4 1

4

4 3

4 2

−
+

⋅ −
+ −

⋅ −
+ −

⋅ − ⋅ −
−

⋅ π
22

 

				   =  
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

5

10

3

8

1

6

3

4

1

2 2

p
=

3

512

p

			   Also, sin4

0

2 6

π

∫ x x dx cos  
	
= 	 sin6

0

2 4

π

∫ x x dx cos  =
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

3

10

1

8

5

6

3

4

1

2 2

p
=

3

512

p

	 (ii) 		 sin5

0

2 4

π

∫ x x dx cos  
	
= 	( )

( )

( )

( )

( )

( )

( )

( )

3

9

1

7

4

5

2

3
=

( )

( )

( )

( )

( )

( )

4

9

2

7

1

5
=

8

315

			   Also, sin5

0

2 4

π

∫ x x dx cos  
	
= 	 sin4

0

2 5

π

∫ x x dx cos  =
( )

( )

( )

( )

( )

( )

4

9

2

7

1

5
=

8

315

Example 9.40

	 Evaluate x ax x dx
a

2 2

0

2

2 −∫ .

Solution
		  Put  x 	= 	2 2a cos θ . Then, dx a d= −4 cos sinθ θ θ . 

		  When  x 	= 	0 , 2 02a cos θ = and so θ π
=

2
. When x a= 2 , 2 22a acos θ = and so θ = 0 . 

	 Hence, we get 

		  I 	= 	 x ax x dx
a

2 2

0

2

2 −∫

			  = 4 4 4 42 2 2 2 2 4

2

0

a a a a dcos cos cos ( cos sin )θ θ θ θ θ θπ − −∫

			  = 	 4 2 42 2

0

2 a a a dcos cos sin ( cos sin )θ θ θ θ θ θ
π

∫

			  = 	32 4 4 2

0

2a dcos sinθ θ θ
π

∫

			  = 	32
1

6

3

4

1

2 2

4a × × × ×
π

= pa4 .

Example 9.41

	 Evaluate x x dx5 2
5

0

1

1−( )∫ .

Solution
		  Put  x 	 = 	 sinθ .Then, dx d= cosθ θ . 

		  When  x 	 = 	 0 , sinθ = 0 and so θ = 0 . When x =1, sinθ =1and so θ π
=

2
. 

	 Hence, we get 

		  I 	 = 	 sin sin cos5 2
5

0

2 1θ θ θ θ
π

−( )∫ d

			   = 	 sin cos5

0

2 11θ θ θ
π

∫ d =
10

16

8

14

6

12

4

10

2

8

1

6
× × × × × =

1

336
.

Chapter 9 Applications of Integration.indd   119 7/25/2019   7:10:38 PM



120XII - Mathematics

	 By applying the reduction formula III iteratively, we get the following results (stated without 
proof):

	
x x dxm n

0

1

1ò  ( - )
	
= 	

m n
m n

! !

( )!

×
+ +1

, where m and n are positive integers.

Example 9.42

	 Evaluate x x dx3 4

0

1

1−( )∫ .
Solution
	 x x dxm n

1
0

1

−( )∫ 	
= 	

m n
m n

! !

( )!

×
+ +1

.

	 ∴ x x dx3 4

0

1

1−( )∫ 	
= 	

3 4

3 4 1

! !

( )!

×
+ +

=
3 4

8

! !

!

×
=

3 2 1 4 3 2 1

8 7 6 5 4 3 2 1

× × × × × ×
× × × × × × ×

=
1

280
.

EXERCISE 9.6
1. Evaluate the following: 

	 (i)	 sin10

0

2

x dx

π

∫
	

(ii)	 cos7

0

2

x dx

π

∫ 	 (iii)	 sin6

0

4

2x dx

π

∫
	

(iv)	 sin5

0

6

3x dx

π

∫

	 (v)	 sin cos2 4

0

2

x x dx

π

∫
	

(vi)	 sin7

0

2

4

x dx
π

∫ 	 (vii)	 sin cos3 5

0

2 θ θ θ
π

d∫ 	 (viii) 	 x x dx2 3

0

1

1( )−∫  	

9.7 Gamma Integral
	 In this section, we study about a special improper integral of the  form e x dxx n−∞ −∫0

1 , where n is 

a positive integer. Here, we have 

			   e∞ 	= 	 lim
x

xe
→∞

= ∞  and e e
ex

x

x

x
−∞

→∞

−

→∞

= = =
∞

=lim
lim

1 1
0  

	 By L’Ho ̂pital’s rule, for every positive integer m , we get,

			   lim
x

m xx e
→∞

− 	= 	 lim lim
!

x

m

x x x

x
e

m
e→∞ →∞

= = 0 .

Example 9.43
	 Prove that e x dx nx n−∞

∫ =
0

!, where n is a  positive integer. 

Solution
	 Applying integration by parts, we get

		
e x dxx n−∞

∫0
	= 	 x e e nx dxn x x n−( )  − −( )( )− ∞ −∞ −∫0 0

1 = n e x dxx n− −∞

∫ 1

0
.

		  Let  In 	= 	 e x dxx n−∞

∫0
.Then, I nIn n= −1 . 

		  So, we get In 	= 	n n In( )− −1 2 . 

	 Proceeding in this way, we get ultimately, 
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		  In 	= 	n n n I( )( ) ( )( )− −1 2 2 1 0 . 

		  But, I0 	= 	 e x dx ex x−∞ − ∞

∫ = −( ) = + =
0

0

0
0 1 1 . So, we get In = n n n n( )( ) ( )( ) !− − =1 2 2 1 . 	

Hence, we get 
Result

	 e x dxx n−∞

∫0
= n!, where n  is a nonnegative integer. 

Note
     The integral e x dxx n−∞ −∫0

1 defines a unique positive integer for every positive integer n ≥1. 

Definition 9.1

e x dxx n−∞ −∫0

1 is called the gamma integral. It is denoted by Γ( )n  and is read as  

“gamma of  n ”. 

Note
		  Γ( )n +1 	 = 	 n nΓ( ) .

		  Γ( )1 	 = 	 e x dx ex x−∞ − ∞

∫ = −( ) = + =
0

0

0
0 1 1 ,

                    Γ( )n  =   e x dxx n−∞ −∫ 0

1 .

		  	 = 	 ( )!n −1 , n =  1, 2, 3, ...

Example 9.44

	 Evaluate e x dxax n−∞

∫0
,where a > 0 .

Solution
	 Making the substitution t ax= , we get dt adx= and x t x t= ⇒ = = ∞⇒ = ∞0 0 and . 

	 Hence, we get

		
e x dxax n−∞

∫0 	
= 	 e t

a
dt
a

t
n

−∞ 



∫0

=
1

1 0a
e t dtn
t n

+
−∞

∫

			  = 	
1

1 0a
e x dxn
x n

+
−∞

∫ =
n
an

!
+1

.

     Thus
	 e x dxax n−∞

∫0
	 = 	 n

an
!
+1

Example 9.45

	 Show that Γ( ) .n e x dxx n= − −
∞

∫2
2 2 1

0

Solution
	 Using the substitution x 	 = 	 u , we get dx

u
du=

1

2
.

	 When x 	 = 	0 , we get u = 0 .When x = ∞ , we get u = ∞ .

	 ∴ 2
2 2 1

0

e x dxx n− −
∞

∫
	
= 	2

1

2

2 1

0

e u
u
duu n

−
−∞

( )∫ = − −
∞

∫ e u duu n 1

0

= Γ( )n .
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Example 9.46

	 Evaluate x
n
dx

n

x
0

∞

∫ , where n is a positive integer≥ 2 . 

Solution

		  Using the formula  n 	= 	e e nlog , we get

		  I 	= 	
x
n
dx

n

x
0

∞

∫ = n x dxx n−
∞

∫
0

= e x dxn x nlog( )−
∞

∫
0

= e x dxx n n−
∞

∫ log

0

.

		  Using the substitution u 	= 	x nlog , we get dx du
n

=
log

.

		  When  x 	= 	0 , we get u = 0 .When x = ∞ , we get u = ∞ .

		  ∴ I 	= 	 e
u
n

du
n

u
n

−
∞ 







∫ log log

0

			  = 	
1

1

1 1

0
(log )

( )

n
e u dun
u n

+
− + −

∞

∫ =
Γ( )

(log )

n
n n
+

+

1
1
=

n
n n
!

(log ) +1
.

EXERCISE 9.7
Evaluate the following

	 1.	 (i)	 x e dxx5 3

0

−
∞

∫ 	 (ii)	  
e

x
dx

x−

∫
tan

cos6

0

2

π

	 2.	 If e x dxx−
∞

= >∫ a a
2 3

0

32 0, ,  find  α

9.8 Evaluation of a Bounded Plane Area by Integration
	 In the beginning of this chapter, we have already introduced definite integral by a geometrical 
approach. In that approach, we have noted that, whenever the integrand of the definite integral is 
non-negative, the definite integral yields the geometrical area. In the present section, we apply the 
approach for finding areas of plane regions bounded by plane curves.

9.8.1 Area of the region bounded by a curve, x – axis and the lines x = a 
and  x = b.
Case (i)
	 Let y f x a x b= ≤ ≤( ),  be the equation of the portion of the 
continuous curve that lies above the x − axis (that is, the portion  
lies either in the first quadrant or in the second quadrant) between 
the lines x a= and x b= . See Fig.9.8. Then, y ≥ 0  for every point of 
the portion of the curve. Consider the region bounded by the curve, 
x − axis, the ordinates x a=  and x b= . It is important to note that 
y does not change its sign in the region.  Then, the area A of  the region is found as follows:

Fig. 9.8

y f x= ( )

x a=
x b=

∆x

y

x
O
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	 Viewing in the positive direction of the y − axis, divide the region into elementary vertical strips 

(thin rectangles) of height y and width Dx . Then, A is the limit sum of the areas of the vertical strips. 

Hence, we get A = lim − ∆
≤ ≤
∑ y x
a x b

=− =∫ ∫ydx ydx
a

b

a

b
.

Case (ii)

	 Let y f x a x b= ≤ ≤( ),  be the equation of the portion of 

the continuous curve that lies below the x − axis (that is, the 

portion lies either in the third quadrant or in the fourth 

quadrant). Then, y £ 0  for every point of the portion of the 

curve. It is important to note that y does not change its sign in 

the region. Consider the region bounded by the curve,  

x − axis, the ordinates x a=  and x b= . See  Fig.9.9. Then, the 

area A  of  the region is found as follows:
	 Viewing in the negative direction of the y − axis, divide the region into elementary vertical strips 

(thin rectangles) of height y y= −  and width Dx . Then, A is the limit of the sum of the areas of the 

vertical strips. Hence, we get A = lim − ∆
≤ ≤
∑ y x
a x b

= − =∫ ∫ydx ydx
a

b

a

b
.

Case (iii)
	 Let y f x a x b= ≤ ≤( ),  be the equation of the portion 

of the continuous curve that lies above as well as below 
the x − axis (that is, the portion may lie in all quadrants). 
Draw the graph of y f x= ( )  in the XY −  plane. The  
graph lies alternately above and below the x − axis and it 
is intercepted between the ordinates  and  .x a x b= =  
Divide the interval[ , ]a b  into subintervals [ , ]a c1 , [ , ]c c1 2 ,
 , [ , ]c bk  such that f x( )  has the same sign on each of 
subintervals. Applying cases (i) and (ii),  we can obtain 
individually, the geometrical areas of the regions 
corresponding to the subintervals. 
	 Hence the geometrical area of the region bounded by the graph of  y f x= ( ) , the x-axis, the lines 

x a=  and x b= is given by f x dx f x dx f x dx
a

c

c

c

c

b

k

( ) ( ) ( )
1

1

2

∫ ∫ ∫+ + + . 

	 For instance, consider the shaded region in Fig. 9.10.  Here A1 , A2 , A3 , and A4  denote geometric 
areas of the individual parts.  Then, the total area is given by 

A = A A A A1 2 3 4+ + + = f x dx f x dx f x dx f x dx
a

c

c

c

c

c

c

b

( ) ( ) ( ) ( )
1

1

2

2

3

3

∫ ∫ ∫ ∫+ + + .

Fig. 9.9

y

x
∆x

x a= x b=

O

−y

Fig. 9.10

c1 O
A2

c2

A3

A4 b x

y

x b=
x a=

a
A1
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9.8.2  Area of the region bounded by a curve, y– axis and the lines y = c 
and y = d.
Case (iv)
	 Let x f y c y d= ≤ ≤( ),  be the equation of the portion of the 
continuous curve that lies to the right side of  
y − axis (that is, the portion lies either in the first quadrant or in the 
fourth quadrant). Then, x ≥ 0  for every point of the portion of the 
curve. It is important to note that x does not change its sign in the 
region. 
	 Consider the region bounded by the curve, y − axis, the lines 
y c= and y d= . The region is sketched as in Fig. 9.11. Then, the area 
A of the region is found as follows:
	 Viewing in the positive direction of the x − axis, divide the region into thin horizontal strips (thin 

rectangles) of length x and width Dy . Then, A is the limit of the sum of the areas of the horizontal 

strips. Hence, we get A = lim x y
c y d

∆
≤ ≤
∑ = xdy

c

d

ò .

Case (v)
	 Let x f y c y d= ≤ ≤( ),  be the equation of the portion of 
the continuous curve that lies to the left side of y − axis (that 
is, the portion lies either in the second quadrant or in the third 
quadrant). Then, x £ 0  for every point of the portion of the 
curve. It is important to note that x does not change its sign in 
the region. Consider the region bounded by the curve,  
y − axis, the lines y c= and y d= . The region is sketched as 
in Fig. 9.12. Then, the area A of the region is found as follows:

	 Viewing in the positive direction of the x − axis, divide 
the region into thin horizontal strips (thin rectangles) of length 
x x= − and width Dy . Then, A is the limit of the sum of the 

areas of the horizontal strips. 

	 Hence, we get A = lim −( )∆
≤ ≤
∑ x y
c y d

= −∫ x dy
c

d
= x dy

c

d

ò .

Case (vi)
	 Let x f y c y d= ≤ ≤( ),  be the equation of the portion of the continuous curve that lies to the 
right as well as to the left of the y − axis (that is, the portion may lie in all quadrants). Draw the graph 
of x f y= ( )  in the XY −  plane. The graph lies alternately to the right and to the left of the y − axis 
and it is intercepted between the lines y c= and y d= . Divide the interval [ , ]c d into subintervals 
[ , ]c a1 , [ , ]a a1 2 , , [ , ]a dk  such that f y( )  has the same sign on each of subintervals. Applying cases 

y

x
O

x f y= ( )

y c=

x
∆y

y d=

Fig. 9.12

y

x
O

x
f

y
=

(
) y c=

−x ∆y

y d=

Fig. 9.11
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(iii) and (iv),  we can obtain individually, the geometrical areas of the regions corresponding to the 
subintervals. 
	 Hence the geometrical area A of the region bounded by the 
graph of x f y= ( ) , the y-axis, the lines y c= and y d= is given 

by A = f y dy f y dy f y dy
c

a

a

a

a

d

k

( ) ( ) ( )
1

1

2

∫ ∫ ∫+ + + . 

     For instance, consider the shaded region in Fig. 9.13. Here, B1 , B2 ,

B3 and B4 denote geometric areas of the individual parts.  Then, the 
total area B of the region bounded by the curve x f y= ( ) ,  
y − axis and the lines y c= and y d= is given by

	 B    =  B B B B1 2 3 4+ + +

		  = 	 f y dy f y dy f y dy f y dy
c

a

a

a

a

a

a

d

( ) ( ) ( ) ( )
1

1

2

2

3

3

∫ ∫ ∫ ∫+ + + .

Example 9.47
	 Find the area of the region bounded by the line 6 5 30x y+ = , x − axis and the lines x = −1  and 
x = 3 .

Solution
	 The region is sketched in Fig. 9.14.  It lies above the 
x − axis. Hence, the required area is given by 

	 A 	= 	 y dx
−∫ 1

3

=
30 6

51

3 −



−∫
x dx = 30 3

5

2

1

3

x x−








−

		 = 	
90 27

5

30 3

5

−





 −

− −





 =

96

5
.

Example 9.48

	 Find the area of the region bounded by the line 7 5 35x y− = , x − axis and the lines x = −2  and 
x = 3 .
Solution
	 The region is sketched in Fig. 9.15. It lies below the x − axis. Hence, the required area is given 
by 

	 A 	= 	 y dx x dx
− −∫ ∫= −



2

3

2

3 7 35

5
 

		 = 	
1

5
7

2
35

2

2

3

x x








 −










−

 

		 = 	
1

5

63

2
105 84

63

2







 −









 − =( ) .

Fig. 9.14

x=− 1

∆x

y

x( , )5 0

x= 3

O

(6,0)

6

5

30

x
y

�
�

Fig. 9.15

O x

y

y x
=

−7 35

5

x=− 2

( , )5 0

x= 3

( , )0 7−

∆x (3,0)

( , )−2 0

Fig. 9.13

y

x

y d=

y c=

O

a3

a2

a1

d
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Example 9.49

	 Find the area of the region bounded by the ellipse x
a

y
b

2

2

2

2
1+ = .

Solution
	 The ellipse is symmetric about both major and 
minor axes. It is sketched as in Fig.9.16. So, viewing in 
the positive direction of y -axis, the required area A is 

four times the area of the region bounded by the portion 

of the ellipse in the first quadrant y b
a
a x x a= − < <








2 2 0, ,  

x -axis, x = 0  and x a= .

	 Hence, by taking vertical strips, we get 

	 A	= 	4 4
0

2 2

0
y dx b

a
a x dx

a a
= −∫ ∫

		 = 	
4

2 2

4

4

2 2 2
1

0

2b
a
x a x a x

a
b
a

a ab
a

−
+ 



















= × =−sin

π
π  

Note
	 Viewing in the positive direction of x -axis, the required 
area A is four times the area of the region bounded by the 
portion of the ellipse in the first quadrant 

x a
b
b y y b= − < <








2 2 0,  y-axis, y = 0  and y b= . Hence, by 

taking horizontal strips (see Fig.9.17), we get 

			   A	 = 	 x dy a
b
b y dy

ba
= −∫∫ 4 2 2

00

				    = 	
4

2 2

4

4

2 2 2
1

0

2a
b

y b y b y
b

a
b

b ab
b

−
+ 



















= × =−sin

p
p .

Note
	 Putting b a=  in the above result, we get that the area of the region enclosed by the circle

x y a2 2 2+ = is pa2 .

Example 9.50
	 Find the area of the region bounded between the parabola y ax2 4=
and its latus rectum.
Solution
	 The equation of the latus-rectum is x a= . It intersects the parabola at 
the points L a a( , )2  and L a a1 2( , )− . The required area is sketched in Fig. 
9.18. By symmetry, the required area A is twice the area bounded by the 
portion of the parabola

y a x x= 2 , -axis, x = 0   and x a=  .

x a
b

b y= −2 2

y= 0 (a,0)

y b=

∆y

y

x
O

( , )0 b

Fig. 9.17

Fig. 9.18

y

x
O

y a x= 2

( , )a a2

( , )a 0

( , )a a−2

∆x

x= 0

x a=

Fig. 9.16

y

x
O

y
b

a
a

x

=

−2

2

∆x

x= 0

x a=

(a,0)( , )−a 0

( , )0 b

( , )0 −b
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	 Hence, by taking vertical strips, we get

			   A 	= 	2 2 2 4
2

3

3

2

00
0

y dx a x dx a x
aa

a

= =








∫∫  

				   = 	 4
2

3

8

3

3

2

2

a a a
× = . 

Note
	 Viewing in the positive direction of x -axis, and making horizontal 

strips (see Fig. 9.19), we get 

	     A	= 	2 2
4

2

0

2

0

2

( )a x dy a y
a
dy

aa
− = −





∫∫  

		  = 	2
12

2 2
8

12

8

3

3

0

2

2
3 2

ay y
a

a a
a

a
a

−






= −






= .

Note
	 It is quite interesting to note that the above area is equal to 
two-thirds the base (latus-rectum) times the height (the distance between the focus and the vertex). 
This verifies Archimedes’ formula for areas of parabolic arches which states that the area under a 
parabolic arch  is two-thirds the area of the rectangle having base of the arch as length and height of 
the arch as the breadth.   It is also equal to four-thirds the area of the triangle with base (latus-rectum) 
and height (the distance between the focus and the vertex).

Example 9.51
	 Find the area of the region bounded by the y -axis and the parabola x y y= − −5 4 2 .
Solution
	 The equation of the parabola is ( ) ( )y x+ = − −2 92 . The parabola crosses 
the y  -axis at ( , )0 5−  and ( , )0 1  .The vertex is at ( , )9 2− and the axis of the 
parabola is y = −2 . The required area is sketched as in Fig. 9.20. 
	 Viewing in the positive direction of x − axis, and making horizontal strips, 
the required area A is given by 	

	 A = xdy
−
∫
5

1

= ( )5 4 2

5

1

− −
−
∫ y y dy = 5 2

3

2
3

5

1

y y y
− −










−

=
8

3

100

3
− −





 = 36 .

Note
	 As in the previous problem, we again verify Archimedes’ formula that the area of the parabolic  
arch is equal to two-thirds the base times the height. 

Example 9.52
	 Find the area of the region bounded by x − axis, the sine curve y x= sin , the lines x = 0  and 
x = 2π .
Solution
	 The required area is sketched in Fig. 9.21.  One portion of 
the region lies above the x − axis between x = 0 and x = π , and 
the other portion lies below x − axis between x = π and x = 2π .  
So, the required area is given by

y

x
O

( , )a a2

( , )a 0

( , )a a−2

∆x

y= 0

x a=

y a= 2

Fig. 9.19

( , )9 2�

(0,1)

x

y

( , )0 5�

O

Fig. 9.20

Fig. 9.21

x

y

x = 0 x = 2π

O ( , )π 0

x = π

( , )2 0π
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	 A 	= 	 ydx ydx
0

2π

π

π

∫ ∫+ = sin sinxdx xdx
0

2π

π

π

∫ ∫+ = −[ ] + −[ ]cos cosx x
0

2π

π

π

		 = 	 − +[ ]+ − +[ ]cos cos cos cosπ π π0 2 = 2 2+ − = 4 .

Note

	 If we compute the definite integral sin xdx
0

2π

∫ , we get 

	
sin xdx

0

2π

∫ = −[ ]cos x
0

2π = −[ ]− −[ ]cos cos2 0π = 0 .

	 So f x dx( )
0

2π

∫ does not represent the area of the region bounded by the curve y x= sin , x − axis, 

the lines x = 0 and x = 2π . 

Example 9.53
	 Find the area of the region bounded by x − axis, the curve y x= cos , the lines x = 0 and x = π .
Solution

	 The given curve is y
x x

x x
=

≤ ≤

− ≤ ≤










  cos ,

cos ,

0
2

2

π

π
π

	 It lies above the x − axis. The required area is sketched in 

Fig. 9.22. So, the required area is given by 

	 A 	= 	 ydx
0

π

∫ = cos cosxdx x dx
0

2

2

π

π

π

∫ ∫+ −( ) = sin sinx x[ ] −[ ]
0
2

2

π

π
π

		 = 	 1 0 0 1−[ ]− −[ ] = 2 .

9.8.3 Area of the region bounded between two curves 
Case (i)
	 Let y f x= ( ) and y g x= ( ) be the equations of two curves in the XOY −plane such that 

f x g x( ) ( )≥ for all x a b∈[ , ] . We want to find the area A of the 

region bounded between the two curves, the ordinates x a= and 

x b= . 

	 The required area is sketched in Fig. 9.23. To compute A , we 

divide the region into thin vertical strips of width Dx and height 
f x g x( ) ( )− . It is important note that f x g x( ) ( )− ≥ 0  for all 

x a b∈[ , ] . As before, the required area is the limit of the sum of the 

areas of the vertical strips. Hence, we get A = [ ( ) ( )]f x g x dx
a

b
−∫ .

O ππ
2

x= 0

x

y

x= π
2

x= π

Fig. 9.22

Fig. 9.23

( , ( ))x f x
y f x= ( )

y g x= ( )

x b=
( , ( ))x g xx a=

y

x
O
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Note
	 Viewing in the positive direction of y − axis, the curve y f x= ( ) can be termed as the upper 

curve (U) and the curve y g x= ( ) as the lower curve (L). Thus, we get A y y dxU La

b
= −∫ [ ] .

Case (ii) 
	 Let x f y= ( ) and x g y= ( ) be the equations of two curves in 

the XOY −plane such that f y g y( ) ( )≥ for all y c d∈[ , ] . We want 
to find the area A of the region bounded between the two curves, 
the lines y c= and y d= . The required area is sketched in  

Fig. 9.24. To compute A , we view in the positive direction of the x −
axis and divide the region into thin horizontal strips of width Dy  and 
height f y g y( ) ( )− . It is important note that f y g y( ) ( )− ≥ 0  for all 
y c d∈[ , ] . As before, the required area is the limit of the sum of 
the areas of the horizontal strips. Hence, we get   

A = [ ( ) ( )]f y g y dy
c

d
−∫ .

Note
	 Viewing in the positive direction of x − axis, the curve x f y= ( ) can be termed as the right curve 

(R) and the curve x f y= ( ) as the left curve (L). Thus, we get A x x dyR La

b
= −∫ [ ] .

Example 9.54
	 Find the area of the region bounded between the parabolas y x2 4=  

and x y2 4=  .
Solution
	 First, we get the points of intersection of the parabolas. For this, we 
solve y x2 4=  and x y2 4=  simultaneously: Eliminating y between them, 
we get x x4 64=  and so x = 0  and x = 4 . Then the points of intersection 

are ( , )0 0  and ( , )4 4 . The required region is sketched in Fig.9.25. 
	 Viewing in the direction of y -axis, the equation of the upper boundary 

is y x= 2  for 0 4£ £x  and the equation of the lower boundary is y x
=

2

4
  

for 0 4£ £x . So, the required area D  is 

A y Y dx x x dx x x
U L= − = −







=






−








∫ ∫( )

/

0

4
2

0

4
3 2 3

0

2
4

2
2

3 12

44

2
2 8

3

64

12
0

16

3
= ×





−





− =  .

Note
	 Viewing in the positive direction of x -axis, the right bounding 

curve is 2 4x y= and the left bounding curve is y x2 4=  . See Fig. 

9.26. The equation of the right boundary is x y= 2  for 0 4£ £y  

and  the equation of the left boundary is  x y
=

2

4
 for 0 4£ £y .  So, 

the required area A  is

y

x

( ( ), )f y y

y d=

( ( ), )g y y

x g y= ( )
x f y= ( )

y c=

O

Fig. 9.24

( , )0 0

( , )4 4y
x

= 2

y
x
=

2

4

x= 0

x= 4

y

x
( , )4 0

Fig. 9.26

( , )0 0

( , )4 4

x y= 2

x
y
=

2

4

y

x

y = 4( , )0 4

Fig. 9.25
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A x x dx y y dy y y
R L= − = −







=






−








∫ ∫( )

/

0

4
2

0

4
3 2 3

0

2
4

2
2

3 12

44

2
2 8

3

64

12
0

16

3
= ×





−





− =  .

Example 9.55
	 Find the area of the region bounded between the parabola x y2 =  and the curve y x= .
Solution
	 Both the curves are symmetrical about y -axis. 

	 The curve y x=  is y
x x
x x

=
≥

− ≤




if  

if

0

0
.

	 It intersects the parabola x y2 =  at ( , )1 1  and ( , )−1 1  . 
	 The area of the region  bounded by the curves is 
sketched in Fig. 9.27.  It lies in the first quadrant as well as 
in the second quadrant.  By symmetry, the required area is 
twice the area in the first quadrant. 
	 In the first quadrant, the upper curve is y x x= ≤ ≤,0 1  
and  the lower curve is y x x= ≤ ≤2 0 1, . Hence, the required 
area is given by 
			   A 	= 	2 2

0

1
2

0

1

[ ] [ ]y y dx x x dxU L− = −∫ ∫  

				   = 	2
2 3

2 3

0

1

x x
−









  

				   = 	2 1

2

1

3

1

3
−






 = .

Example 9.56
	 Find the area of the region bounded by y x y x= =cos , sin , the lines x = p

4
 and x = 5

4

p .

Solution
	 The region is sketched in Fig. 9.28. The upper boundary of the region is y x= sin  for p p

4

5

4
£ £x  

and the lower boundary of the region is y x= cos   for p p
4

5

4
£ £x . So the required area A  is given 

by

	 A 	= 	 y y dx x x dx x xU L−( ) = − = − −[ ]∫∫ (sin cos ) cos sinπ

π

π

π

π

π

4

5
4

4

5
4

4

5
4

		 = 	 − −





 − − −






sin cos sin cos

5

4

5

4 4 4

π π π π   

		 = 	 − −





 − −
















 − −






 −



















1

2

1

2

1

2

1

2
 

		 = 	 2
2

2
2

2 2+ = .

y
x=

2y
x

=(
, )

−1
1

( , )1 1y
x

= −

y

x
O (1,0)( , )−1 0

Fig. 9.27

Fig. 9.28

O π
4

π
2

x= 5

4

π

5

4

π3

4

π
π

y

x

x= π
4
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Example 9.57
	 The region enclosed by the circle x y a2 2 2+ =  is divided into two segments by the line x h= . 

Find the area of the smaller segment.
Solution
	 The smaller segment is sketched in Fig. 9.29. Here 0< <h a . By symmetry about the x -axis, 

the area of the smaller segment is given by 

	 A 	= 	2 2
2 2

2 2
2 2 2

1a x dx x a x a x
ah

a

h

a

− = − + 

















−∫ sin  

		 = 	2 0
2

1 2
2 2

2
1

2 2 2
1+









 −

−
+ 




















− −a h a h a h
a

sin ( ) sin  

		 = 	a h a h a h
a

2 2 2 2 1

2

π





 − − − 








−sin  

		 = 	a
h
a

h a h2 1 2 2

2

π
− 
















 − −−sin  

		 = 	a
h
a

h a h2 1 2 2cos−






 − − .

Example 9.58
	 Find the area of the region in the first quadrant bounded by the parabola y x2 4= , the line 
x y+ = 3  and y -axis.

Solution
	 First, we find the points of intersection of x y+ = 3  and y x2 4− : 

	 x y+ = 3 	⇒ 	y x= −3 .

	 ∴ =y x2 4 	⇒ 	( )3 42− =x x

		 ⇒ 	x x2 10 9 0− + =

		 ⇒ 	x x= =1 9, .

	 ∴ =x 1 in x y y+ = ⇒ =3 2 , and x = 9  in x y y+ = ⇒ = −3 6 .

	 ∴( , )1 2  and ( , )9 6−  are the points of intersection.

	 The line x y+ = 3  meets the y -axis at ( , )0 3 .

	 The required area is sketched in Fig. 9.30.
	 Viewing in the direction of y -axis, on the right bounding curve is given by

		  x 	= 	
y y

y y

2

4
0 2

3 2 3

,

,

≤ ≤

− ≤ ≤






 

		  ∴A 	= 	 x dy x dy y dy y dy+ = + −∫∫∫ ∫
2

0

2

2

3

0

2

2

3

4
3( )

			  = 	 y y y3

0

2
2

2

3

12
3

2

8

12
0 9

9

2
6

4

2









 + −









 = −






 + −






 − −






 =

7

6
.

Fig. 9.30

x

y

x h=

O
x a=

( , )a 0

Fig. 9.29

( , )0 3

( , )0 2

y

y x2 4�

x

( ,
)

9
6�

x y� � 3

( , )1 2

O
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Example 9.59
	 Find, by integration, the area of the region bounded by the lines 5 2 15x y− = ,  x y+ + =4 0  and 
the x-axis.

Solution
	 The lines 5 2 15x y− = ,  x y+ + =4 0  intersect at 1 5,−( ) . The line 5 2 15x y− =   meets the x-axis 

at 3 0,( ) . The line x y+ + =4 0  meets the x-axis at −( )4 0, . The required area is shaded in Fig.9.31. 

It lies below the x-axis. It can be computed either by considering vertical strips or horizontal strips.

	 When we do by vertical strips, the region has to be divided into two sub-regions by the line 
x =1. Then, we get

			   A 	= 	 ydx ydx
−
∫ ∫+
4

1

1

3

 

				   = 	 − −( ) +
−








−
∫ ∫4

5 15

2
4

1

1

3

x dx x dx

				   = 	 − −








 + −











−

4
2

5

4

15

2

2

4

1
2

1

3

x x x x  

				   = 	 −





 − ( ) + −






 − −








9

2
8

45

4

25

4
 

				   = 	 25

2
5+

				   = 	 35

2
.

	
When we do by horizontal strips, there is no need to subdivide the region. In this case, the area 

is bounded on the right by the line 5 2 15x y− =  and on the left by x y+ + =4 0 . So, we get

			   A 	 = 	 x x dy y y dyR L−[ ] =
+

− − −( )



− −

∫ ∫
5

0

5

0
15 2

5
4

				    = 	 7
7

5
7

7

10
5

0 2

5

0

+





= +










− −
∫

y dy y y

				    = 	0 35
35

2

35

2
− − +




= .

Note
	 The region is triangular with base 7 units and height 5 units. Hence its area is 35

2
 without using 

integration.
Example 9.60
	 Using integration find the area of the region bounded by triangle ABC, whose vertices A, B, and 
C are −( )1 1, ,  3 2,( ) , and 0 5,( )  respectively.

Fig. 9.31

(
, )

−4 0

( , )1 5−

∆y

y

O
x( , )3 0

( , )1 0

x + y + 4 = 0 5x −2y = 15
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Solution
	 See Fig. 9.32.

	 Equation of AB is y x−
−

=
+
+

1

2 1

1

3 1
  or y x= +( )1

4
5

	 Equation of BC is  y x−
−

=
−
−

5

2 5

0

3 0
  or y x= − + 5

	 Equation of AC is  y x−
−

=
+
+

1

5 1

1

0 1
  or y x= +4 5

			  ∴ Area of DABC 	= 	Area DACO+ Area of OCBE −  Area of DABE

				   = 	 4 5 5
1

4
5

1

0

0

3

1

3

x dx x dx x dx+( ) + − +( ) − +( )
−

−∫ ∫ ∫  

				   = 	 4

2
5

2
5

1

4 2
5

2

1

0
2

0

3
2

1

3

x x x x x x+








 + − +









 − +











− −

 

				   = 	0 2 5
9

2
15 0

1

4

9

2
15

1

4

1

2
5

15

2
− + −( ) + − +





− − +





+ −





=

Example 9.61
	 Using integration, find the area of the region which is bounded by x-axis, the tangent and normal 

to the circle x y2 2 4+ =  drawn at 1 3,( ) .

Solution
	 We recall that the equation of the tangent to the circle 
x y a2 2 2+ =  at x y1 1,( )  is xx yy a1 1

2+ =  . So, the equation of the 

tangent to the circle x y2 2 4+ =  at 1 3,( )  is x y+ =3 4 ; that is, 

y x= − −1

3
4( ) . The tangent meets the x-axis at the point (4,0). 

The slope of the tangent is − 1

3
. So the slope of the normal is −

1

3
 
and hence equation of the normal 

is y x− = −3 3 1( ) ; that is y x= 3  and it passes through the origin. The area to be found is shaded 

in the adjoining figure. It can be found by two methods.

Method 1
	 Viewing in the postive direction of y-axis, the required area is the area of the region bounded by 

x-axis, y x= 3  and x y+ =3 4 . So it can be obtained by applying the formula ydx
a

b

ò . For this, we 

have to split the region into sub-regions, one sub-region bounded by x-axis, the normal y x= 3  and 

the line x =1 ; the other sub-region bounded by x-axis, the tangent x y+ =3 4  and the line x =1 

axis.
			    ∴  Area required	 = 	 y dx y dx x dx x dx

0

1

1

4

0

1

1

4

3
1

3
4∫ ∫ ∫ ∫+ = + − −( )





				    = 	 3
2

1

3 2
4

2

0

1
2

1

4

x x x








 + − −



















 = 	 3

2

8

3

7

2 3
2 3+ − = .

A( , )−1 1

B( , )3 2

O ED

C( , )0 5
y

x

Fig. 9.32

O (1,0) (2,0)

y

x

Tangent

N
or

m
al

(4
,0)

1 3,( )

Fig. 9.33
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Method 2
	 Viewing in the direction of x-axis, the required area is the area of the region bounded between 

y x= 3  and x y+ =3 4 , y = 0  and y = 3 . So, it can be obtained by applying the formula  

x x dyR Lc

d
−( )∫  

	 Here, c = 0 , d = 3 , xR  is the x-value on the tangent x y+ =3 4   and xL  is the x-value on the 

normal y x= 3 .

			   ∴ Area required 	= 	 x x dy y y dyR Lc

d
−( ) = −( ) −



∫ ∫ 4 3

30

3

 

				    = 	 4
2

3
2 3

2 2

0

3

y y y
−









 −











				    = 	4 3
3

2
3

3

2 3
2 3− − = .

Working rule for finding area of the region bounded by y = f1(x), y = f2(x), the lines x a==  and 
x b== , where a b<<  :
	 Draw an arbitrary line parallel to y-axis cutting the plane region. First, find the y-coordinate of 
the point where the line enters the region. Call it yENTRY . Next, find the y-coordinate of the point 

where the line exits the region. Call it yEXIT . Both yENTRY  and yEXIT  can be found from the equations 

of the bounding curves. Then, the required area is given by y y dxEXIT ENTRYa

b
−[ ]∫  .

Working rule for finding area of the region bounded by x = g1(y), x = g2(y), the lines y c==  and 
y d== , where c d<<  :

	 Draw an arbitrary line parallel to x-axis cutting the plane region.
	 First, find the x-coordinate of the point where the line enters the region. Call it xENTRY  .

	 Next, find the x-coordinate of the point where the line exits the region. Call it xEXIT . Both 
xENTRY  and xEXIT  can be found from the equations of the bounding curves. Then, the required area is 

given by x x dyEXIT ENTRYc

d
−[ ]∫ . 

EXERCISE 9.8
	 1.	 Find the area of the region bounded by 3 2 6 0x y− + = , x = −3 , x =1 and x-axis.

	 2.	 Find the area of the region bounded by 2 1 0x y− + = , y = −1, y = 3  and y-axis.

	 3.	 Find the area of the region bounded by the curve 2 02+ − + =x x y , x-axis, x = −3 and x = 3.
	 4.	 Find the area of the region bounded by the line y x= +2 5  and the parabola y x x= −2 2 . 
	 5.	 Find the area of the region bounded between the curves y x= sin  and y x= cos  and the 

lines x = 0  and x = π .
	 6.	 Find the area of the region bounded by y x= tan , y x= cot  and the lines x = 0 , x = π

2
, y = 0.

	 7.	 Find the area of the region bounded by the parabola y x2 =   and the line y x= − 2 .
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	 8.	 Father of a family wishes to divide his square field bounded by x = 0 , x = 4 , y = 4  and 
y = 0  along the curve y x2 4=  and x y2 4=  into three equal parts for his wife, daughter 

and son. Is it possible to divide? If so, find the area to be divided among them.
	 9.	 The curve y x= −( ) +2 1

2  has a minimum point at P. A point Q on the curve is such that the 

slope of PQ is 2. Find the area bounded by the curve and the chord PQ.
	 10.	 Find the area of the region common to the circle x y2 2 16+ =  and the parabola y x2 6= .

9.9 Volume of a solid obtained by revolving area about an axis
	 Definite integrals have applications in finding volumes of solids of 
revolution about a fixed axis. By a solid of revolution about a fixed axis, 
we mean that a solid is generated when a plane region in  a given plane 
undergoes one full revolution about a fixed axis in the plane. For instance, 
consider the semi circular plane region inside the circle x y a2 2 2+ =  and 
above the x-axis. See Fig.9.34.

	 If this region is given one complete rotation (revolution for 360 2° = π
radians) about x-axis, then a solid called a sphere is generated.

	 In the same manner, if you want to generate a right-circular cylinder with 
radius a and height h, you can consider the rectangular plane region bounded 
between the straight lines y = 0 , y a= , x = 0  and x h=  in the xy-plane.  See 
Fig.9.35. If this region is given one complete rotation (revolution for 360 2° = π  
radians) about x-axis, then a solid called a cylinder is generated.

	 We restrict ourselves to obtain volume of solid of revolution about x-axis or y-axis. Whenever 
solid of revolution about x-axis is considered, the plane region that is revolved about x-axis lies above 
the x-axis. So, in this region y ≥ 0 . Whenever solid of revolution about y-axis is considered, the plane 
region that is revolved about y-axis lies to the right of y-axis. So, in this region x ≥ 0 . We shall find 
the formula for finding the volume of the solid of revolution of the plane region in the first quadrant 
bounded by the curve y f x= ( ) , x-axis and the lines x a=  and x b a= >  about x-axis. The derivation 
of the formula is based upon the formula that the volume of a cylinder of radius r and the height 
h is pr h2 . 
	 Assume that every line parallel to y-axis lying between the lines x a=  and x b a= >   cuts the 
curve y f x= ( )  in the first quadrant exactly at one point. Divide a b,[ ]  into n segments by x x xn1 2 1, ,..., −  
such that

a x x x x x bn n= < < < < < =−0 1 2 1... , x x x b a
ni i− = =
−

−1 ∆ , i n=1 2, ,..., .

	 For each i n= −0 1 2 1, , ,..., , the region in the xy-plane between the ordinates at xi  and x xi + ∆  
which lies between the x-axis and the curve y f x= ( )  can be approximated to an infinitesimal 
rectangle having area y xiD , where y f xi i= ( ) . When the plane region bounded by the curve 
y f x= ( ) , x-axis, and lines x a=  and x b=  is rotated by 360°  about x-axis, each of the infinitesimal 
rectangles at x xi=  also revolves and generates an elementary solid which is approximately a thin 

cylindrical disc with radius yi  and height Dx . See Fig.9.36. The volume of the cylindrical disc at 

x a= −
y

xO

x y a2 2 2+ =

x a=

Fig. 9.34

y a�

x 0�

y 0�

x h�
O x

y

Fig. 9.35
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x xi=  is given by π y xi
2∆ , i n= −0 1 2 1, , ,..., . Summing all these elementary 

volumes, we get the approximate volume of the solid of revolution as 

π y xi
i

n
2

0

1

∆
=

−

∑ . Let n become larger and larger n →∞( )  such that Dx becomes 

smaller and smaller ∆x →( )0 . Then  π y xi
i

n
2

0

1

∆
=

−

∑  tends to the volume of 

the solid of revolution. Hence the volume of the solid of revolution is

π y dx
a

b
2∫ .

	 Similarly, we can find the formula for finding the volume of the solid of 
revolution of the region bounded by the curve x f y= ( ) , y-axis, and the lines 

y c=  and y d=  about y-axis. The curve x f y= ( )  lies to the right of y-axis 

between the lines y c=  and y d c= > . Assume that every line parallel to 

x-axis between y c=  and y d c= >  cuts the curve x f y= ( )  in the first 
quadrant exactly at one point. See Fig.9.37. Then, the volume of the solid of 

revolution is given byπ x dy
c

d
2∫ . 

Example 9.62
	 Find the volume of a sphere of radius a.

Solution
	 By revolving the upper semicircular region enclosed between the circle 
x y a2 2 2+ =  and the x-axis, we get a sphere of radius a. See Fig. 9.38.

	 The boundaries of the region are y a x= −2 2 ,  x-axis, the lines x a= −  

and x a= . Hence, the volume of the sphere is given by 
V y dx a x dx

a

a

a

a
= = −( )

− −∫ ∫π π2 2 2  

		  = 	2 2 2

0
π a x dx

a
−( )∫ , since the integrand a x2 2−( )  is an even function.

		  = 	2
3

2
3

4

3

2
3

0

3
3

3π π πa x x a a a
a

−








 = −









 = .

Example 9.63
	 Find the volume of a right-circular cone of base radius r and height h.
Solution
	 Consider the triangular region in the first quadrant which is bounded 

by the line y r
h
x=  , x-axis, the lines x = 0  and x h= . See Fig.9.39. By 

revolving the region about the x-axis, we get a cone of base radius r and 
height h.
	 Hence, the volume of the cone is given by 

V y dx r
h
x dx r

h
x dx r

h
xh

= = 





= 





= 













∫π π π π2

0

2 2

2

2 3

3
 =∫∫

0
00

2

3

h
hh r hπ

x

y

x a=
O ∆x

y f x= ( )

x b=
Fig. 9.36

Fig. 9.38

x

y

∆y

y d=

y c=
x f y= ( )

O

Fig. 9.37

y

xO

y
a

x

=

−2

2

x a=x a=−

z = 0

O h
r

y
r

h
x

=x h=

x

y

Fig. 9.39
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Example 9.64
	 Find the volume of the spherical cap of height h cut of from 
a sphere of radius r.

Solution
	 If the region in the first quadrant bounded by the circle 
x y r2 2 2+ = , the x-axis, the lines x r h= −  and x r=  is revolved 
about the x-axis, then the solid generated is a spherical cap of 
height h cut of from a sphere of radius r. See Fig. 9.40. Hence, 
the required volume is given by

		  	 V 	= 	π π πy dx r x dx r x x
r h

r

r h

r

r h

r
2 2 2 2

3

3
= −( ) = −





−

−
− ∫∫

				   = 	π πr r r h
r r h

r h
r r r h rh h

2

3 3

2

3 3 2 2

3

3 3
− −( )( ) −

− −( )( )












= −

− − + − 33

3

( )( )













 

				   = 	π π
3

3

1

3
3

2 3
2rh h h r h−







 = −( ) .

Note
	 We can rewrite the above volume in terms of the radius of the cap.
	 If ρ  is the radius of the cap, then ρ 2 2 2+ −( ) =r h r .

	 Then, we have r h
h

=
+ρ 2 2

2
. Eliminating r, we get

V h h
h

h h h h=
+







 −









 =

+

















 =

1

3
3

2

1

3

3

2

1

6

2
2 2 2 2

π
ρ

π
ρ

π 33 2 2ρ +( )h .

Example 9.65
	 Find the volume of the solid formed by revolving the region bounded by the parabola y x= 2 , 
x-axis, ordinates x = 0  and x = 1 about the x-axis.
Solution
	 The region to be revolved about the x-axis is sketched as in 
Fig.9.41. Hence, the required volume is given by

			   V 	= 	 π πy dx x x dx2 2
2

0

1

0

1

4 5= + +( )∫∫

				   = 	 π x x x x x dx4 2 3 2

0

1

16 25 8 40 10+ + + + +( )∫
				   = 	π x x x x x

5 4 3 2

0

1

5
8

4
26

3
40

2
25+ + + +









  

				   = 	π π
1

5
2

26

3
20 25

838

15
+ + + +






 = .

Example 9.66
	 Find the volume of the solid formed by revolving the region bounded by the ellipse 
x
a

y
b

a b
2

2

2

2
1+ = >,  about the major axis.

x

x
r
=

x
y

h
=

−

r
O

S

y

h S

O r

Fig. 9.40

x
O

y x= 2

x= 0
x= 1

y

Fig. 9.41
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Solution
	 The ellipse is symmetric about both the axes. The major axis lies along x-axis. The region to be 
revolved is sketched as in Fig.9.42.
	 Hence, the required volume is given by

			   V 	= 	π πy dx b
a
a x dx

a

a

a

a2
2

2
2 2

− −∫ ∫= −( )
				   = 	 2 2

2

2 2

0

πb
a

a x dx
a

−( )∫ , since the integrand is an even function.

				   = 	 2

3

2

3

2 2

3

2

2

2
3

0

2

2

3
3 2

2

3π π πb
a

a x x b
a

a a b
a

a
a

−








 = −









 =









 =

44

3

2πab  

Note
	 If the region bounded by ellipse x

a
y
b

2

2

2

2
1+ =   is revolved about the y-axis, then the volume of 

the solid of revolution is 4
3

2πa b . The solid is called an ellipsoid.

Example 9.67
	 Find, by integration, the volume of the solid generated by revolving about y-axis the region 
bounded between the parabola x y= +2 1, the y-axis, and the lines y =1 and y = −1.
Solution
	 The parabola x y= +2 1 is y x2 1= − . It is symmetrical about x-axis and has the vertex at 1 0,( )  

and focus at 5

4
0,







 . The region for revolution is shaded in Fig.9.43. Hence, the required volume is 

given by
		  V 	= 	 π x dy2

1

1

−∫
			  = 	 π y dy2

2

1

1

1+( )
−∫

			  = 	 2 2 14 2

0

1

π y y dy+ +( )∫ , since the integrand is an even function.

			  = 	 2
5

2
3

2
1

5

2

3
1

56

15

5 3

0

1

π π π
y y y+ +









 = + +






 = .

Example 9.68
	 Find, by integration, the volume of the solid generated by revolving about y-axis the region 

bounded between the curve y x= −
3

4
162 , x ≥ 4 , the y-axis, and the lines y =1 and y = 6 . 

Solution

	 We note that y x x y
= − ⇒ − =

3

4
16

16 9
12

2 2

. So, the given curve is a 

portion of the hyperbola x y2 2

16 9
1− =  between the lines y =1 and y = 6  and it 

lies above the x-axis.

	 The region to be revolved is sketched in Fig.9.44.
	 Since revolution is made about y-axis, we write the equation of the 

O

y

x

(0, b)

(a,0)(-a,0)

Fig. 9.42

x y� �2 1

x

y

y = 1

y = -1

Fig. 9.43

Fig. 9.44

y b=
y =1
x

y

O
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portion of the hyperbola as x y= +
4

3
9 2 . So, the volume of the solid generated is given by

			   V 	= 	π π πx dy y dy y dy2

1

6
2

2

1

6
2

1

64

3
9

16

9
9∫ ∫ ∫= +





= 





+( )

				   = 	π π16

9
9

3

16

9
54 72 9

1

3

563

1

6







+






= 





+( ) − +





=y y
( )

000

27
π  

Example 9.69
	 Find, by integration, the volume of the solid generated by revolving about y-axis the region 
bounded by the curves y x= log , y = 0 , x = 0  and y = 2 .

Solution
	 The region to be revolved is sketched in Fig.9.45.
	 Since revolution is made about the y-axis, the volume of the solid 
generated is given by

			   V 	 = 	π πx dy e dyy2

0

2

0

2

= ∫∫

				    = 	π πe ey  = −( )
0

2
2 1 .

EXERCISE 9.9

	 1.	 Find, by integration, the volume of the solid generated by revolving about the x-axis, the 
region enclosed by y x= 2 2 , y = 0  and x = 1.

	 2.	 Find, by integration, the volume of the solid generated by revolving about the x-axis, the 
region enclosed by y e x= −2  y = 0,   x = 0 and x = 1

	 3.	 Find, by integration, the volume of the solid generated by revolving about the y-axis, the 
region enclosed by x y2 1= +  and y = 3 .

	 4.	 The region enclosed between the graphs of y x=  and y x= 2  is 
denoted by R, Find the volume generated when R is rotated through 
360°  about x-axis.

	 5.	 Find, by integration, the volume of the container which is in the shape 
of a right circular conical frustum as shown in the Fig 9.46.

	 6.	 A watermelon has an ellipsoid shape which can be obtained by 
revolving an ellipse with major-axis 20 cm and minor-axis 10 cm about 
its major-axis. Find its volume using integration.

EXERCISE 9.10
Choose the correct or the most suitable answer from the given four alternatives :

	 1.	  The value of dx
x4 9 2

0

2

3

−
∫  is

(1) p
6

    (2) p
2

    (3) p
4

    (4) p  

y = 0
x = 0

O

y

x
y = 2

y x= log

Fig. 9.45

1 m

2 m

2 m

Fig. 9.46
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	 2.	 The value of x dx
−∫ 1

2

  is

(1) 1

2
	 (2) 3

2
	 (3) 5

2
	 (4) 7

2

	 3.	 For any value of  n e n x dxx∈ +[ ]∫, cos ( )cos2 3

0
2 1

π

is

		  (1) p
2

 	 (2) p  	 (3) 0	 (4) 2

	 4.	 The value of sin cos2

2

2

x x dx
−

∫
π

π

 is

		  (1) 
3

2
	 (2) 

1

2
	 (3) 0	 (4) 

2

3

	 5.	 The value of tan tan− −

− +






+ +













∫ 1

2

4

1
4

24

4

1

1x
x

x
x

dx  is

		  (1) p 	 (2) 2p 	 (3) 3p 	 (4) 4p

	 6.	 The value of 2 3 7 17 5 3

2

4

4
x x x x

x
dx− + − +



−∫ cos

π

π

 is

		  (1) 4	 (2) 3	 (3) 2	 (4) 0

	 7.	 If f x t t dt
x

( ) cos= ∫  
0

, then df
dx

=

		  (1) cos sinx x x− 	 (2) sin cosx x x+ 	 (3) x xcos 	 (4) x xsin

	 8.	 The area between y x2 4=  and its latus rectum is

		  (1) 
2

3
	 (2) 

4

3
	 (3) 

8

3
	 (4) 

5

3

	 9. 	The value of x x dx( )1 99

0

1

−∫  is

		  (1) 1

11000
	 (2) 1

10100
	 (3) 1

10010
	 (4) 1

10001

	 10. 	The value of dx
x1 50 +∫ cos

π
 is

		  (1) p
2

	 (2) p 	 (3) 3

2

p 	 (4) 2π

	 11.	 If 
Γ

Γ
( )

( )

n
n
+ =2

90  then n  is

		  (1) 10	 (2) 5	 (3) 8	 (4) 9

	 12. 	The value of cos3

0

6 3x dx 

π

∫  is

		  (1) 2

3
	 (2) 2

9
	 (3) 1

9
	 (4) 1

3
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	 13. 	The value of sin4

0
x dx 

π

∫ = is

		  (1) 3

10

p 	 (2) 3

8

p 	 (3) 3

4

p 	 (4) 3

2

p

	 14.	 The value of e x dxx−∞
=∫ 3 2

0
 is

		  (1) 7

27
	 (2) 5

27
	 (3) 4

27
	 (4) 2

27

	 15.	 If 1

4 820 +
=∫ x

dx
a π  then a   is

		  (1) 4	 (2) 1	 (3) 3	 (4) 2

	 16.	 The volume of solid of revolution of the region bounded by y x a x2 = −( )  about x-axis is

		  (1) pa3 	 (2) 
pa3

4
	 (3) 

pa3

5
	 (4) 

pa3

6

	 17.	 If f x e
u
du x

ux
( ) ,

sin

= >∫ 1
1

 and 

		  e
x
dx f a f

xsin

( ) ( ) ,

2

1

2
1

1

3

= −[ ]∫   then one of the possible value of a  is

		  (1) 3	 (2) 6	 (3) 9	 (5)

	 18.	 The value of sin−( )∫ 1
2

0

1

x dx  is

		  (1) π
2

4
1− 	 (2) π

2

4
2+ 	 (3) π

2

4
1+ 		  (4) π

2

4
2−

	 19.	 The value of a x dx
a

2 2

0

3

−( )∫  is

		  (1) pa3

16
 	 (2) 3

16

4pa  	 (3) 3

8

2pa  	 (4) 3

8

4pa  

	 20.	 If f t dt x tf t dt
x

x
( ) ( )= + ∫∫

1

0
, then the value of f ( )1  is

		  (1) 1

2
 	 (2) 2	 (3) 1	 (4) 3

4
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SUMMARY
(1) Definite integral as the limit of a sum

			   (i)	 f x dx
a

b

( )ò =  lim ( )
n

r

nb a
n

f a b a r
n→∞

=

− + −



∑

1

			   (ii)	    =f x dx
n

f r
n n

f r
nn

r

n

n
( ) lim lim=












∫ ∑

→∞
=

→∞
0

1

0

1 1 
=
∑
r

n

1

.

(2) Properties of definite integrals

			   (i)	  f x dx f u du
a

b

a

b

( ) ( )=∫ ∫ 	 (ii)	 f x dx f x dx
b

a

a

b

( ) ( )= −∫∫

			  (iii)	 f x dx f x dx f x dx
a

c

a

b

c

b

( ) ( ) ( )= +∫∫ ∫  	 (iv)	 f x dx f a b x dx
a

b

a

b
( ) ( )∫ ∫= + −

			   (v)	 f x dx f a x dx
a a

( ) ( )
0 0∫ ∫= − 	 (vi)	 f x dx f x f a x dx

a a
( ) ( ) ( ) .

0

2

0
2∫ ∫= + −[ ]

			  (vii)	 If f (x) is an even function, then f x dx f x dx
a

a a
( ) ( ) .

−∫ ∫= 2
0

			  (ix)		 If f (x) is an odd function, then f x dx
a

a
( ) .

−∫ = 0

			   (x)	  	If f a x f x( ) ( ),2 − =  then f x dx f x dx
a a

( ) ( ) .
0

2

0
2∫ ∫=

			  (xi)	 If f a x f x( ) ( ),2 − = −  then f x dx
a

( ) .
0

2

0∫ =

			  (xii)	 x f x dx a f x dx
a a

( ) ( )=∫ ∫2
0 0

 if f a x f x( ) ( )− =

(3) Bernoulli’s Formula

		  uvdxò =
 
uv( )1

− + − +u v u v u v( )

( )

( )

( )

( )

( )

1

2

2

3

3

4  .

(4) Reduction Formulas

			   (i)	 sinnx dx
0

2

π

 ∫ = cosn x dx
0

2

π

∫ =

( ) ( )
( )

, , , ,

( ) ( )
( )

n
n

n
n

n

n
n

n
n

− × −
−

× × × =

− × −
−

×

1 3
2

1
2 2

2 4 6

1 3
2

 



 if 

×× =










2
3

3 5 7, , , , if n 

π

			   (ii)	 If n is even and m is even,  

		  		  sinm nx x dx
0

2

π

∫  cos  = ( )
( )

( )
( )

( )
( ) ( )

( ) ( )
( )

(n
m n

n
m n

n
m n m

m
m

m
m

−
+

−
+ −

−
+ − +

− −
−

1 3
2

5
4

1
2

1 3
2



mm
m
−
−

5
4

1
2 2

)
( )



π

			  (iii)	 If n  is odd and m is any positive integer (even or odd), then 

			   	  sinm nx x dx
0

π
2∫  cos  =

( )

( )

( )

( )

( )

( ) ( ) ( )

n
m n

n
m n

n
m n m m

−
+

−
+ −

−
+ − + +

1 3

2

5

4

2

3

1

1
 .

Chapter 9 Applications of Integration.indd   142 7/25/2019   7:12:47 PM



Applications of Integration143

(5) Gamma Formulas
(i) Γ( )n  = e x dxx n−∞ −∫ 0

1 = −( )!n 1

			  (ii)	 e x dxax n−∞

∫0
 =

n
an

!
+1

(6) Area of the region bounded by a curve and lines

(i) The  area of the region bounded by a curve, above x -axis and the lines x a=  and x b=

is A =  ydx
a

b

ò .

(ii) The  area of the region bounded by a curve, below x -axis and the lines x a=  and x b=

is A = − =∫ ∫ydx ydx
a

b

a

b
.

			(iii) Thus area of the region bounded by the curve to the right of y -axis, the lines y c=  and

y d=  is A = xdy
c

d

ò .

			(iv) The area of the region bounded by the curve to the left of y -axis, the lines y c=  and

y d=  is  A = − =∫ ∫xdy xdy
c

d

c

d
.

(7) Volume of the solid of revolution

(i) The volume of the solid of revolution about x-axis is V =  π y dx
a

b
2∫ .

(ii) The volume of the solid of revolution about y-axis is V =  π x dy
c

d
2∫ .
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Chapter

10 Ordinary Differential Equations
“Mathematics is the most beautiful and 

most powerful creation of the human  spirit”
-  Stefan Banach

10.1 Introduction
Motivation and Early Developments
	 Just we look at some real life situations where 
	 ●	 the motion of projectile, rocket, satellite and planets
	 ●	 the charge or current in the electric circuit
	 ●	 the conduction of heat on a rod or in a slab
	 ●	 the vibrations of a wire or membrane etc
are to be determined. The mathematical formulations of such problems emerge as differential equations 
under certain scientific laws. These laws involve various rates of change (derivatives) of one or more 
quantities with respect to other quantities. Thus the scientific laws manifest as mathematical equations 
involving derivatives, viz. differential equations.  
	 Differential Equations emanate from the problems in geometry, mechanics, physics, chemistry, 
and engineering studies. We have studied about “rates” in our early classes. This is also known as 

instantaneous rate of change which is denoted as dy
dx

.

	 We give below some relations between the rate of change and unknown functions that occur in 
real life situations.
	 (a)	 The rate of change of y with respect to x is directly proportional to y :

			 
dy
dx

	= 	ky .

	 (b)	 The rate of change of y with respect to x is directly proportional to the product of y2 and x  :

			 
dy
dx

	= 	ky x2 .

	 (c)	 The rate of change of y with respect to x is inversely proportional to y :

			 
dy
dx

	= 	
k
y .

	 (d)	 �The rate of change of y  with respect to x is directly proportional to y2  and inversely 

proportional to x :
			   dy

dx
	= 	k y

x

2

.

	 A differential equation is an equation in which some derivatives of the unknown function occur.
	 In many cases the independent variable is taken to be time.  

144
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	 In order to apply mathematical methods to a physical or “real life” problem, we must formulate 
the problem in mathematical terms; that is, we must construct a mathematical model for the problem. 
Many physical problems concern relationships between changing quantities. Since rates of change 
are represented mathematically by derivatives, mathematical models often involve equations relating 
to an unknown function and one or more of its derivatives. Such equations are differential equations. 
They are of basic significance in science and engineering since many physical laws as well as 
relations are modelled in the form of differential equations.  Differential equations are much useful 
in describing mathematical models involving population growth or radio-active decay. The study of 
biological sciences and economics is incomplete without the application of differential equations.
	 The subject of differential equations was invented along with calculus by 
Newton and Leibniz in order to solve problems in geometry and physics. It 
played a crucial part in the development of Newtonian physics by the Bernoulli 
family, Euler, and others. Some of the applications of differential equations 
in our daily life are found in mobile phones, motor cars, air   flights, weather 
forecast, internet, health care, or in many other daily activities.

	 In this chapter, we introduce and discuss the first order ordinary differential 
equations and some methods to find their solutions. 

Learning Objectives

	 Upon completion of this chapter, students will be able to 
	 •	 classify differential equations
	 •	 construct differential equations
	 •	 find the order and degree of the differential equations
	 •	 solve differential equation using the methods of variables separable, substitution, integrating 

factor
	 •	 apply  differential equation in real life problems

10.2  Differential Equation, Order, and Degree
Definition 10.1 

	 A differential equation is any equation which contains at least one derivative of an unknown 
function, either ordinary derivative or partial derivative.

	 For instance, let   y f x= ( )  where y  is a dependent variable ( f  is an unknown function)  and x  

is an independent variable.

	 (1)	 The equation dy
dx

= 0  is a differential equation.

	 (2)	 The equation dy
dx

x= sin  is a differential equation.

Johann Bernoulli
(1667-1748)
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	 (3)	 The equation dy
dx

y x+ = +7 5  is a differential equation.

	 (4)	 The equation d y
dx

dy
dx

y x
2

2
+ + = sin  is a differential equation.

	 (5)	 The equation e x x
dy
dx = >ln , 0  is a differential equation.

	 (6)	 The equation tan− + +








 =

1
2

2

2 2
d y
dx

y x dy
dx

 is a differential equation.

Definition 10.2 (Order of a differential equation)  

	 The order of a differential equation is the highest order derivative present in the differential 
equation.

	 Thus, if the highest order derivative of the unknown function y in the equation is kth derivative, 
then the order of the differential equation is k. Clearly k must be a positive integer.

	 For example, d y
dx

d y
dx

dy
dx

3

3

2

3 2

2
3 5 4 0









 − + + =  is a differential equation of order three.

Definition 10.3 (Degree of a differential equation)

	 If a differential equation is expressible in a polynomial form, then the integral power of the 
highest order derivative appears is called the degree of the differential equation

	 In other words, the degree of a differential equation is the power of the highest order derivative 
involved in the differential equation when the differential equation (after expressing in polynomial 
form)  satisfies the following conditions :
	 (i)	All of the derivatives in the equation are free from fractional powers, if any.
	 (ii)	Highest order derivative should not be an argument of a transcendental function, trigonometric 

or exponential, etc. The coefficient of any term containing the highest order derivative 
should just be a function of x, y, or some lower order derivative but not as transcendental, 
trigonometric, exponential, logarithmic  function of derivatives. 

	 If one or more of the aforementioned conditions are not satisfied by the differential equation, it 
should be first reduced to the polynomial form in which it satisfies all of the above conditions.
	 If a differential equation is not expressible to polynomial equation form having the highest 
order derivative as the leading term then that the degree of the differential equation is not 
defined. 
	 The determination of the degree of a given differential equation can be tricky if you are not 
well versed with the conditions under which the degree of the differential equation is defined. So go 
through the given solved examples carefully and master the technique of calculating the degree of the 
given differential equation just by sheer inspection!

Examples for the calculation of degree:

	 (1)	 Consider the differential equation 3 2

3 2

2

2y dy
dx

d y
dx

x





 − = sin .
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	 	 The highest order derivative involved here is  2, and its power is 1 in the equation. Thus, the 
order of the differential equation is 2 and degree is 1.

	 (2)	 Consider the differential equation 1

2 3

3
+ 





 =

dy
dx

y d y
dx

 .

	 	 Since this equation involves fractional powers, we must first get rid of them. On squaring the 
equation, we get

1

2

2
3

3

2

+ 





 =











dy
dx

y d y
dx

.

		  Now, we can clearly make out that the highest order derivative is 3. Therefore order of the 
differential equation is 3 and since its power is 2 in the equation, the degree of the differential 
equation is 2.

	 (3)	 Consider the differential equation sin
dy
dx

d y
dx

x





 + + =

2

2
3 0 .

	 	 Here, the highest order derivative is   2. Because of sine of first derivative, the given 
differential equation can not be expressed as polynominal equation. So, the order of 
the differential equation is 2, and, it is not in polynomial equation in derivatives and so 
degree is not defined.

	 (4)	 Consider the equation e x dy
dx

d y
dx

2

2

2+ =sin( ) .

		  Here, the highest order derivative (order is 2) has involvement in an exponential function. 
This cannot be expressed as polynomial equation with d y

dx

2

2  as the leading term So, the 

degree of the equation is not defined. The order of the equation is 2.
	 (5)	 Further, the following differential equations do not have degrees.

	 	 (i) e dy
dx

dy
dx + = 0        (ii) log

d y
dx

dy
dx

2

2
0









 + =   and       (iii) cos

d y
dx

d y
dx

3

3

2

2
2 0









 + = .

	 (6)	 The differential equation 10 7 5 04 5( ) ( ) sin( )′′′ + ′′ + ′ + =y y y  has order 3 but degree is not 
defined.

	 (7)	 The differential equation cos( ) sin′ ′′′ + ′′ + ′ =y y y y x5 7  has order 3 and degree is not defined. 

Remark
	 Observe that the degree of a differential equation is always a positive integer. 
Example 10.1	
	 Determine the order and degree (if exists) of the following differential equations:

	 (i)	 dy
dx

x y= + + 5  	 (ii)	 d y
dx

dy
dx

y x
4

4

3 7

4 6 5 3








 + 






 + = cos

	 (iii)	 d y
dx

dy
dx

x d y
dx

2

2

2

2
2

2
3+ 





 =









log  	 (iv)	 3 4

2

2

2
3

2d y
dx

dy
dx









 = + 




















 

	 (v)	 dy xy x dx+ −( ) =cos 0  
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Solution
	 (i)	 In this equation, the highest order derivative is dy

dx
 whose power is 1

	 	 Therefore, the given differential equation is of order 1 and degree 1.

	 (ii)	 Here, the highest order derivative is d y
dx

4

4  whose power is 3.

	 	 Therefore, the given differential equation is of order 4 and degree 3.

	 (iii)	 In the given differential equation, the highest order derivative is d y
dx

2

2  whose power is 1.

	 	 Therefore, the given differential equation is of order 2. 
	 	 The given differential equation is not a polynomial equation in its derivatives and so its 

degree is not defined.

	 (iv)	 The given differential equation is 	3 4
2

2

2
3

2d y
dx

dy
dx









 = + 




















	 	 Squaring  both sides, we get 	9 4
2

2

2 2
3

d y
dx

dy
dx









 = + 



















.

	 	 In this equation, the highest order derivative is d y
dx

2

2  whose power is 2.

	 	 Therefore, the given differential equation is of order 2 and degree 2.
	 (v)	 dy xy x dx+ −( ) =cos 0 is a first order differential equation with degree 1, since the equation 

can be rewritten as   dy
dx

xy x+ − =cos 0 .

EXERCISE 10.1
	 1.	 For each of the following differential equations, determine its order, degree (if exists) 

	 	 	 (i)	 dy
dx

xy x+ = cot  	 (ii)	 d y
dx

d y
dx

dy
dx

3

3

2

3 2

2
3 5 4 0









 − + + =

	 	 	(iii)	 d y
dx

dy
dx

x d y
dx

2

2

2 2 2

2









 + 






 =









sin  	 (iv)	 dy

dx
dy
dx

x− − =4 7 0

	 	 	 (v)	 y dy
dx

x
dy
dx

dy
dx







 =







 +








3  	 (vi)	 x d y

dx
dy
dx

2
2

2

2
1

2

1 0+ + 


















=  

	 	 	(vii)	 d y
dx

dy
dx

2

2

3

1








 = + 






  	 (viii)	 d y

dx
xy dy

dx

2

2
= + 






cos  

	 	 	(ix)	 d y
dx

dy
dx

ydx x
2

2

35+ + =∫  	 (x)	 x e
xy dy
dx=








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10.3  Classification of Differential Equations 
Definition 10.4: (Ordinary Differential Equation)

	 If a differential equation contains only ordinary derivatives of one or more functions with respect 
to a single independent variable, it is said to be an Ordinary Differential Equation (ODE). 

Definition 10.5: (Partial Differential Equation)

	 An equation involving only partial derivatives of one or more functions of two or more 
independent variables is called a Partial Differential Equation (PDE).

	 For instance, let y denote the unknown function and x be independent variable. Then 

	
dy
dx

y e x+ = −2 ,     d y
dx

dy
dx

y
2

2
5 0− − =    and dx

dt
dy
dt

x y+ = −3 4  are some examples of ordinary 

differential equations. 

	 For instance, ∂
∂

= −
∂
∂

u
y

u
x
,   ∂

∂
+
∂
∂

=
2

2

2

2
0

u
x

u
y

 and ∂
∂

=
∂
∂

−
∂
∂

2

2

2

2 2u
x

u
t

u
t
are some examples of partial 

differential equations.

	 In this chapter, we discuss ordinary differential equations only.

	 Ordinary differential equations are classified into two different categories namely linear ordinary 
differential equations and nonlinear ordinary differential equations.

Definition 10.6
	 A general linear ordinary differential equation of order n is any differential equation that 
can be written in the following form.

	 a x y a x y a x y a y g xn
n

n
n( ) + ( ) + + ( ) + = ( )( )

−
−( )

1

1

1 0

'  	 ... (1)

where the coefficients a x a x a x a xn n( ) ≠ ( ) ( ) … ( )−0 0 1 1, , , ,  and g x( )  are any function of 
independent variable x  (including the zero function)

Note
	 (1)	 The important thing to note about linear differential equations is that there are no products of 

the function, y x( ) , and its derivatives and neither the function nor its derivatives occur to any 
power other than the first power. 

	 (2)	 No transcendental functions – (trigonometric or logarithmic etc) of y  or any of its derivatives 

occur in differential equation.

	 (3)	 Also note that neither the function nor its derivatives are “inside” another function, for 
instance, ′y  or ey′ .

	 (4)	 The coefficients a x a x a xn0 1 1( ) ( ) … ( )−, , ,  and g x( )  can be zero or non-zero functions, or 

constant or non-constant functions, linear or non-linear functions. Only the function, y x( ) , 

and its derivatives are used in determining whether a differential equation is linear.
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Definition 10.7

	 A nonlinear ordinary differential equation is simply one that is not linear. 

	 If the coefficients of y y y y n, , , , ( )′ ′′
  contain the dependent variable y  or its derivatives or if 

powers of   y y y y n, , , , ( )′ ′′
 , such as ( )′y 2 , appear in the equation, then the differential equation is 

nonlinear. Also, nonlinear functions of the dependent variable or its derivatives, such as sin y  or ey′   

cannot appear in a linear equation.

	 For instance,

	 	 (1)	 dy
dx

ax= 3 , d y
dx

dy
dx

y
2

2
2 0+ + =  and dy

dx
p x y q x+ =( ) ( )  are linear differential equations 

where as y dy
dx

x+ =sin 0  is a nonlinear differential equation.

	 	 (2)	 ′′ + ′ = +y x y xy x2 73 2  is a second order linear ODE.

	 	 (3)	 ′′ + ′ =y y x  is a second order linear ODE.

	 	 (4)	 y y x2 + ′ =  is a first order nonlinear ODE.

	 	 (5)	 ′ =y x ysin( )  is a first order nonlinear ODE.

	 	 (6)	 ′′ =y y xsin( )  is a second order linear ODE.

Definition 10.8

	 If g x( ) = 0  in (1), then the above equation is said to be homogeneous, otherwise it is  called 
non-homogeneous.

Remark

	 If y x ii ( ), ,=1 2 are any two solutions of homogeneous equation      		

	 a x y x a x y x a x y x a x y xn
n

n
n( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) '+ + + + =−
−

1

1

1 0 0       	 …(2)

	 then a x y x a x y x a x y x a x y xn i
n

n i
n

i i( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )+ + + + =−
−

1

1

1 0 0 , ii =1 2, .

	 Suppose u x c y x c y x( ) ( ) ( )= +1 1 2 2 ,  where c1  and c2 are arbitrary constants. Then, it can be easily 

verified that u x( )  is also a solution of (2). 

	 Thus, a first order linear differential equation is written as ′ + =y p x y f x( ) ( ) . A first order 

differential equation that can’t be written like this is nonlinear. Since y = 0   is obviously a solution of 
the homogeneous equation ′ + =y p x y( ) 0 , we call it the trivial solution. Any other solution is 

nontrivial. In fact this is true for a general linear homogeneous differential equation as well.
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10.4. Formation of Differential Equations
10.4.1  Formation of Differential equations from Physical Situations  
	 Now, we provide some models to describe how the differential equations arise as models of real 
life problems.

Model 1: (Newton’s Law)
	 According to Newton’s second law of motion, the 
instantaneous acceleration a of an object with constant 

mass m  is related to the force F  acting on the object by 

the equation F ma= . In the case of a free fall, an object 

is released from a height h t( )  above the ground level. 

Then, the Newton’s second law is described by the differential equation m d h
dt

f t h t dh
dt

2

2
= ( )






, , , 

where m  is the mass of the object, h  is the height above the ground level. This is the second order 

differential equation of the unknown height as a function of time.

Model 2: (Population Growth Model)
	 The population will increase whenever the offspring 
increase. For instance, let us take rabbits as our population. 
More number of rabbits yield more number of baby 
rabbits. As time increases the population of rabbits 
increases. If the rate of growth of biomass N t( )  of the 

population at time t is proportional to the biomass of the 
population, then the differential equation governing the population is given by dN

dt
rN= , where 

r > 0  is the growth rate.

Model 3: (Logistic Growth Model)
	 The rate at which a disease is spread (i.e., the rate of increase of the number N  of people 
infected) in a fixed population L  is proportional to the product of the number of people infected and 
the number of people not yet infected:

dN
dr

kN L N k= − >( ), 0 .

EXERCISE 10.2
	 1.	 Express each of the following physical statements in the form of differential equation.
	 	 	 (i)	Radium decays at a rate proportional to the amount Q  present.
	 	 	 (ii)	The population P  of a city increases at a rate proportional to the product of population 

and to the difference between 5,00,000 and the population.
	 	 	(iii)	For a certain substance, the rate of change of vapor pressure P with respect to temperature 

T is proportional to the vapor pressure and inversely proportional to the square of the 
temperature.
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	 	 	(iv)	A saving amount pays 8% interest per year, compounded continuously. In addition, the 
income from another investment is credited to the amount continuously at the rate of  
` 400 per year.

	 2.	 Assume that a spherical rain drop evaporates at a rate proportional to its surface area. Form 
a differential equation involving the rate of change of the radius of the rain drop.

10.4.2  Formation of Differential Equations from Geometrical Problems
	 Given a family of functions parameterized by some constants, a differential equation can be 
formed by eliminating those constants of this family. For instance, the elimination of constants A and 

B  from y e ex x= + −A B , yields a differential equation d y
dx

y
2

2
0− = .

	 Consider an equation of a family of curves, which contains n  arbitrary constants. To form a 

differential equation not containing any of these constants, let us proceed as follows:

	 Differentiate the given equation successively n  times, getting n  differential equations. Then 

eliminate n  arbitrary constants from   ( )n +1  equations made up of the given equation and n  newly 

obtained equations arising from n  successive differentiations. The result of elimination gives the 

required differential equation which must contain a derivative of the nth order.
Example 10.2
	 Find the differential equation for the family of all straight lines passing through the origin.
Solution
	 The family of straight lines passing through  
the origin is y mx= , where m  is an arbitrary  
constant.              	 	 	 	 … (1)
	 Differentiating both sides with respect to x, we get

		  dy
dx

m= .       	 	 	 	  … (2)

	 From (1) and (2), we get y x dy
dx

= . This is the 

required differential equation.
	 Observe that the given equation y mx=  contains 
only one arbitrary constant and thus we get the 
differential equation of order one.
Example 10.3
	 Form the differential equation by eliminating the arbitrary constants A and B from 
y x x= +A Bcos sin .

Solution
	 Given that 	 y 	= 	A Bcos sinx x+ 	 ... (1)

	 Differentiating (1) twice successively, we get

			   dy
dx

	= 	− +A Bsin cosx x .	 ... (2)

			   d y
dx

2

2 	= 	− − = − +A B A Bcos sin ( cos sin )x x x x .	 ... (3)

Fig. 10.1

x

y

y
x=y

x
= 2

O

y
x

= −

y
x

= −
2
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	 Substituting (1) in (3), we get d y
dx

y
2

2
0+ =  as the required differential equation.

Example 10.4
	 Find the differential equation of the family of circles passing through the points ( , )a 0  and −( )a,0 .

Solution
	 A circle passing through the points a,0( )  and −( )a,0  has its centre on y - axis.

	 Let 0,b( )  be the centre of the circle. 	So, the radius of the circle is a b2 2+ .

	 Therefore the equation of the family of circles passing through the points a,0( )  and −( )a,0 is 

x y b a b b2 2 2 2+ −( ) = + ,  is an arbitrary constant.               	 ... (1)

	 Differentiating both sides of (1) with respect to x, we get 

			   2 2x y b dy
dx

+ −( ) 	= 	0⇒ − = − ⇒ = +y b x
dy
dx

b x
dy
dx

y .

	 Substituting the value of  b in equation (1), we get 

			   x x
dy
dx

2
2

2+








	= 	a x
dy
dx

y2

2

+ +

















 

			   ⇒ 





 +x dy

dx
x2

2
2 	= 	a dy

dx
x y dy

dx
2

2 2 2







 + + 




















			  ⇒ − −( ) −x y a dy
dx

xy2 2 2 2 	= 	0 , which is the required differential equation.

Example 10.5
	 Find the differential equation of the family of parabolas y ax2 4= , where a  is an arbitrary 
constant.
Solution
	 The equation of the family of parabolas is given by y ax2 4= , a is an arbitrary constant.	 ... (1)

	 Differentiating both sides of (1) with respect to x , we get 2 4
2

y dy
dx

a a y dy
dx

= ⇒ =    

	 Substituting the value of a  in (1) and simplifying, we get dy
dx

y
x

=
2

 as the required differential 

equation.

Example 10.6
	 Find the differential equation of the family of all ellipses having foci on the x -axis and centre at 
the origin.
Solution
	 The equation of the family of all ellipses having foci on the x -axis and centre at the origin is 

given by   x
a

y
b

a b
2

2

2

2
1+ = >,   	                	 ... (1)  
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	 where a  and b  are arbitrary constants.

	 Differentiating equation (1) with respect to x, we get 

			   2 2
2 2

x
a

y
b
dy
dx

+ 	= 	0 0
2 2

  ⇒ + =
x
a

y
b
dy
dx

 	 ... (2)

	
Differentiating equation (2) with respect to x, we get  

			   1 1
2 2

2

2

2

a b
y d y
dx

dy
dx

+ + 



















	= 	0 1 1
2 2

2

2

2

⇒ = − + 



















  
a b

y d y
dx

dy
dx

 

	
Substituting the value of   1

2a
 in equation (2) and simplifying, we get

			   − + 



















+
1

2

2

2

2

2b
y d y
dx

dy
dx

x y
b
dy
dx

	= 	0 0
2

2

2

⇒ + 





 − =xy d y

dx
x dy
dx

y dy
dx

 

which is the required differential equation.

Remark
	 The result of eliminating one arbitrary constant yields a first order differential equation and that 
of eliminating two arbitrary constants leads to a second order differential equation and so on.

EXERCISE 10.3

	 1.	 Find the differential equation of the family of  (i) all non-vertical lines in a plane (ii) all non-

horizontal lines in a plane.

	 2.	 Form the differential equation of all straight lines touching the circle x y r2 2 2+ = .

	 3.	 Find the differential equation of the family of circles passing through the origin and having 
their centres on  the x -axis.

	 4.	 Find the differential equation of the family of all the parabolas with latus rectum 4a  and 

whose axes are parallel to the x -axis.

	 5.	 Find the differential equation of the family of parabolas with vertex at ( , )0 1−  and having 

axis along the y -axis.

	 6.	 Find the differential equations of the family of all the ellipses having foci on the  
y -axis and centre at the origin.

	 7.	 Find the differential equation corresponding to the family of curves represented by the 
equation y e ex x= + −A B8 8 , where A  and B  are arbitrary constants.

	 8.	 Find the differential equation of the curve represented by xy ae be xx x= + +− 2 .
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10.5  Solution of Ordinary Differential Equations
Definition 10.9 : (Solution of DE) 

	 A solution of a differential equation is an expression for the dependent variable in terms of 
the independent variable(s) which satisfies the differential equation. 

Caution
	 (i)	There is no guarantee that a differential equation has a solution. 
	 	For instance, y x y'( )( ) + + =2 2 1 0  has no solution, since y x y'( )( ) = − +( )2 2 1  and so y x'( )

cannot be real.
	 (ii)	Also, a solution of a differential equation, if exists, is not unique. 
	 	 	For instance, the functions y e y ex x= =2 22, ,   y e x= 8 2 are solutions of same equation 

dy
dx

y− =2 0.  In fact, y ce cx= ∈2 , ,  are all solutions of the differential equation dy
dx

y− =2 0.  

Thus, to represent all possible solutions of a differential equation, we introduce  the notion 
of  the general solution of a differential equation.

Definition 10.10 : (General solution)

	 The solution which contains as many arbitrary constants as the order of the differential 
equation is called the general solution

Remark
	 The general solution includes all possible solutions and typically includes arbitrary constants (in 
the case of an ODE) or arbitrary functions (in the case of a PDE.) 

Definition 10.11 : (Particular solution)

	 If we give particular values to the arbitrary constants in the general solution of differential 
equation, the resulting solution is called a Particular Solution.

Remark
	 (i)	Often we find a particular solution to a differential equation by giving extra conditions. 
	 (ii)	The general solution of a first order differential equation y f x y' ,= ( )  represents a one-

parameter family of curves in xy -plane.

	 	For instance,   y ce cx= ∈2 , ,  is the general solution of the differential equation dy
dx

y− =2 0.  

		 For instance, we have already seen that y a x b x= +cos sin satisfies the second order 

differential equation d y
dx

y
2

2
0+ = . Since it contains two arbitrary constants, it is the general 

solution of d y
dx

y
2

2
0+ = . If we put a b= =1 0,  in the general solution, then we get y x= cos  

is a particular solution of the differential equation d y
dx

y
2

2
0+ = .
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	 In application, differential equations do not arise by eliminating the arbitrary constants. They 
frequently arise while investigating many physical problems in all fields of engineering, science and 
even in social sciences. Mostly these differential equations are also accompanied by certain conditions 
on the variables to obtain unique solution satisfying the given conditions. 
Example 10.7
	 Show that x y r2 2 2+ = , where r is a constant, is a solution of the differential equation dy

dx
x
y

= − .

Solution
	 Given that x y r2 2 2+ = , r∈                                    	 		 	 ... (1)

	 The given equation contains exactly one arbitrary constant. 
	 So, we have to differentiate the given equation once. Differentiate (1) with respect to x , we get

2 2 0x y dy
dx

+ = ,  which implies   dy
dx

x
y

= − .

	 Thus, x y r2 2 2+ =  satisfies the differential equation dy
dx

x
y

= − .

	 Hence, x y r2 2 2+ =  is a solution of the differential equation dy
dx

x
y

= − .

Example 10.8
	 Show that y mx

m
m= + ≠

7
0,  is a solution of the differential equation xy

y
y'

'
+ − =7

1
0 . 

Solution
	 The given function is   y mx

m
= +

7  , where m  is an arbitrary constant.	 ... (1)

	 Differentiating both sides of equation (1) with respect to x , we get y m' = .

	 Substituting the values of   y '  and y  in the given differential equation,  

	 we get xy
y

y xm
m

mx
m

′ +
′
− = + − − =

7 7 7
0   .

	 Therefore, the given function is a solution of the differential equation xy
y

y'
'

+ − =7
1

0 . 

Example 10.9
	 Show that y x Ce x= −( ) + −2 12 2

 is a solution of the differential equation dy
dx

xy x+ − =2 4 03 .

Solution
	 The given function is   y x Ce x= −( ) + −2 12 2

, where C  is an arbitrary constant.	 ...(1)

	 Differentiating both sides of equation (1) with respect to x , we get dy
dx

x xCe x= − −4 2
2

.

	 Substituting the values of   dy
dx

 and y  in the given differential equation, we get 
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	 dy
dx

xy x+ −2 4 3  = 4 2
2

x xCe x− − + 2 2 12 2

x x Ce x−( ) +





− −4 3x  = 0

	 Therefore, the given function is a solution of the differential equation dy
dx

xy x+ − =2 4 03 . 

Example 10.10
	 Show that y a x b x x= + ( ) >cos(log ) sin log , 0  is a solution of the differential equation  

x y xy y2 0′′ + ′ + = .

Solution
	 The given function is y a x b x= + ( )cos(log ) sin log 					   ...(1)

where  a b,  are two arbitrary constants. In order to eliminate the two arbitrary constants, we have to 

differentiate the given function two times successively. 
	 Differentiating equation (1) with respect to x , we get

	 ′ = − ( ) ⋅ + ( ) ⋅y a x
x
b x

x
sin log cos log

1 1
⇒ xy a x b x′ = − ( ) + ( )sin log cos log . 

	 Again differentiating this with respect to x, we get

	
xy y a x

x
b x

x
′′ + ′ = − ( ) ⋅ − ( ) ⋅cos log sin log

1 1
⇒ ′′+ ′ + =x y xy y2 0 . 

	 Therefore, y a x b x= + ( )cos(log ) sin log is a solution of the given differential equation.

EXERCISE 10.4
	 1.	Show that each of the following expressions is a solution of the corresponding given differential 

equation.
	 	 (i)	 y x= 2 2 	 ;	xy y' = 2

	 	 (ii)	 y ae bex x= + − 	 ;	 ′′ − =y y 0

	 2.	Find value of m so that the function y emx= is a solution of the given differential equation.

	 	 (i)	 y y'+ =2 0 	 (ii)	y y y'' '− + =5 6 0  

	 3.	The slope of the tangent to the curve at any point is the reciprocal of four times the ordinate at 
that point. The curve passes through (2,5). Find the equation of the curve.

	 4.	Show that y e mx nx= + +−  is a solution of the differential equation e d y
dx

x
2

2
1 0









 − = .

	 5.	Show that y ax b
x
x= + ≠, 0  is a solution of the differential equation x y xy y2 0′′ + ′ − = .

	 6.	Show that y ae bx= +−3 , where a  and b  are arbitrary constants, is a solution of the differential 

equation d y
dx

dy
dx

2

2
3 0+ = .

	 7.	Show that the differential equation representing the family of curves y a x a2

2

32= +








 , where 

a  is a positive parameter, is    y xy dy
dx

y dy
dx

2

3 5

2 8−





 = 






 .
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	 8.	Show that y a bx= cos  is a solution of the differential equation d y
dx

b y
2

2

2 0+ = .

	 Now, we discuss some standard methods of solving certain type of differential equations of the 
first order and first degree.

10.6  Solution of First Order and First Degree Differential Equations
10.6.1  Variables Separable Method 

	 In solving differential equations, separation of variables was introduced initially by Leibniz and 
later it was formulated by John Bernoulli in the year 1694.
	 A first order differential equation is separable if it can be written as h y y g x( ) ( )′ =   where the left 
side is a product of ′y   and a function of y  and the right side is a function of x . Rewriting a separable 
differential equation in this form is called the method of separation of variables.

	 Finding a solution to a first order differential equation will be simple if the variables in the 
equation can be separated. An equation of the form f x g y dx f x g y dy1 1 2 2 0( ) ( ) ( ) ( )+ =  is called an 
equation with variable separable or simply a separable equation.

	 Rewrite the given differential equation as f x
f x

dx g y
g y

dy1

2

2

1

( )

( )

( )

( )
= − .	 ...(1)

	 Integration of both sides of (1) yields the general solution of the given differential equation as

f x
f x

dx g y
g y

dy C1

2

2

1

( )

( )

( )

( )∫ ∫= − + , where C is an arbitrary constant.

Remarks
	 1.	No need to add arbitrary constants on both sides as the two arbitrary constants are combined 

together as a single arbitrary constant.
	 2.	A solution with this arbitrary constant is the general solution of the differential equation.

“Solving a differential equation” is also referred to as “integrating a differential equation”, since the 
process of finding the solution to a differential equation involves integration.

Example 10.11
	 Solve 1 12 2+( ) = +x dy

dx
y .

Solution
			   Given that    1 2+( )x dy

dx
	 = 	1 2+ y .	 ... (1)

	 The given equation is written in the variables separable form

			   dy
y1 2+

	 = 	 dx
x1 2+
. 	 ... (2)

	 Integrating  both sides of (2), we get tan tan− −= +1 1y x C .	 ... (3)

	 	 	 But   tan tan− −−1 1y x 	 = 	tan− −
+











1

1

y x
xy

.	 ... (4)
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Using (4) in (3) leads to tan− −
+











1

1

y x
xy

	= 	C , which implies y x
xy

C a−
+

= =
1

tan ( )say .

	 	 	 Thus, y x− 	 = 	a xy( )1+ gives the required solution.
Example 10.12
	 Find the particular solution of 1 03 2+( ) − =x dy x ydx  satisfying the condition y( )1 2= .
Solution
	 Given that ( )1 3 2+ −x dy x ydx 	= 	 0 .

	 The above equation is written as   dy
y

x
x
dx−

+

2

31
	= 	 0 .

	 Integrating both sides gives log log( )y x− +
1

3
1 3 	= 	C1 , which implies,

	 3 1 3log log( )y x− + 	= 	 logC .

	 Thus, 3log y 	= 	 log( ) log1 3+ +x C , 

	 which reduces to log y3 	= 	 log ( )C x1 3+ .

	 Hence, y C x3 31= +( )  gives the general solution of the given differential equation. It is given  

that when x y= =1 2, .   Then 2 1 13 = +C( )  ⇒  C = 4  and hence the particular solution is 

y x3 34 1= +( ) .

10.6.2  Substitution Method 

	 Let the differential equation be of the form dy
dx

f ax by c= + +( ).  

	 (i)	 If a ≠ 0 and b ¹ 0 , then the substitution ax by c z+ + =  reduces the given equation to the 

variables separable form.
	 (ii)	 If a = 0 or b = 0 , then the differential equation is already in separable form.

Example 10.13
	 Solve y x y' sin= − +( )2 1 .

Solution
			   Given that   ′y 	= 	 sin2 1x y− +( )  

	 	 	 Put   z 	= 	 x y− +1, so that dz
dx

dy
dx

= −1 .

		  Thus, the given equation reduces to 1− dz
dx

	= 	sin2 z .

	 	 	 i.e.,   dz
dx

	= 	1 2 2− =sin cosz z .

	 	 	 Separating the variables leads to dz
zcos2

	= 	 dx  (or) sec2 zdz dx= .

	 	 	 On integration, we get tan z 	= 	 x C+  (or) tan x y x C− +( ) = +1 .
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Example 10.14

	 Solve :   dy
dx

x y= + −4 2 1  .

Solution
	 By putting z x y= + −4 2 1 , we have

			   ′z 	= 	 4 2 4 2+ ′ = +y z

	 	 	 hence   dz
z4 2+

	= 	 dx .

	 	 	 Integrating,    dz
z4 2+∫ 	= 	 x C+ .

	 	 	 Putting z 	= 	u2 , we have

			   dz
z4 2+∫ 	= 	 udu

u
u u C

+
= − + +

2
2 2ln ,   

			   or    z z− +( )2 2ln 	= 	 x C+  

	 	 	 from which on substituting   z 	= 	 4 2 1x y+ − , we have the general solution

			   4 2 1 2 4 2 1 2x y x y+ − − + − +( )ln 	= 	 x C+ .

Example 10.15

	 Solve: 
( )

5
2 7

dy x y
dx x y

- +
=

- +
.

Solution

Given that 
( )

5
2 7

dy x y
dx x y

- +
=

- +
Put	   z = x – y

	 dz
dx

 =  1 – 
dy
dx

 

	 dy
dx

 =  1
dz
dx

-  

Thus, the given equation reduces to

	 1 dz
dx

-  =  
z
z
+
+
5

2 7
 

	 1 dz
dx

-  =  1 – 
z
z
+
+
5

2 7
 

	 dz
dx

 =  
z
z
+
+
2

2 7
 

Separating the variables, we get

	   

2 7

2

z
z

dz dx+
+

=
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2 2 3

2

z
z

dz dx
+( ) +
+( ) =

	
2

3

2
+

+






=
z

dz dx

Integrating both sides, we get

	 2 3 2z x C+ + = +log z

That is,  2 3 2( ) logx y x y x C− + − + = + .

Example 10.16

	 Solve : dy
dx

x y= + +( )3 4
2 . 

Solution
	 To solve the given differential equation, we make the substitution3 4x y z+ + = . 

	 Differentiating with respect to x, we get dy
dx

dz
dx

= −3 . So the given differential equation becomes 

dz
dx

z= +2 3 .

	 In this equation variables are separable. So, separating the variables and integrating, we get the 

general solution of the given differential equation as 1

3

3 4

3

1tan− + +







 = +

x y x C . 

EXERCISE 10.5
	 1.	 If F  is the constant force generated by the motor of an automobile of mass M , its velocity 

V  is given by M dV
dt

F kV= − , where k  is a constant. Express V  in terms of t  given that 

V = 0 when t = 0 .

	 2.	 The velocity v , of a parachute falling vertically satisfies the equation v dv
dx

g v
k

= −








1

2

2
, 

where g  and k  are constants. If v  and x  are both initially zero, find v  in terms of x .

	 3.	 Find the equation of the curve whose slope is y
x x
−
+

1
2

and which passes through the point 

1 0,( ) .
	 4.	 Solve the following differential equations:

	 	 	 (i)	 dy
dx

y
x

=
−
−

1

1

2

2
	 (ii)	 ydx x x dy+ +( ) =−1 02 1tan  

	 	 	(iii)	 sin ,
dy
dx

a y= ( ) =  0 1 	 (iv)	
dy
dx

e x ex y y= ++ 3
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	 	 	(v)	 e x dx e x dyy y+( ) + =1 0cos sin   	 (vi)	 ydx xdy x
y

ny dx−( ) 







 =cot 2  

	 	 	(vii)	 dy
dx

x x− − =25 02  	 (viii)	 x y dy e x x dxxcos log = +( )1  

	 	 	(ix)	 tan cos cosy dy
dx

x y x y= +( ) + −( )  	 (x)	 dy
dx

x y= +( )tan2  

10.6.3 Homogeneous Form or Homogeneous Differential Equation

Definition 10.12 : (Homogeneous Function of degree n)

	 A function f x y( , )  is said to be a homogeneous function of degree n  in the variables x  and 

y  if, f tx ty t f x yn( , ) ( , )= for some n∈  for all suitably restricted x y,  and t .  This is known as 

Euler’s homogeneity.

	 For instance, 
	 (i)	 f x y x xy y( , ) = + +6 2 42 2 is a homogeneous function in x and y,  of degree two. 

	 (ii)	 But f x y x x ey( , ) sin= + ( )3  is not a homogeneous function.  

	 If f x y( , ) is  a homogeneous function of degree zero, then there exists a function g  such that

f x y( , )  is always expressed in the form g y
x







  or g

x
y






.

Definition 10.13: (Homogeneous Differential Equation)

	 An ordinary differential equation is said to be   in homogeneous form, if the differential  

equation is written as dy
dx

g y
x

= 





 .  

Caution
	 The word “homogeneous” used in Definition 10.7 is different from in Definition 10.12.
Remark
	 (i)	 The differential equation M x y dx N x y dy( , ) ( , )+ = 0  [in differential form] is said to be 

homogeneous if M  and N  are homogeneous functions of the same degree. 

	 (ii)	  The above equation is also written as   dy
dx

f x y= ( , )  [in derivative form] where 

f x y M x y N x y( , ) ( , ) / ( , )= −   is clearly homogeneous of degree 0 . 

For instance
	 (1)	 consider the differential equation x y dx xy dy2 23 2 0−( ) + = . The given equation is rewritten 

as dy
dx

y x
xy

=
−3

2

2 2

= 





 −











3

2

1

2

1y
x y x/

. Thus, the given equation is expressed as

dy
dx

y
x y x

g y
x

= 





 −









 =









3

2

1

2

1

/
. Hence,   x y dx xy dy2 23 2 0−( ) + = is a homogeneous 

differential equation. 
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	 (2)	 However, the differential equation   dy
dx

x y
x xy

=
+
−

3 2

3 22
 is not homogeneous. (verify!)

	 To find the solution of a homogeneous differential equation dy
dx

g y
x

= 





 , consider the substitution

v y
x

= .  Then, y xv=   and dy
dx

v x dv
dx

= + .Thus, the given differential equation becomes x dv
dx

f v v= −( )

which is solved using  variables separable method.  This leads to the following result.

Theorem 10.1
	 If M x y dx N x y dy( , ) ( , )+ = 0  is a homogeneous equation, then the change of variable y vx= ,  

transforms into a separable equation in the variablesv  and x .

Example 10.17
	 Solve x y dx xydy2 23 2 0−( ) + = .
Solution
	 We know that the given equation is homogeneous.

	 Now, we rewrite the given equation as dy
dx

	= 	 3

2 2

y
x

x
y

− .

	 Taking y vx= , we have v x dv
dx

+ 	= 	 3

2

1

2

v
v

−    or  x dv
dx

v
v

=
−2 1

2
.

	 Separating the variables, we obtain 2

12

vdv
v −

	= 	 dx
x
.

	 On integration, we get log v2 1− 	= 	 log logx C+ ,

	 Hence v2 1− 	= 	 Cx , where C  is an arbitrary constant.

	 Now, replace v  by y
x
to get y

x

2

2
1− 	= 	 Cx .

	 Thus, we have y x2 2− 	= 	 Cx3 .

	 Hence, y x2 2− 	= 	  ±Cx3  (or) y x kx2 2 3− =  gives the general solution.
Example 10.18

	 Solve y x y dx xdy y+ +( ) − = =2 2 0 1 0, ( ) .

Solution

	 The given differential equation is homogeneous (verify!).

	 Now, we rewrite the given equation in differential form   dy
dx

y x y
x

=
+ +2 2

.

	 Since the initial value of x is 1,  we consider x > 0  and take x x= 2  . 
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	 We have dy
dx

y
x

y
x

= + + 





1

2

.

	 Let y vx= . Then,        v x dv
dx

v v+ = + +1 2   , which becomes x dv
dx

v= +1 2 .

	 By separating variables, we have dv
v

dx
x2 1+

= .

	 Upon integration, we get   log log logv v x C+ + = +2 1  or    v v xC+ + =2 1 .

	 Now, we replace v by y
x
, we get   y

x
y
x

Cx+ + =
2

2
1  (or)   y x y Cx+ + =2 2 2 gives the general 

solution of the given differential equation.

	 To determine the value of C, we use the condition that y = 0  when x =1. So, we get C =1.

	 Thus y x y x+ + =2 2 2  is the particular solution of the given differential equation.

Example 10.19

	 Solve 2 3 0x y dx y x dy+( ) + −( ) = .

Solution
	 The given equation can be written as	  dy

dx
	= 	 2 3x y

x y
+
−

.

	 This is a homogeneous equation.

		  Let y vx= . Then we have 	 v x dv
dx

+ 	= 	 2 3

1

+
−

v
v
.

	 Thus, x dv
dx

v v
v

=
+ +
−

2 2

1

2

    or   1

1 1
2

−

+( ) +
=

v
v

dv dx
x

or− +
+ +

−
+( ) +













=
1

2

2 2

2 2

4

1 1
2 2

v
v v v

dv dx
x
.

	 Integrating both sides, we get − + + + +( ) = +−1

2
2 2 2 12 1log tan log logv v v x C

	 or log tan log logv v v x C2 12 2 4 1 2 2+ + − +( ) = − −−

	 or log log tan logv v x v C2 2 12 2 4 1 2+ + + − +( ) = −−

	 or  log tan logv v x v C2 2 12 2 4 1 2+ +( ) − +( ) = −− .

	 Now replacing v  by y
x
, we get, log tany xy x x y

x
k2 2 12 2 4+ + −

+





 =

− , where k C= −2log  

gives the required solution.
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Example 10.20

	 Solve   y x dy
dx

xy dy
dx

2 2+ = .

Solution

			   The given equation is rewritten as dy
dx

	= 	 y
xy x

2

2−
.

	 This is a homogeneous differential equation.

	 	 	 Put y vx= . Then, we have x dv
dx

	= 	 v
v −1

.

	 	 	 By separating the variables, v
v
dv−1 	= 	 dx

x
.

			   Integrating, we obtain v v− log 	= 	 log logx C+   or v vxC= log .

	 Replacing v   by y
x
, we get, 

y
x

Cy= log or Cy ey x= / or y key x= /    (how!) which is the required 

solution.

Example 10.21

	 Solve 1 2 2 1 0+( ) + −








 =e dx e x
y
dyx y x y/ / .

Solution

	 The given equation can be written as dx
dy

x
y

e

e
g x
y

x y

x y=
−











+
=











1 2

1 2

/

/
. 	 …(1)

	 The appearance of x
y
in equation (1), suggests that the appropriate substitution is x vy= .

	 Put x vy= . Then, we have y dv
dy

e v
e

v

v= −
+

+
2

1 2
.

	 By separating the variables, we have 1 2

2

+
+

= −
e

v e
dv dy

y

v

v .

	 On integration, we obtain 

	
log log log2e v y Cv + = − + or log log2ye vy Cv + =  or 2ye vy Cv + = ± .

	 Replace v  by x
y
to  get, 2ye x kx y/ + = , where k C= ± ,which gives the required solution.

EXERCISE 10.6
Solve the following differential equations:

	 1.	 x y y
x

dx x y
x
dy+ 
















 = 






cos cos 	 2.	 x y dy x ydx3 3 2 0+( ) − =
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	 3.	 ye dx xe y dy
x
y

x
y= +









 	 4.	2 2 02 2xydx x y dy+ +( ) =

	 5.	 y xy dx x xy dy2 22 2−( ) = −( ) 	 6.	x dy
dx

y x y
x

= − 





cos2

	 7.	 1 3 3 1 0+








 + −






 =e dy e y
x
dx

y
x

y
x , given that y = 0 when x =1

	 8.	 x y dy xy dx2 2+( ) = . It is given that y 1 1( ) = and y x e0( ) = . Find the value of x0 .

10.7 First Order Linear Differential Equations
	 A first order differential equation of the form 

			   dy
dx

Py+ 	= 	Q .	 ... (1)

where P  and Q  are functions of x  only. Here no product of y  and its derivative dy
dx

 occur and the 

dependent variable y  and its derivative with respect to independent variable x  occurs only in the first 

degree. 

	 To integrate (1), let us consider the homogeneous equation dy
dx

Py+ = 0 .       	 ...(2)

	 The equation (2) can be integrated as follows:

	 	 	 Separating the variables,   dy
y

	= 	−Pdx .

	 	 	 On integration, we get ye
Pdxò 	= 	C .

	 	 	 Now,   d
dx

ye Pdx∫





 	= 	 e dy

dx
y PePdx Pdx∫ + ∫.  

				   = 	 e dy
dx

Py QePdx Pdx∫ +





 =

∫  	 ... (3) (using (1))

	 Integrating both sides of (3) with respect to x, we get the solution of the given differential equation 
as

			   ye
Pdxò 	= 	 Qe dx CPdx∫ +∫ .

	
Here e

Pdxò is known as the integrating factor (I.F.) of (1).

Remarks
	 1.	 The solution of linear differential equation is
		  y I F Q I F dx C× = +∫( . ) ( . ) , where C is an arbitrary constant.

	 2.	 In the integrating factor e
Pdxò , P  is the coefficient of y  in the differential equation provided 

the coefficient of dy
dx

is unity.
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	 3.	 A first order differential equation of the form dx
dy

Px Q+ = , where P  and Q  are functions of 

y  only. Here no product of x  and its derivative dx
dy

 occur and the dependent variable x  and 

its derivative with respect to independent variable y  occurs only in the first degree.

	 	 In this case, the solution is given by xe Qe dy CPdy Pdy∫ = ∫ +∫ .

Example 10.22

	 Solve dy
dx

y e x+ = −2 .

Solution
			   Given that   dy

dx
y+ 2 	= 	 e x−  	 ... (1)

	 This is a linear differential equation.
	 Here P = 2 ;   Q e x= − .

			    Pdxò 	= 	 2 2dx x=∫ .

	 	 	 Thus,  I.F.	= 	 e ePdx x∫ = 2 .

	 	 	 Hence the solution of (1) is ye
Pdxò 	= 	 Qe dx CPdx∫ +∫ .

        That is,    ye e e dx Cx x x2 2= +−∫ or  ye e Cx x2 = + or y e Cex x= +− −2 is the required solution.

Example 10.23

	 Solve y x x x x dx xdy1 02−( ) +  − =tan cos .

Solution

	 The given equation can be rewritten as dy
dx

x x
x

y x x+
−( )

=
tan

cos
1

.

	 This is a linear differential equation. Here P
x x

x
=

−( )tan 1
;   Q x x= cos .

	
Pdx

x x
x

dx x x x x
x x

=
−( )

= − − = − =∫∫
tan

log cos log log cos log
cos

1 1 .

	 	 	 Thus,  I.F.	= 	 e e
x x

Pdx x x∫ = =
log

cos

cos

1

1  

	 	 	 Hence the solution is   ye
Pdxò 	= 	 Qe dx CPdx∫ +∫

	 	 	 i.e.,    y
x x

1

cos
	= 	 x x

x x
dx Ccos

cos
( ) +∫

1
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	 or  y
x x

1

cos
 =  x C+

	 or y  =  x x Cx x2 cos cos+ is the required solution.

Example 10.24

	 Solve :   dy
dx

y x x x+ =2 3 2 2cot cosec .

Solution
	 Given that the equation is dy

dx
y x x x+ =2 3 2 2cot cosec .

	 This is a linear differential equation.  Here, P x= 2cot ;   Q x x= 3 2 2cosec .

	
Pdx xdx x= =∫∫ 2 2cot log sin 	= 	log sin logsinx x2 2= .

	 Thus,   I.F = ∫e Pdx
	= 	e xxlogsin sin

2 2= .

	 Hence, the solution  is. ye
Pdxò 	= 	 Qe dx CPdx∫ +∫ .

	 That is, y xsin2 	= 	 3 32 2 2 2 3x x xdx C x dx C x Ccosec ⋅ + = + = +∫ ∫sin .

	 Hence, y xsin2 	= 	x C3 +  is the required  solution.

Example 10.25

	 Solve 1 6 13 2 2+( ) + = +x dy
dx

x y x .

Solution
	 Here, to make the coefficient of dy

dx
 unity, divide both sides by 1 3+( )x .

	 Then the equation is dy
dx

x y
x

x
x

+
+

=
+
+

6

1

1

1

2

3

2

3
.

	 This is a linear differential equation in y.

	 	 	 Here,  P 	= 	 6

1

1

1

2

3

2

3

x
x
Q x

x+
=

+
+

;  

			   Pdxò 	= 	 6

1
2 1 1 1

2

3

3 3
2

3
2x

x
dx x x x

+
= + = + = +( )∫ log log log

	 	 Thus,  I.F.	 = 	e e xPdx x∫ = = +( )+( )log 1 3
23

2

1

                Hence the solution is ye
Pdxò  = 	 Qe dx CPdx∫ +∫ .

   That is, y x x
x

x dx C x x dx C x x x1
1

1
1 1 1 13

2
2

3

3
2

2 3 2 3 5+( ) =
+
+

+( ) + = +( ) +( ) + = + + +∫ ∫ (( ) +∫ dx C
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	 or y x x x x x C1
3 4 6

3
2

3 4 6

+( ) = + + + +

	 and y =
1

1 3 4 63 2

3 4 6

( )+
+ + + +









x

x x x x C  is the required solution.

Example 10.26

	 Solve ye dx y xe dyy y= +( )3 2 .

Solution
	 The given equation can be written as dx

dy y
x y e y− = −2 2 .

	 This is a linear differential equation. Here P
y

= −
2

; Q y e y= −2 .

	
pdyò 	= 	 − = − = =









∫

−2
2

12

2y
dy y y

y
log log log ,

	 Thus,  I.F.	= 	 e e
y

Pdy y∫ = =








log

1

2

2 1 .

	 Hence the solution is xe
Pdyò 	= 	 Qe dy CPdy∫ +∫  

	 That is, x
y
1

2









 	= 	 y e

y
dy C e dy C e Cy y y2

2

1− − −







 + = + = − +∫ ∫  

	 or  x 	= 	 − +−y e Cyy2 2  is the required solution.

EXERCISE 10.7
Solve the following Linear differential equations:

	 1.	 cos sinx dy
dx

y x+ =1	 2.	 1 12−( ) − =x dy
dx

xy

	 3.	 dy
dx

y
x

x+ = sin 	 4.	 x dy
dx

xy x2 21 2 4+( ) + = +

	 5.	 2 10 03x y dy ydx−( ) + = 	 6.	 x x dy
dx

x x x y xsin cos sin sin+ +( ) =

	 7.	 y e dx
dy

xx−( ) + − =
−sin 1

1 02 	 8.	 dy
dx

y
x x

x+
−( )

= −
1

1

	 9.	 1 02 3+ +( ) + +( ) =x xy dy
dx

y y 	 10.	 dy
dx

y
x x

x
x

+ =
log

sin

log

2

	 11.	 x a dy
dx

y x a+( ) − = +( )2
4 	 12.	 dy

dx
x
x

x
x
y=

+
−

+
sin2

3

2

31

3

1

	 13.	 x dy
dx

y x x+ = log 	 14.	 x dy
dx

y x x+ − =2 02 log

	 15.	 dy
dx

y
x x

+ =
3 1

2
 , given that y = 2  when x =1
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10.8 Applications of First Order Ordinary Differential Equations
	 The subject of differential equations has vast applications in solving real world problems. The 
solutions of the differential equations are used to predict the behaviors of the system at a future time, 
or at an unknown location. In several problems, the rate at which a quantity changes is a given 
function of the quantity and /or the time. The objective is to find the quantity itself. If x  denotes the 

amount of the quantity present at time t , then the instantaneous rate at which the quantity changes at 

time t  is dx
dt
. This leads to a differential equation of the form dx

dt
f x t= ( , ) . In this section we shall 

consider this type of problems only. Further, by rate, we mean the instantaneous rate only.

10.8.1 Population growth
	 Now, we consider the growth of a population (for example, human, an animal, or a bacteria 
colony) as a function of time t .
	 Let x t( )  be the size of the population at any time t . Although x t( )  is integer-valued, we 

approximate x t( )  as a differentiable function and techniques of differential equation can be applied 

to determine x t( ) . Assume that population grows at a rate directly proportional to the amount of 

population present at that time. Then, we obtain

	
dx
dt

kx= , where k  is the constant of proportionality .	 … (1)

	 Here k > 0 , since the population always increases.
	 The solution of the differential equation is x t Cekt( ) = , where C  is a constant of integration. The 

values of C  and k  are determined with the help of initial conditions. Thus, the population increases 

exponentially with time. This law of population growth is called Malthusian law.

Example 10.27
	 The growth of a population is proportional to the number present. If the population of a colony 
doubles in 50 years, in how many years will the population become triple?
Solution
	 Let x t( ) be the population at time t . Then dx

dt
kx= .

	 By separating the variables, we obtain   dx
x

kdt= .

	 Integrating on both sides, we get, log logx kt C= +    or   x Cekt= , where C is an arbitrary 

constant.
	 Let x0 be the population when t = 0  and obtain C x= 0 .

	 Thus, we get x x ekt= 0 .

	 Now x x= 2 0 , when t = 50  and thus, k =
1

50
2log .

	 Hence, x x
t

= 0
502  is the population at any time t.
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	 Assume that the population is tripled in t1  years.

	 That is, x x= 3 0 , when t t= 1 .

	 Thus, t1 50
3

2
=











log

log
.Therefore, the population is tripled in 50

3

2

log

log









  years.

10.8.2. Radioactive decay
	 The nucleus of an atom consists of combinations of protons and neutrons. Many of these 
combinations of protons and neutrons are unstable, that is the atoms decay or transmute into the 
atoms of another substance. Such nuclei are said to be radioactive.

	 It is assumed that the rate d
dt
A  at which the nuclei of a substance decays is proportional to the 

amount A( )t  of the substance remaining at time t.

	 Thus, the required differential equation is d
dt
A A∝     or  d

dt
kA A= …(2), where k is the constant 

of proportionality. Here k < 0 , since decay occurs.
Remarks
	 From equations (1) and (2), we see that the differential equations are the same, but the difference 
is only in the interpretations of the symbols and the constants of proportionality. For growth as we 
expect in (1), k > 0  and in the case of (2) for decay, k < 0 .
A single differential equation can serve as a mathematical model for many different phenomena.

Example 10.28
	 A radioactive isotope has an initial mass 200mg , which two years later is 50mg . Find the 
expression for the amount of the isotope remaining at any time. What is its half-life? (half-life means 
the time taken for the radioactivity of a specified isotope to fall to half its original value).
Solution
	 Let A   be the mass of the isotope remaining after t  years, and let −k  be the constant of 

proportionality, where k > 0 . Then the rate of decomposition is modeled by   d
dt

kA A= − , where the 

minus sign indicates that the mass is decreasing. It is a separable equation. Separating the variables, 

we get d kdtA
A

= −

	 Integrating on both sides, we get log logA = − +kt C   or  A Ce kt= − .

	 Given that the initial mass is 200mg. That is, A = 200  when t = 0   and thus, C = 200 .
	 Thus, we get A = −200e kt .
	 Also, A =150when t = 2  and therefore, k = 








1

2

4

3
log .

	 Hence,A( )
log

t e
t

=
− 








200 2

4

3  is the mass of isotope remaining after t years.
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	 The half-life th   is the time corresponding to A =100mg .

	 Thus, th =

















2
1

2

3

4

log

log

.

10.8.3. Newton’s Law of cooling/warming
	 Consider pouring a 150°  cup of coffee and kept it on the table in an 80°C  room. 

What happens to the temperature of the coffee? We observe that the cup of coffee 
will cool off until it reaches the room temperature.

	 	Now consider taking a 35°  glass of cold water from the 

refrigerator and kept it on the table in an 80°C  room. What 

happens to the temperature of the cold water? Similarly, we can observe the water 
will warm up until it reaches room temperature.
	 According to Newton’s law of cooling or warming, the rate at which the 
temperature of a body changes is proportional to the difference between the 
temperature of the body and the temperature of the surrounding medium the so-called ambient 
temperature. If T t( )  represents the temperature of a body at time t , Tm  the temperature of the 

surrounding medium, and dT
dt

the rate at which the temperature of the body changes, then Newton’s 

law of cooling(or warming) is dT
dt

T Tm∝ − or dT
dt

k T Tm= −( ) , where k is constant of proportionality. 

In either case, cooling or warming, if Tm  is constant, it stands to reason that k < 0 .

Example 10.29
	 In a murder investigation, a corpse was found by a detective at exactly 8 p.m. Being alert, the 
detective also measured the body temperature and found it to be 70oF. Two hours later, the detective 
measured the body temperature again and found it to be 60oF. If the room temperature is 50oF, and 
assuming that the body temperature of the person before death was 98.6oF, at what time did the 
murder occur?

	
log . . ; log . .2 43 0 88789 0 5 0 69315( ) = ( ) = − 

Solution

	 Let T  be the temperature of the body at any time t  and with time 0  taken to be 8 p.m.

	 By Newton’s law of cooling, dT
dt

k T= −( )50 or dT
T

dt
−

=
50

.

	 Integrating on both sides, we get log log50− = +T kt C    or   50− =T Cekt .

	 When t T= =0 70, , and so  C = −20

	 When t T= =2 60, , we have − = −10 20 2ek .

	 Thus, k = 







1

2

1

2
log .
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	 Hence, the solution is 50 20

1

2

1

2− = −








T e
t log

or     T
t

= + 





50 20

1

2

2

	 Now, we would like to find the value of t,  for which T t( ) .= 98 6 , and t =



































≈ −2

48 6

20

1

2

2 56

log
.

log

.

	 It appears that the person was murdered at about 5.30 p.m.

10.8.4  Mixture problems
	 Mixing problems occur quite frequently in chemical industry. Now we explain 

how to solve the basic model involving a single tank.

	 A substance S  is allowed to flow into a certain mixture in a container at a 
constant rate, and the mixture is kept uniform by stirring. Further, in one such 
situation, this uniform mixture simultaneously flows out of the container at 
another rate. Now we seek to determine the quantity of the substance S  
present in the mixture at time t .

	 Letting x  to denote the amount of S  present at time t  and the derivative dx
dt
to denote the rate 

of change of x with respect to t . If IN denotes the rate at which S enters the mixture and OUT denotes 

the rate at which it leaves, then we have the equation dx
dt

= −IN OUT

Example 10.30
	 A tank contains 1000 litres of water in which 100 grams of salt is dissolved. Brine (Brine is a 
high-concentration solution of salt (usually sodium chloride) in water) runs in a rate of 10 litres per 
minute, and each litre contains 5grams of dissolved salt. The mixture of the tank is kept uniform by 
stirring. Brine runs out at 10 litres per minute. Find the amount of salt at any time t .

Solution

	 Let x t( ) denote the amount of salt in the tank at time t . Its rate of change is 

dx
dt

= −in flow rate out flow rate

	 Now, 5 grams times 10 litres gives an inflow of 50 grams of salt. Also, the out flow of brine is 10 
litres per minute. This is 10 1000 0 01/ .= of the total brine content in the tank. Hence, the outflow of 
salt is 0.01 times x t( ) , that is 0 01. ( )x t .

	 Thus the differential equation for the model is dx
dt

x x= − = − −( )50 0 01 0 01 5000. .

	 This can be written as dx
x

dt
−

= −
5000

0 01( . )

	 Integrating  both sides, we obtain log . logx t C− = − +5000 0 01

input

output

Fig. 10.2
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	 or x Ce t− = −5000 0 01. or x Ce t= + −5000 0 01.

	 Initially,  when t x= =0 100, , so 100 5000= +C .Thus, C = −4900 .

	 Hence, the amount of the salt in the tank at time t is x e t= − −5000 4900 0 01. .

EXERCISE 10.8
	 1.	 The rate of increase in the number of bacteria in a certain bacteria culture is proportional to 

the number present. Given that the number triples in 5 hours, find how many bacteria will be 
present after 10 hours? 

	 2.	 Find the population of a city at any time t, given that the rate of increase of population is 
proportional to the population at that instant and that in a period of 40 years the population 
increased from 3,00,000 to 4,00,000. 

	 3.	 The equation of  electromotive force for an electric circuit containing resistance and self-

inductance is E Ri L di
dt

= +  , where E is the electromotive force is given to the circuit, R the 

resistance and L, the coefficient of induction. Find the current i at time t when E = 0.
	 4.	 The engine of a motor boat moving at 10 m s/  is shut off. Given that the retardation at any 

subsequent time (after shutting off the engine) equal to the velocity at that time. Find the 
velocity after 2 seconds of switching off the engine.

	 5.	 Suppose a person deposits 10,000 Indian rupees in a bank account at the rate of 5% per 
annum compounded continuously. How much money will be in his bank account 18 months 
later? 

	 6.	 Assume that the rate at which radioactive nuclei decay is proportional to  the number of such 
nuclei that are present in a given sample. In a certain sample 10% of the original number of 
radioactive nuclei have undergone disintegration in a period of 100 years.  What percentage 
of the original radioactive nuclei will remain after 1000 years? 

	 7.	 Water at temperature 100C  cools in 10 minutes to 80C in a room temperature of 25C . 
Find 

	 	 	 (i)	The temperature of water after 20 minutes
	 	 	 (ii)	The time when the temperature is 40C

				    log . ; log .e e
11

15
0 3101 5 1 6094= − =





	 8.	 At 10.00 A.M. a woman took a cup of hot instant coffee from her microwave oven and 
placed     it on a nearby Kitchen counter to cool.  At this instant the temperature of the coffee 
was 180F ,   and 10 minutes later it was 160F . Assume that constant temperature of the 
kitchen was 70F .

	 	 	 (i)	What was the temperature of the coffee at 10.15A.M.?
	 	 	 (ii)	The woman likes to drink coffee when its temperature is between 130F and 140F . 

between what times should she have drunk the coffee?
	 9.	 A pot of boiling water at 100C  is removed from a stove at time t = 0  and left to cool in the 

kitchen. After 5 minutes, the water temperature has decreased to 80C , and another 5 minutes 

later it has dropped to 65C . Determine the temperature of the kitchen.
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	 10.	 A tank initially contains 50 litres of pure water. Starting at time t = 0  a brine containing with 
2 grams of dissolved salt per litre flows into the tank at the rate of 3 litres per minute. The 
mixture is kept uniform by stirring and the well-stirred mixture simultaneously flows out of 
the tank at the same rate. Find the amount of salt present in the tank at any time   t > 0 .

EXERCISE 10.9

Choose the correct or the most suitable answer from the given four alternatives :

	 1.	 The order and degree of the differential equation d y
dx

dy
dx

x
2

2

1 3

1 4 0+ 





 + =

/

/   

are respectively
	 	 (1) 2 3, 	 (2)   3 3, 	 (3)    2 6, 	 (4)   2 4,

	 2.	 The differential equation representing the family of curves y x B= +A cos( ),  where A and B 
are parameters, is

		  (1)   d y
dx

y
2

2
0− = 	 (2)   d y

dx
y

2

2
0+ =

	
(3)    d y

dx

2

2
0=

	
(4)    d x

dy

2

2
0=

	 3.	 The order and degree of the differential equation sin cosx dx dy x dx dy+( ) = −( )  is

		  (1)   1 2, 	 (2)     2 2, 	 (3)   1 1, 	 (4)    2 1,

	 4.	 The order of the differential equation of all circles with centre at   h k,( )  and radius ‘a’ is
		  (1)   2	 (2)   3	 (3)   4	 (4)   1
	 5.	 The differential equation of the family of curves y e ex x= + −A B ,  where A and B are arbitrary 

constants is

		  (1)   d y
dx

y
2

2
0+ = 	 (2)    d y

dx
y

2

2
0− = 	 (3)    dy

dx
y+ = 0 	 (4)    dy

dx
y− = 0

	 6.	 The general solution of the differential equation dy
dx

y
x

=  is

		  (1)   xy k= 	 (2)   y k x= log 	 (3) y kx= 	 (4)     log y kx=

	 7.	 The solution of the differential equation 2 3x dy
dx

y− =  represents

		  (1)  straight lines	 (2)   circles	 (3)  parabola	 (4)   ellipse

	 8.	 The solution of dy
dx

p x y+ =( ) 0   is

	 	 (1)     y ce pdx
= ∫ 	 (2)     y ce pdx

= ∫− 	 (3)    x ce pdy
= ∫− 	 (4)    x ce pdy

= ∫

	 9.	 The integrating factor of the differential equation   dy
dx

y y
+ =

+1
λ

  is

		  (1)    x
eλ

	 (2)     e
x

λ

	 (3)   λex 	 (4)    ex
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	 10.	 The integrating factor of the differential equation   dy
dx

P x y Q x+ =( ) ( )   is x , then P x( )

		  (1)  x	 (2)    x2

2
	 (3)     1

x
	 (4)    1

2x

	 11.	 The degree of the differential equation y x dy
dx

dy
dx

dy
dx

( ) ....= + +
⋅






 +

⋅ ⋅






 +1

1

1 2

1

1 2 3

2 3

  is

		  (1)   2	 (2)      3	 (3)   1	 (4)    4

	 12.	 If p and q are the order and degree of the differential equation y dy
dx

x d y
dx

xy x+








 + =3

2

2
cos ,   

when
	 	 (1) p q< 	 (2) p q= 	 (3) p q>     (4) p exists and q does not exist

	 13.	 The solution of the differential equation   dy
dx x

+
−

=
1

1
0

2
  is

		  (1)    y x c+ =−sin 1 	 (2)    x y+ =−sin 1 0 	 (3)   y x C2 12+ =−sin 	(4)   x y2 12 0+ =−sin

	 14.	 The solution of the differential equation dy
dx

xy= 2  is

		  (1)   y Cex=
2

	 (2)    y x C= +2 2 	 (3)    y Ce Cx= +− 2

	 (4)    y x C= +2

	 15.	 The general solution of the differential equation   log
dy
dx

x y





 = +   is

		  (1)    e e Cx y+ = 	 (2)    e e Cx y+ =− 	 (3)   e e Cx y− + = 	 (4)   e e Cx y− −+ =

	 16.	 The solution of dy
dx

y x= −2   is

		  (1)     2 2x y C+ = 	 (2)     2 2x y C− = 	 (3)   
1

2

1

2x y C− = 	 (4)    x y C+ =

	 17.	 The solution of the differential equation    dy
dx

y
x

y
x
y
x

= +

















φ

φ '
  is

		  (1)      x y
x

kφ 





 = 	 (2)   φ y

x
kx






 = 	 (3)     y y

x
kφ 






 = 	 (4)   φ y

x
ky






 =

	 18.	 If sin x  is the integrating factor of the linear differential equation   dy
dx

Py Q+ = , then P is 

		  (1)    logsin x 	 (2)   cos x 	 (3)    tan x 	 (4)    cot x

	 19.	 The number of arbitrary constants in the general solutions of order n  and n +1are respectively
	 	 (1)    n n−1, 	 (2)    n n, +1 	 (3)    n n+ +1 2, 	 (4)    n n+1,

	 20.	 The number of arbitrary constants in the particular solution of a differential equation of third 
order is

	 	 (1)    3	 (2)   2	 (3)   1	 (4)   0
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	 21.	 Integrating factor of the differential equation   dy
dx

x y
x

=
+ +
+

1
1

 is

	 	 (1)      1
1x +
	 (2)     x +1	 (3)    1

1x +
	 (4)    x +1

	 22.	 The population P in any year t is such that the rate of increase in the population is proportional 
to the population. Then

	 	 (1)   P Cekt= 	 (2)   P Ce kt= − 	 (3)   P Ckt= 	 (4)   P C=

	 23.	 P is the amount of certain substance left in after time t. If the rate of evaporation of the 
substance is proportional to the amount remaining, then 

	 	 (1)    P Cekt= 	 (2)   P Ce kt= − 	 (3)   P Ckt= 	 (4)   Pt C=

	 24.	 If the solution of the differential equation dy
dx

ax
y f

=
+
+

3

2
 represents a circle, then the value of 

a is
	 	 (1)   2	 (2)    −2 	 (3)     1	 (4)   −1

	 25.	 The slope at any point of a curve y = f (x) is given by 
dy
dx

x= 3x2 and it passes through (-1,1). 
Then the equation of the curve is

	 	 (1)  y = x3 + 2	 (2)  y = 3x2 + 4	 (3)  y = 3x3 + 4	 (4)  y = x3 + 5

SUMMARY
	 1.	 A differential equation is any equation which contains at least one derivative of an unknown 

function, either ordinary derivative or partial derivative.
	 2.	 The  order  of a differential equation is the highest derivative present in the differential 

equation.
	 3.	 If a differential equation is expressible in a polynomial form, then the integral power of the 

highest order derivative appears is called the degree of the differential equation
	 4.	 If a differential equation is not expressible to polynomial equation form having the highest order 

derivative as the leading term then that the degree of the differential equation is not defined.
	 5.	 If a differential equation contains only ordinary derivatives of one or more functions with respect 

to a single independent variable, it is said to be an ordinary differential equation (ODE). 
	 6.	 An equation involving only partial derivatives of one or more functions of two or more 

independent variables is called a partial differential equation (PDE).
	 7.	 The result of eliminating one arbitrary constant yields a first order differential equation and that 

of eliminating two arbitrary constants leads to a second order differential equation and so on.
	 8.	 A solution of a differential equation is an expression for the dependent variable in terms of 

the independent variable(s) which satisfies the differential equation.
	 9.	 The solution which contains as many arbitrary constants as the order of the differential 

equation is called the general solution
	 10.	 If we give particular values to the arbitrary constants in the general solution of differential 

equation, the resulting solution is called a Particular Solution.
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11. An equation of the form f x g y dx f x g y dy1 1 2 2 0( ) ( ) ( ) ( )+ =  is called an equation with variable 
separable or simply a separable equation.

12. A function f x y( , )  is said to be a homogeneous function of degree n  in the variables x
and y  if, f tx ty t f x yn( , ) ( , )= for some n ∈  for all suitably restricted x y,  and t .  This is 
known as Euler’s homogeneity.

13. If f x y( , )  is a homogeneous function of degree zero, then there exists a function g  such that

f x y( , )  is always expressed in the form g y
x






.

14. An ordinary differential equation is said to be   in homogeneous form, if the differential

equation is written as dy
dx

g y
x

= 




.

15. The differential equation M x y dx N x y dy( , ) ( , )+ = 0  [in differential form] is said to be
homogeneous if M  and N  are homogeneous functions of the same degree.

16. A first order differential equation of the form  dy
dx

Py+  =  Q .
where P  and Q  are functions of x  only. Here no product of y  and its derivative dy

dx
 occurs

and the dependent variable y  and its derivative with respect to independent variable x  occur
only in the first degree.

The solution of the given differential equation (1) is given by ye Pdx∫ = Qe dx CPdx∫ +∫ .

Here e Pdx∫  is known as the integrating factor (I.F.)

17. A first order differential equation of the form dx
dy

Px Q+ = , where P  and Q  are

functions of y only. Here no product of x  and its derivative dx
dy

 occurs and the dependent

variable x  and its derivative with respect to independent variable y  occur only in the first

degree.In this case, the solution is given by xe Qe dy CPdy Pdy∫ = ∫ +∫ .

18. If x  denotes the amount of the quantity present at time t , then the instantaneous rate at

which the quantity changes at time t  is dx
dt
.

This leads to a differential equation of the form dx
dt

f x t= ( , ) .
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Probability theory is nothing but common sense reduced to calculation
		       -Laplace

Chapter

11 Probability Distributions

Laplace
(1749-1827)

179

The history of random variables and how they evolved into  mapping 
from sample space to real numbers was a subject of interest. The modern 
interpretation certainly occurred after the invention of sets and maps 
(1900), but as Eremenko says, random variables were used much earlier. 
Mathematicians felt the need to interpret random variables as maps. In 1812, 
Laplace published his book on Theory analytique des probabilities in which 
he laid down many fundamental results in statistics. The first half of this 
treatise was concerned with probability methods and problems and the second 
half with statistical applications.

Learning Objectives

	 Upon completion of this chapter, students will be able to 

	 •	 define a random variable, discrete and continuous random variables

	 •	 define probability mass (density) function 

	 •	 determine probability mass (density) function from cumulative distribution function

	 •	 obtain cumulative distribution function from probability mass (density) function

	 •	 calculate mean and variance for random variable

	 •	 identify and apply Bernoulli and binomial distributions.

11.1 Introduction
	 The concept of a sample space that completely describes the possible outcomes of a random 
experiment has been developed in volume 2 of I year higher secondary course.
	 In this chapter, we learn about a function, called random variable defined on the sample space of 
a random experiment and its probability distribution. 

11.2 Random Variable
 	 The outcome from a random experiment is not always a simple thing to represent in notion.  In 
many random experiments that we have considered, the sample space S has been a description of 
possible outcomes. That is the outcome of an experiment, or the points in the sample space S , need 
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not be numbers. For example in the random experiment of tossing a coin, the outcomes are H (head) 
or T (tail). It is necessary to deal with numerical values, in some situation, for outcomes of random 
experiment. Therefore, we assign a number to each outcome of the experiment say 1to head and 0 to 
tail. Such an assignment of numerical values to the elements in S  is called a random variable. A 
random variable is a function. Thus, a random variable is: 

Definition 11.1 

	 A random variable X  is a function defined on a sample space S  into the  real numbers  such 
that the inverse image of points or subset or interval of   is an event in S ,  for which probability 
is assigned.

	 We use the capital letters of the alphabet, such as X, Y and Z  to represent the random variables and 
the small letters, such as x, y and z  to represent the possible values of the random variables.
	 Suppose S = { }w w w1 2 3, , ,  is the sample space of a random experiment and   denotes the real line. 

Then the random variable X is a real valued function defined on S  and is denoted by X S: →  . If ω is a 
sample point in S , then X ( )ω is a real number.

	 The range set is the collection of X ( )ω such that ��S .  

That is the range set denoted by Rx is Rx X S= ( ) ∈{ }w w/ .

	 The following figure shows the mapping of some 
sample points ωi or events of the Sample space S  on 
the real line ℝ.
		  For instance, if x is a possible value of X  for  
ω11, ω12, ω13,...ω1kω ω ω ω11 12 13 1, , , , k S∈  then ω ω ω ω11 12 13 1, , , k{ }ω11, ω12, ω13,...ω1k ω ω ω ω11 12 13 1, , , k{ } is 
called inverse image of x .
	 That is X x k

− = { }1

11 12 13 1( ) , , ,ω ω ω ωω ω ω ω11 12 13 1, , , k{ }ω11, ω12, ω13,...ω1k ω ω ω ω11 12 13 1, , , k{ } is an event in S

 Illustration 11.1
	 Suppose a coin is tossed once. The sample space consists of two sample points H  (head) and T
(tail). 
	 That is S T H� � �,

	 Let X S: →   be the number of heads

	 Then X T� � � 0 , and   X H� � �1.
	 Thus X  is a random variable that takes on the values 0 and 1. If X ( )ω denotes the number of 
heads, then

X ( )�
�
�

�
�
�
�

0

1

for  =Tail

for  = Head
 

Example 11.1
	 Suppose two coins are tossed once. If X  denotes the number of tails, (i) write down the sample 
space (ii) find the inverse image of 1 (iii) the values of the random variable and number of elements 
in its inverse images.
Solution
	 (i)	The sample space S  �� ��� �H T H T, ,

iω rω

 i( )X ω ( )rX ω

S

X

Sample space

Real numbers line

x



ω ω ω ω11 12 13 1, , , k

Fig. 11.1
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		  That is S TT TH HT HH�� �, , ,

	 (ii)	 Let X S: →  be the number of tails

		  Then X TT� � 	= 	 2 	 (2 Tails)

		  X TH� � 	= 	1	  (1 Tail)

		  X HT� � 	= 	1	 (1 Tail)

		  and    X HH� � 	= 	0 	 (0 Tails).

	 Then X  is a random variable that takes on the values 0, 1 and 2. 
	 Let X ( )ω denotes the number of tails, this gives

X
TT
HT TH
HH

( )

if

if ,

if

�
�
�
�

�
�
�
�

�

�
�

�
�

2

1

0

		 The inverse images of 1 is TH HT,� � . That is X TH HT� � �� � � � �1 1 , .

	 (iii)	Number of elements in inverse images are shown in the table.

Values of the Random Variable 0 1 2 Total

Number of elements in inverse image 1 2 1 4

Example 11.2
	 Suppose a pair of unbiased dice is rolled once. If X denotes the total score of two dice, write down 
(i) the sample space (ii) the values taken by the random variable X, (iii) the inverse image of 10, and 
(iv) the number of elements in inverse image of X.

Solution
	 (i)	 The sample space 
		  S = 1 2 3 4 5 6 1 2 3 4 5 6, , , , , , , , , ,� ��� � , 

		  consists of 36 ordered pairs � �,� �  where α
and β  can take  any integer value between 1 
a n d 6 as shown.  X is assigned to each point
a b,( )  the sum of the numbers on the dice . 

		  That is X � � � �,� � � � . 
		  Therefore 
			   X 1 1,� � 	= 	1 1 2� �

			   X 1 2,� � 	= 	 X 2 1 3,� � �
			   X 1 3,� � 	= 	 X X2 2 3 1 4, ,� � � � � �
			   X 1 4,� � 	= 	 X X X2 3 3 2 4 1 5, , ,� � � � � � � � �
			   X 1 5,� � 	= 	 X X X X2 4 3 3 4 2 5 1 6, , , ,� � � � � � � � � � � �
			   X 1 6,� � 	= 	 X X X X X2 5 3 4 4 3 5 2 6 1 7, , , , ,� � � � � � � � � � � � � � �

TTTH HTHH

Sample space

Real line
0 1 2

S

X



A mapping X (.) from S to 

Fig. 11.2

S �

� � � � � �
� �

� � � �
� �

� �
� �

1 1 1 2 1 5

2 1 2 4

1 3 1 6

2 2

1 4

2 3

, , , , , , , ,

, , , ,

, ,

, ,

,

, �� �
� � � �

� �
� � � �

� �
� �� �

� �

, , ,

, , , , , , ,

,

,

,,

,

, ,

,

2 5

3 1 3 4

2 6

3 53 2

4 1

3 3 3 6

4 22 4 5

5 1 5 4

4 3 4 6

5 2 5 5

4 4

5 3

� � � �
� � � �

� � � �
� � � �

� �
� �

, , , , , ,

, , , , , , ,

,

,

,

, , 55 6

6 56 1 6 4 6 66 2 6 3

,

,, , , , , , , ,, ,

� �
� �� � � � � �

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

� � � � ��

�
�
�
�
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			   X 2 6,� � 	= 	 X X X X3 5 4 4 5 3 6 2 8, , , ,� � � � � � � � � � � �
			   X 3 6,� � 	= 	 X X X4 5 5 4 6 3 9, , ,� � � � � � � � �
			   X 4 6,� � 	= 	 X X5 5 6 4 10, ,� � � � � �
			   X 5 6,� � 	= 	 6 5 11,� � �
			   X 6 6,� � 	= 	12 .

	  (ii)	Then the random variable X  takes on the values 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.
	  (iii)	The inverse images of 10 is 4 6,� �� , 5 5,� � , 6 4,� �� .

	  (iv)	The number of inverse images are given below

Values of the random variable 2 3 4 5 6 7 8 9 10 11 12 Total
Number of elements in inverse image 1 2 3 4 5 6 5 4 3 2 1 36

Example 11.3
	 An urn contains 2 white balls and 3 red balls.  A sample of 3 balls are chosen at random from the 
urn. If X  denotes the number of red balls chosen, find the values taken by the random variable X  
and its number of inverse images.
Solution
      	  Let us denote white and red balls asw w r r r1 2 1 2 3, , , , and .

	 The sample space consists of 5
3

c = 10 different samples of size 3.

	 That is S w w r w w r w w r w r r w r r w r r w r r w r r� 1 2 1 1 2 2 1 2 3 1 1 2 1 2 3 1 1 3 2 1 2 2 2 3, , , , , , , , ww rr r r r2 1 3 1 2 3,� � .

	 The random variable X takes on the values 1, 2, and 3.

A mapping X (.) from S to real numbers
Fig. 11.3

Values of the Random Variable  X 1 2 3 Total

Number of elements in inverse images 3 6 1 10

Remark
	 If X denotes the number of white balls, then X takes on the values 0,1, and 2 and the elements in 
inverse images are

X = 1 X = 1X = 1 X = 3X = 2 X = 2X = 2 X = 2 X = 2X = 2

S

1w 2w

1r
2w 3r

2r
2w

1r
2r1w

1r
2r

1w
2r

3r 1w 1r

3r
1r2w

3r
2w1w

2r
2w1w

3r 1r
2r3r

Real line

Sample space S

1 2 3
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Values of the Random Variable  X 0 1 2 Total

Number of elements in inverse images 1 6 3 10
Illustration 11.2
	 A batch of 150 students is taken in 4 buses to an excursion. There are 38 students in the first bus, 
36 in second bus, 32 in the third bus, and the remaining students in the fourth bus. When the buses 
arrive at the destination, one of the 150 students is randomly chosen. 
	 Suppose that X  denotes the number of students on the bus of that randomly chosen student. Then 
X  takes on the values 32, 36, 38, and 44.
Example 11. 4
	 Two balls are chosen randomly from an urn containing 6 white and 4 black balls.      Suppose that 
we win ` 30 for each black ball selected and we lose ` 20 for each white ball selected. If X  denotes 
the winning amount, then find the values of X  and number of points in its inverse images.
Solution
	 The possible events of selection are (i) both balls may be black, or (ii) one white and one black or 
(iii) both are white. Therefore X is a random variable that take the values,  
			   X  (both are black balls)	 = 	` 2(30) =  ` 60
			   X  (one black and one white ball)	 = 	` 30−  ` 20=  ` 10
			   X  (both are white balls)	 = 	` 2(−  20)� �  ` 40
		  Therefore X  takes on the values 60,10, and −  40.
	 Note :  The inverse image of 40 is b b b b b b b b b b b b1 2 1 3 1 4 2 3 2 4 3 4, , , , , .� �

Values of the Random Variable  X 60 10 – 40 Total

Number of elements in inverse images 6 24 15 45

Illustration 11.3
	 A coin is tossed until head occurs.  
	 The sample space is S H TH TTH TTTH�� �, , , , .                    
	 Suppose X denotes the number of times the coin is tossed until head occur.                     
	 Then the random variable X  takes on the values 1 2 3, , ,

Illustration 11.4
	 Suppose N  is the number of customers in the queue that arrive at a service desk during a time 
period, then the sample space should be the set of non-negative integers. That is  S ={ , , , , }0 1 2 3   
and  N  is a random variable that takes on the values  0 1 2 3, , , ,  

Illustration 11.5
	 If an experiment consists in observing the lifetime of an electrical bulb, then a sample space would 
be the life time of electrical bulb. Therefore the sample space is  S � �[ , )0 . Suppose X  denotes the 
lifetime of the bulb, then X  is a random variable that takes on the values in 0,�� � . 

Illustration 11.6
	 Let D  be a disk of radius r . Suppose a point is chosen at random in D . Let X  denote the 
distance of the point from the centre. Then the sample space S D=  and X  is the random variable that 
takes any number from 0  to r . That is X r S� �� ��� � �0, , for .

(6
0)(4

2) (6
1)(4

1) (6
2)(4

0) (10
2)
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EXERCISE 11.1
	 1.	Suppose X is the number of tails occurred when three fair coins are tossed once simultaneously. 

Find the values of the random variable X and number of points in its inverse images.
	 2.	 In a pack of 52 playing cards, two cards are drawn at random simultaneously. If the number of 

black cards drawn is a random variable, find the values of the random variable and number of 
points in its inverse images.

	 3.	An urn contains 5 mangoes and 4 apples. Three fruits are taken at random. If the number of 
apples taken is a random variable, then find the values of the random variable and number of 
points in its inverse images.

	 4.	Two balls are chosen randomly from an urn containing 6 red and 8 black balls. Suppose that 
we win ` 15 for each red ball selected and we lose ` 10 for each black ball selected. X denotes 
the winning amount, then find the values of X  and number of points in its inverse images. 

	 5.	A six sided die is marked ‘2’ on one face, ‘3’ on two of its faces, and ‘4’ on remaining three 
faces. The die is thrown twice. If X  denotes the total score in two throws, find the values of 
the random variable and number of points in its inverse images.

11.3 Types of Random Variable
	 In this chapter we shall restrict our study to two types of random variables, one is a random 
variable assuming at most a countable number of values and another is a random variable assuming 
the values continuously. That is
	 (i)	 Discrete Random variable (for counting the quantity)
	 (ii)	 Continuous Random variable (for measuring the quantity)

11.3.1 Discrete random variables
	 In this section we discuss 
	 (i)	 Discrete random variables
	 (ii)	Probability mass function 
	 (iii)	Cumulative distribution function. 
	 (iv)	Obtaining cumulative distribution function from probability mass function.
	 (v)	Obtaining probability mass function from cumulative distribution function.
	 If the range set of the random variables is discrete set of numbers then the inverse image of 
random variable is either finite or countably infinite. Such a random variable is called discrete random 
variable. A random variable defined on a discrete sample space is discrete. 

Definition 11.2 (Discrete Random Variable)

	 A random variable X  is defined on a sample space S  into the real numbers   is called 

discrete random variable if the range of X  is countable, that is, it can assume only a finite or 

countably infinite number of values, where every value in the set S has positive probability with 

total one.

Remark
	 It is also possible to define a discrete random variable on continuous sample space. For instance,

	 (i)	 for a continuous sample space S = [ , ]0 1 , the random variable defined by X S( ) ,� �� �10 for all 

is a discrete random variable.
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	 (ii)	 for a continuous sample space S = [ , ]0 20 , the random variable defined by 

X ( )
[ , )

[ , ]
�

�
�

�
�
�

�
�
�

1 0 10

2 10 20

 for 

 for 
  is a discrete random variable.

11.3.2 Probability Mass Function
	 The probability that a discrete random variable X takes on a particular value x, that isP X x( )= , 
is frequently denoted by f x( ) or p x( )  . The function f x( ) is typically called the probability mass 
function, although some authors also refer to it as the probability function or the frequency function.  
In this chapter, when the random variable is discrete, the common terminology the probability mass 
function is used and its common abbreviation is pmf.

Definition 11.3 (Probability mass function)

	 If X is a discrete random variable with discrete values x x x xn1 2 3, , , ,    then the function 

denoted by f (.) or p(.)   and defined by 

                                f x P X x k nk k( ) ( ), , , , ,= = =for 1 2 3 

is called the probability mass function of  X

Theorem 11.1 (Without proof)
	 The function f x( ) is a probability mass function if and only if it satisfies the following 
properties for the set of real values x1, x2, x3, ... xn ....
	 (i)	 f xk( )³ 0  for k n=1 2 3, , , ,   and 	 (ii) f xk

k

( )=∑ 1

Note: 
	 (i)	The set of probabilities f x P X x k nk k( ) ( ), , , , ,� � �� �1 2 3  is also known  as 

probability distribution of discrete random variable
	 (ii)	Since the random variable is a function, it can be presented 
		  (a)  in tabular form        (b)  in graphical form and         (c) in an expression form 
Example 11.5
	 Two fair coins are tossed simultaneously (equivalent to a fair coin is tossed twice). Find the 
probability mass function for number of heads occurred.
Solution
     			  The sample space S 	= 	 H T H T, ,� ��� �  

			   That is S 	= 	 TT TH HT HH, , ,� �  

	 Let X  be the random variable denoting the number of heads. 

	 Therefore       
			   X TT� � 	= 	0 ,	 X TH� � 	= 	1,

			   X HT� � 	= 	1, and 	 X HH� � 	= 	2 .
	 Then the random variable X takes on the values 0, 1 and 2

Values of the Random Variable 0 1 2 Total
Number of elements in inverse images 1 2 1 4
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	 The probabilities are given by 

 			   f ( )0 	 = 	 P X( )= =0
1

4
,

			   f ( )1 	 = 	 P X( )= =1
1

2
 

			   and  f ( )2 	 = 	 P X( )= =2
1

4
 

	The function f x( ) satisfies the conditions

	 (i)	 f x( ) ≥ 0 ,  for  x = 0 1 2, ,

	 (ii)	 f x f x f f f
x

x

x
( ) ( ) ( ) ( ) ( )� � � �

�

�

�� 0 1 2
0

2

 

			   = 	1
4

1

2

1

4
1� � �  

	 Therefore f x( ) is a probability mass function. 

The probability mass function is given by

x 0 1 2

f x( )
1

4

1

2

1

4

(or)

Example 11.6
	 A pair of fair dice is rolled once. Find the probability 
mass function to get the number of fours.
Solution
	 Let X  be a random variable whose values x are the 
number of fours.
	 The sample space S  is given in the table.

	 It can also be written as

	 S i j� � �( , ) , where i =1 2 3 6, , ,  and j =1 2 3 6, , ,  

	 Therefore X  takes on the values of 0, 1, and 2. 

	 We observe that
	 (i)	 X = 0,  if ( , )i j  for i j≠ ≠4 4, ,

	 (ii) 	 X =1,  if 1,4 , 2,4 , 3,4 , 5,4 , 6,4� � � � � � � � � � � � � � � � � � �, , , , , , , , , ,4 1 4 2 4 3 4 5 4 6��  

	 (iii)	 X = 2,  if 4 4,� � ,
	 Therefore,

Values of the Random Variable  X 0 1 2 Total

Number of elements in inverse images 25 10 1 36

1 2

1

Probability mass function of  f(x)

f(x)

x

1-
4

1-
2

3-
4

1-
4

1-
2

0

Fig. 11.4

f x

x

x

x

( ) �

�

�

�

�

�

�
�
�

�

�
�
�

1

4
0

1

2
1

1

4
2

for

for

for

)( ) ( ) ( ) ( ) ( ( )
)( ) ( ) ( ) ( ) ( ( )
)( ) ( ) ( ) ( ) ( (
)

1, 1 , 1, 2 , 1, 3 , 1, 4 , 1, 5 , 1, 6

( ) ( ) ( ) ( ) ( (
)

)( ) ( ) ( ) ( ) ( (
)

)( ) ( ) ( ) ( ) ( (
)
)

2, 1 , 2, 2 , 2, 3 , 2, 4 , 2, 5 , 2, 6

3, 1 , 3, 2 , 3, 3 , 3, 4 , 3, 5 , 3, 6

4, 1 , 4, 2 , 4, 3 , 4, 4 , 4, 5 , 4, 6

5, 1 , 5, 2 , 5, 3 , 5, 4 , 5, 5 , 5, 6

6, 1 , 6, 2 , 6, 3 , 6, 4 , 6, 5 , 6, 6

=S { {( )4, 4
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	 The probabilities are

			   f ( )0 	= 	P X( )= =0
25

36
,

			   f ( )1 	= 	P X( )= =1
10

36
 

			   and  f ( )2 	= 	P X( )= =2
1

36
 

	 Clearly the function f x( )  satisfies the conditions

	 (i)	 f x( ) ,≥ 0  for x = 0 1 2, ,  and 

	 (ii)	 f x f x f f f
x

x

x
( ) ( ) ( ) ( ) ( )� � � � �

�

�

�� 0 1 2 1
0

2

 

		  = 	 1

4

1

2

1

4
1� � �  

The probability mass function is presented as

x 0 1 2

f x( )
25

36

10

36

1

36

(or) f x

x

x

x

( ) �

�

�

�

�

�

�
�
�

�

�
�
�

25

36
0

10

36
1

1

36
2

for 

for 

for 

11.3.3 Cumulative Distribution Function or Distribution Function
	 There are many situations to compute the probability that the observed value of a random variable 
X  will be less than or equal to some real number x . Writing F x P X x( ) � �� � for every real number 
x , we call F x( ) , the cumulative distribution function or distribution function of the random variable 

X  and its common abbreviation is cdf .

Definition 11.4: (cumulative distribution function) 

	 The cumulative distribution function F x( )  of a discrete random variable X , taking the 

values x x x1 2 3, , , such that x x x1 2 3< < < with probability mass function f xi� �  is 

                          F x P X x f x xi
x xi

( ) ,= ≤( ) = ( ) ∈
≤

∑ 

	 The distribution function of a discrete random variable is known as Discrete Distribution Function.  
Although, the probability mass function f x( )  is defined only for a set of discrete values x x x1 2 3, , , ,  
the cumulative distribution function F x( )  is defined for all real values of x∈ .   

	 We can compute the cumulative distribution function using the probability mass function

	 F x P X x f x P X xi
x x

i
x xi i

( ) � �� � � � � � �� �
� �
� �

1 2

1

Probability mass function of  f(x)

f(x)

x

y

0

1-
36

25-
36

10-
36

Fig. 11.5
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	 If X takes only a finite number of values x x x xn1 2 3, , , , where x x x xn1 2 3< < < <, ,  then the 
cumulative distribution function is given by

F x

x x
f x x x x
f x f x x x x
f x f x

( )

,

( ),

( ) ( ),

( ) ( )
�

�� � �
� �

� � �
� �

0 1

1 1 2

1 2 2 3

1 2 ff x x x x

f x f x f x x xn n

( ),

( ) ( ) ( ) ,

3 3 4

1 2

� �

� � � � � �

�

�

�
�
��

�

�
�
�
�

� �
…

	 For a discrete random variable X, the cumulative distribution function satisfies the following 
properties.

	 (i)	 0 1≤ ≤F x( ) ,  for all x∈ .

	 (ii)	 F x( )  is real valued non-decreasing function x y F x F y� �� �, ( ) ( ) .then

	 (iii)	 F x( )  is right continuous function lim .
x a

F x F a
� �

� � � � �� �
	 (iv)	 lim

x
F x F

���
� � � ��� � � 0 .

	 (v)	 lim
x

F x F
���

� � � ��� � �1 .

	 (vi)	 P x X x F x F x1 2 2 1� �� � � � � � � � .

	 (vii)	 P X x P X x F x�� � � � �� � � � � �1 1 .

	 (viii)	 P X x F x F xk k k=( ) = − −( ) ( ) .

Note
	 Some authors use left continuity in the definition of a cumulative distribution functionF x( ) , 
instead of right continuity.

11.3.4 Cumulative Distribution Function from Probability Mass function
	 Both the probability mass function and the cumulative distribution function of a discrete random 
variable X contain all the probabilistic information of X. The probability distribution of X is determined 
by either of them. In fact, the distribution  function F of a discrete random variable X can be expressed 
in terms of the probability mass function f(x) of X  and vice versa.

Example 11.7
	 If the probability mass function f x( ) of a random variable X is 

x 1 2 3 4

f x( )
1

12

5

12

5

12

1

12

	 find (i) its cumulative distribution function, hence find (ii)P X( )≤ 3  and, (iii)P X( )≥ 2

Solution
	 (i)	By definition the cumulative distribution function for discrete random variable is 

F x P X x P X xi
x xi

( ) ( ) ( )� � � �
�
�
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	 P X( )<1  =  0  for �� � �X 1.

	 F ( )1 	= 	P X P X x P X x P X P Xi
x xi

( ) ( ) ( ) ( ) ( )� � � � � � � � � � � �
� ��
� �1 1 1 0

1

12

1

12

1

 .

	 F ( )2 	= 	P X P X x P X P X P X( ) ( ) ( ) ( ) ( )� � � � � � � � �
��
�2 1 1 2

2

.

		 = 	0 1

12

5

12

1

2
� � � .

	 F ( )3 	= 	P X P X x P X P X P X P X( ) ( ) ( ) ( ) ( ) ( )� � � � � � � � � � �
��
�3 1 1 2 3

3

.

		 = 	0 1

12

5

12

5

12

11

12
� � � � .

	 F ( )4 	= 	P X P X x P X P X P X P X P X�� � � � � � � � � � � � � �
��
�4 1 1 2 3 4

4

( ) ( ) ( ) ( ) ( ) ( ) .

		 = 	0 1

12

5

12

5

12

1

12
1� � � � � .

	 Therefore the cumulative distribution function is

Fig. 11.6
	 (ii)	 P X F( ) ( )� � �3 3

11

12
.

	 (iii)	 P X P X P X F( ) ( ) ( ) ( )� � � � � � � � � � � �2 1 2 1 1 1 1 1
1

12

11

12
.

Example 11.8
	 A six sided die is marked ‘1’ on one face, ‘2’ on two of its faces, 
and ‘3’ on remaining three faces. The die is rolled twice. If X  denotes 
the total score in two throws.

	 (i)	Find the probability mass function.    

	 (ii)	Find the cumulative distribution function.

	 (iii)	Find P X( )3 6� �   (iv) FindP X( )≥ 4 .

O
1 2 3 4

x

yF(x)

Cumulative distribution function

1

12

1

2

11

12

1

1

12

1

2

11

12

1

F(x)

 0, 1

1
, 1   2

12

12

1

2

11
,

,

3   4

1 4

x

x

x

 x

�

�

���

�

�
�
� � ��

, 2            3x� ��

�
��
�
�
� � ������
�

���

F(x) =

13

3

1

2

3

32 3

Fig. 11.7
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Solution: 
	 Since X denotes the total score in two throws, it takes on the values 2, 3, 4, 5, and 6. 
	 From the Sample space S, we have

Values of the  
Random Variable 2 3 4 5 6 Total

Number of elements  
in inverse images 1 4 10 12 9 36

	 P X( )= 2 	= 	 1

36
,	 P X( )= 3 	 = 	 4

36
 

	 P X( )= 4 	= 	10

36
,	 P X( )= 5 	 = 	12

36
, and

	 P X( )= 6  	= 	 9

36
.

	 (i)	 Probability mass function is

x  2 3 4 5 6

f x( )  
1

36
 4

36
 10

36
 12

36
 9

36
 

	 (ii)	 Cumulative distribution function
		  By definition of the cumulative 

distribution function for discrete random 
variable we have

	 F x( ) 	= 	P X x P X xi
x xi

( ) ( )� � �
�
� ,

	 P X x( )<  =  0   for   �� � �X 2 .

	 F ( )2 	= 	P X P X x P X P X( ) ( ) ( ) ( )� � � � � � � � � �
��
�2 2 2 0

1

36

1

36

2

 .

	 F ( )3 	= 	P X P X x P X P X P X( ) ( ) ( ) ( ) ( )� � � � � � � � � � � � �
��
�3 2 2 3 0

1

36

4

36

5

36

3

.

	 F ( )4 	= 	P X P X x P X P X P X P X�� � � � � � � � � � � �
��
�4 2 2 3 4

4

( ) ( ) ( ) ( ) ( )

		  = 	 0
1

36

4

36

10

36

15

36
� � � �  .

	 F(5)	= 	P X P X x P X P X P X P X P X( ) ( ) ( ) ( ) ( ) ( ) ( )� � � � � � � � � � � � �
��
�5 2 2 3 4 5

5

		 = 	0 1

36

4

36

10

36

12

36

27

36
� � � � �  .

1 2 3 4 5 6

Probability mass function

O

y

x

f (x)

1

36

4

36

10

36

12

36

9

36

1

36

10

36

5

36

Fig. 11.8

Sample space S 
   II
I  1 2 2 3 3 3

1 2 3 3 4 4 4
2 3 4 4 5 5 5
2 3 4 4 5 5 5
3 4 5 5 6 6 6
3 4 5 5 6 6 6
3 4 5 5 6 6 6
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	 F ( )6 	= 	P X P X x( ) ( )� � �
��
�6

6

		 = 	P X P X P X P X P X P X( ) ( ) ( ) ( ) ( ) ( )� � � � � � � � � � �2 2 3 4 5 6

		 = 	0 1

36

4

36

10

36

12

36

9

36
1� � � � � � .

	
Therefore the cumulative distribution function is 

	

0 2

1

36
2 3

5

36
3 4

15

36
4 5

27

36
5 6

1

for

for

for

for

for

f

−∞ < <

≤ <

≤ <

≤ <

≤ <

x

x

x

x

x

oor 6 ≤ < ∞


















 x

	 (iii)	 P X( )3 6� � 	= 	 P X x P X P X P Xi
x

( ) ( ) ( ) ( )� � � � � � �
�
� 3 4 5

3

5

 

				   = 	 4

36

10

36

12

36

26

36
� � �  .

	 (iv)	 P X( )≥ 4 	= 	 P X xi
x

( )�
�

�

�
4

 

			   = 	P X P X P X( ) ( ) ( )� � � � �4 5 6

			   = 	10

36

12

36

9

36

31

36
� � �  .

11.3.5 Probability Mass Function from Cumulative Distribution Function 
	 For a discrete random variable X, the cumulative distribution function F  has jumps at each of 

the xi , and is constant between successive x si ′ . The height of the jump at xi  is f xi( ) ; in this way the 

probability at xi can be retrieved from F .

y

Fig. 11.9
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	 Suppose X  is a discrete random variable taking the values x x x1 2 3, , ,  such that x x x1 2 3< <,   

and F xi( ) is the distribution function. Then the probability mass function f xi( ) is given by

f x F x F xi i i( ) ( ) ( )� � �1 ,   i =1 2 3, , ,

Note

	 The jump of a function F x( )  at x a=  is F a F a( ) ( )+ −− .  Since F  is non-decreasing and 

continuous to the right, the jump of a cumulative distribution function F  is P X x F x F x( ) ( ) ( )� � � � .

Here the jump (because of discontinuity) acts as a probability. That is, the set of discontinuities of a 
cumulative distribution function is at most countable!

Example 11.9
	 Find the probability mass function f x( ) of the discrete random variable X  whose cumulative 
distribution function F x( )  is given by

F x

x
x
x
x
x

( )

.

.

.

�

�� � � �
� � � �
� � �

� �
� � �

�

�

�
��

�

�
�
�

0 2

0 25 2 1

0 60 1 0

0 90 0 1

1 1

	 Also find  (i) P X( )< 0  and  (ii) P X( )� �1 . 

Solution

     Since X is a discrete random variable, from the given data, X takes on the values 

	    − −2 1 0 1, , , and .

     For discrete random variable X, by definition, we have f x( ) =P X x( )=

     Therefore left hand limit of F(x) at x � �2  is F ( )− −2

		  f ( )−2 	= 	P X F F( ) ( ) . .( )� � � � � � � �� �2 2 0 25 0 0 252 .
	 Similarly for other jump points, we have

		  f ( )−1 	= 	P X F F( ) ( ) ( ) . . .� � � � � � � � �1 1 2 0 60 0 25 0 35 .

		  f ( )0 	= 	P X F F( ) ( ) ( ) . . .� � � � � � �0 0 1 0 90 0 60 0 30 ,

		  f ( )1 	= 	P X F F( ) ( ) ( ) . .� � � � � �1 1 0 1 0 90 0 10 .

       Therefore the probability mass function is

x −2 −1 0 1

f x( ) 0 25. 0 35. 0 30. 0 10.

	 The distribution function F x( )  has jumps at x �� �2 1 0, , ,  and 1. The jumps are respectively 

0 25 0 35 0 30. , . , . , and 0 1.  is shown in the figure given below. 

	 These jumps determine the probability mass function 
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Fig. 11.10

	 (i)		  P X( )< 0 	= 	 P X x P X P X( ) ( ) ( ) . . .� � � � � � � � � �
��

�

�
1

2 1 0 25 0 35 0 60 .

	 (ii)		  P X( )� �1 	= 	 P X x P X P X P X( ) ( ) ( ) ( ) . . . .= = = − + = + = = + + =
−
∑

1

1

1 0 1 0 35 0 30 0 10 0 75  

Example 11.10
     A random variable X  has the following probability mass function. 

x 1 2 3 4 5 6
f x( ) k 2k 6k 5k 6k 10k  

	 Find (i) P X( )2 6< <    	(ii) P X( )2 5� �     (iii)  P X( )£ 4    (iv) P X( )3 <

Solution
	 Since the given function is a probability mass function, the total probability is one. That is    

f x
x

( ) �� 1 .

	 From the given data    k k k k k k� � � � � �2 6 5 6 10 1

			 
30 1

1

30
k k� � �   

	 Therefore the probability mass function is

x 1 2 3 4 5 6

f(x)
1

30

2

30

6

30

5

30

6

30

10

30

	 (i)		  P X( )2 6< <  	= 	 f f f( ) ( ) ( )3 4 5
6

30

5

30

6

30

17

30
� � � � � � .

	 (ii)		  P X( )2 5� � 	= 	 f f f2 3 4
2

30

6

30

5

30

13

30
� � � � � � � � � � � � .

	 (iii)		  P X( )≤ 4 	= 	 f f f f( )1 2 3 4
1

30

2

30

6

30

5

30

14

30
� � � � � � � � � � � � � � .

	 (iv)		  P X( )3 < 	= 	 f f f( ) ( ) ( )4 5 6
5

30

6

30

10

30

21

30
� � � � � � .

2� 1� O 1 2

1

0.25

0.60

0.90

0

0.25

0.35

0.30

0.10

x

y yF(x)

2� 1� O 1 2

1

0.50

0.25
0.35

0.30

0.10

x

f (x)

1

0.50

Distribution function        

and jumps at each of ix
F(x)

Probability mass function f (x)

Jumps
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EXERCISE 11.2
	 1.	 Three fair coins are tossed simultaneously. Find the probability mass function for number of 

heads occurred.
	 2.	 A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three 

faces. The die is thrown twice. If X denotes the total score in two throws, find
			   (i)	 the probability mass function	 (ii)	the cumulative distribution function
			  (iii)	 P X( )4 10≤ <   	 (iv)	 P X( )≥ 6

	 3.	 Find the probability mass function and cumulative distribution function of number of girl 
child in families with 4 children, assuming equal probabilities for boys and girls.

	 4.	 Suppose a discrete random variable can only take the values 0, 1, and 2. 
		  The probability mass function is defined by

                             f x
x
k

x
( )

, , ,
�

�
�

�
�
�

��

2 1
0 1 2

0

for

otherwise

		  Find (i) the value of k (ii) cumulative distribution function (iii) P X( )≥ 1 .

	 5.	 The cumulative distribution function of a discrete random variable is given by

		  F x

x
x
x
x
x
x

( )

.

.

.

.

�

�� � � �
� � �

� �
� �
� �
� � �

�

�

0 1

0 15 1 0

0 35 0 1

0 60 1 2

0 85 2 3

1 3

��
�
�

�

�
�
�

       		  Find (i) the probability mass function ( ) ( ) ( ) ( )ii P X iii P X� �1 2and .

	 6.	 A random variable X has the following probability mass function. 

x  1 2 3 4 5

f x( ) k 2 2 2k 3 2k 2k 3k

Find  (i) the value of k    (ii) P X( )2 5� �        (iii) P X( )3 <  

	 7.	 The cumulative distribution function of a discrete random variable is given by

                                   F x

x

x

x

x

x

( ) =

− ∞ < <

≤ <

≤ <

≤ <

≤ <

0 0

1

2
0 1

3

5
1 2

4

5
2 3

9

10
3 4

1

for

for

for

for

for

foor 4≤ < ∞


















 x

		  Find   (i) the probability mass function    (ii) P X( )< 3   and  (iii) P X( )≥ 2 .
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11.4 Continuous Distributions
     In this section we learn

	  (i)	Continuous random variable

	 (ii)	Probability density function

	 (iii)	Distribution function (Cumulative distribution function).

	 (iv)	To determine distribution function from probability density function.

	 (v)	To determine probability density function from distribution function. 

    Sometimes a measurement such as current in a copper wire or length of lifetime of an electric 
bulb, can assume any value in an interval of real numbers. Then any precision in the measurement is 
possible. The random variable that represents this measurement is said to be a continuous random 
variable. The range of the random variable includes all values in an interval of real numbers; that is, 
the range can be thought of as a continuum of real numbers

11.4.1 The definition of continuous random variable

Definition 11.5 (Continuous Random Variable)

	 Let S  be a sample space and let a random variable X S R: →  that takes on any value in a set 
I of ℝ . Then X  is called a continuous random variable if  P X x�� � � 0 for every x  in I

11.4.2 Probability density function

Definition 11.6: (Probability density function) 

	 A non-negative real valued function f x( )  is said to be a probability 

density function if, for each possible outcome x, x a b�� �,  of a continuous 
random variable X having the property

P a X b f x dx
a

b

( ) ( )� � � �

Theorem 11.2 (Without proof)
	 A function f (.)  is a probability density function for some continuous random variable X  if 

and only if it satisfies the following properties.

	 (i)	 f x( ) ≥ 0 , for every x   and 	 (ii)	 f x dx( ) �
��

�

� 1  .

Note
	 It follows from the above definition, if X  is a continuous random variable,

	 P a X b f x dx
a

b

( ) ( ) ,� � � � which means that P X a f x dx
a

a

( ) ( )� � �� 0

	 That is probability when X  takes on any one particular value is zero. 

Fig. 11.11

( )P a X b≤ ≤

a b x

( )f x
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11.4.3 Distribution function (Cumulative distribution function)
Definition 11.7 : (Cumulative Distribution Function)
	 The  distribution function or cumulative distribution function F x( )  of a continuous random 
variable X with probability density f(x) is 

F x P X x f u du u
x

( ) ( ) ,= ≤( ) = − ∞ < < ∞
−∞
∫ .

Remark
	 (1)	 In the discrete case, f a P X a� � � �� �  is the probability that X takes the value a.

		  In the continuous case, f x� � at x a=  is not the probability that X takes the value a,          
that is f a� � � �� �P X a .  If X is continuous type,  P X a�� � � 0  for a∈ .

	 (2)	 When the random variable is continuous, the summation used in discrete is replaced by 
integration.

	 (3)	 For continuous random variable    
		  P a X b P a X b P a X b P a X b( ) ( ) ( ) ( )� � � � � � � � � � �
	 (4)	 The distribution function of a continuous random variable is known as Continuous Distribution 

Function.
	    
11.4.3.1  Properties of distribution function
	 For a continuous random variable X, the cumulative distribution function satisfies the following 
properties.
	 (i)	 0 1£ £F x( ) .
	 (ii)	 F x( )  is a real valued non-decreasing. That is, if x y< , then F x F y( ) ( )£ .

	 (iii)	 F x( )  is continuous everywhere. 

	 (iv)	 lim ( )
x

F x F
���

� ��� � � 0  and lim ( )
x
F x F

��
� ��� � �1.

	 (v)	 P X x P X x F x�� � � � �� � � � � �1 1 .

	 (vi)	 P a X b F b F a( ) ( ) ( )� � � � .

Example 11.11
	 Find the constant C  such that the function  f x

Cx x
( ) �

� ��
�
�

2 1 4

0 Otherwise

	 is a density function, and compute  (i) P X( . . )1 5 3 5< <     (ii) P X( )£ 2     (iii) P X( )3 < .
Solution
	 Since the given function is a probability density function, 

f x dx( ) �
��

�

� 1.

	 That is     	 f x dx f x dx f x dx( ) ( ) ( )� � �� ��
�

�� 1

4

4

1

1.

	 From the given information,              
1 2 3 4

21
( )

21
f x x=

x

f (x)

Area = 1

probability mass function f (x)

Fig. 11.12
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	  0 0 12

1

4

4

1

dx Cx dx dx� � �� ��
�

��

.

	
0

3
0 1

64 1

3
1 21 1

1

21

3

1

4

�
�

�
�

�

�
� � � �

��
��

�
��
� � � � �C x C C C, .

	 Therefore the probability density function is 

	

f x
x x

( ) �
� ��

�
�

��

1

21
1 4

0

2

Otherwise

	 Since f x( ) is continuous, the probability that X is equal to any particular value is zero. Therefore 

when the random variable is continuous, either or both of the signs < by ≤  and > by ≥  can be 

interchanged. Thus 

	 (i)	 P X P X P X P X( . . ) ( . . ) ( . . ) ( . . )1 5 3 5 1 5 3 5 1 5 3 5 1 5 3 5� � � � � � � � � � �  

		 Therefore

			   P X( . . )1 5 3 5< < 	= 	 f x dx x dx( )
.

.

.

.

1 5

3 5

2

1 5

3 5
1

21� ��

				   = 	 1

21 3

1

21

3 5 1 5

3

3 3 3

x�

�
�

�

�
� �

� � � � ��

�
�
�

�

�
�
�

. .

				   = 	 79

126
.

	 (ii)	 P X f x dx f x dx f x dx( ) ( ) ( ) ( )� � � �
�� ��
� � �2

2 1

1

2

  

		 Therefore

			   P X f x dx f x dx f x dx( ) ( ) ( ) ( )� � � �
�� ��
� � �2

2 1

1

2

	= + =




∫0

1

21

1

21 3

2

1

2 3

1

2

x dx x

				   = 	 1

21

2 1

3

7

63

3 3��

�
�

�

�
� � .

	 (iii)	   P X f x dx f x dx f x dx( ) ( ) ( ) ( )3
3 43

4

� � � �
� �

� ��  

				   = 	 1

21
0

1

21 3

2

3

4 3

3

4

x dx x
� �

�

�
�

�

�
�� .

				   = 	 1

21

4 3

3

37

63

3 3��

�
�

�

�
� �

21
( )

21
f x x=

x

f (x)

Area  
79

126
=

1.5 3.5O

(1.5 3.5) =P x< <
3.5

1.5

( )f x dx∫

Fig. 11.13

Fig. 11.14

1 2 3 4

21
( )

21
f x x=

x

f (x)

Area = 
7

63

2

1

( )f x dx= ∫( 2)P x ≤

O

1 2 3 4

21
( )

21
f x x�

x

f (x)

Area =
37

63

4

3

(3 ) ( )P x f x dx� � �

O

Fig. 11.15
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11.4.4 Distribution function from Probability density function
	 Both the probability density function and the cumulative distribution function (or distribution 
function) of a continuous random variable X  contain all the probabilistic information of X . The 

probability distribution of X  is determined by either of them. Let us learn the method to determine 

the distribution function F  of a continuous random variable X  from the probability density function 

f x� �  of X  and vice versa.

Example 11.12
	 If X  is the random variable with probability density 

function f x� � given by, 

f x
x x
x x� � �
� � �

� � � �
�

�
�

�
�

1 1 2

3 2 3

0

,

,

otherwise

find	 (i)	 the distribution function F x� �  

	 (ii)	 P X( . . )1 5 2 5≤ ≤

Solution

	 (i)	By definition F x P X x f u du
x

( ) ( ) ( )= ≤ =
−∞
∫  

		 When x <1	 F x( ) 	= 	P X x du
x

( )≤ = =
−∞
∫ 0 0 .

		 When 1 2� �x  	 F x( ) 	= 	P X x du u du
x

( )≤ = + −( )
−∞
∫ ∫0 1

1

1

				   = 	0
1

2

1

2

2

1

2

+
−( )











=
−( )u x

x

 

		 When 2 3� �x  	 F x( ) 	= 	P X x du u du u du
x

( )≤ = + −( ) + −( )
−∞
∫ ∫ ∫0 1 3

1

1

2

2

				   = 	0
1

2

3

2

2 2

1

2

2

+
−( )











+ −
−( )











u u
x

 

				   = 	
1 0

2

1 3

2
1

3

2

2 2 2− +
− −( ) = −

−( )x x
 

		 When x ≥ 3 ,	 F x( ) 	= 	P X x du u du u du du
x

( )≤ = + −( ) + −( ) +
−∞
∫ ∫ ∫ ∫0 1 3 0

1

1

2

2

3

3

				   = 	 0 1 3 0

1

1

2

2

3

3

du u du u du du
x

−∞
∫ ∫ ∫ ∫+ −( ) + −( ) +

1
x − 3

x− +

O 1 2 3

0.25

0.50

0.75

1.00

x

( )f x

probability density function

Fig. 11.16
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				   = 	0
1

2

3

2
0

2 2

1

2

2

3

+
−( )











+ −
−( )











+
u u

				   = 	1
2

1

2
1� � .

		 These give  F x

x

x
x

x
x

x

( )

,

,

,

=

− ∞ < <

−( ) ≤ <

−
−( ) ≤ <

≤ < ∞















0 1

1

2
1 2

1
3

2
2 3

1 3

2

2
 

	 (ii)		  P X( . . )1 5 2 5≤ ≤ 	= 	F F( . ) ( . )2 5 1 5−  

				   = 	 1
3 2 5

2

1 5 1

2

2 2

�
�� ��

�
�
�

�

�
�
�
�

�� ��

�
�
�

�

�
�
�

. .
 

				   = 	1 75 0 25

2
0 75

. .
.

− =  

or

			   P X( . . )1 5 2 5≤ ≤  	= f x dx x dx x dx� � � �� � � � �� � �� � �
1 5

2 5

1 5

2

2

2 5

1 3 0 75
.

.

.

.

.  	

Check:	 (i)	 Whether F x( )  is continuous everywhere.

	 (ii)	 From the above figure 11.16, triangle area = =
1

2
1bh .

11.4.5 Probability density function from Probability distribution function.
	 Let us learn the method to determine the probability density function f x( )  from the distribution 

function F x( )  of a continuous random variable X .

	 Suppose F x( )  is the distribution function of a continuous random variable X . Then the 

probability density function f x� � is given by 

                       f x dF x
dx

F x( )
( )

( )� � � , whenever derivative exists.

Example 11.13

	 If X is the random variable with distribution functionF x( ) given by, 

 	                 F x
x

x x
x

( )

,

,

,

�
�
� �
�

�

�
�

�
�

0 0

0 1

1 1

  then find (i) the probability density function f x( )    (ii) P X( . . )0 2 0 7£ £ .

O 1 2 3

0.25

0.50

0.75

1.00

x

( )F  x

 Distribution function

( )F  x

Fig. 11.17
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Solution
	 (i)	Differentiating F x( ) with respect to x at continuity points of f x( ) , we get

f x F x
x
x

x
� � � � �

�
� �
�

�

�
�

�
�

( )

,

,

,

0 0

1 0 1

0 1

 

		 The pdf f x( )  is not continuous at x = 0 , or at x =1 . We can define f ( )0  and f ( )1  in any 
manner. Choosing f ( )0 1= , and f ( )1 0= .

		 Therefore the probability density function f x( )  is

f x
x

� � �
� ��

�
�

1 0 1

0

,

, otherwise

	 (ii)		  P X( . . )0 2 0 7≤ ≤ 	= 	F F( . ) ( . )0 7 0 2−

				   = 	0 7 0 2 0 5. . .� �  

or

			   P X( . . )0 2 0 7≤ ≤ 	= 	 f x dx dx� � � �� �
0 2

0 7

0 2

0 7

1 0 5
.

.

.

.

.  

Remark

	 By definition, P X x F x f u du
x

( ) ( ) ( )≤ = =
−∞
∫ . Probability P a X b� �� �  can be obtained by 

using either F x( )  or f x( ) .

Note
	 We may also define the above probability density function as

	 f x
x� � �

�
�

�
� �1 0 1

0

,

, otherwise
 or f x

x� � �
�
�

�
� �1 0 1

0

,

, otherwise
  or f x

x� � �
�
�

�
� �1 0 1

0

,

, otherwise
 

Example 11.14

	 The probability density function of  random variable X is given by f x
k x

( ) �
� ��

�
�

1 5

0 otherwise
   

	 Find   (i) Distribution function    (ii) P X( )< 3    (iii) P X( )2 4< <     (iv) P X( )3 ≤

Solution

         Since f x( ) is a probability density function, f x( ) ≥ 0  and f x dx( )
��

�

� �1

	 That is                 0 0 1

1

1

5

5

dx k dx dx
��

�

� � �� � �

                              0 0 1
1

5� � � � � �k x 4 1k � � k =
1

4

	 Therefore the probability density function is

			 

f x
x

( )
,

,

=
≤ ≤






1

4
1 5

0 otherwise
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	 (i)	 Distribution function

		  The distribution function	 F x( ) 	= 	P X x f u du
x

( ) ( )≤ =
−∞
∫ .

		  When x <1,	 F x( ) 	 = 	 f u du du
x x

( )
−∞ −∞
∫ ∫= =0 0 .

		  When 1 5� �x  	F x( ) 	= 	 f u du du du x
x x

( )
−∞ −∞
∫ ∫ ∫= + = −( )0

1

4

1

4
1

1

1

.

		  When  x ≥ 5  	 F x( ) 	 = 	 f u du du du du
x x

( )
−∞ −∞
∫ ∫ ∫∫= + + =0

1

4
0 1

1

51

5

.

		  Thus	 F x( ) 	 = 	F x

x
x x

x

( )

,

,

, .

�

�
�

� �

�

�

�
��

�
�
�

0 1

1

4
1 5

1 5

 

	 (ii)		  P X( )< 3 	 = 	P X F( ) ( )≤ = = − =3 3
3 1

4

1

2
  (Since F x( )  is continuous).

	 (iii)		  P X( )2 4< < 	 = 	P X F F( ) ( ) ( )2 4 4 2
3

4

1

4

1

2
� � � � � � � .

	 (iv)		  P X( )3 ≤ 	 = 	P X P X( ) ( )≥ = − < = − =3 1 3 1
1

2

1

2
.

Example 11.15
	 Let X  be a random variable denoting the life time of an electrical equipment having probability 

density function 

f x
k e x

x

x

( )
.

�
�
�

�
�
�

�2 0

0 0

for 

for  

	 Find	 (i)	 the value of k 	       (ii)	 Distribution function	 (iii)	 P X( )< 2     

		  (iv)	 calculate the probability that X  is at least for four unit of time	 (v)	 P X( )= 3 .

Solution

	 (i)	 Since f x( )  is a probability density function, f x( ) ≥ 0  and f x dx( )
��

�

� �1  

		  That is	 0

0

2

0

dx k e dxx

��

�
�

� �� 	= 	1

			   0
2

2

0

�
�

�

�
�

�

�
�

� �

k e x

	= 	1
2

1 2
0

�
�
�

�

�
�

�

�
� � � �

��

k e e k  

		  Therefore the probability density function is 

			   f x( ) 	= 	
2 0

0 0

2e x
x

x� �
�

�
�
�

for 

for  
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	 (ii)	 Distribution function

		  By definition the distribution function F x( ) = P X x f u du
x

( ) ( )≤ =
−∞
∫  

		  When x £ 0 	 F x( ) 	= 	 f u du du
x x

( )
−∞ −∞
∫ ∫= =0 0  

		  When x > 0  	 F x( ) 	= 	 f u du du e du e e
x

u
x u x

x( )
−∞ −∞

−
−

−∫ ∫ ∫= + =
−







= −0 2 2
2

1

0

2

0

2

0

2  

		  This gives	 F x( ) 	= 	
0 0

1 02

, for

for

x
e xx

�

� �

�
�
�

�
 .

	 (iii)	 P X P X F e e( ) ( ) ( )� � � � � � � �� � �2 2 2 1 12 2 4   (since F x( )  is continuous)

	 (iv)	 The probability that X  is at least equal to four unit of time is
		  P X P X F e e( ) ( ) ( ) ( )� � � � � � � � � �� � �4 1 4 1 4 1 1 2 4 8  

	 (v)	 In the continuous case, f x� � at x a=  is not the probability that X  takes the value a , that is

f x� � at x a=  is not equal to P X a�� �.  If X  is continuous type,  P X a�� � � 0  for 

a∈ .Therefore P x( )= =3 0 .

EXERCISE11.3

	 1.	 The probability density function of X is given by f x
k x e x

x

x

( ) �
�
�

�
�
�

�2 0

0 0

for 

for  
. 

		  Find the value of k .

	 2.	 The probability density function of X  is f x
x x
x x( ) �

� �
� � �

�

�
�

�
�

0 1

2 1 2

0 otherwise

 .

		  Find (i) P X0 2 0 6. .� �� �          (ii) P X1 2 1 8. .� �� �          (iii) P X0 5 1 5. .� �� �  

	 3.	 Suppose the amount of milk sold daily at a milk booth is distributed with a minimum of 200 
litres and a maximum of 600 litres with probability density function

		  f x
k x

( ) �
� ��

�
�

200 600

0 otherwise
 

		  Find	 (i)	 the value of k    (ii)  the distribution function

			   (iii)	 the probability that daily sales will fall between 300 litres and 500 litres?

	 4.	 The probability density function of X  is given by f x k x
x

e
x

( ) � �
�

�
�
�

��

�
3 0

0 0

for 

for  

 

		  Find	 (i)	 the value of k    (ii)  the distribution function  (iii) P X( )< 3  

			   (iv)	 P X( )5£      (v) P X( )≤ 4 .
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	 5.	 If X  is the random variable with probability density function f x( )  given by,

f x
x x
x x� � �
� � � �

� � � �
�

�
�

�
�

1 1 0

1 0 1

0

,

,

otherwise

		  then find (i) the distribution function F x( )      (ii) P X( . . )− ≤ ≤0 5 0 5  

	 6.	 If  X  is the random variable with distribution function F x( )  given by, 

F x

x

x x x

x

( )

,

,

�

�

�� � � �

�

�

�
��

�
�
�

0 0

1

2
0 1

1 1

2

		  then find (i) the probability density function f x( )     (ii) P X( . . )0 3 0 6£ £  

11.5 Mathematical Expectation
	 One of the important characteristics of a random variable is its expectation. Synonyms for 
expectation are expected value, mean, and first moment.

	 The definition of mathematical expectation is driven by conventional idea of numerical average.
	 The numerical average of n numbers, say a a a an1 2 3, , , ,  is

a a a a
n

n1 2 3+ + + +  .

	 The average is used to summarize or characterize the entire collection of n  numbers 

1 2 3, , , , na a a a , with single value.

Illustration 11.7
	 Consider ten numbers 6, 2, 5, 5, 2, 6, 2, 4, 1, 5− .

                    The average is 6 2 5 5 2 6 2 4 1 5

10
3

� � � � � � � � �
� .

	 If ten numbers 6, 2, 5, 5, 2, 6, 2, , 1, 5− 4  are considered as the values of a random variable X the 

probability mass function is given by

        x – 4 1 2 5 6

( )P X x=
1

10
1

10
3

10
3

10
2

10

	 The above calculation for average can also be rewritten as

	 � � � � � � � � � � �4
1

10
1

1

10
2

3

10
5

3

10
6

2

10
3 .
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	 This illustration suggests that the mean or expected value of any random variable may be obtained 
by the sum of the product of each value of the random variable by its corresponding probability.
	 So average � �  (value of x ) ×  (probability)

	 This is true if the random variable is discrete. In the case of continuous random variable, the 
mathematical expectation is essentially the same with summations being replaced by integrals.
	 Two quantities are often used to summarize a probability distribution of a random variable X . In 
terms of statistics one is central tendency and the other is dispersion or variability of the probability 
distribution. The mean is a measure of the centre tendency of the probability distribution, and the 
variance is a measure of the dispersion, or variability in the distribution. But these two measures do 
not uniquely identify a probability distribution. That is, two different distributions can have the same 
mean and variance. Still, these measures are simple, and useful in the study of the probability 
distribution of X .

11.5.1 Mean

Definition 11.8 : (Mean) 

	 Suppose X  is a random variable with probability mass (or) density function f x� � . The 
expected value or mean or mathematical expectation of X , denoted byE X( ) or μ is 

                                   E X

x f x X

x f x dx X

x
( )

( )

( )

�

�

�
��

�
�
�

�

�
��

�

if is discrete

if is continuous

	 The expected value is in general not a typical value that the random variable can take on. It is 
often helpful to interpret the expected value of a random variable as the long-run average value of the 
variable over many independent repetitions of an experiment.

Theorem 11.3 (Without proof)
	 Suppose X  is a random variable with probability mass (or) density function f x� � . The 
expected value of the function g X� � , a new  random variable is

                                   E g X

g x f x g x

g x f x dx g x

x
( ( ))

( ) ( ) ( )

( ) ( ) ( )

=

∑ if is discrete

if is continuuous
−∞

∞

∫










	 If  g X xk( ) = the above theorem yield the expected value called the k-th moment about the origin 
of the random variable X.
	 Therefore the k-th moment about the origin of the random variable X is 

	

E X

x f x X

x f x dx X
k

k

x

k
( )

( )

( )

�

�

�
��
�

�
��

�

if is discrete

if is continuous
��
�
�
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Note
	 When k = 0 , by definition,

                 	     E

f x X

f x dx X

x
( )

( )

( )

1

1

1

=

=

=








∑

∫
−∞

∞

if is discrete

if is continuous


11.5.2 Variance
	 Variance is a statistical measure that tells us how measured data vary from the average value 
of the set of data. Mathematically, variance is the mean of the squares of the deviations from the 
arithmetic mean of a data set. The terms variability, spread, and dispersion are synonyms, and refer to 
how spread out a distribution is.

Definition 11.9: (Variance) 

	 The variance of a random variable X denoted by Var or or ( ) or ( ) ( )X V X xσ σ2 2  is   
                                              V X E X E X E X( ) ( ( )) ( )� � � �2 2�

	 Square root of variance is called standard deviation. That is standard deviation� � V X( ) . The 

variance and standard deviation of a random variable are always non negative.

11.5.3 Properties of Mathematical expectation and variance

	 (i)	E aX b aE X b( ) ( )� � � , where a  and b   are constants

Proof

	 Let X be a discrete random variable

			   E aX b( )+ 	= 	 ax b f xi
i

i�� �
�

�

�
1

( )  	 (by definition)

				   = 	 ax f x bf xi i i
i

( ) ( )�� �
�

�

�
1

				   = 	a x f x b f xi
i

i i
i�

�

�

�

� ��
1 1

( ) ( )

				   = 	aE X b( ) � � �1  	  f xi
i

( ) ��

�
�

�

�
�

�

�

� 1
1

 

			   E aX b( )+ 	= 	aE X b( ) + .

	 Similarly, when X  is a continuous random variable, we can prove it, by replacing summation by 

integration.

Corollary 1:    E aX( )  = aE X( )     ( when b = 0 )         
Corollary 2:     E b( )  = b                (when a = 0 )      
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	 (ii)  Var X E X E X( ) ( ) ( )� �2 2  

Proof
		  We know	 E x( ) 	= 	μ 

			   Var X( ) 	= 	E X( )� � 2

				   = 	E X X( )2 22� �� �

				   = 	E X E X( )2 22� � � �� �  	 (Since μ is a constant)

				   = 	E X E X( ) ( )2 2 2 22� � � ��� � �

			   Var X( ) 	= 	E X E X( ) ( )2 2� � �  

	 An alternative formula to compute variance of a random variable X  is
			   σ 2 	= 	Var ( ) ( ) ( )X E X E X� � � �2 2  

	 (iii)  Var(aX +b) a Var X= 2 ( )  where a  and b  are constants

Proof
			   Var aX b( )+ 	= 	E aX b E aX b( ) ( )� � �� �2

				   = 	E aX b aE X b� � �� �( ) )
2

				   = 	E aX aE X�� �( )
2  

				   = 	E a X E X2
2

�� �� �( )

				   = 	a E X E X2 2�� �( ) .

	 Hence	 Var aX b( )+ 	= 	a Var X2 ( )  

Corollary 3:     V aX( )  = a V X2 ( )       (when b = 0 )        
Corollary 4:       V b( )  = 0                 (when a = 0 )

	 Variance gives information about the deviation of the values of the random variable about the 
mean μ. A smaller  σ 2  implies that the random values are more clustered about the mean, similarly, 
a bigger σ 2 implies that the random values are more scattered from the mean.

Fig. 11.18

( )f x
( )f x

µ µ

Deviation from mean Deviation from mean

xx

 Different variance with same mean

Smaller VarianceBigger variance
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	 The above figure shows the pdfs of two continuous random variables whose curves are  
bell-shaped with same mean but different variances.

Example 11.16
	 Suppose that f x( ) given below represents a probability mass function,

x 1 2 3 4 5 6

f x( ) c2 2 2c 3 2c 4 2c c 2c

	 Find (i) the value of c (ii) Mean and variance.
Solution
	 (i)	 Since f x( )  is a probability mass function, f x( ) ≥ 0  for all x , and f x

x
( ) �� 1 .

			   Thus,   f x
x

( )å 	= 	1

			   c c c c c c2 2 2 22 3 4 2+ + + + + 	= 	0

			   c 	= 	1
5

 or − 1

2
.

		  Since f x( ) ≥ 0  for all x , the possible value of c  is 1

5
.

		  Hence, the probability mass function is

x 1 2 3 4 5 6

f x( )
1

25

2

25

3

25

4

25

1

5

2

5

	 (ii)	 To find mean and variance, let us use the following table

                           
x f x( ) x f x( ) x f x2 ( )

1
1

25

1

25

1

25

2
2

25

4

25

8

25

3 3

25

9

25

27

25

4 4

25

16

25

64

25

5 1

5

5
5

25

5

6 2

5

12

5

72

5

f x( )� �1 x f x( )� �
115

25
x f x2 ( )å = 585

25
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		  Mean :   		  E X( ) 	= 	 x f x( ) .� � �
115

25
4 6   

		  Variance :	 V X( ) 	= 	E X E X x f x x f x( ) ( ) ( ) ( )2 2 2 2

� � � � � � �� �

				   = 	 585

25

115

25

2

��
�
�

�
�
� �= 23.40 21.16 = 2.24

		  Therefore the mean and variance are 4.6 and 2.24 respectively.

Example 11.17
	 Two balls are chosen randomly from an urn containing 8 white and 4 black balls.      Suppose 
that we win Rs 20 for each black ball selected and we lose Rs10 for each white ball selected. Find the 
expected winning amount and variance.
Solution
	 Let X  denote the winning amount. The possible events of selection are (i) both balls are black, 
or (ii) one white and one black or (iii) both are white. Therefore X is a random variable that can be 
defined as 
			   X  (both are black balls)	= 	` 2 20( ) =  ` 40

			   X (one black and one white ball)	= 	` 20−  ` 10 =  `10

			   X  (both are white balls)	= 	` ( )� � �20  ` 20

	 Therefore X  takes on the values 40 10,  and −20  

			   Total number of balls  n 	= 	12  

			   Total number of ways of selecting 2 balls	= 	
12

2

12 11

1 2
66

�

�
�

�

�
� �

�
�

�

			   Number of ways of selecting 2 black balls	= 	
4

2
6

�

�
�
�

�
� �

	 Number of ways of selecting one black ball and one white ball	= 	
8

1

4

1
32

�

�
�
�

�
�
�

�
�
�

�
� �

	 Number of ways of selecting 2 white balls	= 	
8

2
28

�

�
�
�

�
� �  

Values of Random  Variable X  40 10 −20  Total

Number of elements in inverse images 6 32 28 66

	 Probability mass function is

X 40 10 −20 Total

f x� �
6
66

32

66

28

66
1
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Mean :

			   E X( ) 	= 	 x f x( )� � ��
�
�

�
�
� � ��

�
�

�
�
� � �� � ��

�
�

�
�
� �40

6

66
10

32

66
20

28

66
0  

		  That is expected winning amount is 0 .

Variance :

			   E X( )2 	= 	 x f x2 2 2 2
40

6

66
10

32

66
20

28

66

400
( )� � ��

�
�

�
�
� � ��

�
�

�
�
� � �� � ��

�
�

�
�
� �

00

11

			   E X( )� �2 	= 	 0 02 =

			   This gives  V X( ) 	= 	 E X E X( ) ( )2 2 4000

11
0

4000

11
� � � � � �  

			   Therefore  E X( ) 	= 	 0  and V x( ) =
4000

11
.

Example 11.18
	 Find the mean and variance of a random variable X , whose probability density function is              

f x
e xx

( ) �
��

�
�

�� � for

otherwise

0

0

Solution
	 Observe that the given distribution is continuous 
Mean :

	 By definition  μ	= 	E X x f x dx( ) ( )�
��

�

�

		  = 	 0
0

0

� �� �e dx x e dxx x�

��

�
�

� � � � �� �  

		 = 	 0
0

� � ��
�

�� �x e dxx  

		 = 	 0
1
2

� �
�
�

�
�
��

�
 (using Gamma integral for positive integer n , x e dx nn x

n
�

�

�

�� �

� 1

0

)
		 =  	1

λ
 

Variance :

			  By definition,  E X( )2 	= 	 x f x dx2 ( )
��

�

�

				   = 	 0

0

2

0

� �� �e dx x e dxx x�

��

�
�

� � � � �� �  

				   = 	 0 2

0

� � ��
�

�� �x e dxx  

				   = 	 0
2 2
3 2

� �
�
�

�
�
� ��

� �
  (using Gamma integral for positive integer)

(We can also use integration 
by parts or Bernoulli’s 
formula)

(We can also use integration 
by parts or Bernoulli’s 
formula)
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	Therefore Var X( ) 	= 	 E X E X( ) ( )2 2−

				   = 	 2 1 1
2

2

2� � �
��
�
�

�
�
� �

		  Hence the mean and variance are respectively 1
λ

 and 1
2λ

.

EXERCISE 11.4
	 1.	 For the random variable X with the given probability mass function as below, find the mean 

and variance.

			  (i)	 f x
x

x
� � �

�

�

�

�
��

�
�
�

1

10
2 5

1

5
0 1 3 4

,

, , ,

	 (ii)	 f x x x� � � �
��

�
�

4

6
1 2 3, ,

			  (iii)	 f x
x x( ) =

− < <<



2 1 1 2

0

( )

otherwise
 	 (iv)	 f x

e x
x

( ) = >






−1

2
0

0

2 for 

otherwise

	 2.	 Two balls are drawn in succession without replacement from an urn containing four red balls 
and three black balls. Let X be the possible outcomes drawing red balls. Find the probability 
mass function and mean for X.

	 3.	 If μ and σ 2  are the mean and variance of the discrete random variable X , and E X( )� �3 10  
and E X( )� �3 1162 , find μ and σ 2 .

	 4.	 Four fair coins are tossed once. Find the probability mass function, mean and variance for 
number of heads occurred.

	 5.	 A commuter train arrives punctually at a station every half hour. Each morning, a student 
leaves his house to the train station. Let X  denote the amount of time, in minutes, that the 
student waits for the train from the time he reaches the train station. It is known that the pdf of 
X  is

f x
x

( ) �
� ��

�
�

��

1

30
0 30

0 elsewhere

 

		  Obtain and interpret the expected value of the random variable X .
	 6.	 The time to failure in thousands of hours of an electronic equipment used in a manufactured 

computer has the density function

f x
e xx

( ) �
��

�
�

�3 0

0

3

elsewhere
 .

		  Find the expected life of this electronic equipment. 
	 7.	 The probability density function of the random variable X  is given by

f x
x e x

x

x

( ) �
�
�

�
�
�

�16 0

0 0

4 for 

for  
 

		  find the mean and variance of  X .
	 8.	 A lottery with 600 tickets gives one prize of `200, four prizes of `100, and six prizes of  

` 50. If the ticket costs is ` 2, find the expected winning amount of a ticket.
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11.6 Theoretical Distributions: Some Special Discrete Distributions
	 In the previous section we have dealt with various general probability distributions with mean 
and variance. We shall now learn some discrete probability distributions of special importance.

	 In this section we learn the following discrete distributions.
	 (i)	 The One point distribution	 (ii)	 The Two point distribution
	 (iii)	 The Bernoulli distribution	 (iv)	 The Binomial distribution.

11.6.1 The One point distribution
	 The random variable X  has a one point distribution if there exists a point x0  such that,   the 
probability mass function f x( )  is defined as f x P X x( ) ( )= = =0 1 .

	 That is the probability mass is concentrated at one point.
	 The cumulative distribution function is  

F x
x x

x x
( ) �

�� � �
� � �

�
�
�

0

1

0

0

                        

Mean :
			   E X( ) 	= 	 x f x x x

x
( ) � � �� 0 01  

Variance :
			   V X( ) 	= 	E X E X x f x x x x

x
( ) ( ) ( )2 2 2

0

2

0

2

0

2 0� � � � � � � � � ��  

	  Therefore the mean and the variance are respectively x0  and 0 .

11.6.2 The Two point distribution
	 (a)	 Unsymmetrical Case: The random variable X  has a two point distribution if there exists two 

values x x1 2and , such that 

	 f x
p x x
p x x

( ) �
�

� �
�
�
�

for

for

1

21
        where 0 1< <p .

	 The cumulative distribution function is 

F x
x x

p x x x
x x

( ) =
<
≤ <
≥








0

1

1

1 2

2

if

if 

if

Mean :
			   E X( ) 	 = 	 x f x x p x p px qx

x
( ) ( )� � � � � � �� 1 2 1 21  where q p� �1 .

Variance :
			   V X( ) 	 = 	 E X E X x f x px qx

x
( ) ( ) ( )2 2 2

1 2

2
� � � � � �� ��

				    = 	 x p x q px qx pq x x1

2

2

2

1 2

2

2 1

2�� � � �� � � �� �  

	 The mean and the variance are respectively px qx1 2+  and pq x x2 1

2�� �  
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	 (b)	 Symmetrical Case: 

		  When p q= =
1

2
, the two point distribution become 

    		  f x
x x

x x
( ) �

�

�

�

�
��

�
�
�

1

2

1

2

1

2

for

for

        where 0 1< <p . and the cumulative distribution function is

		  F x

x x

x x x

x x

( ) �

�

� �

�

�

�
��

�
�
�

0

1

2

1

1

1 2

2

if

if 

if

		  The mean and variance respectively are x x1 2

2

+  and 
x x2 1

2

4

�� � .

11.6.3 The Bernoulli distribution
	 Independent trials having constant probability of success p were first studied 
by the Swiss mathematician Jacques Bernoulli (1654–1705). In his book The Art 
of Conjecturing, published by his nephew Nicholas eight years after his death 
in 1713, Bernoulli showed that if the number of such trials were large, then the 
proportion of them that were successes would be close to p with a probability  
near 1.
	 In  probability theory, the  Bernoulli distribution, named after Swiss 
mathematician  Jacob Bernoulli is the  discrete probability distribution  of 
a random variable. A Bernoulli experiment is a random experiment, where the outcomes is classified 
in one of two mutually exclusive and exhaustive ways, say success or failure (example: heads or tails, 
defective item or good item, life or death or many other possible pairs). A sequence of Bernoulli trails 
occurs when a Bernoulli experiment is performed several independent times so that the probability of 
success remains the same from trial to trial. Any nontrivial experiment can be dichotomized to yield 
Bernoulli model.

Definition 11.10: ( Bernoulli’s distribution)

	 Let X  be a random variable associated with a Bernoulli trial by defining it as  
	 X  (success) = 1  and X (failure) = 0,  such that 

                            f x
p x
q p x

p( ) �
�

� � �
�
�
�

� �
1

1 0
0 1where      	

    X is called a Bernoulli random variable and f x( )  is called the Bernoulli distribution.

	 Or equivalently
	 If a random variable X  is following a Bernoulli’s distribution, with probability  p  of success can 

be denoted as X Ber p ( ) , where p is called the parameter, then the probability mass function of X  

is
                                    f x p p xx x( ) ( ) , ,� � ��1 0 11

Jacob Bernoulli
(1654 - 1705)
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	 The cumulative distribution of Bernoulli’s distribution is

F x
x

q p x
x

( ) =
<

= − ≤ <
≥







0 0

1 0 1

1 1

if

if

if

Mean :
			   E X( ) 	= 	 x f x p p p

x
( ) ( )� � � � � �� 1 0 1 ,

	
Note that, since X takes only the values 0 and 1, its expected value p is “never seen”.

Variance :
			   V X( ) 	= 	E X E X x f x p

x
( ) ( ) ( )2 2 2 2� � � � ��  

				   = 	 1 0 12 2 2p q p p p pq�� � � � � �( )    where q p� �1  

	
X is a Bernoulli’s random variable following with parameter p,  the mean μ and  variance σ 2  

of Bernoulli distribution are 
                             � � p        and      � 2 � pq

	 When p q= =
1

2
, the Bernoulli’s distribution become 	

		

f x
x

x
( ) �

�

�

�

�
��

�
�
�

1

2
0

1

2
1

for

for

        where 0 1< <p .   and the cumulative distribution is

	 F x

x

x

x

( ) =

<

≤ <

≥










0 0

1

2
0 1

1 1

if

if 

if

	 The mean and variance are respectively are 1

2
 and 1

4

11.6.4 The Binomial Distribution
	 The Binomial Distribution is an important distribution which applies in some cases for repeated 
independent trials where there are only two possible outcomes: heads or tails, success or failure, 
defective item or good item, or many other such possible pairs. The probability of each outcome can 
be calculated using the multiplication rule, perhaps with a tree diagram. 
	 Suppose a coin is tossed once. Let X denote the number of heads. Then X Ber p ( ),  because we 
get either head X �� �1  or tail X �� �0 with probability p  or 1− p.

	 Suppose a coin is tossed n times. Let X denote the number of heads. Then X takes on the values  
0, 1, 2, …, n.The probability for getting x number of heads is given by

	
P X x

n
x
p px n x( ) ( )� �

�

�
�
�

�
� � �1 ,  x = 0, 1, 2, ..., n.
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	 X x= , corresponds to the combination of x heads in n tosses, that is 
n
x
�

�
�
�

�
�  ways of heads and 

remaining n x−  tails. Hence, the probability for each of those outcomes is equal to p px n x( ) .1− −  

Binomial theorem is suitable to apply when n  is small number less than 30.

Definition 11.11: Binomial random variable  
     A discrete random variable X is called  binomial random variable, if  X  is the number of 

successes in n -repeated trials such that 
   (i)    The n- repeated trials are independent and n is finite
   (ii)   Each trial results only two possible outcomes, labelled as ‘success’ or ‘failure’

        (iii)  The probability of a success in each trial, denoted as p, remains constant.

Definition 11.12 : Binomial distribution  

	 The binomial random variable X, equals the number of successes with probability p for a 
success and q p� �1  for a failure  in n-independent trials,  has a binomial distribution denoted 
by X B n p ( , ).   The probability mass function of X is                                                               

                                    f x
n
x
p p x nx n x( ) ( ) , , , ,..., .�

�

�
�
�

�
� � ��1 0 1 2

	 The name of the distribution is obtained from the binomial expansion. For constants a and b, the 
binomial expansion is

a b
n
x
a bn

x

n
x n x�� � �

�

�
�
�

�
�

�

��
0

	 Let p denote the probability of success on a single trial. Then, by using the binomial expansion 
with a p b p� � �and 1 , we see that the sum of the probabilities for a binomial random variable is 1. 
Since each trial in the experiment is classified into two outcomes, {success, failure}, the distribution 
is called a “bi’’-nomial.

	 If X   is a binomial random variable with parameters p nand ,  the mean μ and variance σ 2 of 
binomial distribution are 
                                    � � np   and  � 2 1� �np p( )

	 The expected value is in general not a typical value that the random variable can take on. It is 
often helpful to interpret the expected value of a random variable as the long-run average value of the 
variable over many independent repetitions of an experiment. The shape of a  binomial 
distribution is symmetrical when p = 0 5. or when n  is large.

	 When p q= =
1

2
, the binomial distribution become

	 f x
n
x

x n
x n x

( ) , , , ,..., .�
�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�
1

2

1

2
0 1 2  
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	 That is

             f x
n
x

x n
n

( ) , , , ,..., .�
�

�
�
�

�
�
�
�
�

�
�
� �

1

2
0 1 2

	 The mean and variance are respectively are n
2

 and n
4

Example 11.19
	 Find the binomial distribution function for each of the following.
	 (i)	Five fair coins are tossed once and X denotes the number of heads. 
	 (ii)	A fair die is rolled 10 times and X denotes the number of times 4 appeared.      
Solution
	 (i)	 Given that five fair coins are tossed once. Since the coins are fair coins the probability of 

getting an head in a single coin is p =
1

2
and q p� � �1

1

2

	 Let X denote the number of heads that appear in five coins. X is binomial random variable that 

takes on the values 0, 1,2,3,4 and 5, with n p= =5
1

2
and .That is X B 5

1

2
, .

�
�
�

�
�
�

	 Therefore the binomial distribution is

			   f x( ) 	= 	
n
x
p p x nx n x�

�
�
�

�
� � ��( ) , , , ,...,1 0 1 2  

	 becomes

				   f x( ) 	= 	
5 1

2

1

2
0 1 2 5

x
x

x n x�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�

, , , ,..., .

	 That is	 f x( ) 	= 	
5 1

2
0 1 2

x
x n

n�

�
�
�

�
�
�
�
�

�
�
� �, , , ,...,  

	 (ii)	 A fair die is rolled ten times and X denotes the number of times 4 appeared. X  is binomial 

random variable that takes on the values 0 1 2 3 10, , , , , with n =10  and p =
1

6
. That is 

X B 10
1

6
, .

�
�
�

�
�
�

		  Probability of getting a four in a die is p =
1

6
 and q p� � �1

5

6
.

		  Therefore the binomial distribution is

			   f x( ) 	= 	
10 1

6

5

6
0 1 2 10

10

x
x

x x�

�
�

�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�

, , , ,..., .

Example 11.20
	 A multiple choice examination has ten questions, each question has four distractors with exactly 
one correct answer. Suppose a student answers by guessing and if X  denotes the number of correct 
answers, find (i) binomial distribution (ii) probability that the student will get seven correct answers 
(iii) the probability of getting at least one correct answer.
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Solution
	 (i)	Since X  denotes the number of success, X  can take the values 0 1 2 10, , ,...,

		 The probability for success is p =
1

4
 and for failure q p� � �1

3

4
, and n =10 .

		 Therefore X  follows a binomial distribution denoted by X B 10
1

4
,

�
�
�

�
�
� .

		 This gives,	 f x( ) 	= 	
10 1

4

3

4
0 1 2 10

10

x
x

x x�

�
�

�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�

, , , ,...,  

	 (ii)	Probability for seven correct answers is 

			   P X( )= 7 	= 	 f ( )7
10

7

1

4

3

4
120

3

4

7 10 7 3

10
�
�

�
�

�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�

�
�

�

�
�

�

 

		 Probability that the student will get seven correct answers is 120
3

4

3

10

�

�
�

�

�
� .

	 (iii)	Probability for at least one correct answer is
			   P X( )≥1 	= 	1 1 1 0� � � � �P X P X( ) ( )

				   = 	1
10

0

1

4

3

4

0 10

�
�

�
�

�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �  1 3

4

10

��
�
�

�
�
� .

		 Probability that the student will get for at least one correct answer is 1 3

4

10

��
�
�

�
�
� .

Example 11.21
		  The mean and variance of a binomial variate X  are respectively 2 and 1.5. Find
		  (i)  P X( )= 0      (ii)  P X( )=1       (iii) P X( )≥1  
Solution
	 To find the probabilities, the values of the parameters n and p must be known.
	 Given that
			   Mean	= 	np = 2  and variance = =npq 1 5.  

			   This gives  npq
np

	= 	1 5

2

3

4

.
=

			   q 	= 	3
4

 and p q� � � � �1 1
3

4

1

4

			   np 	= 	2 , gives n
p

= =
2

8 . Therefore X B 8
1

4
,

�
�
�

�
�
�  .

	 Therefore probability distribution is

			   P X x( )= 	= 	 f x
x

x
x x

( ) , . ,...�
�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�
8 1

4

3

4
0 1 2 8

8

 

	 (i)		  P X( )= 0 	= 	 f ( )0
8

0

1

4

3

4

3

4

0 8 0 8

�
�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� � �

�
�

�
�
�

�
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	 (ii)		  P X( )=1 	= 	 f ( )1
8

1

1

4

3

4
2

3

4

1 8 1 7

�
�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� � �

�
�

�
�
�

�

	 (iii)		  P X( )≥1 	= 	1 1 1 0 1
3

4

8

� � � � � � ��
�
�

�
�
�P X P X( ) ( )  

Example 11.22
	 On the average, 20% of the products manufactured by ABC Company are found to be defective. 
If we select 6 of these products at random and X  denote the number of defective products find  the 
probability that (i) two products are defective (ii) at most one product is defective (iii) at least two 
products are defective.
Solution
	 Given that n = 6
	 Probability for selecting a defective product is 20

100
 , that is p =

1

5
.

	 Since X  denotes the number defective products, X  can take on the values 0 1 2 6, , ,...,

	 The probability for defective (success) is p =
1

5
and for failure q p� � �1

4

5
, and n = 6

	 Therefore X  follows a binomial distribution denoted by X B 6
1

5
, .

�
�
�

�
�
�

	 This gives	 f x( ) 	= 	
6 1

5

4

5
0 1 2 6

6

x
x

x x�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�

, , , ,..., .

	 (i)	Probability for two defective products is

			  P X( )= 2 	=	 f ( )2
6

2

1

5

4

5
15

4

5

2 6 2 4

6
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�

�
�

�

�
�

�

 

	 (ii)	Probability for at most one defective products is
			  P X( )≤ 1 	= 	P X P X( ) ( )� � �0 1

				  = 	
6

0

1

5

4

5

6

1

1

5

4

5

0 6 0 1 6 1�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�

� �

				  = 	 4

5
6

4

5
2

4

5

6 5

6

5

�
�
�

�
�
� � � ��

�
�

�

�
� � �

�
�

�
�
�

			 Probability for at most one defective products is 2
4

5

5

�
�
�

�
�
� .

	 (iii)	Probability for at least two defective products is

			  P X( )≥ 2 	= 	1 2 1 1 1 2
4

5

5

� � � � � � � �
�
�

�
�
�P X P X( ) ( )

		 Probability for at least two defective products is 1 2
4

5

5

� �
�
�

�
�
� .
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EXERCISE 11.5
	 1.	Compute P X k( )= for the binomial distribution, B n p( , )  where

		  (i) n p k= = =6
1

3
3, , 	 (ii) n p k= = =10

1

5
4, , 	 (iii) n p k= = =9

1

2
7, ,

	 2.	The probability that Mr.Q hits a target at any trial is 1

4
. Suppose he tries at the target  

10 times. Find the probability that he hits the target (i) exactly 4 times  (ii) at least one time.
	 3.	Using binomial distribution find the mean and variance of X  for the following experiments
			   (i)	 A fair coin is tossed 100 times, and X  denote the number of heads.
			  (ii)	 A fair die is tossed 240 times, and X  denote the number of times that four appeared.

	 4.	The probability that a certain kind of component will survive a electrical test is 3

4
.  Find the 

probability that exactly 3 of the 5 components tested survive.
	 5.	A retailer purchases a certain kind of electronic device from a manufacturer.
		 The manufacturer indicates that the defective rate of the device is5% .
		 The inspector of the retailer randomly picks 10 items from a shipment. What is the probability 

that there will be (i) at least one defective item (ii) exactly two defective items.
	 6.	 If the probability that a fluorescent light has a useful life of at least 600 hours is 0.9, find the 

probabilities that among 12 such lights
			   (i)	 exactly 10 will have a useful life of at least 600 hours;
			  (ii)	 at least 11 will have a useful life of at least 600 hours;
			  (iii)	at least 2 will not have a useful life of at least 600 hours.
	 7.	The mean and standard deviation of a binomial variate X  are respectively 6 and 2.
		 Find (i) the probability mass function (ii)  P X( )= 3  (iii) P X( )≥ 2 .

	 8.	 If X B n p ( , )  such that 4 4 2P X P x( ) ( )= = =  and n = 6 . Find the distribution, mean and 

standard deviation.
	 9.	 In a binomial distribution consisting of 5 independent trials, the probability of 1 and 2 successes 

are 0.4096 and 0.2048 respectively. Find the mean and variance of the distribution.

EXERCISE 11.6

Choose the Correct or the most suitable answer from the given four alternatives : 
	 1.	 Let X be random variable with probability density function

f x x
x

x
( ) =

≥

<







2
1

0 1

3

		  Which of the following statement is correct
		  (1)   both mean and variance exist	 (2) mean exists but variance does not exist
		  (3)   both mean and variance do not exist	 (4) variance exists but Mean does not exist.
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	 2.	 A rod of length 2l is broken into two pieces at random. The probability density function of 
the shorter of the two pieces is 

		

f x l
x l

l x l
( ) =

< <

≤ <







1
0

0 2

		  The mean and variance of the shorter of the two pieces are respectively

		  (1) l l
2 3

2

, 	  (2) l l
2 6

2

, 	 (3) l l
,

2

12
	 (4) l l

2 12

2

,

	 3.	 Consider a game where the player tosses a six-sided fair die. If the face that comes   up is 6, the 
player wins  ̀  36, otherwise he loses ̀ k 2 , where k is the face that comes up { }1, 2, 3, 4, 5 .k =

		  The expected amount to win at this game in ` is

		  (1) 19

6
	 (2) −19

6
	 (3) 

3

2
	 (4) − 3

2

	 4.	 A pair of dice numbered 1, 2, 3, 4, 5, 6 of a six-sided die and 1, 2, 3, 4 of a four-sided die 
is    rolled and the sum is determined. Let the random variable X denote this sum. Then the 
number of elements in the inverse image of 7 is 

		  (1) 1 	 (2) 2 	 (3) 3 	 (4) 4

	 5.	 A random variable X has binomial distribution with n = 25 and p = 0.8 then standard deviation     
of X is

		  (1) 6	 (2) 4	 (3) 3	 (4) 2

	 6.	 Let X represent the difference between the number of heads and the number of tails obtained

		  when a coin is tossed n times. Then the possible values of X are
		  (1) i+2n, i = 0,1,2...n 	 (2) 2i–n, i = 0,1,2...n	 (3) n–i, i = 0,1,2...n	 (4) 2i+2n, i = 0,1,2...n

	 7.	 If the function f x a x b( ) = < <1

12
for ,  represents a probability density function of a 

continuous random variable X, then which of the following cannot be the value of  a and b?

		  (1) 0 and 12	 (2) 5 and 17	 (3) 7 and 19 	 (4) 16 and 24

	 8.	 Four buses carrying 160 students from the same school arrive at a football stadium. The buses 
carry, respectively, 42, 36, 34, and 48 students. One of the students is randomly selected. Let 
X denote the number of students that were on the bus carrying the randomly selected student. 
One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on 
that bus.

		  Then E[X] and E[Y] respectively are
		  (1) 50 40, 	 (2)  40 50,  	 (3) 40 75 40. , 	 (4) 41 41,  

	 9.	 Two coins are to be flipped. The first coin will land on heads with probability 0.6, the second    
with Probability 0.5. Assume that the results of the flips are independent, and let X equal the 
total number of heads that result. The value of  E[X] is

		  (1) 0 11. 	 (2) 1 1. 	 (3)11	 (4)1
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	 10.	 On a multiple-choice exam with 3 possible destructives for each of the 5 questions, the 
probability that a student will get 4 or more correct answers just by guessing is

		  (1) 11

243
 	 (2) 3

8
 	 (3) 1

243
 	 (4) 5

243

	 11.	 If  P{X = 0} = 1 − P{X = 1}. If E[X] = 3Var(X), then P{X = 0}.

		  (1) 2

3
 	 (2) 2

5
 	 (3) 1

5
 	 (4) 1

3
	 12.	 If X is a binomial random variable with expected

		  value 6 and variance 2.4, Then P{X = 5} is

		  (1) 
10

5

3

5

2

5

6 4

















		  (2) 
10

5

3

5

5











  

		  (3) 
10

5

3

5

2

5

4 6

















		  (4) 
10

5

3

5

2

5

5 5

















 

	 13.	 The random variable X has the probability density function

f x
ax b x

( ) =
+ < <




0 1

0 otherwise

		  and E X( ) = 7

12
, then a and b are respectively

		  (1) 1 and 1

2
 	 (2) 1

2
 and 1 	 (3) 2 and 1 	 (4) 1 and 2

	 14.	 Suppose that X takes on one of the values 0, 1, and 2. If for some constant k,

		  P X i k P X i i P X=( ) = = −( ) = =( ) =1 1 2 0
1

7
 for and , . Then the value of k is

		  (1) 1 	 (2) 2 	 (3) 3 	 (4) 4

	 15.	 Which of the following is a discrete random variable?
		  I. The number of cars crossing a particular signal in a day.
		  II. The number of customers in a queue to buy train tickets at a moment. 
		  III. The time taken to complete a telephone call. 
		  (1) I and II	 (2) II only	 (3) III only	 (4) II and III

	 16.	 If  f x
x x a

( ) =
≤ ≤




2 0

0 otherwise
    is a probability density function of a random variable, then  the 

value of a is

		  (1) 1 	 (2) 2 	 (3) 3 	 (4) 4

	 17.	 The probability function of a random variable is defined as:

x –2 –1 0 1 2

( )f x k 2k 3k 4k 5k

		  Then E(X ) is equal to: 
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		  (1) 
1

15
  	 (2) 

1

10
	  (3) 1

3
	 (4) 

2

3
 

	 18.	 Let X have a Bernoulli distribution with mean 0.4, then the variance of (2X–3) is

		  (1) 0.24  	 b)  0.48 	 (3) 0.6	 (4) 0.96

	 19.	 If in 6 trials, X is a binomial variate which follows the relation 9P(X=4) = P(X=2), then the 
probability of success is

		  (1)0.125 	 (2) 0.25	 (3) 0.375	 (4) 0.75

	 20.	 A computer salesperson knows from his past experience that he sells computers to one in 
every twenty customers who enter the showroom. What is the probability that he will sell a 
computer to exactly two of the next three customers? 

		  (1) 57

203
	 (2) 

57

202
	 (3) 19

20

3

3
	 (4) 

57

20

SUMMARY
•	 A random variable X is a function defined on a sample space S into the real numbers   such 

that the inverse image of points or subset or interval of   is an event in S, for which probability 
is assigned.

•	 A random variable X is defined on a sample space S into the real numbers   is called discrete 
random variable if the range of X is countable, that is, it can assume only a finite or countably 
infinite number of values, where every value in the set S has positive probability with total one.

•	 If X is a discrete random variable with discrete values x1, x2, x3,... xn..., then the function denoted 
by f(.) or p(.) and defined by f(xk) = P(X = xk) for k = 1,2,3,...n,... is called the probability mass 
function of X

•	 The function f(x) is a probability mass function if

	 (i) f(xk) ≥ 0 for k = 1,2,3,...n,... and 	 (ii) f xk
k

( ) =∑ 1

 •	 The cumulative distribution function F(x) of a discrete random variable X, taking the values x1, 
x2, x3,... such that x1 < x2 < x3 < … with probability mass function f(xi)  is 

	 F x P(X x f x xi
x xi

( ( ),) = ) =≤ ∈
≤

∑ 

•	 Suppose X is a discrete random variable taking the values x1, x2, x3,... such that x1 < x2 < x3,...  
and F(xi) is the distribution function. Then the probability mass function f(xi) is given by f(xi) = 
F(xi) – F(xi–1), i = 1,2,3, ...

•	 Let S be a sample space and let a random variable X : S → R that takes any value in a set I of  .  
Then X is called a continuous random variable if P(X = x) = 0 for every x in I

•	 A non-negative real valued function f(x) is said to be a probability density function if, for each 
possible outcome x, x ∈ [a,b] of a continuous random variable X having the property 

P a x b f x dx
a

b

( ) =≤ ≤ ∫ ( )
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•	 Suppose F(x) is the distribution function of a continuous random variable X. Then the probability 
density function f(x) is given by 

f x dF x
dx

F x( )
( )

( )= = ′ , whenever derivative exists.

•	 Suppose X is a random variable with probability distribution function f(x) The expected value 
or mean or mathematical expectation of X, denoted by E(x) or μ is 

E x

xf x X

xf x x X

x
( )

( )

( )d

=

 ∑

∫
−∞

∞

if  is discrete

if  is continuous







•	 The variance of the random variable X denoted by V(x) or σ2 (or σx
2) is 

V(x) = E(X – E(x))2 = E(X – μ)2

Properties of Mathematical expectation and variance

(i)  E(aX + b) = aE(X) + b,  where a and b are constants

Corollary 1: E(aX) = aE(X)      ( when b = 0)         

Corollary 2: E(b) = b            (when a = 0)      

(ii) Var(x) = E(X)2 – E(X)2  

(iii)  Var(aX + b) = a2Var(X) where a and b are constants

Corollary 3:  V(aX ) = a2V(X)     (when b = 0)

Corollary 4:  V(b) = 0           (when a = 0)

•	 Let X be a random variable associated with a Bernoulli trial by defining it as X (success) = 1 and 
X (failure) = 0,  such that

f x
p x
q p x

p( ) =
=

= − =




1

1 0
where 0 <  < 1

•	 X is called a Bernoulli random variable and f(x) is called the Bernoulli distribution.

•	 X is a Bernoulli’s random variable following with parameter p,  the mean μ and variance σ2 of 
Bernoulli distribution are μ = p and σ2 = pq

•	 A discrete random variable X is called binomial random variable, if X is the number of successes 
in n-repeated trials such that 

	 (i)	 The n- repeated trials are independent and n is finite

	 (ii)	Each trial results only two possible outcomes, labelled as ‘success’ or ‘failure’
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(iii)	The probability of a success in each trial, denoted as p, remains constant

• The random binomial variable X, equals the number of successes with probability p for a success
and q = 1 – p for a failure in n-independent trials,  has a binomial distribution denoted by

X ~ B(n, p).  The probability mass function of X is f
n
x
p p x nx n x(x) ( ) , , , ,..., .=







− =−1 0 1 2

• If X is a binomial random variable with parameters p and n,  the mean μ and variance σ2 of
binomial distribution are μ = np and σ2 = np(1 – p).
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"Young man, in mathematics you don’t understand things. 
You just get used to them".

-John von Neumann

12.1 Introduction
	 Mathematics can be broadly classified into two categories: Continuous 
Mathematics − It is based upon the results concerning the set of real numbers 
which is uncountably infinite. It is characterized by the fact that between any two 
real numbers, there is always a set of uncountably infinite numbers. For example, a 
function in continuous mathematics can be plotted in a smooth curve without break.                                   
	 Discrete Mathematics − It involves distinct values which are either finite 
or countably infinite; i.e. between any two points, there are finite or countably 
infinite number of points. For example, if we have a finite set of objects, the 
function can be defined as a list of ordered pairs having these objects, and can 
be presented as a complete list of those pairs.

	 The mathematicians who lived in the latter part of the 19th and early in 
the 20th centuries developed a new branch of mathematics called discrete mathematics consisting of 
concepts  based on either finite or countably infinite sets like the set of natural numbers. These sets are 
called discrete sets and the beauty of such sets is that, one can find that a one-to-one correspondence 
can be defined from these sets onto the set of natural numbers. So, the elements of a discrete set can be 
arranged as a sequence. This special feature of discrete sets cannot be found in any uncountable set like 
the set of real numbers where the elements are distributed continuously throughout without any gap. 

	 Everyone is aware of the fact that the application of computers is playing an important role in 
every walk of our lives. Consequently the computer science has become partially a science of clear 
understanding and concise description of computable discrete sets. Also the modern programming 
languages are to be designed in such a way that they are suitable for descriptions in a concise manner. 
This compels the computer scientists to train themselves in learning to formulate algorithms based on 
the discrete sets. 

	 The main advantage of studying discrete mathematics is that its results serve as very good tools 
for improving the reasoning and problems solving capabilities. Some of the branches of discrete 
mathematics are combinatorics, mathematical logic, boolean algebra, graph theory, coding 
theory etc. Some of the topics of discrete mathematics namely permutations, combinations, and 
mathematical induction were already discussed in the previous year. In the present chapter, two 
topics namely binary operations and mathematical logic of discrete mathematics are discussed. 

Chapter

12 Discrete Mathematics

John von Neumann
(1903-1957)
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Symbols

∈ 	 -	 belongs to.
⋺	 -	 such that.
∀ 	 -	 for every.
⇒ 	 -	 implies.
∃ 	 -	 there exists

	 In general, the word ‘operation’ refers to the process of operating upon either a single or more 
number of elements at a time. For instance, finding the negative of an element in   involves a single 
element at a time. So it is called an unary operation. On the other hand the process of finding the sum 
of any two elements in   involves two elements at a time. This kind of operation is called a binary 
operation and in general an operation involving n elements is called an n-ary operation, n∈ . In 
this section a detailed discussion of the binary operations is presented. 

Learning Objectives

	 Upon completion of this chapter, students will be able to 
	 •	 define binary operation and examine various properties 
	 •	 define binary operation on Boolean matrices and verify various properties
	 •	 define binary operation on modular classes and examine various properties 
	 •	 identify simple and compound statements
	 •	 define logical connectives and construct truth tables
	 •	 identify tautology, contradiction, and contingency
	 •	 establish logical equivalence and apply duality principle

12.2 Binary Operations
12.2.1  Definitions
	 The basic arithmetic operations on   are addition (+ ), subtraction (- ), multiplication (× ), and 
division (÷). Eminent mathematicians of the latter part of 19thcentury and in 20thcentury like Abel, Cayley, 
Cauchy, and others, tried to generalize the properties satisfied by these usual arithmetic operations. To this 
end they developed new abstract algebraic structures through the axiomatic approach. This new branch 
of algebra dealing with these abstract algebraic structures is known as abstract algebra. 
	 To begin with, consider a simple example involving the basic usual arithmetic operations addition 
and multiplication of any two natural numbers.

m n+ ∈ ; m n× ∈ , ∀ ∈ =m n, { , , ,...} 1 2 3

Each of the above two operations yields the following observations:
	 (1)	 At a time exactly two elements of  are processed.
	 (2)	 The resulting element (outcome) is also an element of  .
	 Any such operation defined on a nonempty set is called a binary operation or a binary 
composition on the set in abstract algebra.
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Definition 12.1
	 Any operation * defined on a non-empty set S is called a binary operation on S if the following 
conditions are satisfied:
	 (i)	 The operation * must be defined for each and every ordered pair ( , )a b ∈ S S× .
	 (ii)	 It assigns a unique element a b∗ of S to every ordered pair ( , )a b ∈ S S× .

	 In other words, any binary operation * on S is a rule that assigns to each ordered pair of 
elements of S  a unique element of S . Also * can be regarded as a function (mapping) with input in 
the Cartesian product S S× and the output in S . 

∗ × →: S S S   ;  ∗ = ∗ ∈( , )a b a b S , where a b*  is an unique element.

	 A binary operation defined by   ∗ × →: S S S ;  ∗ = ∗ ∈( , )a b a b S demands that the output a b∗

must always lie the given set S and not in the complement of it. Then we say that ‘∗ is closed on S ’ or  

‘ S  is closed with respect to ∗ ’. This property is known as the closure property.

Definition 12.2

	 Any non-empty set on which one or more binary operations are defined is 
called an algebraic structure.
	 Another way of defining a binary operation ∗  on S  is as follows: 
∀ ∈ ∗a b S a b, ,  is unique and a b S∗ ∈ .

Note
	 It follows that every binary operation satisfies the closure property.
Note
	 The operation∗ is just a symbol which may be  + × −, , ,  ÷ matrix addition, matrix multiplication, 
etc. depending on the set on which it is defined.
	 For instance, though +  and ×  are binary on , - is not binary operation on . 
	 To verify this, consider ( , )3 4 ∈ ×  .

∗ = − = − = − ∉( , ) ( , )a b 3 4 3 4 1 

.
	 Hence - is not binary operation on  . So   is to be extended to   in order that - becomes 
binary operation on .  Thus   is closed with respect to + × −, , and . Thus ( , , , ) + × −  is an 
algebraic structure.

Observations
	 The binary operation depends on the set on which it is defined.
	 (a)	 The operation – which is not binary operation on   but it is binary on  .   The set   is 

extended to include negative numbers. We call the included set   .
	 (b)	 The operation ÷ on   is not binary operation on  .   For instance, for ( , )1 2 ∈ ×  ,  

÷ 1 2
1

2
,  ( ) = ∉ . Hence   has to be extended further into  .

	 (c)	 It is a known fact that the division by 0 is not defined in basic arithmetic. So ÷ is binary 
operation on the set  \{ }0 . Thus + × −, , are binary operation on   and ÷  is binary 
operation on \{ }0 .

	 Now the question is regarding the reasons for extending further   to  and then from to . 
Accordingly, a number system is needed where not only all the basic arithmetic operations  
+ − ×, , , ÷ but also to include the roots of the equations of the form “ x2 2 0− = ” and“ x2 1 0+ = ”. 

Fig. 12.1

a b

Sa b*
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So, in addition to the existing systems, the collection of irrational numbers and imaginary numbers 
(See Chapter 3) are to be adjoined. Consequently  and then  are obtained. The biggest number 
system properly includes all the other number systems, ,  , and as subsets. 

    

 \ 0{ }  \ 0{ }  \ 0{ }

+ Binary Binary Binary Binary Binary
Not  

Binary
Not  

Binary
Not  

Binary

-
Not 

Binary
Binary Binary Binary Binary

Not  
Binary

Not  
Binary

Not  
Binary

× Binary Binary Binary Binary Binary Binary Binary Binary

÷
Not 

Binary
Not 

Binary
Not 

Binary
Not Binary

Not 
Binary

Binary Binary Binary

Table12.1
Example12.1 
	 Examine the binary operation (closure property) of the following operations on the respective 
sets (if it is not, make it binary):  

		  (i)	 a b a ab b a b∗ = + − ∀ ∈3 5 2; , 
	 (ii)	 a b a

b
a b∗ =

−
−







 ∀ ∈

1

1
, , 

Solution

	 (i)	 Since ×   is binary operation on   , ,a b a b ab∈ ⇒ × = ∈  and b b b× = ∈2

	 ... (1)

		  The fact that +  is binary operation on   and (1) ⇒ 3ab ab ab ab= + + ∈( ) 
 and 

5 2 2 2 2 2 2b b b b b b= + + + + ∈( ) 

.   	 .... (2)

	 	 Also a∈  and 3ab∈ implies a ab+ ∈3 
.  	 ... (3)

	 	 (2), (3), the closure property of - on  yield a b a ab b∗ = + − ∈( )3 5 2

. Since a b�

belongs to  , * is a binary operation on  .
	 (ii)	 In this problem a b∗ is in the quotient form. Since the division by 0 is undefined, the 

denominator b -1must be nonzero.
	 	 It is clear that b − =1 0  if b =1. As 1∈ , ∗  is not a binary operation on the whole of  . 

However it can be found that by omitting 1 from  , the output a b∗  exists   in  \{ }1 . 
Hence ∗ is a binary operation on \{ }1 .

12.2.2 Some more properties of a binary operation
Commutative property
	 Any binary operation ∗defined on a nonempty set S is said to satisfy the commutative  
property, if

a b b a a b S∗ = ∗ ∈∀ , .

Number 
System

Operation
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Associative property
	 Any binary operation∗defined on a nonempty set S is said to satisfy the associative property, if

a b c a b c a b c S∗ ∗ = ∗ ∗ ∈∀( ) ( ) , , .

Existence of identity property
	 An element  e S∈ is said to be the Identity Element of  S under the binary operation∗ if for all 
a S∈ we have that  a e a∗ = and  e a a∗ = .

Existence of inverse property
	 If an identity element  e exists and if for every a S∈ , there exists b in S such that a b e∗ = and 
b a e∗ =  then b S∈ is said to be the Inverse Element of  a . In such instances, we write b a= −1 .

Note
	� a–1 is an element of S. It should be read as the inverse of a and not as 1

a
.

Note
	 (i) � The multiplicative identity is 1in  and it is the one and only one element with the property

n n n n⋅ = ⋅ = ∀ ∈1 1 ,  . 
	 (ii) � The multiplicative inverse of any element, say 2 in  is 1

2
and no other nonzero rational 

number x has the property that 2 2 1⋅ = ⋅ =x x .
Note
	 Whenever a mathematical statement involves ‘for every’ or ‘ for all’ , it has to be proved  for every 
pair or three elements. It is not easy to prove for every pair or three elements. But these types of definitions 
may be used to prove the negation of the statement. That is, negation of “for every” or “for all” is “there 
exists not”. So, produce one such pair or three elements to establish the negation of the statement. 
	 The questions of existence and uniqueness of identity and inverse are to be examined.  The 
following theorems prove these results in the more general form.

Theorem 12.1: (Uniqueness of Identity) 
	 In an algebraic structure the identity element (if exists) must be unique.

Proof
	 Let ( , )S ∗ be an algebraic structure. Assume that the identity element of S exists in S .
	 It is to be proved that the identity element is unique. Suppose that e1  and e2 be any two identity 
elements of S .
	 First treat e1 as the identity and e2 as an arbitrary element of S .
	 Then by the existence of identity property, e e e e e2 1 1 2 2∗ = ∗ = .	 ... (1)
	 Interchanging the role of e1 and e2 , e e e e e1 2 2 1 1∗ = ∗ = .   	 …(2)
	 From (1) and (2), e e1 2= . Hence the identity element is unique which completes the proof.

Theorem 12.2 (Uniqueness of Inverse) 
	 In an algebraic structure the inverse of an element (if exists) must be unique.

Proof
	 Let ( , )S ∗ be an algebraic structure and a S∈ . Assume that the inverse of a  exists in S .  It is to 

be proved that the inverse of a  is unique. The existence of inverse in S ensures the existence of the 

identity element e in S .

Chapter 12 Discrete Mathematics 20-07-2019.indd   228 7/25/2019   5:19:11 PM



Discrete Mathematics229

	 Let a S∈ . It is to be proved that the inverse a (if exists) is unique. 
	 Suppose that a has two inverses, say, a1 , a2 .
	 Treating a1 as an inverse of a gives a a a a e∗ = ∗ =1 1 	 …(1)
	 Next treating a2  as the inverse of a gives a a a a e∗ = ∗ =2 2 	 …(2)

a a e a a a a a a e a a1 1 1 2 1 2 2 2= ∗ = ∗ ∗ = ∗ ∗ = ∗ =( ) ( )  (by (1) and (2)).
	 So, a a1 2= . Hence the inverse of a is unique which completes the proof.

Example 12.2
	 Verify the (i) closure property, (ii) commutative property, (iii) associative property (iv) existence 
of identity and (v) existence of inverse for the arithmetic operation + on  . 
Solution

	 (i)	 m n+ ∈ ,∀ ∈m n,  . Hence+ is a binary operation on  .
	 (ii)	 Alsom n n m m n+ = + ∀ ∈, , 

. So the commutative property is satisfied
	 (iii)	 ∀ ∈ + + = + +m n p m n p m n p, , , ( ) ( )

. Hence the associative property is satisfied.
	 (iv)	 m e e m m e+ = + = ⇒ = 0. Thus ∃ ∈0 ⋺ ( ) ( )m m m+ = + =0 0 . Hence the existence 

of identity is assured.
	 (v)	 m m m m m m m m+ = + = ⇒ = − ∀ ∈ ∃ − ∈' ' ' . ,0 Thus  

⋺
				  m m m m+ − = − + =( ) ( ) 0 . Hence, the existence of inverse property is also assured. Thus 

we see that the usual addition + on  satisfies all the above five properties.
				  Note that the additive identity is 0 and the additive inverse of any integer m is-m .
Example 12.3
	 Verify the (i) closure property, (ii) commutative property, (iii) associative property (iv) existence 
of identity and (v) existence of inverse for the arithmetic operation -  on  .

Solution
	 (i)	Though - is not binary on ; it is binary on  . To check the validity of any more properties 

satisfied by – on  , it is better to check them for some particular simple values. 

	 (ii)	Take m = 4 , n = 5  and  ( ) ( )m n− = − = −4 5 1and ( ) ( )n m− = − =5 4 1.     
				  Hence ( ) ( )m n n m− ≠ − . So the operation -  is not commutative on  .

	 (iii)	 In order to check the associative property, let us put m n= =4 5,  and p = 7  in both   

( )m n p- -  and  m n p- -( ) .

		
( ) ( ) ( )m n p− − = − − = − − =−4 5 7 1 7 8 	 …(1)

		
m n p− − = − − = + =( ) ( ) ( )4 5 7 4 2 6 .       	 …(2)

	 	 	From (1) and (2), it follows that m n p m n p( )- - -- ≠ ( ) .
	 	 	Hence – is not associative on  .
	 (iv)	 Identity does not exist (why?).
	 (v)	 Inverse does not exist (why?).
Example 12.4
	 Verify the (i) closure property, (ii) commutative property, (iii) associative property  
(iv) existence of identity and (v) existence of inverse for the arithmetic operation +  on  
 e= the set of all even integers.
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Solution
	 	Consider the set of all even integers 

 e k k= ∈{ } = − − −{ }2 6 4 2 0 2 4 6| ..., , , , , , , ,... .
	 Let us verify the properties satisfied by + on  e . 

	 (i)	 The sum of any two even integers is also an even integer. 
	 	 	Because x y x me, ∈ ⇒ = 2 and y n= 2 , m n, ∈ . 
	 	 	So x y m n m n e+ = + = +( ) ( )∈2 2 2 

. Hence + is a binary operation on e .
	 (ii)	 ∀ ∈x y e,  , ( ) ( ) ( ) ( ) ( )x y m n n m n m y x+ = + = + = + = +2 2 2 2 . 
	 	 	So + has commutative property. 
	 (iii)	 Similarly it can be seen that∀ ∈x y z e, ,  , ( ) ( )x y z x y z+ + = + + . 
	 	 	Hence the associative property is true. 	      

	 (iv)	 	Now take x k= 2 , then 2 2 2 0k e e k k e+ = + = ⇒ = .  
			  Thus∀ ∈ ∃ ∈x e e , 0 ⋺ x x x+ = + =0 0 .  	
	 	 	So, 0 is the identity element.

	 (v)	 	Taking x k= 2  and ′x  as its inverse, we have 2 0 2 2k x x k x k+ = = + ⇒ = −' ' ' . i.e., 
x x' = − .

 	 	 	Thus ∀ ∈ ∃ − ∈x xe e ,  ⋺ x x x x+ − = − + =( ) ( ) 0

			  Hence -x is the inverse of x eÎ .

Example 12.5

	 Verify the (i) closure property, (ii) commutative property, (iii) associative property  
(iv) existence of identity and (v) existence of inverse for the arithmetic operation +  on  
 o = the set of all odd integers.
Solution
	 Consider the set  o  of all odd integers  

 o k k= + ∈{ } = − − −{ }2 1 5 3 1 1 3 5: ..., , , , , , ,... . + is 
not a binary operation on o  because when x m y n x y m n= + = + + = + +2 1 2 1 2 2, , ( )  is even for 
all m and n. For instance, consider the two odd numbers 3 7, ∈ o . Their sum 3 7 10+ = is an even 
number. In general, if x, y∈ 0 , then x y+( )∉ 0 . Other properties need not be checked as it is not 
a binary operation.
Example 12.6
	 Verify (i) closure property (ii) commutative property, and (iii) associative   property of the 
following operation on the given set.
		  a b a a bb∗ = ∈( ) ∀; ,  (exponentiation property)
Solution
	 (i)	 It is true thata b a a bb∗ = ∈∈ ∀ ; , .  So ∗  is a binary operation on  . 
	 (ii)	 a b ab∗ =  and b a ba∗ = . Put, a = 2  and b = 3 . Then a b∗ = =2 83  but b a∗ = =3 92  
	 	 So a b∗  need not be equal tob a∗ . Hence ∗  does not have commutative property.
	 (iii)	 Next consider 

 
a b c a b ac bc∗ ∗ = ∗ =( ) ( ) ( ) . Take a b= =2 3, and c = 4 . 

		  Then a b c∗ ∗ = ∗ ∗ = =( ) ( )2 3 4 2 23 814

	 	 But a b c a c a a ab b c bc bc∗ ∗ = ( )∗ = ( ) = = =( ) ( ) 212

		  Hence a b c a b c∗ ∗( ) ≠ ∗( )∗ . So ∗ does not have associative property on  .
		  Note: This binary operation has no identity and no inverse. (Justify).
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Example 12.7

	 Verify   (i) closure property, (ii) commutative property, (iii) associative property,  
(iv) existence of identity, and (v) existence of inverse for following operation on the given set. 
	 m n m n mn m n∗ = + − ∈; , 

 m n m n mn m n∗ = + − ∈; , 

Solution
	 (i)	  The output m n mn+ -  is clearly an integer and hence∗  is a binary operation on  .

	 (ii)	 m n m n mn n m nm n m∗ = + − = + − = ∗ , ∀ ∈m n,  . So ∗  has commutative property.

	 (iii)	 Consider ( )m n p∗ ∗ = ( )m n m n p+ − ∗ = ( ) ( )m n mn p m n m n p+ − + − + −
					    =  m n p mn m p n p m n p+ + − − − + � ... (1)
	 	 	Similarly m n p∗ ∗( ) = m n p n p∗ + −( )  = m n p n p m n p n p+ + − − + −( ) ( )

						     =  m n p n p m n mp m n p+ + − − − + 	 ... (2)
	 	 	From (1) and (2), we see that m n p m n p∗ ∗ = ∗ ∗( ) ( ) . Hence ∗   has associative property.

	 (iv)	 An integer e  is to be found such that 
				  m e e m m∗ = ∗ = , ∀ ∈m ⇒ + −m e m e = m

				  ⇒ −e m( )1 = 0 ⇒ e  =  0 or m =1. But m is an arbitrary integer and hence need not be 

equal to 1. So the only possibility is e = 0 . Also m∗0 = 0∗ =m m, ∀ ∈m  . Hence 0 is the 

identity element and hence the existence of identity is assured.

	 (v)	 An element ′∈m  is to be found such that m m∗ ′ = ′∗ = =m m e 0, ∀ ∈m  .

				  m m∗ ′ = 0 ⇒ + ′− ′m m m m = 0 ⇒ ′m = m
m -1

. When m=1, ′m  is not defined.

	 	 		When m m= ′2, m m= ′2,  is an integer. But except m=2, ′m need not be an integer for all values of 
m. Hence inverse does not exist in  .

12.2.3 Some binary operations on Boolean Matrices 
Definition 12.3

	 A Boolean Matrix is a real matrix whose entries are either 0 or 1. 

	 Note that the boolean entries 0 and 1 can be defined in several ways. In electrical switch to 
describe “on and off”, in graph theory, the “adjacency matrix” etc , the boolean entries 0 and 1 are 
used. We consider the same type of Boolean matrices in our discussion. 
	 The following two kinds of operations on the collection of all boolean matrices are defined. 
	 Let A aij=    and B bij=    be any two boolean matrices of the same type. Then their join∨ and 
meet∧ are defined as follows:

Definition 12.4: Join of A and B

			   A B∨ 	= 	 a b a b cij ij ij ij ij  ∨   = ∨  =  

			   where cij 	= 	
1 1 1

0 0 0

,

,

if either or

if both and

a b
a b

ij ij

ij ij

= =
= =





 

Chapter 12 Discrete Mathematics 20-07-2019.indd   231 7/25/2019   5:19:27 PM



232XII - Mathematics

Definition 12.5: Meet of A and B

	 A B∧ = a b a b cij ij ij ij ij  ∧   = ∧  =  where c
a b
a bij
ij ij

ij ij
=

= =
= =





1 1 1

0 0 0

,

, .

if both and

if either or

	 It is clear that a b a b∨( ) = { }max , ; a b a b∧( ) = { }min , , a b, ,∈{ }0 1 .

Example 12.8

	 Let  	A =










0 1

1 1
, B =











1 1

0 1
 be any two boolean matrices of the same type. Find A B∨  and 

A B∧  .
Solution

			   Then A B∨ 	= 	
0 1

1 1

1 1

0 1

0 1 1 1

1 0 1 1

1 1

1 1









 ∨









 =

∨ ∨
∨ ∨









 =











			   A B∧ 	= 	
0 1

1 1

1 1

0 1

0 1 1 1

1 0 1 1

0 1

0 1









 ∧









 =

∧ ∧
∧ ∧









 =











Properties satisfied by join and meet
	 Let 𝔹 be the set of all boolean matrices of the same type. We only state the properties of meet 
and join.

Closure property
	 A B, ∈𝔹, A B a b a bij ij ij ij∨ = ∨ = ∨ ∈[ ] [ ] [ ] 𝔹. (Because, a bij ij∨( )  is either 0 or 1 ∀i j, . ∨  is a 
binary operation on 𝔹.

Associative property
		  A B C∨ ∨( ) 	= A B C A B C, , , A B C A B C, , ,  𝔹. ∨  is associative.

Existence of identity property
	 ∀ ∈A 𝔹, ∃ the null matrix 0∈𝔹⋺ A A A∨ = ∨ =0 0 . The identity element for ∨  is the null 
matrix.

Existence of inverse property
	 	For any matrix A∈𝔹, it is impossible to find a matrix 
	 B∈  𝔹 ⋺ A B B A∨ = ∨ = 0 . So the inverse does not exist.
	 Similarly, it can be verified that the operation meet ∧  satisfies (i) closure property   

(ii) commutative property (iii) associative property (iv) the matrix  U =










1 1
1 1

 exists as the identity in 

𝔹 and (v) the existence of inverse is not assured.

12.2.4 Modular Arithmetic
	 Having discussed the properties of operations like basic usual arithmetic operations, matrix 
addition and multiplication, join and meet of boolean matrices, one more new operation called the 
Modular Arithmetic is discussed in this section. The modular arithmetic refers to the process of 
dividing some number a by a positive integer n  ( > 1), called modulus,  and then equating a  with the 
remainderb modulo n and it is written as a b n≡ (mod ) , read as ‘a is congruent to b modulo n ’.
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	 Here a b≡ (mod n ) means a b n k− = ⋅ for some integer k  and b  is the least  
non-negative integer when a  is divided by n.
	 For instance,25 4 7 20 2 3 1 3≡ − ≡ − ≡(mod ), (mod ) (mod ) and 15 0 5≡ (mod ) , etc. Further the 
set of integers when divided by n ,  leaves the remainder 0 1 2 1, , , , n - . In the case of  5 , 

			   [ ]0 	 = 	
 , , , , , , , ,− − −{ }15 10 5 0 5 10 15

			   [ ]1 	 = 	 … − − − …{ }, , , , , , ,14 9 4 1 6 11  

			   [ ]2 	 = 	 { ], , , , , , ,… − − − …13 8 3 2 7 12  

			   [ ]3 	 = 	  … − − − …{ }, , , , , , ,12 7 2 3 8 13

			   [ ]4 	 = 	 … − − − …{ }, , , , , , , .11 6 1 4 9 14  

	 We write this as 
 5 0 1 2 3 4={ }[ ],[ ],[ ],[ ],[ ] .   In each class, any two numbers are congruent  

modulo 5.

Before 2007, modular arithmetic is used in 10-digit ISBN (International Standard Book Number) 
numbering system. For instance, the last digit is for parity check. It is from the set 
{ , , , , , , , , , , }0 1 2 3 4 5 6 7 8 9 X .  In ISBN number, 81-7808-755-3, the last digit 3 is obtained as

     1*8+2*1+3*7+4*8+5*0+6*8+7*7+8*5+9*5=8+2+21+32+0+48+49+40+45=245≡ 3 11(mod ) .
	 Alternatively, the weighted sum is calculated in the reverse manner
	 9*8+8*1+7*7+6*8+5*0+4*8+3*7+2*5+1*5=245 = 3 (mod 11).
	 In both ways, we get the same check number 3. 
After 2007, 13-digit ISBN numbering has been followed. The first 12 digits (from left to right) are 
multiplied by the weights 3,1,3,1,…. starting from right to left. Then the weighted sum is calculated. 
The higher multiple of 10 is taken. Then the difference is calculated. Then its additive inverse 
modulo 10 is the thirteenth digit.
	 For instance, consider the ISBN Number: 978-81-931995-6-5.Take 12 digits from left to right.

9 7 8 8 1 9 3 1 9 9 5 6
1 3 1 3 1 3 1 3 1 3 1 3
9 21 8 24 1 27 3 3 9 27 5 18

The total of last row is 155. The nearest (higher) integer in multiples of 10 is 160. The difference 
160-155=5. The additive inverse modulo 10 is 5 which is 13-th digit in the ISBN number.

	 Two new operations namely addition modulo n n( )+  and multiplication modulo n n( )×  are 
defined on the set  n of all non-negative integers less than n under modulo arithmetic.

Definition 12.6

	 (i)	 The addition modulo n is defined as follows.
		  Leta b n, ∈ . Then 
		  a bn+ = the remainder of a b+ on division by n .
	 (ii)	 The multiplication modulo n is defined as follows. 
		  Let a b n, ∈ . Then 
		  a bn× =the remainder of a b×  on division by n
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Example 12.9 
	 Verify   (i) closure property, (ii) commutative property, (iii) associative property,  
(iv) existence of identity, and (v) existence of inverse for the operation +5

on  5  using table 
corresponding to addition modulo 5.
Solution
	 It is known that 5 0 1 2 3 4={ }[ ], ], ], ], ] [  [  [  [ . The table corresponding to addition modulo 5 is as 
follows: We take reminders { , , , , }0 1 2 3 4  to represent the classes {[ ],[ ],[ ],[ ],[ ]}0 1 2 3 4 .

+5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Table12.2
	 (i)	 Since each box in the table is filled by exactly one element of   5 , the output a b+5  is 

unique and hence +5  is a binary operation.

	 (ii)	 The entries are symmetrically placed with respect to the main diagonal. So+5  has 
commutative property.

	 (iii)	 The table cannot be used directly for the verification of the associative property. So it is to 
be verified as usual. 

	        For instance, 2 3 4 0 4 45 5 5+ + = + =( )  (mod 5) 

	       and 2 3 4 2 2 4 55 5 5+ +( ) = + = ( )mod . 

	       Hence 2 3 4 2 3 45 5 5 5+( ) + = + +( ) . 

	 	 Proceeding like this one can verify this for all possible triples and ultimately it can be shown 
that +5  is associative. 

	 (iv)	 The row headed by 0 and the column headed by 0 are identical. Hence the identity element 
is 0.

	 (v)	 The existence of inverse is guaranteed provided the identity 0 exists in each row and each 
column. From Table12.2, it is clear that this property is true in this case. The method of 
finding the inverse of any one of the elements of  5 , say 2 is outlined below.

	 	 First find the position of the identity element 0 in the III row headed by 2. Move horizontally 
along the III row and after reaching 0, move vertically above 0 in the IV column, because 0 
is in the III row and IV column. The element reached at the topmost position of IV column 
is 3. This element 3 is nothing but the inverse of 2, because, 2 3 0 55+ = (mod ) . In this way, 
the inverse of each and every element of   5  can be obtained. Note that the inverse of 0 is 
0,that of 1 is 4,  that of 2 is 3,  that of 3 is 2 , and, that of  4 is 1.

Example 12.10
	 Verify (i) closure property, (ii) commutative property, (iii) associative property,  
(iv) existence of identity, and (v) existence of inverse for the operation ×11  on a subset A ={ , , , , }1 3 4 5 9

of the set of remainders { , , , , , , , , , , }0 1 2 3 4 5 6 7 8 9 10 .
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Solution
	 The table for the operation 1́1  is as follows.

×11 1 3 4 5 9
1 1 3 4 5 9
3 3 9 1 4 5
4 4 1 5 9 3
5 5 4 9 3 1
9 9 5 3 1 4

Table12.3
	 Following the same kind of procedure as explained in the previous example, a brief outline of the 
process of verification of the properties of  ×11  on A is given below.

	 (i)	 Since each box has an unique element of A, ×11  is a binary operation on A.

	 (ii)	 The entries are symmetrical about the main diagonal. Hence ×11  has commutative property.

       (iii)	 As usual, the associative property can be seen to be true.

	 (iv)	 The entries of both the row and column headed by the element 1 are identical. Hence 1 is the 
identity element.

	 (v)	 Since the identity 1 exists in each row and each column, the existence of inverse property                      
is assured for ×11 . The inverse of 1 is 1, that of 3 is 4, that of  4 is 3, 5 is 9 , and, that of  9 is 5.

	 EXERCISE 12.1
	 1.	 Determine whether ∗ is a binary operation on the sets given below.

			   (i)	 a b a b∗ = . on  	(ii) a b a b A∗ = ( ) = { }min , , , , ,on 1 2 3 4 5

			   (iii)	 a b a b∗ =( )  is binary on .

	 2.	 On  , define ⊗by m n m n m nn m⊗( ) = + ∀ ∈: ,  . Is⊗binary on  ?

	 3.	 Let ∗  be defined on by ( )a b a b ab∗ = + + − 7 . Is ∗  binary on ? If so, find 3 7

15
∗
−





 .

	 4.	 Let A a b a b= + ∈{ : , }5  . Check whether the usual multiplication is a binary operation on

A .

	 5.	 	 (i)	 Define an operation∗on  as follows: a b a b a b∗ =
+






 ∈

2
; ,  . Examine the closure, 

commutative, and associative properties satisfied by ∗  on ℚ.

	 	 	 (ii)	 Define an operation∗on  as follows: a b a b a b∗ =
+






 ∈

2
; ,  . Examine the  existence 

of identity and the existence of inverse  for the operation ∗  on ℚ.
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	 6.	 Fill in the following table so that the binary operation ∗on A a b c={ , , } is commutative.

∗ a b c

a b

b c b a

c a c

	 7.	 Consider the binary operation ∗  defined on the set A a b c d={ , , , }  by the following table:

∗ a b c d

a a c b d

b d a b c

c c d a a

d d b a c

	 	 	Is it commutative and associative?

	 8.	 Let A =
















1 0 1 0

0 1 0 1

1 0 0 1

, B =
















0 1 0 1

1 0 1 0

1 0 0 1

, C =
















1 1 0 1

0 1 1 0

1 1 1 1

 be any three boolean matrices 

of the same type. Find (i) A B∨  (ii) A B∧  (iii) A B C∨( )∧   (iv) A B C∧( )∨ .

	 9.		  (i)	 Let M
x x
x x

x R=








 ∈ −









: { }0  and let ∗  be the matrix multiplication. Determine 

whetherM is closed under ∗ .  If so, examine the commutative and associative properties 

satisfied by ∗  on M .

			   (ii)	 Let M
x x
x x

x R=








 ∈ −









: { }0  and let ∗  be the matrix multiplication. Determine 

whetherM is closed under ∗ .   If so, examine the existence of identity, existence of 

inverse properties for the operation ∗  on M .

	 10.		  (i)	 Let A be  \ 1{ } . Define ∗  on A  by x y x y xy∗ = + − . Is ∗  binary on A ? If so, 

examine the commutative and associative properties satisfied by ∗  on A .

			   (ii)	 Let A be 
 \ 1{ } . Define ∗  on A  by x y x y xy∗ = + − . Is ∗  binary on A ? 

If so, examine the existence of identity, existence of inverse properties for the operation
∗  on A .
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12.3 Mathematical Logic
	 George Boole was a self-taught English Mathematician, Philosopher and 
Logician. His results on Boolean Algebra involving the binary numbers play an 
important role in various fields, particularly more in computer applications. He 
introduced the idea of Symbolic Logic and contributed a lot of results to the fast 
development of Mathematical Logic. 
	 The reputed Greek philosopher Aristotle (384-322BC(BCE)) wrote the first book 
on logic. The famous German philosopher and mathematician Gottfried Leibnitz of 
17thcentury framed the idea of using symbols in Logic. Later this idea was realized 
by George Boole and Augustus de Morgan in 19th century. George Boole established 
the fact that logic is very much related to mathematics by linking logic, symbols, and 
algebra together. Mathematical Logic was developed in the late 19thand early 20thcenturies. 
	 In 1930 the researchers noticed (Neumann’s statement in his death bed: 0 and 1 are going to 
rule the world) that the binary numbers 0 and 1 could be used to analyze electrical circuits and thus 
used to design electronic computers. Today digital computers and electronic circuits are designed 
to implement this binary arithmetic. We study Mathematical Logic as the language and deductive 
system of Mathematics and Computer Science.
	 Generally Logic is the study of valid reasoning. But mathematical logic allows us to represent 
knowledge in a precise mathematical way and it also allows us to make valid inferences using a set of 
precise rules. It is regarded as a powerful tool for computer science because it is mainly used to verify 
the correctness of programs.

12.3.1 Statement and its truth value
	 The simplest part of Mathematical Logic is the Propositional Logic and its building blocks 
are statements or propositions. Mostly communication needs the use of language through which we 
impart our ideas. They are in the form of sentences. 
	 There are various types of sentences like
	 (1)	Declarative (Assertive type)

	 (2)	 Imperative (A command or a request type)

	 (3)	Exclamatory (Emotions, excitement type)

	 (4)	 Interrogative (Question type)

	 (5)	Open type

Definition 12.7
	 Any declarative sentence is called a statement or a proposition which is either true or false 
but not both.
	 Any imperative sentence such as exclamatory, command and any interrogative sentence 
cannot be a proposition.
	 The truth value of a statement refers to the truth or the falsity of that particular statement.  
The truth value of a true statement is true and it is denoted by T or 1. The truth value of a false 
statement is false and it is denoted by F or 0.
	 An open sentence is a sentence whose truth can vary according to some conditions, which are 
not stated in the sentence.  For instance, (i) x× =7 35  is an open sentence whose truth value 
depends on value of x . That is, if x = 5 , it is true and if x � 5, it is false. (ii) He is a bad person. 
This is an open sentence. Opinion varies from individual to individual.

George Boole 
(1815-1864)
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Example 12.11
	 Identify the valid statements from the following sentences.
Solution:
	 (1)	Mount Everest is the highest mountain of the world.
	 (2)	 3 4 8+ = .
	 (3)	 7 5 10+ > .
	 (4)	Give me that book.
	 (5)	 ( )10 7− =x .
	 (6)	How beautiful this flower is!
	 (7)	Where are you going?
	 (8)	Wish you all success.
	 (9)	This is the beginning of the end.
	 The truth value of the sentences (1) and (3) are T, while that of (2) is F. Hence they are statements. 

The sentence (5) is true for x = 3  and false for x � 3 and hence it may be true or false but not 
both. So it is also a statement.

	 The sentences (4), (6), (7), (8) are not statements, because (4) is a command, (6) is an exclamatory, 
(7) is a question while (8) is a sentence expressing one’s wishes and (9) is a paradox.

12.3.2 Compound Statements, Logical Connectives, and Truth Tables  

Definition 12.8: (Simple and Compound Statements) 

	 Any sentence which cannot be split further into two or more statements is called an atomic 
statement or a simple statement. If a statement is the combination of two or more simple 
statements, then it is called a compound statement or a molecular statement. Hence it is clear 
that any statement can be either a simple statement or a compound statement.

Example for simple statements
	 The sentences (1), (2), (3) given in example 12.11 are simple statements.

Example for Compond statements
	 Consider the statement, 	“1 is not a prime number and Ooty is in Kerala”. 
Note that the above statement is actually a combination of the following two simple statements:
	 p : 1 is not a prime number.

	 q : Ooty is in Kerala. 
	 Hence the given statement is not a simple statement. It is a compound statement.
	 From the above discussions, it follows that any simple statement takes the value either T or F . 
So it can be treated as a variable and this variable is known as statement variable or propositional 
variable. The propositional variables are usually denoted by p, q, r , .... 

Definition 12.9 : (Logical Connectives) 

	 To connect two or more simple sentences, we use the words or a group of words such as 
“and”, “or”, “if-then”, “if and only if”, and “not”. These connecting words are known as logical 
connectives.
	 In order to construct a compound statement from simple statements, some connectives are 
used. Some basic logical connectives are negation (not), conjunction (and) and disjunction(or).
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Definition 12.10
	 A statement formula is an expression involving one or more statements connected by some 
logical connectives. 

Definition 12.11: (Truth Table) 
	 A table showing the relationship between truth values of simple statements and the truth values 
of compound statements formed by using these simple statements is called truth table. 

Definition12.12

	 (i)	Let p be a simple statement. Then the negation of p  is a statement whose truth value is 
opposite to that of p . It is denoted by ¬p, read as not p .The truth value of ¬p is  T , if p
is F , otherwise it is F .

	 (ii)	Let p and q be any two simple statements. The conjunction of p and q is obtained by 
connecting p and q by the word and. It is denoted by p q∧ , read as ‘ p  conjunction q ’ 
or ‘ p  hat q ’. The truth value of p q∧  is T , whenever both p and q are T and it is F
otherwise.

	 (iii)	The disjunction of any two simple statements p and q is the compound statement obtained 
by connecting p and q by the word ‘or’. It is denoted by p q∨ , read as ‘ p  disjunction q
’ or ‘ p cup q ’.The truth value of p q∨ is F , whenever both p and q are F and it is T
otherwise.

Logical Connectives and their Truth Tables
(1) Truth Table for NOT [¬] (Negation)

Truth Table for ¬ p
p ¬ p

T F
F T
Table 12.4

(2) Truth table for AND [∧∧ ] (Conjunction)
Truth Table for p qÙ

p q p q∧∧
T T T
T F F
F T F
F F F

Table 12.5
(3) The truth tables for OR [∨∨ ] (Disjunction)

Truth Table for p q∨∨

p q p q∨∨
T T T
T F T
F T T
F F F

Table 12.6
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Example 12.12
	 Write the statements in words corresponding to ¬ p, p q∧ , p q∨ and q∨¬p, where p  is ‘It is 
cold’ and q is ‘It is raining.’ 
Solution
	 (1)	¬p	 :	 It is not cold. 
	 (2)	 p q∧ 	 :	 It is cold and raining.
	 (3)	 p q∨ 	 :	 It is cold or raining.
	 (4)	 q∨¬p	 :	 It is raining or it is not cold
	 Observe that the statement formula  p has only 1 variable p and its truth table has 2 21= ( )  
rows. Each of the statement formulae p q∧  and p q∨  has two variables p and q . The truth table 
corresponding to each of them has 4= ( )22  rows. In general, it follows that if a statement formula 
involves n  variables, then its truth table will contain 2n rows.

Example 12.13
	 How many rows are needed for following statement formulae?
		  (i)	 p t p s∨¬ ∧ ∨¬( ) 	 (ii)	 p q r s t v∧( )∨ ¬ ∨¬( )( ) ∧ ¬ ∧( )
Solution
	 (i)	 p t p s∨¬( ) ∧ ∨¬( ) contains 3 variables p s, ,and t . Hence the corresponding truth table will 

contain 2 83 =  rows. 
	 (ii)	 ( ) ( ) ( )p q r s t v∧ ∨ ¬ ∨¬ ∧ ¬ ∧( )  contains 6 variables p q r s t, , , , , and v . Hence the 

corresponding truth table will contain 2 646 =  rows.

Conditional Statement

Definition 12.13
	 The conditional statement of any two statements p and q is the statement, “If p , then q ” and 
it is denoted by p q→ . Here p is called the hypothesis or antecedent and q is called the 
conclusion or consequence. p q→ is false only if p is true and q is false. Otherwise it is true.

Truth table for p q→ 

p q p q→→
T T T
T F F
F T T
F F T

Table 12.7
Example 12.14
	 Consider p q→ : If today is Monday, then 4 + 4 = 8.
	 Here the component statements p and q are given by, 
	 p: Today is Monday; q: 4 + 4 = 8. 
	 The truth value of p q→  is T because the conclusion q is T. 
	 An important point is that p q→  should not be treated by actually considering the meanings of 
p and q in English. Also it is not necessary that p should be related to q at all.

Chapter 12 Discrete Mathematics 20-07-2019.indd   240 7/25/2019   5:19:47 PM



Discrete Mathematics241

Consequences
	 From the conditional statement p q→ , three more conditional statements are derived. They are 
listed below.
	 (i)	 Converse statement q p→ .
	 (ii)	 Inverse statement ¬ →¬p q .
	 (iii)	 Contrapositive statement ¬ →¬q p .

Example 12.15
	 Write down the (i) conditional statement (ii) converse statement (iii) inverse statement, and  
(iv) contrapositive statement  for the two statements p and q given below.

	 p : The number of primes is infinite.			  q: Ooty is in Kerala.

Solution
	 Then the four types of conditional statements corresponding to p  and q are respectively listed 
below.
	 (i)	 p q→ : (conditional statement) “If the number of primes is infinite then Ooty is in Kerala”. 

	 (ii)	 q p→  : (converse statement) “If Ooty is in Kerala then the number of primes is infinite” 

	 (iii)	 ¬ →¬p q  (inverse statement) “If the number of primes is not infinite then Ooty is not in 

Kerala”.

	 (iv)	 ¬ →¬q p  (contrapositive statement) “If Ooty is not in Kerala then the number of primes is 
not infinite”.

Bi-conditional Statement

Definition 12.14
	 The bi-conditional statement of any two statements p  and q is the statement “ p  if and only 
if q ” and is denoted by p q↔ . Its truth value is T , whenever both p  and q have the same truth 
values, otherwise it is false.

Truth table for p q«

p q p q«

T T T
T F F
F T F
F F T

Table 12.8

Exclusive OR (EOR)[∨∨ ]
Definition 12.15

	 Let p  and q  be any two statements. Then p EOR q is such a compound statement that its 
truth value is decided by either p  or q but not both. It is denoted by p ⊽ q . The truth value of  
p ⊽ q is T whenever either p  or q is T, otherwise it is F. The truth table of p ⊽ q is given below.
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Truth Table for p p q∨∨(( )) q 

p q p p q∨∨(( )) q
T T F
T F T
F T T

F F F

Table 12.9
Example 12.16
	 Construct the truth table for p q p q∨( ) ∧ ∨¬( ) .

p q ¬ q r : p q∨∨(( )) s: p q∨∨¬¬(( )) r Ù s

T T F F T F

T F T T F F

F T F T F F

F F T F T F
Table 12.10

	 Also the above result can be proved without using truth tables. This proof will be provided after 
studying the logical equivalence. 

12.3.3 Tautology, Contradiction, and Contingency

Definition 12.16

	 A statement is said to be a tautology if its truth value is always T irrespective of the truth 
values of its component statements. It is denoted by 𝕋.

Definition 12.17

	 A statement is said to be a contradiction if its truth value is always F irrespective of the truth 
values of its component statements. It is denoted by 𝔽.

Definition 12.18

	 A statement which is neither a tautology nor a contradiction is called contingency

Observations 

	 1.	For a tautology, all the entries in the column corresponding to the statement formula will 
contain T. 

	 2.	For a contradiction, all the entries in the column corresponding to the statement formula will 
contain F.        

	 3.	The negation of a tautology is a contradiction and the negation of a contradiction is a tautology.

	 4.	The disjunction of a statement with its negation is a tautology and the conjunction of a 
statement with its negation is a contradiction. That is p p∨¬  is a tautology and p p∧¬  is a 
contradiction. This can be easily seen by constructing their truth tables as given below.	
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Example for tautology

    p ¬p p p∨∨¬¬

T F T

F T T

Table 12.11

	 Since the last column of   p p∨¬ contains only T,   p p∨¬ is a tautology.

Example for contradiction

p ¬ p p∧∧ ¬p

T F F

F T F

Table 12.12
	 Since the last column contains only F, p p∧¬  is a contradiction.

Note
	 All the entries in the last column of Table 12.10 are F and hence p q p q∨( ) ∧ ∨¬( ) is a 
contradiction.

Example for contingency

p q p q↔↔ ¬ q p q→→¬¬¬ q ¬ ¬¬ →→¬¬( )p q¬ q) ( )p q↔↔  ∧∧  ¬ ¬¬ →→¬¬( )p q¬ q)

T T T F F T T
T F F T T F F
F T F F T F F
F F T T T F F

Table 12.13
	 In the above truth table, the entries in the last column are a combination of T and F. The given 
statement is neither a tautology nor a contradiction. It is a contingency.

12.3.4  Duality

Definition 12.19

	 The dual of a statement formula is obtained by replacing ∨  by ∧∧ , ∧∧  by ∨ , T by F  
F by  T . A dual is obtained by replacing 𝕋 (tautology) by 𝔽 (contradiction), and, 𝔽 by 𝕋. 

Remarks
	 (1)	 The symbol ¬  is not changed while finding the dual.
	 (2)	 Dual of a dual is the statement itself.
	 (3)	 The special statements 𝕋 (tautology) and 𝔽 (contradiction) are duals of each other.
	 (4)	 T is changed to F  and vice-versa.  
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Principle of Duality
	 If a compound statement S1 contains only ¬ , ∧ , and ∨  and statement S2  arises from S1 by 
replacing ∧  by ∨ , and, ∨  by ∧  then S1 is a tautology if and only if S2 is a contradiction.
For example
	 (i)	The dual of ( ) ( )p q r s∨ ∧ ∧ ∨𝔽 is ( ) ( )p q r s∧ ∨ ∨ ∧𝕋.
	 (ii)	The dual of p ∧ [¬ q p q∨ ∧ ∨( )  ¬ r ] is p∨  [¬ q p q∧ ∨ ∧( ) ¬ r ].

12.3.5 Logical Equivalence

Definition 12.20
	 Any two compound statements A and B are said to be logically equivalent or simply equivalent 
if the columns corresponding to A and B in the truth table have identical truth values. The logical 
equivalence of the statements A  and B is denoted by A B≡ or A B⇔ .

	 From the definition, it is clear that, if A  and B are logically equivalent, then A B↔  must be 
a tautology.

Some Laws of Equivalence
1. Idempotent Laws
	 (i) p p p∨ ≡ 	 (ii) p p p∧ ≡ .
Proof

p p p p∨∨ p p∧∧

T T T T

F F F F

Table 12.14

	 In the above truth table   for both p , p p∨  and p p∧  have the same truth values. Hence 
p p p∨ ≡ and p p p∧ ≡ .

2. Commutative Laws
	 (i) p q q p∨ ≡ ∨   		 (ii) p q q p∧ ≡ ∧ .

Proof (i)
p q p q∨∨ q p∨∨

T T T T
T F T T
F T T T
F F F F

Table 12.15
	 The columns corresponding to p q∨  and q p∨  are identical. Hence p q q p∨ ≡ ∨ . 
	 Similarly (ii) p q q p∧ ≡ ∧  can be proved.

3. Associative Laws
	 (i) p q r p q r∨ ∨( ) ≡ ∨( )∨ 	 (ii) p q r p q r∧ ∧( ) ≡ ∧( ) ∧ .
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Proof
	 The truth table required for proving the associative law is given below.

p q r p q∨∨ q r∨∨ p q r∨∨(( )) ∨∨ p q r∨∨ ∨∨(( ))

T T T T T T T

T T F T T T T

T F T T T T T

T F F T F T T

F T T T T T T

F T F T T T T

F F T F T T T

F F F F F F F

Table 12.16
	 The columns corresponding to p q r∨( )∨  and p q r∨ ∨( )  are identical.

	 Hence p q r p q r∨ ∨( ) ≡ ∨( )∨ . 

	 Similarly, (ii) p q r p q r∧ ∧( ) ≡ ∧( ) ∧  can be proved.

4. Distributive Laws
	 (i) p q r p q p r∨ ∧ ≡ ∨ ∧ ∨( ) ( ) ( ) 	 (ii) p q r p q p r∧ ∨ ≡ ∧ ∨ ∧( ) ( ) ( )

Proof (i)
p q r q r∧∧ p q r∨∨ ∧∧( ) p q∨∨ p r∨∨ ( ) ( )p q p r∨∨ ∧∧ ∨∨
T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

Table 12.17

	 The columns corresponding to p q r∨ ∧( )  and ( ) ( )p q p r∨ ∧ ∨  are identical. Hence
p q r p q p r∨ ∧ ≡ ∨ ∧ ∨( ) ( ) ( ) . 

	 Similarly (ii) p q r p q p r∧ ∨ ≡ ∧ ∨ ∧( ) ( ) ( )  can be proved.

5. Identity Laws
	 (i) p∨ 𝕋≡𝕋 and p∨ 𝔽≡ p 	 (ii) p ∧𝕋≡ p and p ∧ 𝔽≡𝔽

p 𝕋 𝔽 p∨∨𝕋 p∨∨𝔽
T T F T T

F T F T F

Table12.18
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	 (i)	The entries in the columns corresponding to p∨ 𝕋 and 𝕋 are identical and hence they are 
equivalent.  The entries in the columns corresponding to p∨ 𝔽 and p are identical and hence 
they are equivalent.

Dually 
	 (ii)	 p ∧𝕋≡ p  and p ∧ 𝔽≡𝔽 can be proved.
6. Complement Laws
	 (i) p p∨¬ ≡ 𝕋 and p p∧¬ ≡ 𝔽	 (ii) ¬𝕋 ≡  𝔽 and ¬𝔽 ≡  𝕋
Proof

p ¬p 𝕋 ¬𝕋 𝔽 ¬𝔽 p p∨∨¬¬ p p∧∧¬¬

T F T F F T T F
F T T F F T T F

Table 12.19

	 (i)	 The entries in the columns corresponding to p p∨¬ and 𝕋 are identical and hence they are 
equivalent.  The entries in the columns corresponding to p p∧¬  and 𝔽 are identical and 
hence they are equivalent.

	 (ii)	 The entries in the columns corresponding to ¬𝕋 and 𝔽 are identical and hence they are 
equivalent. The entries in the columns corresponding to ¬𝔽 and 𝕋 are identical and hence 
they are equivalent.

7. Involution Law or Double Negation Law

	 ¬(¬ p) ≡  p
Proof

p ¬ p ¬(¬ p)

T F T

F T F

Table 12.20

	 The entries in the columns corresponding to ¬ ¬( )p  and p  are identical and hence they are 
equivalent.  
8. de Morgan’s Laws

	 (i) ¬ ∧( )p q º  ¬ ∨¬p q 	 (ii) ¬ ∨( ) ≡ ¬ ∧¬p q p q

Proof of (i)
p q ¬p ¬q p q∧∧ ¬¬ ∧∧(( ))p q ¬¬ ∨∨¬¬p q

T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T

Table 12.21
	 The entries in the columns corresponding to ¬ ∧( )p q  and ¬ ∨¬p q  are identical and hence they 
are equivalent. Therefore ¬ ∧( )p q  º  ¬ ∨¬p q .  Dually (ii) ¬ ∨( ) ≡ ¬ ∧¬p q p q  can be proved.
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9. Absorption Laws 
	 (i) p p q p∨ ∧ ≡( ) 	 (ii) p p q p∧ ∨ ≡( )

p q p q∧∧ p q∨∨ p p q∨∨ ∧∧(( )) p p q∧∧ ∨∨(( ))

T T T T T T

T F F T T T

F T F T F F

F F F F F F

Table 12.22

	 (i)	The entries in the columns corresponding to p p q∨ ∧( ) and p are identical and hence they 
are equivalent.

	 (ii)	The entries in the columns corresponding to p p q∧ ∨( ) and p are identical and hence they 
are equivalent.

Example 12.17
	 Establish the equivalence property: p q p q→ ≡¬ ∨
Solution

p q ¬p p → q ¬¬ ∨∨p q

T T F T T

T F F F F

F T T T T

F F T T T

Table 12.23

	 The entries in the columns corresponding to p q→  and ¬ ∨p q are identical and hence they are 
equivalent.

Example 12.18
	 Establish the equivalence property connecting the bi-conditional with conditional:
	 p q p q q p↔ ≡ → ∧ →( ) ( )

Solution
p q p q→→ q p→→ p q↔↔ ( ) ( )p q q p→→ ∧∧ →→

T T T T T T

T F F T F F

F T T F F F

F F T T T T

Table 12.24

	 The entries in the columns corresponding to p q↔ and ( ) ( )p q q p→ ∧ → are identical and 
hence they are equivalent.
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Example 12.19
	 Using the equivalence property, show that p q p q p q↔ ≡ ∧ ∨ ¬ ∧¬( ) ( ) .
Solution
	 It can be obtained by using examples 12.15 and 12.16 that 
		  p q↔ 	≡ 	( ) ( )¬ ∨ ∧ ¬ ∨p q q p 	 ... (1)

			  ≡ 	( ) ( )¬ ∨ ∧ ∨¬p q p q  (by Commutative Law)	 ... (2)

			  ≡ 	( ( )) ( ( ))¬ ∧ ∨¬ ∨ ∧ ∨¬p p q q p q (by Distributive Law)

			  ≡ 	( ) ( ) ( ) ( )¬ ∧ ∨ ¬ ∧¬ ∨ ∧ ∨ ∧¬p p p q q p q q  (by Distributive Law)

			  ≡ 	𝔽∨ ¬ ∧¬ ∨ ∧ ∨( ) ( )p q q p 𝔽; (by Complement Law)

			  ≡ 	( ) ( )¬ ∧¬ ∨ ∧p q q p ; (by Identity Law)

			  ≡ 	( ) ( )p q p q∧ ∨ ¬ ∧¬ ; (by Commutative Law)

	 Finally (1) becomes p q« 	º 	( ) ( )p q p q∧ ∨ ¬ ∧¬ .

EXERCISE 12.2
	 1.	 Let p  : Jupiter is a planet  and q 	: India is an island be any two simple statements. Give 

verbal sentence describing each of the following statements.

		  (i)	¬p	 (ii) p q∧¬ 	 (iii) ¬ ∨p q 	 (iv) p q→¬ 	 (v) p q↔ 	

	 2.	 Write each of the following sentences in symbolic form using statement variables p and q .

		  (i)	19 is not a prime number and all the angles of a triangle are equal.
	 	 (ii)	19 is a prime number or all the angles of a triangle are not equal
	 	 (iii)	19 is a prime number and all the angles of a triangle are equal
	 	 (iv)	19 is not a prime number

	 3.	 Determine the truth value of each of the following statements

		  (i)	If 6 2 5+ = , then the milk is white.
	 	 (ii)	China is in Europe or 3  is an integer
	 	 (iii)	It is not true that 5 5 9+ =  or Earth is a planet
	 	 (iv)	11 is a prime number and all the sides of a rectangle are equal

	 4.	 Which one of the following sentences is a proposition?

		  (i)	 4 7 12+ = 	 (ii) What are you doing?	 (iii) 3 81n n≤ ∈, 

	 	 (iv)	Peacock is our national bird	 (v) How tall this mountain is!

	 5.	 Write the converse, inverse, and contrapositive of each of the following implication.

		  (i)	If x  and y  are numbers such that x y= , then x y2 2=
	 	 (ii)	If a quadrilateral is a square then it is a rectangle

	 6.	 Construct the truth table for the following statements.

		  (i)	¬ ∧¬p q 	 (ii) ¬ ∧¬( )p q 	 (iii) ( )p q q∨ ∨¬ 	 (iv) ( ) ( )¬ → ∧ ↔p r p q
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	 7.	 Verify whether the following compound propositions are tautologies or contradictions or 
contingency

		  (i)	 ( ) ( )p q p q∧ ∧¬ ∨ 	 (ii) ( )p q p q∨ ∧¬( )→
		  (iii)	 ( ) ( )p q p q→ ↔ ¬ → 	 (iv) ( ) ( ) ( )p q q r p r→ ∧ →( )→ →

	 8.	 Show that (i) ¬ ∧ ≡¬ ∨¬( )p q p q      (ii) ¬ → ≡ ∧¬( )p q p q .

	 9.	 Prove that   q p p q→ ≡¬ →¬

	 10.	 Show that p q® and q p® are not equivalent

	 11.	 Show that ¬ ↔ ≡ ↔¬( )p q p q

	 12.	 Check whether the statement p q p® ®( )  is a tautology or a contradiction without using 

the truth table.

	 13.	 Using truth table check whether the statements¬ ∨ ∨ ¬ ∧( ) ( )p q p q  and ¬p are logically equivalent.

	 14.	 Prove p q r p q r→ →( )≡ ∧ →( )  without using truth table.

	 15.	 Prove that p q r p q r→ ¬ ∨ ¬ ∨ ¬ ∨≡( ) ( ) using truth table.

EXERCISE 12.3

Choose the correct or the most suitable answer from the given four alternatives.

	 1.	A binary operation on a set S is a function from
	 	(1) S S® 	 (2) S S S×( )→ 	 (3) S S S→ ×( )	 (4) S S S S×( )→ ×( )

	 2.	Subtraction is not a binary operation in
	 	(1)  	 (2)  	 (3)  	 (4) 

	 3.	Which one of the following is a binary operation on  ?
	 	(1) Subtraction	 (2) Multiplication	 (3) Division	 (4) All the above
	 4.	In the set   of real numbers ‘* ’ is defined as follows. Which one of the following is not a 

binary operation on ?
	 	(1) a b∗ =min ( )a b× 	 (2) a b∗ =  max ( , )a b
	 	(3) a b a∗ = 		  (4) a b ab∗ =

	 5.	The operation *defined by a b ab
∗ =

7
 is not a binary operation on

	 	(1) + 	 (2)  	 (3)  	 (4) 

	 6.	In the set   define a b a b ab = + + . For what value of y, 3 5 7 y( )= ?

	 	(1) y =
2

3
	 (2) y=−2

3
	 (3) y=−3

2
	 (4) y = 4

	 7.	If a b a b∗ = +2 2  on the real numbers then *  is
	 	(1) commutative but not associative	 (2) associative but not commutative
	 	(3) both commutative and associative	 (4) neither commutative nor associative
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	 8. 	Which one of the following statements has the truth valueT ?
	 	(1) sin x is an even function.
	 	(2) Every square matrix is non-singular
	 	(3) The product of complex number and its conjugate is purely imaginary

		 (4) 5 is an irrational number

	 9. 	Which one of the following statements has truth valueF ?
	 	(1) Chennai is in India or 2  is an integer

	 	(2) Chennai is in India or 2  is an irrational number

	 	(3) Chennai is in China or 2  is an integer

	 	(4) Chennai is in China or 2  is an irrational number

	 10.	If a compound statement involves 3 simple statements, then the number of rows in the truth 
table is

	 	(1) 9 	 (2) 8 	 (3) 6 	 (4) 3

	 11.	Which one is the inverse of the statement ( ) ( )p q p q∨ → ∧ ?

	 	(1) ( ) ( )p q p q∧ → ∨ 	 (2) ¬ ∨ → ∧( ) ( )p q p q

	 	(3) ( ) ( )¬ ∨¬ → ¬ ∧¬p q p q 	 (4) ( ) ( )¬ ∧¬ → ¬ ∨¬p q p q

	 12. 	Which one is the contrapositive of the statement ( )p q r∨ → ?
	 	(1) ¬ → ¬ ∧¬r p q( ) 	 (2) ¬ → ∨r p q( )

	 	(3) r p q→ ∧( ) 		  (4) p q r→ ∨( )

	 13.	The truth table for ( )p q q∧ ∨¬ is given below

p q ( ) ( )p q ¬q∧ ∨

T T (a)

T F (b)

F T (c)

F F (d)

Which one of the following is true?
			  (a)	 (b)	 (c)	 (d)

	 	(1)	 T	 T	 T	 T

		 (2)	 T	 F 	 T	 T

	 	(3)	 T	 T	 F	 T

		 (4)	 T	 F 	 F	 F

	 14.	In the last column of the truth table for ¬ ∨¬( )p q  the number of final outcomes of the truth 
value ' 'F  are

	 	(1) 1	 (2) 2	 (3) 3	 (4) 4
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	 15.	Which one of the following is incorrect? For any two propositions p and q , we have
	 	(1) ¬ ¬ ∨ ≡¬ ∧¬( )p q p q 	 (2) ¬ ¬ ∧ ≡¬ ∨¬( )p q p q
	 	(3) ¬ ¬ ∨ ≡¬ ∨¬( )p q p q 	 (4) ¬ ¬ ¬ ≡( )p p

	 16.	
p q p q p∧ →¬( )

T T (a)

T F (b)

F T (c)

F F (d)

	 	Which one of the following is correct for the truth value of   p q p∧( )→¬ ¬ p?

			  (a)	 (b)	 (c)	 (d)

	 	(1)	 T	 T	 T	 T
		 (2)	 F	 T	 T	 T
	 	(3)	 F	 F	 T	 T
		 (4)	 T	 T	 T	 F
	 17.	The dual of ¬ ¬ ∨ ∨ ∨ ∧¬( ) [ ( )]p q p p r  is

	 	(1)  ¬ ¬ ∧ ∧ ∨ ∧¬( ) [ ( )]p q p p r 	 (2) ( ) [ ( )]p q p p r∧ ∧ ∧ ∨¬

	 	(3)  ¬ ¬ ∧ ∧ ∧ ∧( ) [ ( )]p q p p r 	 (4) ¬ ¬ ∧ ∧ ∧ ∨¬( ) [ ( )]p q p p r

	 18. 	The proposition p p q∧ ¬ ∨( )  is
	 	(1) a tautology	 	 (2) a contradiction
	 	(3) logically equivalent to p qÙ 	 (4) logically equivalent to p qÚ

	 19. 	Determine the truth value of each of the following statements:
		 (a) 4 2 5+ = and 6 3 9+ = 	 (b) 3 2 5+ =  and 6 1 7+ =
		 (c) 4 5 9+ = and1 2 4+ = 	 (d) 3 2 5+ =  and 4 7 11+ =

			  (a)	 (b)	 (c)	 (d)

	 	(1)	 F	 T	 F	 T

		 (2)	 T	 F	 T	 F

	 	(3)	 T 	 T	 F	 F

		 (4)	 F	 F	 T	 T

	 20.	Which one of the following is not true?
	 	(1) Negation of a negation of a statement is the statement itself.
	 	(2) If the last column of the truth table contains only T then it is a tautology.
	 	(3) If the last column of its truth table contains only F then it is a contradiction
	 	(4) If p and q are any two statements then p q« is a tautology.
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SUMMARY
	 (1)	  A binary operation*  on a non-empty set S  is a rule, which associates to each ordered pair 

( , )a b  of elements a b,  in S  an unique element a b*  in S .
	 (2)	 Commutative property: Any binary operation *defined on a nonempty set S is said to satisfy 

the commutative property, if a b b a a b S∗ = ∗ ∈∀, , .
	 (3)	 Associative property: Any binary operation*defined on a nonempty set S is said to satisfy 

the associative property, if a b c a b c a b c S∗ ∗ = ∗ ∗ ∈∀( ) ( ) , , , .
	 (4)	 Existence of identity property:  An element e SÎ is said to be the Identity Element of  S under 

the binary operation *  if for all  a SÎ we have that  a e a∗ = and  e a a∗ = .
	 (5)	 Existence of inverse property: If an identity element  e exists and if for every a SÎ , there 

exists b  in S  such that a b e∗ = and b a e∗ =  then b SÎ said to be the Inverse Element of  a . 
In such instance, we write b a= −1 .

	 (6)	 Uniqueness of Identity:  In an algebraic structure the identity element (if exists) must be 
unique.

	 (7)	 Uniqueness of Inverse: In an algebraic structure the inverse of an element (if exists) must be 
unique.

	 (8)	 A Boolean Matrix is a real matrix whose entries are either 0 or 1.

	 (9)	 Modular arithmetic: Let n be a positive integer greater than 1  called the modulus. We say 
that two integers a and b are congruent modulo n if b − a is divisible by n.  In other words 
a b≡ (mod n) means a b n k− = ⋅ for some integer k and b  is the least non-negative integer 
reminder when a  is divided by n. ( )0 1≤ ≤ −b n

	(10)	 Mathematical logic is a study of reasoning through mathematical symbols.
	(11)	 Let p be a simple statement. Then the negation of p  is a statement whose truth value is 

opposite to that of p . It is denoted by p, read as not p .The truth value of  p  is T , if p is 
F , otherwise it is F .

	(12)	 Let p  and q  be any two simple statements. The conjunction of p  and q  is obtained by 
connecting p  and q  by the word and. It is denoted by p q∧ , read as ‘ p   conjunction q ’ or 
‘ p  hat q ’. The truth value of p q∧  is T , whenever both p  and q  are T  and it is F  otherwise.

	(13)	 The disjunction of any two simple statements p and q is the compound statement obtained by 
connecting p and q by the word ‘or’. It is denoted by p q∨ , read as‘ p  disjunction q ’ or ‘ p
cup q ’.The truth value of p q∨  is F , whenever both p and q are F and it is T otherwise.

	(14)	 The conditional statement of any two statements p  and q  is the statement, ‘If p , then q ’ 
and it is denoted by p q→ . The statement p q→  has a truth value F when q has the truth 
value F and p has the truth value T; otherwise it has the truth value T.

	(15)	 The bi-conditional statement of any two statements p  and q is the statement ‘ p  if and only 
if q ’ and is denoted by p q↔  The statement p q↔  has the truth value T whenever both p and 
q have identical truth values; otherwise has the truth value F.

	(16)	 A statement is said to be a tautology if its truth value is always T irrespective of the truth 
values of its component statements. It is denoted by 𝕋.
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	(17) A statement is said to be a contradiction if its truth value is always F irrespective of the truth
values of its component statements. It is denoted by 𝔽.

	(18) A statement which is neither a tautology nor a contradiction is called contingency.

(19)    Any two compound statements A and B are said to be logically equivalent or simply equivalent
if the columns corresponding to A  and B  in the truth table have identical truth values. The
logical equivalence of the statements A  and B is denoted by A B≡  or A B⇔ .  Further note 
that if A  and B are logically equivalent, then A B↔  must be a tautology.

(20) Some laws of equivalence:
Idempotent Laws:	 (i) p p p∨ ≡ (ii) p p p∧ ≡ .

Commutative Laws:	 (i)	 p q q p∨ ≡ ∨   (ii) p q q p∧ ≡ ∧ .

Associative Laws:	 (i) p q r p q r∨ ∨( ) ≡ ∨( )∨ (ii) p q r p q r∧ ∧( ) ≡ ∧( ) ∧ .

Distributive Laws:  	 (i) p q r p q p r∨ ∧ ≡ ∨ ∧ ∨( ) ( ) ( )

(ii) p q r p q p r∧ ∨ ≡ ∧ ∨ ∧( ) ( ) ( )

Identity Laws:  (i) p∨ 𝕋 ≡𝕋 and p∨ 𝔽≡ p

(ii) p ∧𝕋≡ p and p ∧ 𝔽≡𝔽

Complement Laws : (i)	 p p∨¬ ≡𝕋 and p p∧¬ ≡ 𝔽

(ii) ¬ 𝕋 ≡  𝔽  and ¬ 𝔽≡  𝕋 

		 Involution Law or Double Negation Law: ¬(¬p) p

de Morgan’s Laws: (i)	 ¬ ∧ ≡ ¬ ∨¬( )p q p q  (ii) ¬ ∨ ≡ ¬ ∨¬( )p q p q

Absorption Laws:      (i) p p q p∨ ∧ ≡( )    (ii)  p p q p∧ ∨ ≡( )
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Chapter 7
EXERCISE 7.1

	 (1)	 (i) 21m/s	 (ii) 15 m/s and 27 m/s 

	 (2)	 (2)(i) 5sec	 (ii) 128 ft/s	 (iii)160 ft/s

	 (3)	 (i) 1,2 sec	 (ii) 34 m	 (iii) –6 m s/ 2 , 6 m / s2

	 (4)	 75 units	  (5) 1

2
kg/m, 1

6
kg/m

	 (6)	 20π sq.cm/s	 (7) 2π km/s	 (8) 9

10π
m/min

	 (9)	 (i) −8

3
 m/s	 (ii) 26 83. sq.m/sec	 (10)	 70 km/hr.   	  

 EXERCISE 7.2
	 (1)	 (i) 7 	 (ii) ∞  	 (2) 1 0,( )  

	 (3)	 0 3,( ) and 4 25, −( ) 	 (4) 2 1, −( ) and −( )2 1,

	 (5)	 (i) 2 2x y+ = ; x y− =2 1 	 (ii) 2 2x y− = − ; x y+ =2 4  

		  (iii) x y− = 0 ; x y+ = π  	 (iv) 4 2 5x y+ =  ; 2 4 5x y− = −  

	 (6)	  12 15x y− = ;12 17x y− = − 	 (7) x y+ =2 7 ; x y+ = −2 1 

	 (8)	 2 7 14cos sint x t y( ) + ( ) = ; 7 2 45sin cos sin cost x t y t t( ) − ( ) = 	 (9) tan− ( )1 3

EXERCISE 7.3
	 (1)	 (i) not continuous at x = 0 	 (ii) not continuous at x = π

2
		 (iii) f f2 7( ) ≠ ( )

	 (2)	 (i) 1

2
	 (ii) − +2 2 2  		  (iii) 9

4
 

	 (3)	 (i) not continuous at x = 0  	 (ii) not differentiable at x = −1

3
 

	 (4)	 (i) ±1	 (ii) 7  

	 (6)	 320 km   	 (8) No. Since ′ ( )f x cannot be 2 5. at any point in 0 2,( ) .

EXERCISE 7.4

	 (1)	 (i) e x xx = + + +1
1 2

2



 	 (ii) sin x x x x x= − + − +
3 5 7

3 5 7


 

		  (iii) cos x x x x= − + − +1
2 4 6

2 4 6



 

		  (iv) log 1
2 3 4

2 3 4

−( ) = − + + + +




x x x x x



 

		  (v) tan− ( ) = − + − +1
3 5 7

3 5 7
x x x x x



        (vi) cos2
2 3 4 5 6

1
2

2

2

4

2

6
x x x x= − + − +  

	 (2)	 log x x x x x= −( ) − −( ) + −( ) − −( ) +1
1

2
1

1

3
1

1

4
1

2 3 4


 

	 (3)	 2

2
1

1

1 4

1

2 4

1

3 4

2 3

+ −



 − −



 − −



 +







x x xπ π π


 

	 (4)	 f x x x( ) = − −( ) + −( )1 1
2

ANSWERS
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EXERCISE 7.5
	 (1)	 1

2
       (2) 2        (3) ∞        (4) 1       (5) 0       (6) 0  

	 (7)	 −1       (8) 1      (9) e       (10) 1
e

       (11) 1
e

 

EXERCISE 7.6
	 (1)	 (i) absolute maximum = −1 , absolute minimum = −26

		  (ii) absolute maximum = 16 , absolute minimum = −1

		  (iii) absolute maximum = 9 , absolute minimum = − 9

8

		  (iv) absolute maximum = 3 3

2
, absolute minimum = 0

	 (2)	 (i) strictly increasing on −∞ −( ), 2  and 1,∞( ) , strictly decreasing on −( )2 1,  

		     local maximum = 20  	 local minimum = −7

		  (ii) strictly decreasing on −∞( ),5 and 5,∞( ) . No local extremum.

		  (iii) strictly increasing on −∞ ∞( ), . No local extremum.

		  (iv) strictly decreasing on 0 1,( ) , strictly increasing on 1,∞( ) . local minimum = 1

3
 

		  (v) strictly increasing on 0
4

,
π



 , 3

4

5

4

π π
,





 , and 7

4
2

π π,




 .

		     strictly decreasing on π π
4

3

4
,





 and 5

4

7

4

π π
,





 . local maximum=11

2
at  x = π

4
 , 5

4

π .

		     local minimum= 9

2
at x = 3

4

π , 7

4

π .

EXERCISE 7.7
	 (1)	 (i) concave upwards on −∞( ), 2 and 4,∞( ) . Concave downwards on 2 4,( )
	 	   Points of inflection 2 16, −( ) and 4 0,( )  

		  (ii) concave upwards on 3

4

7

4

π π
,





 . Concave downwards on 0

3

4
,

π



 and 7

4
2

π π,




  

	 	   Points of inflection 3

4
0

π
,





 and 7

4
0

π
,







		  (iii) concave upwards on 0,∞( ) . Concave downward on −∞( ),0

	 	    Points of inflection 0 0,( )
	 (2)	 (i)local minimum = −2  ; local maximum = 2   (ii)local minimum = − 1

e
 	

		  (iii)local minimum = 0  ; local maximum = 1
2e

	 (3)	 strictly increasing on −∞ −( ), 1 and 1

2
,∞



 . strictly increasing on −



1

1

2
,  

		  local maximum = 6  , local minimum = − 3

4

		  concave upwards on −∞ −



,

1

4
; concave downwards on − ∞





1

4
, . 

	 	 point of inflection −





1

4

21

8
,  
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EXERCISE 7.8
	 (1)	 36      (2) 4 5      (3) 50      (4) 100 2m      (5) 9cm , 6cm       (6) 1200m

	 (7)	 20 2 , 20 2     (9) 2r , r
2

    (10) 6cm , 6cm ,3cm       (11) 32π , 0

EXERCISE 7.9
	 (1)	 (i) x = −1, x = 1, y = 1 	 (ii) x = −1, y x= −1,	 (iii) y = −3, y = 3 

		  (iv) y x= − −9 1 , x = −3  	 (v) y x= +1

3

8

3
, x = 2        	   

EXERCISE 7.10
1 2 3 4 5 6 7 8 9 10

(1) (2) (2) (2) (1) (2) (3) (4) (3) (4)
11 12 13 14 15 16 17 18 19 20
(3) (4) (3) (4) (2) (3) (3) (1) (4) (3)

Chapter 8
Exercise 8.1

	 1.	 (i) 3.0074	 2. (i) 24.73    (ii) 1.9688    (iii) 2.963

	 3.	 (i) 7 4x − 	 (ii) 9 4

5

− x 	 (iii) x +1

4
  

	 4.	 (i)0.0225π cm2, 	 (ii) 0.006 cm2	 (iii) 0.6% 
	 5.	 (i) Volume decreases by 80π  cm3     (ii) Surface area decreases by 16π  cm2 	 6.  1% 

Exercise 8.2

	 1.	 (i)  2 1 2 8 7

3 4

2

2

( ) ( )

( )

− −
−
x x
x

dx (ii) 4
3

2

3 2
1

3

cos

( sin )

x

x
dx

+
 (iii) e x x x x dxx x2 5 7 2 22 5 1 2 1− + − − − −[( ) cos( ) sin( )]  

	 2.	 (i) 0.7    (ii) 0.18	 3.  (i) ∆f = 2 125. , df = 2 0. 	(ii) ∆f = 0 83. , df = 0 1.

	 4.	 3.0013029    5. (i) 6
π

 cm	 (ii) 40

π
%     6.  30π  mm3 	7. 0 4. π  mm2     8.  8000

	 9.	 (i)  3  words    (ii) 1 word    10.  5.25π , 4.76%    11.  60 cm3 , 61.2 cm3  

Exercise 8.3
	 1.	 1

8
 	 2. 1	 4. cos( )1  

 Exercise 8.4
	 1.	 (i) 27, −14       (ii) 11, −4       (iii) 2, 0, 4      (iv) e e2 22 1 1 8log , log( ) −( ) +( )  

	 3.	 x y
x y

y x
y x

z
2 2

2

2 2

2

23
− − +, , 6yz	 4. 

3 2 2 2

3 3 3

x y z

x y z

+ +( )
+ +( )  

	 5.	 (i) e xy + 6 , 6y , xey , e xy + 6

		  (ii) −
+( )
15

5 3
2x y

, −
+( )
25

5 3
2x y

, −
+( )

9

5 3
2x y

, −
+( )
15

5 3
2x y

    (iii) 3, 2 25 5− cos x , 0, 3

	 10.	 (i) �72 84 0 04 0 05 0 05 20002 2x y xy x y+ + − − −. . .     (ii) �24, −48 , Keeping y constant and 
increasing x increases profit.
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Exercise 8.5
	 1.	 6 7 7x y− −  	 2. − + +( )x y20 16 	  3. 2

1

2
x y dx x y dy−( ) + +





 

	 4.	 5 2 3 6x y z− + −  	 5. y z dx x z dy y x dz+( ) + +( ) + +( )  

Exercise 8.6
	 1.	 e e t t e t t tt t t2 3 124 3sin sin cos sin cos+ + +( ) , 1

	 2.	 1 1 2 1 62
2

3 2 2 2 2+( ) +( ) − +( ) + e t e t t e e t tt t t tcos sin sin sin cos  

	 3.	 4 2e t       4. − −[ ]−e t tt2 2 2sin cos      5.18 3 3 43e e s e s s ss s s− + −cos sin sin cos , 15

	 6.	 3

1
2

2

1e
e

e
+

+ −tan , e
e1 2+

	 7.	 te t s t s s tst2 2 22sin cos( ) + ( )  , 
du
dt

se t s t s s tst= + ( ) + ( ) 
2

2 2 2sin cos  , e sin cos1 2 1( ) + ( )  , 

		  e 2 1 1sin cos( ) + ( )   

	 8.	 3 3 2 33 3 2 2 2 2 2s e e s e e s e st t t t t( ), ( )+ − −− −      9. 2 1 2u v+( ) , 2 2u v−( ) , 3, −3

2
 

Exercise 8.7
	 1.	 (i) not homogeneous	 (ii) Homogeneous, deg.3
		  (iii) homogeneous, deg.0	 (iv) not homogeneous	 6. 5

Exercise 8.8
1 2 3 4 5 6 7 8

(2) (2) (2) (4) (3) (2) (4) (2)
9 10 11 12 13 14 15

(3) (1) (2) (3) (2) (4) (1)

Chapter 9
Exercise 9.1

	 1.	 0.6	 2. 0.855	 3. 0.375
Exercise 9.2

	 1.	 (i) 13

2
     (ii) 25

3
 	

Exercise 9.3

	 1.	 (i) 1

4

5

3
log    (ii) p

8
   (iii) p

2
1-   (iv) e

π
2   (v) 8

21
   (vi) 1

2
	

	 2.	 (i) 0   (ii) p   (iii) p-2

4
   (iv) 0  (v) 0  (vi) 13

10
  (vii) p

4
		  (viii) π

8
2log   (ix) p p

2
2−( )   (x) p

8
  (xi) π2

2

Exercise 9.4
	 1.	 3

8

19

8

2- -e  	 2. 1

2 12

1

9

p
+







  	 3. 1

4
14+ −





e
π π 	 4. -p

4
 

Exercise 9.5
     1. (i)  p

2 6
 	 (ii). p

2 30
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Exercise 9.6

	 1.	 (i) 63

512
   (ii) 16

105
  (iii) 5

64

p    (iv) 8

45
  (v) p

24
   (vi) 64

35
   (vii) 1

24
   (viii) 1

60

Exercise 9.7
     1. (i)  5

36

! 	 (ii)  29 	 (2) 1

8
	

Exercise 9.8
	 1.	 7.5  2. 2  3. 16  4. 36  5. 2 2   6. log 2  7. 9

2
  8. yes, 16

3
  9. 4

3
  10. 4

3
4 3π +( )

Exercise 9.9

	 1.	 4

5

p     2. p
4

1 4−



−e     3. 8p     4. π
12

    5. 14

3

3πm     6. 1000

3

3πcm

1 2 3 4 5 6 7 8 9 10
(1) (3) (3) (1) (4) (3) (3) (1) (2) (1)
11 12 13 14 15 16 17 18 19 20
(4) (2) (2) (4) (2) (4) (3) (4) (2) (1)

Chapter 10
Exercise 10.1

	 1.	 (i) 1,1      (ii) 3,2       (iii) 2, does not exist      (iv) 1, 2      (v) 1,4 

		  (vi) 2,2      (vii) 2,6       (viii) 2, does not exist      (ix) 3,1      (x) 1, doest not exist

Exercise 10.2

	 1.	 (i) 
dQ
dt

kQ=   (ii) dP
dt

kP P= −( )500000   (iii) 
dP
dt

kP
T

= 2   (iv) dx
dt

x= +2

25
400   2. dr

dt
k= −  

Exercise 10.3

	 1.	 (i) 
d y
dx

2

2
0=      (ii) 

d x
dy

2

2
0=      2.  r dy

dx
x dy
dx

y2

2 2

1+ 

















= −





  

	 3.	 x xy dy
dx

y2 22 0+ − =     4.  2 03ay y′′ + ′ =     5.  xy y′ − − =2 2 0    6.xy xyy yy′ + ′′ − ′ =2 0  

	 7.	
d y
dx

y
2

2
64=  	 8. xy y x xy′′ + ′ + − − =2 2 02  

Exercise 10.4
	 2.	 (i) m = −2       (ii) m = 2 3,       3. 2 482y x= +  

Exercise 10.5

	 1.	 F F kV e
kt
M= −( )       2. k e v

gx
k2

2

21
2−







=

−
     3. y

x
x

= −
+

1
1  

	 4.	 (i) sin sin− −= +1 1y x C   (ii) y x Ctan− =1   (iii) sin
y
x

a−





=1   (iv)e e x Cx y+ + =−
4

4
 

		  (v)  e x Cy +( ) =1 sin   (vi) sin
x
y

enx c






= +   (vii) 3 25 32
3

2y x C= − −( ) +   (viii) sin logy e x Cx= +
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 		  (ix) sec siny x C= +2     (x) 1

2
x y x y x y x C+( ) + +( ) +( )  = +sin cos  

Exercise 10.6

	 1.	 sin log
y
x

Cx





=     2. y e
x
y= C

3

33     3. e Cy
x
y = log     4. 3 22 3x y y C+ =  

	 5.	 xy x y C2 2− =     6. C xe
y
x=





tan     7. y xe

y
x+ =3 3     8. x e0 3= ±  

Exercise 10.7
	 1.	 y x C x= +sin cos   2.  y

x
x

C x=
−

+ −( )
− −sin 1

2

2
1

2

1
1   3.  y x x x C+( ) = +cos sin  

	 4.	 y x
x x x x C2 2 21
2

4
1

2
4+( ) = + + + + +log   5.  xy y C2 52= +  

	 6.	 xy x x Csin cos+ =   7.  ye e Cx
x

sin
sin

−
−

= +
1

12

2
  8.  y x

x
x x x C1

1

2

3

+
−







= + +  

	 9.	 xy y C+ =−tan 1   10.  y x x Clog
cos+ =2

2
  11.  2 2

4 2y x a C x a= +( ) + +( )  

	 12.	 y x x x C1
2

2

4

3+( ) = − +sin   13.	 4 2 42 2yx x x x C= − +log  	 14.  x y x x x C2
4 4

4 16
= − +log  

	 15.	 2 33 2x y x= +
Exercise 10.8

	 1.	 After 10 hours the number of bacteria as 9 times the original number of bacteria.

	 2.	 P
t

= 





300000
4

3

40

   3. i Ce
Rt
L=

−
  4. v

e
= 10

2
  5. P e= 10000 0 075.  

	  6.	 9
10

10

8  % of the radioactive element will remain after 1000 years.

	 7.	 (i) 65 33. °C  	 (ii) 53.46 mts

	 8.	 (i) T F151°   (ii) t = 22 523. . She drunk the coffee between 10.22 and 10.30 approximately.

	 9.	 11°  	 10. x e
t

= −






−

100 1
3

50  

Exercise 10.9
Q 1 2 3 4 5 6 7 8 9 10
A (1) (2) (3) (1) (2) (3) (3) (2) (2) (3)
Q 11 12 13 14 15 16 17 18 19 20
A (3) (3) (1) (1) (2) (3) (2) (4) (2) (4)
Q 21 22 23 24 25
A (1) (1) (2) (2) (1)

Chapter 11
EXERCISE 11.1

(1) Values of Random Variable 0 1 2 3 Total
Number of points in inverse image 1 3 3 1 8
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(2) Values of  Random Variable 0 1 2 Total
Number of points in  inverse image 650 26 650 1326

(3) Values of  Random Variable 0 1 2 3 Total
Number of points in inverse image 1 3 3 1 8

(4) Values of  Random Variable 0 15 30 Total
Number of points in  inverse image 1 2 1 4

(5) Values of Random Variable 4 5 6 7 8 Total
Number of points in inverse image 1 2 3 2 1 9 .

EXERCISE 11.2

	 (1)	 f x
x

x
( )=

=

=











1

8
0 3

3

8
1 2

for 

for 

,

,

	

(2) (i) x 2 4 6 8 10 Total

f x( ) 1

25

4

25

8

25

8

25

4

25

1

	 (2)	 (ii) F x

x

x

x

x

x

( ) =

<

≤

≤

≤

≤

0 2

1

25
2

5

25
4

13

25
6

21

25
8

1

for 

for 

for 

for 

for 

forr x ≤


















 10

       (iii) 4

5
      (iv) 24

25

	 (3)	  f x

x

x

x

( )

,

,=

=

=

=











1

4
1 3

1

16
0 4

3

8
2

for 

for 

for 

 ,	 F x

x

x

x

x

x

( )=

<

≤

≤

≤

≤

0 0

1

16
0

5

16
1

11

16
2

15

16
3

1

for 

for 

for 

for 

for 

forr x≤









 4

	 (4)	 (i)8       (ii)F x

x

x

x

x

( )=

<

≤

≤

≤











0 0

1

8
0

3

8
1

1 2

for 

for 

for 

for 

      (iii) 7

8

  (ii) P X <( )=1 0 35.   (iii) P X ≥( )=2 0 40.(5) (i) x -1 0 1 2 3

f x( ) 0.15 0.20 0.25 0.25 0.15
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	 (6)	 (i) 1

6
	 (ii) 17

36
	 (iii) 5

36

(7) (a) x 0 1 2 3 4

f x( ) 1

2

1

10

1

5

1

10

1

10

	 (b)	 4

5
	 (c) 2

5

EXERCISE 11.3
	 (1)	 4 		

	 (2)	 (i)0.16	 (ii) 0.3	 (iii) 0.75	

	 (3)	 (i) 1

400
	 (ii)F x

x
x x

x

( )=

<

− ≤ ≤

>











0 200

400

1

2
200 600

0 600

for 

for 

for 
		  (iii) 1

2

	 (4)	 (i) 1

3
      (ii) 1 3-

-
e

x

      (iii)1 1- -e       (iv) e e
x

- -
-

5

3 3       (v) 1
4

3-
-

e

	 (5)	 (i)F x

x
x x x

x x x

x x

( )=

≤−

+ + − ≤ <

− + ≤ <

− ≤











0 1

2

1

2
1 0

2
0 1

1 1

2

2



	 (ii) 0.75

	 (6)	 (i) f x F x

x

x x

x

( ) ( )= ′ =

<

+( ) ≤ <

≤











0 0

1

2
2 1 0 1

0 1

	 (ii) 0 099.

EXERCISE 11.4
	 (1)	 (i) 2 3. , 2 81.     (ii)1 67. , 0 56.     (iii) 5

3
, 1

18
    (iv) 2,8

(2) 8

7

x 0 1 2 (3) 7 ,16

f x( ) 1

7

4

7

2

7

(4) 2 ,1 x 0 1 2 3 4
f x( ) 1

16

1

4

3

8

1

4

1

16

	 (5)	 15minutes    (6) 1

3
, 2

9
    (7) 1

2
, 1

8
    (8) Loss `.0 50.
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EXERCISE 11.5 

	 (1)	 (i) 160

729
  (ii) 210

1

5

4

5

4 6










   (iii) 

9

7

1

2

1

2

7 2


















  (2)  (i) 

10

4

1

4

3

4

4 6


















   (ii)1 3

4

10

10
-

	 (3)	 (i) 25   (ii) 100

3
  (4)  270

1024
  (5) (i) 1 0 9510- .   (ii) 

10

2
0 05 0 952 8








( . ) ( . )

	 (6)	 (i) 
12

10
0 9 0 110 2








( . ) ( . )   (ii) 2 1 0 9 11. ( . )   (iii) 1 2 1 0 9 11−


. ( . )

	 (7)	 (i) 
18 1

3

2

3

18

x

x x




















−

  (ii)
18

3

1

3

2

3

3 15


















   (iii) 1 20

3

2

3

17

−





   (8) 2 , 4

3
  (9) 5

2
,54

EXERCISE 11.6
1 2 3 4 5 6 7 8 9 10

(2) (4) (2) (4) (4) (2) (4) (3) (2) (1)

11 12 13 14 15 16 17 18 19 20

(4) (4) (1) (2) (1) (1) (4) (4) (2) (1)

Chapter 12
Exercise 12.1

	 1.	 (i) Yes, *  is binary on  	 (ii) Yes, *  is binary on A	

		  (iii) No, *  is not binary on 

	 2.	 No, Ä  is not binary on  	 3. -88

15

	 4.	 Yes, usual multiplication is binary on A

	 5.	 (i) The given operation *  is closure and commutative but not associative on  . 

		  (ii) Identity does not exist and so inverse does not exist.

6. * a b c

a b c a

b c b a

c a a c

	 7.	  No. The given operation is not commutative and associative

	 8.	  (i) A B∨ =



















1 1 1 1

1 1 1 1

1 0 0 1

	 (ii) A B∧ =



















0 0 0 0

0 0 0 0

1 0 0 1

		  (iii) A B C∨( )∧ =



















1 1 0 1

0 1 1 0

1 0 0 1

	 (iv) A B C∧( )∨ =



















1 1 0 1

0 1 1 0

1 1 1 1
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	 10.	 (i) It is commutative and associative.
		  (ii) Identity and Inverse is exist.

Exercise 12.2
	 1.	 (i) ¬p : Jupiter is not a planet	 (ii) p q∧ ¬ : Jupiter is a planet and India is not an Island.

		  (iii) ¬ ∨p q : Jupiter is not a planet or India is an Island.	

		  (iv) p q→ ¬ : If Jupiter is a planet then India is not an Island.

		  (v) p q↔  Jupiter is a planet if and only if India is an Island.

	 2.	 (i) ¬ ∧p q       (ii) p q∨¬       (iii) p q∧  (iv) ¬p

	 3.	 (i) p q®  is 𝕋      (ii) p qÚ  is 𝔽      (iii) ¬ ∨p q  is 𝕋      (iv) p qÙ  is 𝔽

	 4.	 (i), (iii) and (iv) are propositions
	 5.	 (i) Converse:  If x and y are numbers such that x y2 2=  then x y= .
		     Inverse:  If x and y are numbers such that x y¹  then x y2 2¹ .
		     Contra positive: If x and y are numbers such that x y2 2¹  then x y¹ . 
		  (ii) Converse: If a quadrilateral is a rectangle then it is a square.
		    Inverse: If a quadrilateral is not a square then it is not a rectangle.
		    Contrapositive: If a quadrilateral is not a rectangle then it is not a square.

	 6.	 (i) Truth table for ¬ ∧¬p q

p q ¬p ¬q ¬ ∧ ¬p q
T T F F F
T F F T F
F T T F F
F F T T T

		  (ii) Truth table for ¬ ¬ ∧¬( )p q

p q ¬q p q∧ ¬ ¬ ¬ ∧ ¬( )p q

T T F F T
T F T T F
F T F F T
F F T F T

		  (iii) Truth table for p q q∨( )∨¬

p q ¬q p q∨ p q q∨( )∨ ¬
T T F T T
T F T T T
F T F T T
F F T F T
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		  (iv) Truth table for ¬ →( )∧ ↔( )p r p q

p q r ¬p ( )¬ →p r p q↔ ¬ →( ) ∧ ↔( )p r p q
T T T F T T T
T T F F T T T
T F T F T F F
T F F F T F F
F T T T T F F
F T F T F F F
F F T T T T T
F F F T F T F

	 7.	 (i) Contradiction    (ii) Tautology    (iii) Contingency    (iv) Tautology

	 12.	 p q p→ →( )  is a Tautology. 

	 13.	 Yes. The statements are logically equivalent.

Exercise 12.3
Choose the appropriate answer from the given distractors.

Q 1 2 3 4 5 6 7 8 9 10

A (2) (3) (2) (4) (2) (2) (3) (4) (3) (2)

Q 11 12 13 14 15 16 17 18 19 20

A (4) (1) (3) (3) (3) (2) (4) (3) (1) (4)
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GLOSSARY
CHAPTER 7

Application of Differential Calculus

related rates சார்ந்த வீதங்கள்

mean value theorem இடை மதிப்புத் 
தேற்றம்

indeterminate forms தேறப்பெறாத 
வடிவங்கள்

stationary points நிலைப் புள்ளிகள்

critical points மாறுநிலைப் 
புள்ளிகள்

monotonicity of 
functions ஓரியல்புச் சார்புகள்

absolute extremum மீப்பெரு அறுதி

relative extremum இடஞ்சார்ந்த அறுதி

Concave குழிவு

Convex குவிவு

point of inflection வளைவு மாற்றப் புள்ளி

Symmetry சமச்சீர்த் தன்மை

CHAPTER 8
Differential and Partial Derivatives

Differential வகையீடு

Partial Derivatives பகுதி வகைக்கெழு

Harmonic சீரான

Homogeneous சமச்சீரான

Absolute error தனிப்பிழை

Relative error சார் பிழை

Percentage error சதவிகித பிழை

CHAPTER 9
Applications of Integration

Definite integral வரையறுத்தத் 
த�ொகை

Reduction formula குறைப்பு சூத்திரம்

Gamma integral காமா த�ொகையிடல்

Bounded region இடைப்பட்ட பகுதி

CHAPTER 10
Ordinary Differential Equations

order வரிசை

Linear நேரியல்

Degree படி

arbitrary constant ஏதேனும�ொரு 
மாறிலி

dependent variable சார்ந்த மாறி

independent variable சாரா மாறி

integrating factor த�ொகையீட்டுக் 
காரணி

homogeneous 
function சமபடித்தான சார்பு
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CHAPTER 11
Probability Distributions

bernoulli random 
variable

பெர்நோலி 
சமவாய்ப்பு மாறி

binomial distribution ஈருறுப்பு பரவல்
binomial random 
variable

ஈருறுப்பு சமவாய்ப்பு 
மாறி

continuous random 
variable

த�ொடர்நிலை 
சமவாய்ப்பு மாறி

cumulative 
distribution function சேர்ப்புப் பரவல் சார்பு

discrete random 
variable

தனிநிலை 
சமவாய்ப்பு மாறி

mathematical 
expectation கணித எதிர்பார்ப்பு

probability density 
function

நிகழ்தகவு அடர்த்திச் 
சார்பு

probability mass 
function

நிகழ்தகவு 
நிறைச்(செறிவு) சார்பு

random variable சமவாய்ப்பு மாறி

CHAPTER 12
Discrete Mathematics

Absorption law ஈர்ப்பு விதி

Algebraic structure இயற்கணித 
அமைப்பு

Biconditional 
statement

இரு நிபந்தனைக் 
கூற்று

Binary Operation ஈருறுப்பு செயலி

Boolean Algebra பூலியன் 
இயற்கணிதம்

Boolean Matrix பூலியன் அணி
Coding theory குறியீட்டுக் க�ோட்பாடு

Compound statement கூட்டுக் கூற்று

Conditional statement நிபந்தனைக் கூற்று
Conjunction இணையல்
Contradiction முரண்பாடு

Contra positive நேர்மாறு

Disjunction பிரிப்பிணையல்

Duality இருமை இயல்பு (அ) 
இரட்டைத் தன்மை

Hypothesis கருதுக�ோள்

Involution law உட்சுழற்சி விதி

Logical connectives தர்க்க இணைப்புகள்

Logical equivalent
தர்க்க 
சமானமானவை

Negation மறுப்பு

Paradox முரண்படு மெய்மை

Simple statement தனிக்கூற்று

Tautology மெய்மை

Truth table மெய் அட்டவணை
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