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“Nothing takes place in the world 
whose meaning is not that of some maximum or minimum”

- Leonhard Euler

Chapter

7 Applications of Differential Calculus

7.1 Introduction
7.1.1 Early Developments
 The primary objective of differential calculus is to partition something 
into smaller parts (infinitesimal parts), in order to determine how it 
changes. For this reason today’s differential calculus was earlier named as 
infinitesimal calculus. Applications of differential calculus to problems 
in physics and astronomy was contemporary with the origin of science. All 
through the 18th century these applications were multiplied until Laplace 
and Lagrange, towards the end of the 18th century, had brought the whole 
range of the study of forces into the realm of analysis.
 The development of applications of differentiation are also due 
to Lejeune Dirichlet, Riemann, von Neumann, Heine, Kronecker, 
Lipschitz, Christoffel, Kirchhoff, Beltrami, and many of the leading physicists of the century.
 •  Differential calculus has applications in geometry and dynamics.
 • Derivatives of function, representing cost, strength, materials in a process, profit, etc., are 

used to determine the monotonicity of functions and there by to determine the extreme values 
of the quantities represented by those functions.

 • Derivatives of a function do find a prominent place in many of the modelling problems in 
engineering and sciences.

 • Differential calculus has applications in social sciences and medical sciences too.
 Using just the first two derivatives of a function f x( ) ,  in this chapter, the nature of the function, 
sketching of curve y f x= ( ) , and local extrema (maxima or minima) of f x( )  are determined. Further, 
using certain higher derivatives of f x( )  (if they exist), series expansion of f x( )  about a point are 
also discussed.

Learning Objectives

 Upon completion of this chapter, students will be able to
 • apply derivatives to geometrical problems
 • use derivatives to physical problems
 • identify the nature of curves like monotonicity, convexity, and concavity
 • model  real  time  problems  for  computing  the  extreme  values  using derivatives
 • trace the curves for polynomials and other functions.

Rudolf Otto Sigismund Lipschitz
1832-1903

1
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2XII - Mathematics

7.2 Meaning of Derivatives
7.2.1 Derivative as slope
 Slope or Gradient of a line: Let l  be any given non vertical line as in the figure. Taking a finite 

horizontal line segment of any length with the starting point in the given line l  and the vertical line 
segment starting from the end of the horizontal line to touch the given line.  It can be observed that 
the ratio of the vertical length to the horizontal length is always a constant. This ratio is called the 
slope of the line l  and it is denoted as m . 

 The  slope  can  be  used  as  a  measure  to  determine  the increasing 
or decreasing nature of a line. The line is said to be increasing or decreasing 
according as m > 0  or m< 0   respectively. When m = 0 , the value of y  
does not change. Recall that y mx c= +  represents a straight line in the 
XY  plane where m  denotes the slope of the line.

 Slope or Gradient of a curve: Let y f x= ( )  be a given curve. The slope of the line joining the 

two distinct points ( ( )),x f x  and the point ( ( )),x h f x h+ +  is

   f x h f x
h

( ) ( )+ − . (Newton quotient). ...(1)

 Taking the limit as h → 0  we get,

 lim
( ) ( )

( )
h

f x h f x
h

f x
→

+ −
= ′

0
, (limit of Newton quotient) ... (2)

which is the slope of the curve at the point ( , )x y  or ( , ( ))x f x .

Remark

 If θ  is the angle made by the tangent to the curve y f x= ( )  at the 

point ( , )x y , then the slope of the curve at ( , )x y  is ′ =f x( ) tanθ , 

where θ  is measured in the anti clock wise direction from the  

X -axis. Note that, ′f x( )  is also denoted by dy
dx

 and also called 

instanteous rate of change. The average rate of change in an interval is calculated using Newton 
quotient.

Example 7.1

 For the function f x x x( ) , [ , ]= ∈2 0 2  compute the average rate of changes in the subintervals  

[ ] [ ] [ ] [ ], . , . , , , . , . ,0 0 5 0 5 1 1 1 5 1 5 2  and the instantaneous rate of changes at the points x = 0 5 1 1 5 2. , , . , .

Solution

 The average rate of change in an interval [ , ]a b  is f b f a
b a

( ) ( )−
−

 whereas, the instantaneous rate 

of change at a point x  is ′f x( )  for the given function. They are respectively, b a+  and 2x .

y f x= ( )

tangent

Slope of a curve 

(x, y)

tan(θ)

θ
x

y

Fig. 7.2

Fig.7.1
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Applications of Differential Calculus3

Rate of changes

a b x
Average rate is
f b f a
b a

b a( ) ( )−
−

= +

Instantaneous 
rate is
′ =f x x( ) 2

0 0.5 0.5 0.5 1

0.5 1 1 1.5 2

1 1.5 1.5 2.5 3

1.5 2 2 3.5 4
Table 7.1

7.2.2 Derivative as rate of change
 We have seen how the derivative is used to determine slope. The derivative can also be used to 
determine the rate of change of one variable with respect to another. A few examples are population 
growth rates, production rates, water flow rates, velocity, and acceleration.
 A common use of rate of change is to describe the motion of an object moving in a straight line. 
In such problems, it is customary to use either a horizontal or a vertical line with a designated origin 
to represent the line of motion. On such lines, movements in the forward direction considered to be 
in the positive direction and movements in the backward direction is considered to be in the negative 
direction.
 The function s(t) that gives the position (relative to the origin) of an object as a function of time 
t is called a position function. It is denoted by s f t= ( ) .  The velocity and the acceleration at time t is 

denoted as v t ds
dt

( ) = , and a t
dv
dt

d s
dt

( ) = =
2

2 .

Remark
 The following remarks are easy to observe:

 (1) Speed is the absolute value of velocity regardless of direction and hence, 

  Speed = =v t ds
dt

( ) .

 (2) •  When the particle is at rest then v t( ) = 0 .
  •  When the particle is moving forward then v t( ) > 0 .
  •  When the particle is moving backward then v t( ) < 0 .
  •  When the particle changes direction, v t( )  then changes its sign.

 (3) If tc  is the time point between the time points t1  and t2  ( )t t tc1 2< < where the particle changes 

direction then the total distance travelled from time t1  to time t2  is calculated as 

  s t s t s t s tc c( ) ( ) ( ) ( )1 2− + − .

 (4) Near the surface of the planet Earth, all bodies fall with the same constant acceleration. 
When air resistance is absent or insignificant and only force acting on a falling body is the 
force of gravity, we call the way the body falls is a free fall.

Chapter 7 Differential Calculus Original-new.indd   3 7/25/2019   6:27:33 PM



4XII - Mathematics

 An object thrown at time t = 0  from initial height s0  with initial velocity v0  satisfies the equation.

 a g v gt v s gt v t s= − = − + = − + +, ,0

2

0 0
2

.

 where, g = 9 8 2. / sm or 32 2ft / s .

 A few examples of  quantities which are the rates of change with respect to some other 
quantity in our daily life are given below:
 1. Slope is the rate of change in vertical length with respect to horizontal length.
 2. Velocity is the rate of displacement with respect to time.
 3. Acceleration is the rate of change in velocity with respect to time.
 4. The steepness of a hillside is the rate of change in its elevation with respect to linear 

distance.
 Consider the following two situations:
 • A person is continuously driving a car from Chennai to Dharmapuri. The distance (measured 

in kilometre) travelled is expressed as a function of time (measured in hours) by D t( ) . What 
is the meaning one can attribute to ′ =D ( )3 70 ?

  It means that, “the rate of distance covered when t = 3 is 70 kmph”.
 • A water source is draining with respect to the time t . The amount of water so drained after 

t  days is expressed as V t( ) . What is the meaning of the slope of the tangent to the curve 
y V t= ( )  at t = 7  is −3 ?

  It means that, “the water is draining at the rate of 3 units per day on day 7”.
 Likewise the rate of change concept can be used in our daily life problems. Let us now illustrate 
this with more examples.

Example 7.2
 The temperature in celsius in a long rod of length 10 m, insulated at both ends, is a function of 
length x  given by T x x= −( )10 . Prove that the rate of change of temperature at the midpoint of the 
rod is zero.

Solution
 We are given that, T x x= −10 2. Hence, the rate of change at any distance from one end is given 

by dT
dx

x= −10 2 . The mid point of the rod is at x = 5 . Substituting x = 5 , we get dT
dx

= 0 . 

Example 7.3
 A person learnt 100 words for an English test. The number of words the person remembers in  
t  days after learning is given by W t t t( ) ( . ) ,= × − ≤ ≤100 1 0 1 0 102 . What is the rate at which the 
person forgets the words 2 days after learning?

Solution
 We have,
  d

dt
W t( )  =  − × −20 1 0 1( . )t .

  Therefore at t d
dt
W t= 2, ( )  =  −16 .

 That is, the person forgets at the rate of 16  words after 2  days of studying.

Chapter 7 Differential Calculus Original-new.indd   4 7/25/2019   6:27:37 PM



Applications of Differential Calculus5

Example 7.4

 A particle moves so that the distance moved is according to the law s t t t( ) = − +
3

2

3
3 . At what 

time the velocity and acceleration are zero respectively?
Solution

  Distance moved in time ' 't  is s  =  t t
3

2

3
3− + .

  Velocity at time ' 't  is V  =  ds
dt

t t= −2 2 .

  Acceleration at time ' 't  is A  =  dV
dt

t= −2 2 .

 Therefore, the velocity is zero when t t2 2 0− = , that is t = 0 2, . The acceleration is zero when 
2 2 0t − = . That is at time at time t =1.

Example 7.5
  A particle is fired straight up from the ground to reach a height of s  feet in t seconds,where 

s t t t( ) = −128 16 2 .
   (1) Compute the maximum height of the particle reached.
   (2) What is the velocity when the particle hits the ground?
Solution
 (1)  At the maximum height, the velocity v(t) of the particle is zero.
  Now, we find the velocity of the particle at time t .

  v t
ds
dt

t( ) = = −128 32  

  v t t t( ) = ⇒ − = ⇒ =0 128 32 0 4 .
  After 4 seconds, the particle reaches the maximum height.
  The height at t = 4  is s( ) ( ) ( )4 128 4 16 4 2562= − =  ft.

 (2) When the particle hits the ground then s = 0 .
  s t t= ⇒ − =0 128 16 02  
    ⇒ =t 0 8, seconds.
  The particle hits the ground at t = 8 seconds. The velocity when it hits the ground is  

v(8) = –128 ft /s.

Example 7.6
 A particle moves along a horizontal line such that its position at any time t ≥ 0  is given by 

s t t t t( ) = − + +3 26 9 1 , where s  is measured in metres and t  in seconds?
 (1) At what time the particle is at rest?
 (2) At what time the particle changes direction?
 (3) Find the total distance travelled by the particle in the first 2 seconds.
Solution
 Given that s t t t t( ) = − + +3 26 9 1 . On differentiating, we get v t t t( )= − +3 12 92 and a t t( ) .= −6 12

 (1) The particle is at rest when v t( ) = 0 . Therefore, v t t t( ) ( )( )= − − =3 1 3 0  gives t =1and t = 3 .

Chapter 7 Differential Calculus Original-new.indd   5 7/25/2019   6:27:42 PM



6XII - Mathematics

 (2) The particle changes direction when v t( )  changes its sign. Now.

  if 0 1≤ <t  then both ( )t −1  and ( )t − <3 0  and hence, v t( ) > 0 .
  If 1 3< <t  then ( )t − >1 0  and ( )t − <3 0  and hence, v t( ) < 0 .
  If t > 3  then both ( )t −1  and ( )t − >3 0  and hence, v t( ) > 0 .
  Therefore, the particle changes direction when t =1 and t = 3 .
 (3) The total distance travelled by the particle from time t = 0  to t = 2  is given by, 

s s s s( ) ( ) ( ) ( ) | | | |0 1 1 2 1 5 5 3 6− + − = − + − =  metres.

7.2.3  Related rates
 A related rates problem is a problem which involves at least two changing quantities and asks 
you to figure out the rate at which one is changing given sufficient information on all of the others. 
For instance, when two vehicles drive in different directions we should be able to deduce the speed at 
which they are separating if we know their individual speeds and directions.

Example 7.7
 If we blow air into a balloon of spherical shape at a rate of 1000 3cm per second. At what rate the 
radius of the baloon changes when the radius is 7cm? Also compute the rate at which the surface area 
changes.

Solution
 The volume of the baloon of radius r  is V r=

4

3

3π . 

 We are given dV
dt

=1000  and we need to find dr
dt

 when r = 7 . Now,

  dV
dt

 =  3 4

3

2× ×π r dr
dt

.

 Substituting r = 7  and dV
dt

=1000 , we get 1000 4 49= × ×π
dr
dt

. 

  Hence, dr
dt

 =  1000

4 49

250

49× ×
=

π π
.

 The surface area S  of the baloon is S r= 4 2π . Therefore, dS
dt

r dr
dt

= × ×8π . 

 Substituting dr
dt
=

250

49π
 and r = 7 , we get

   dS
dt

 =  8 7
250

49

2000

7
π

π
× × = .

 Therefore, the rate of change of radius is 250

49p
  cm/sec and the rate of change of surface area is 

2000

7
 cm2 / sec.  

Fig.7.4
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Applications of Differential Calculus7

Example 7.8

 The price of a product is related to the number of units available (supply) by the equation 
Px P x+ − =3 16 234 , where P  is the price of the product per unit in Rupees(`) and x is the number of 
units. Find the rate at which the price is changing with respect to time when 90  units are available and 
the supply is increasing at a rate of 15  units/week.
Solution
 We have,
  P  =  234 16

3

+
+

x
x

  Therefore, dP
dt

 =  −
+

×
186

3 2( )x
dx
dt

.

 Substituting x dx
dt

= =90 15, , we get dP
dt

= − × = − ≈ −186

93
15

10

31
0 32

2
. .  That is the price is 

changing, in fact decreasing at the rate of  ̀  0.32 per unit.

Example 7.9

 Salt is poured from a conveyer belt at a rate of 30 cubic metre per minute forming a conical pile 
with a circular base whose height and diameter of base are always equal. How fast is the height of the 
pile increasing when the pile is 10 metre high?
Solution

 Let h  and r  be the height and the base radius. Therefore h r= 2 . Let V  be the volume of the salt 
cone.

  V  =  1
3

1

12
302 3 3p pr h h dV

dt
= =; min mtr / .

  Hence, dV
dt

 =  1
4

2ph dh
dt

  Therefore, dh
dt

 =  4 1
2

dV
dt h

⋅
π

 

  That is, dh
dt

 =  4 30
1

100
× ×

π

   =  6

5p
 mtr / min.

Example 7.10 (Two variable related rate problem)

 A road running north to south crosses a road going east to west at the point P . Car A  is driving 

north along the first road, and car B  is driving east along the second road. At a particular time car A  
i s  10 kilometres to the north of P  and traveling at  80 km/hr, while car B  is 15 kilometres to the east 

of P  and traveling at 100 km/hr. How fast is the distance between the two cars changing?

Fig.7.5

h

r
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8XII - Mathematics

Solution
 Let a t( )  be the distance of car A  north of P  at time t  , and b t( )  the distance of car B  east of 
P  at time t , and let c t( )  be the distance from car A  to car B  at time t . By the Pythagorean Theorem, 
c t a t b t( ) ( ) ( )2 2 2= + . 
 Taking derivatives, we get 2 2 2c t c t a t a t b t b t( ) ( ) ( ) ( ) ( ) ( )′ = ′ + ′ . 

  So, ′c  =  aa bb
c

aa bb
a b

′ + ′
=

′ + ′

+2 2
 

 Substituting known values, we get

  ′c  =   
( ) ( )

.
10 80 15 100

10 15

460

13
127 6

2 2

× + ×

+
= ≈  km/hr

 at the time of intersect. 

EXERCISE 7.1
 1. A point moves along a straight line in such a way that after t  seconds its distance from the origin 

is s t t= +2 32  metres.
   (i) Find the average velocity of the points between t = 3  and t = 6 seconds.
   (ii) Find the instantaneous velocities at t = 3  and t = 6  seconds.
 2.  A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance 

of s t=16 2  in t  seconds.
   (i) How long does the camera fall before it hits the ground?
   (ii) What is the average velocity with which the camera falls during the last 2 seconds?
   (iii) What is the instantaneous velocity of the camera when it hits the ground?
 3.  A particle moves along a line according to the law s t t t t( ) = − + −2 9 12 43 2 , where t ≥ 0 .
   (i) At what times the particle changes direction?
   (ii) Find the total distance travelled by the particle in the first 4 seconds.
   (iii) Find the particle’s acceleration each time the velocity is zero.
 4.  If the volume of a cube of side length x  is v x= 3 . Find the rate of change of the volume with 

respect to x  when x = 5  units.
 5.  If the mass m x( )  (in kilograms) of a thin rod of length x  (in metres) is given by, m x x( ) = 3   

then what is the rate of change of mass with respect to the length when it is x = 3  and x = 27  
metres.

 6.  A stone is dropped into a pond causing ripples in the form of concentric circles. The radius r  of 
the outer ripple is increasing at a constant rate at 2 cm per second. When the radius is 5 cm find 
the rate of changing of the total area of the disturbed water?

 7.  A beacon makes one revolution every 10 seconds. It is located on a ship which is anchored 5 km 
from a straight shore line. How fast is the beam moving along the shore line when it makes an 
angle of 45°with the shore?

 8.  A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If 
water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases 
when the water is 8 metres deep?

 9.  A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from 
the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall.

   (i) How fast is the top of the ladder moving down the wall?
   (ii) At what rate, the area of the triangle formed by the ladder, wall, and the floor, is changing?

Fig.7.6
P

N
(0, a(t))

(b(t), 0)

c(t)

E
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Applications of Differential Calculus9

 10,  A police jeep, approaching an orthogonal intersection from the northern direction, is chasing 
a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the 
intersection and the car is 0.8 km to the east. The police determine with a radar that the distance 
between them and the car is increasing at 20 km/hr. If the jeep is moving at 60 km/hr at the 
instant of measurement, what is the speed of the car?

7.2.4  Equations of Tangent and Normal
 According to Leibniz, tangent is the line through a pair of very close points on the curve.

Definition 7.1

 The tangent line (or simply tangent) to a 
plane curve at a given point is the straight 
line that just touches the curve at that point.

Definition 7.2

 The normal at a point on the curve is the 
straight line which is perpendicular to the 
tangent at that point.

 The tangent and the normal of a curve at a 
point are illustrated in the adjoining figure.

 Consider the given curve y f x= ( ) .

 The equation of the tangent to the curve at the point, say ( , )a b , is given by

y b x a dy
dx a b

− = − ×





( )

( , )

 or y b f a x a− = ′ ⋅ −( ) ( ) .

 In order to get the equation of the normal to the same curve at the same point, we observe that 
normal is perpendicular to the tangent at the point. Therefore, the slope of the normal at ( , )a b  is the 

negative of the reciprocal of the slope of the tangent which is −










1
dy
dx a b( , )

. 

 Hence, the equation of the normal is ,

( ) ( )

( , )

y b x ady
dx a b

− = −








 × −

1  or ( ) ( )
( , )

y b dy
dx

x a
a b

− ×





 = − − .

Remark

 (i) If the tangent to a curve is horizontal at a point, then the derivative at that point is 0. Hence, 
at that point x y1 1,( )  the equation of the tangent is y y= 1  and equation of the normal is x x= 1 .

 (ii) If the tangent to a curve is vertical at a point, then the derivative exists and infinite ∞( )  at 

the point. Hence, at that point x y1 1,( )  the equation of the tangent is x x= 1  and the equation 
of the normal is y y= 1 .

Fig.7.7

0

Curve  →

← Tangent

← Normal

x

y
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10XII - Mathematics

Example 7.11
 Find the equations of tangent and normal to the curve y x x= + −2 3 2  at the point ( , )1 2 .

Solution

 We have, dy
dx

x= +2 3 . Hence at ( , ),1 2 5
dy
dx

= . 

 Therefore, the required equation of tangent is

 ( ) ( )y x x y− = − ⇒ − − =2 5 1 5 3 0 .

 The slope of the normal at the point ( , )1 2  is − 1

5
 and 

therefore, the required equation of normal is

 ( ) ( )y x x y− = − − ⇒ + − =2
1

5
1 5 11 0 .

Example 7.12
 For what value of x  the tangent of the curve y x x x= − + −3 23 2  is parallel to the line y x= .
Solution
 The slope of the line y x=  is 1. The tangent to the given curve will be parallel to the line, if the 
slope of the tangent to the curve at a point is also 1. Hence,

  dy
dx

 =  3 6 1 12x x− + =

  which gives 3 62x x−  =  0 .

  Hence, x  =  0 and x = 2.

 Therefore, at (0, –2) and (2, –4) the tangent is parallel to the line y x= .

Example 7.13
 Find the equation of the tangent and normal to the Lissajous curve given by x t= 2 3cos  and 
y t t= ∈3 2sin ,  .

Solution
 Observe that the given curve is neither a circle nor an ellipse. For your reference the curve is 
shown in Fig. 7.9.

  Now, dy
dx

 =  
dy
dt

dx
dt

   =  − = −6 2

6 3

2

3

cos

sin

cos

sin

t
t

t
t

.

 Therefore, the tangent at any point is

  y t−3 2sin  =  − −
cos

sin
( cos )

2

3
2 3

t
t
x t

 That is, x t y tcos sin2 3+  =  3 2 3 2 2 3sin sin cos cost t t t+ . Fig.7.9
Lissajous curve

x t y t= =2 3 3 2cos ; sin

Fig.7.8

y
x

x
�

�
�

2
3

2

�1�2�3�4�5

�4

�3

�2

�1

(1, 2)

3210

1

2

3

4

5

5
3

0
x

y
−

−
=

x y+ − =5 1 1 0

y
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Applications of Differential Calculus11

 The slope of the normal is the negative of the reciprocal of the tangent which in this case is  
sin

cos

3

2

t
t

. Hence, the equation of the normal is

y t t
t
x t− = −3 2

3

2
2 3sin

sin

cos
( cos ) .

 That is, x t y t t t t t t tsin cos sin cos sin cos sin sin3 2 2 3 3 3 2 2 6
3

2
4− = − = − .

7.2.5  Angle between two curves

Definition 7.3
 Angle between two curves, if they intersect, is defined as the acute angle between the tangent 
lines to those two curves at the point of intersection.

 For the given curves, at the point of intersection using the slopes of the tangents, we can measure 
the acute angle between the two curves. Suppose y m x c= +1 1  and y m x c= +2 2  are two lines, then the 
acute angle θ  between these lines is given by,

   tanθ  =  m m
m m

1 2

1 21

−
+

  ... (3)

 where m1 and m2 are finite.

Remark
 (i) If the two curves are parallel at x y1 1,( ) , then m m1 2= .

 (ii) If the two curves are perpendicular at x y1 1,( )  and if m1  and m2  exists and finite then 
m m1 2 1= − .

Example 7.14
 Find the acute angle between y x= 2  and y x= −( )3 2 .

Solution
 Let us now find the point of intersection. Equating x x2 23= −( )  we get, x = 3

2
. Therefore, the 

point of intersection is 3

2

9

4
,







 . Let θ be the acute angle between the curves. The slopes of the curves 

are as follows :
  For the curve y   =  x2,

  dy
dx

 =  2x .

  m dy
dx1 =   at 3

2

9

4
,







  =  3.

  For the curve y  =  ( )x −3 2,

  dy
dx

 =  2 3( )x − .

  m dy
dx2 =   at 3

2

9

4
,







  =  −3.

Fig.7.10
0 2 4

2

4

x

y

–2–4

θ

y =
 (

x –
 3

)2

y =
 x2
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 Using (3), we get

  tanθ  =  3 3

1 9

3

4

− −
−

=
( )

  Hence, θ  =  tan− 







1 3

4
.

Example 7.15

 Find the acute angle between the curves y x= 2  and x y= 2  at their points of intersection 

( , ), ( , )0 0 1 1 .

Solution
 Let us now find the slopes of the curves.  
 The slope  m1  for the curve y x= 2.

   m1  =  dy
dx

x= 2  

 and slope m2  for the curve x y= 2, 

   m2  =  dy
dx y

=
1

2
.

 Let θ1 and θ2 be the acute angles at (0,0) and (1,1) respectively.
 At ( , )0 0 , we come across the indeterminate form of 0×∞ in the denominator of 

tan

( )

θ1

2
1

2

1 2
1

2

=
−

+










x
y

x
y

 and so we follow the limiting process.

   tanθ1  =  lim

( )
( , ) ( , )x y

x
y

x
y

→

−

+










0 0

2
1

2

1 2
1

2

  

    =  lim
( )( , ) ( , )x y

xy
y x→

−
+0 0

4 1

2
 

    =  ¥  

  which gives  θ1 =  tan ( )− ∞ =1

2

π .

 At ( , )1 1 , m m1 22
1

2
= =,  

   tanθ2  =  
2

1

2

1 2
1

2

−

+ 





( )

    =  3

4

   which gives θ2  =  tan− 







1 3

4
.

Fig.7.11
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Example 7.16

 Find the angle of intersection of the curve y x= sin  with the positive x -axis.

Solution
 The curve y x= sin  intersects the positive x -axis.  When y = 0  which gives,  x n n= =π , , , ,1 2 3 .

Now, dy
dx

x= cos . The slope at x = np  are cos( ) ( )n nπ = −1 . Hence, the required angle of intersection is

  tan ( )− −1 1 n  =  

π

π
4

3

4

  , when  is even

 , when is  odd

n

n










.

Example 7.17

 If the curves ax by2 2 1+ =  and cx dy2 2 1+ =  intersect each other orthogonally then,

1 1 1 1
a b c d
− = − .

Solution

 The two curves intersect at a point ( , )x y0 0  if ( ) ( )a c x b d y− + − =0

2

0

2 0 .

 Let us now find the slope of the curves at the point of intersection ( , )x y0 0 . The slopes of the 
curves are as follows :

  For the curve ax by2 2+  =  1,
dy
dx

ax
by

= −  .

  For the curve cx dy2 2+  =  1,
dy
dx

cx
dy

= −  .

 Now, two curves cut orthogonally, if the product of their slopes, at the point of intersection 
( , )x y0 0 , is −1. Hence, for the above two curves to cut orthogonally at ( , )x y0 0  if

  −








× −










ax
by

cx
dy

0

0

0

0

 =  −1.

  That is, acx bdy0

2

0

2+  =  0 ,

    together with ( ) ( )a c x b d y− + −0

2

0

2  =  0

  gives, a c
ac
−  =  b d

bd
− .

  That is,  1 1
c a
−  =  1 1

d b
− .

  Hence,  1 1
a b
−  =  1 1

c d
− .

Remark
In the above example, the converse is also true. That is assuming the condition one can easily 

establish that the curves cut orthogonally. 
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Example 7.18

 Prove that the ellipse x y2 24 8+ =  and the hyperbola x y2 22 4− =  intersect orthogonally.
Solution
 Let the point of intersection of the two curves be ( , )a b . Hence,

  a b2 24+  =  8  and a b2 22 4− =   ... (4)
 It is enough if we show that the product of the slopes of the two curves evaluated at ( , )a b  is −1.
 Differentiation of x y2 24 8+ =  with respect x , gives

  2 8x y dy
dx

+  =  0

  Therefore dy
dx

 =  − x
y4

  at ( , ),a b dy
dx

 =  m a
b1

4
= − .

 Differentiation of x y2 22 4− =  with respect to  x,  gives

  2 4x y dy
dx

−  =  0

  Therefore, dy
dx

 =  x
y2

  at ( , ),a b dy
dx

 =  m a
b2 2

= .

 Therefore, m m1 2×  =  −





×






 = −

a
b

a
b

a
b4 2 8

2

2
 ... (5)

 Applying the ratio of proportions in (4), we get

  a2

16 16− −
 =  b2

8 4

1

2 4− +
=
− −

.

 Therefore a
b

2

2

32

4
8= = . Substituting in (5), we get m m1 2 1× = − . Hence, the curves cut 

orthogonally.

EXERCISE 7.2
 1. Find the slope of the tangent to the curves at the respective given points.

   (i) y x x x= + −4 22  at x =1   (ii) x a t y b t= =cos , sin3 3  at t = π
2

.

 2. Find the point on the curve y x x= − +2 5 4  at which the tangent is parallel to the line 3 7x y+ = .

 3. Find the points on the curve y x x x= − + +3 26 3  where the normal is parallel to the line 

x y+ =1729 .

 4. Find the points on the curve y xy x2 24 5− = +  for which the tangent is horizontal.
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Applications of Differential Calculus15

 5. Find the tangent and normal to the following curves at the given points on the curve.
   (i) y x x= −2 4  at ( , )1 0  (ii) y x ex= +4 2  at ( , )0 2  

   (iii) y x x= sin  at π π
2 2

,






  (iv) x t y t= =cos , sin2 2  at t = π

3

 6. Find the equations of the tangents to the curve y x= +1 3  for which the tangent is orthogonal 

with the line x y+ =12 12 .

 7. Find the equations of the tangents to the curve y x
x

=
+
−

1
1

 which are parallel to the line x y+ =2 6 .

 8. Find the equation of tangent and normal to the curve given by x t= 7cos  and y t t= ∈2sin ,   
at any point on the curve.

 9. Find the angle between the rectangular hyperbola xy = 2  and the parabola x y2 4 0+ = .

 10. Show that the two curves x y r2 2 2− =  and xy c= 2  where c r,  are constants, cut orthogonally.

7.3 Mean Value Theorem
 Mean value theorem establishes the existence of a point, in between two points, at which the 
tangent to the curve is parallel to the secant joining those two points of the curve. We start this section 
with the statement of the intermediate value theorem as follows :

Theorem 7.1  (Intermediate value theorem)
 If f  is continuous on a closed interval [ , ]a b , and c  is any number between f a( )  and f b( )  

inclusive, then there is at least one number x  in the closed interval [ , ]a b , such that f x c( ) = .

7.3.1 Rolle’s Theorem

Theorem 7.2 (Rolle’s Theorem)
 Let f x( )  be continuous on a closed interval [ , ]a b  and differentiable on the open interval ( , )a b  

If f a f b( ) ( )= , then there is at least one point c a b∈ ( , )  where ′ =f c( ) 0 .

 Geometrically this means that if the tangent is moving 
along the curve starting at x a=  towards x b=  then there 

exists a c a b∈( , )  at which the tangent is parallel to the  

x -axis. 

Example 7.19
 Compute the value of ' 'c  satisfied by the Rolle’s theorem for the function 

 f x x x x( ) ( ) , [ , ]= − ∈2 21 0 1 .
Solution
 Observe that, f f f x( ) ( ), ( )0 0 1= =  is continuous in the interval [ , ]0 1  and is differentiable in  
( , )0 1 . Now,

′f x( )  =  2 1 1 2x x x( )( )− − .

Fig.7.12

′ =f c( ) 0
y f x
= ( )

x a= x c= x b= x

y
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   Therefore, ′f c( )  =  0  gives c = 0 1, , and 
1

2

   which ⇒ c  =  1

2
0 1∈ ( , ) .

Example 7.20

 Find the values in the interval 1

2
2,







  satisfied by the Rolle's theorem for the function 

f x x
x
x( ) , ,= + ∈





1 1

2
2 .

Solution

 We have, f x( )  is continuous in 1

2
2,







 and differentiable in 1

2
2,







  with f f1

2

5

2
2







 = = ( ) . By 

the Rolle’s theorem there must exist a c∈







1

2
2,  such that,

 ′ = − = ⇒ =f c
c

c( ) 1
1

0 1
2

2  gives c = ±1,. As 1 1

2
2∈






, , we choose c =1. 

Example 7.21
 Compute the value of ' 'c  satisfied by Rolle’s theorem for the function f x x

x
( ) log=

+









2 6

5
 in the 

interval [ , ]2 3 .
Solution
 Observe that, f f( ) ( )2 0 3= =  and f x( )  is continuous in the interval [ , ]2 3  and differentiable in 
( , )2 3 . Now,

  ′f x( )  =  x
x x

2

2

6

6

−
+( )

 

  Therefore, ′f c( )  =  0  gives

  c
c c

2

2

6

6

−
+( )

 =  0

   which implies c  =  ± 6

  Now c  =  + ∈6 2 3( , ) .

 Observe that − ∉6 2 3( , )  and hence c = + 6  satisfies the Rolle’s theorem.

 Rolle’s  theorem can also be used to compute the number of roots of an algebraic equation in an 
interval without actually solving the equation.

Example 7.22
 Without actually solving show that the equation x x4 32 2 0+ − =  has only one real root in the 
interval ( , )0 1 .

Solution
 Let f x x x( ) = + −4 32 2 . Then f x( )  is continuous in [ , ]0 1  and differentiable in ( , )0 1 . Now,

  ′f x( )  =  4 63 2x x+ . If ′ =f x( ) 0  then, 
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  2 2 32x x( )+  =  0 . 

  Therefore, x  =  0 3

2
,−  but 0

3

2
0 1, ( , )− ∉ .

  Thus,  ′f x( )  >  0 0 1, ( , )∀ ∈x .

 Hence by the Rolle’s theorem there do not exist a b, ( , )∈ 0 1  such that, f a f b( ) ( )= =0 . Therefore 
the equation f x( ) = 0  cannot have two roots in the interval ( , )0 1 . But, f ( )0 2 0= − <  and f ( )1 1 0= >  
tells us the curve y f x= ( )  crosses the x -axis between 0  and 1 only once by the Intermediate value 
theorem. Therefore the equation x x4 32 2 0+ − =  has only one real root in the interval ( , )0 1 .

 As an application of the Rolle’s theorem we have the following,

Example 7.23
 Prove using the Rolle’s theorem that between any two distinct real zeros of the polynomial

a x a x a x an
n

n
n+ + + +−
−

1

1

1 0  

there is a zero of the polynomial
na x n a x an

n
n

n−
−

−+ − + +1

1

2

11( )  .

Solution

 Let P x a x a x a x an
n

n
n( ) = + + + +−
−

1

2

1 0 . Let α β<  be two real zeros of P x( ) . Therefore,

P P( ) ( )α β= = 0 . Since P x( )  is continuous in [ , ]α β  and differentiable in ( , )α β  by an application 

of Rolle’s theorem there exists γ α β∈ ( , )  such that ′ =P ( )γ 0 . Since,

′ = + − + +−
−

−P x na x n a x an
n

n
n( ) ( )1

1

2

11 

which completes the proof.

Example 7.24

 Prove that there is a zero of the polynomial, 2 9 11 123 2x x x− − +  in the interval ( , )2 7   given that 

2  and 7  are the zeros of the polynomial x x x x4 3 26 11 24 28− − + + .

Solution

 Applying the above example 7.23 with
P x x x x x( ) , ,= − − + + = =4 3 26 11 24 28 2 7α β

 and observing
′

= − − + =
P x x x x Q x( )

( )
2

2 9 11 123 2 , (say).

 This implies that there is a zero of the polynomial Q x( )  in the interval ( , )2 7 .

 For verification,
  Q( )2  =  16 36 22 12 28 58 30 0− − + = − = − <

  Q( )7   =  686 441 77 12 698 518 180 0− − + = − = >  

 From this we may see that there is a zero of the polynomial Q x( )  in the interval ( , )2 7 .
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Remark
 There are functions for which Rolle’s theorem may not be applicable.
 (1) For the function f x x x( ) | |, [ , ]= ∈ −1 1  Rolle’s theorem is not applicable, even though 

f f( ) ( )− = =1 1 1   because f x( )  is not differentiable at x = 0 .

 (2) For the function,

f x
x

x x
( )

,
=

=
< ≤





1 0

0 1

when 

  when 
.

  even though f f( ) ( )0 1 1= = , Rolle's theorem is not applicable because the function f x( )  is 

not continuous at x = 0 .

 (3) For the function f x x x( ) sin , ,= ∈





0
2

π
 Rolle’s theorem is not applicable, even though 

f x( )  is continuous in the closed interval 0
2

,
π





 and differentiable in the open interval 

0
2

,
π






  because, 0 0

2
1= ≠ 






 =f f( )

π .

 If f x( )  is continuous in the closed interval [ , ]a b  and differentiable in the open interval ( , )a b  

and even if f a f b( ) ( )¹  then the Rolle’s theorem can be generalised as follows. 

7.3.2 Lagrange’s Mean Value Theorem

Theorem 7.3

 Let f x( )  be continuous in a closed interval [ , ]a b  and 

differentiable in the open interval ( , )a b   (where f (a), f (b) are  
not necessarily equal). Then there exist at least one point 
c a b∈ ( , )  such that,

  ′f c( )  =  f b f a
b a

( ) ( )−
−

  ... (6)

Remark
 If f a f b( ) ( )=  then Lagrange’s Mean Value Theorem gives the Rolle’s 

theorem. It is also known as rotated Rolle’s Theorem.

Remark

 A physical meaning of the above theorem is the number f b f a
b a

( ) ( )−
−

 can be 

thought of as the average rate of change in f x( )  over ( , )a b  and ′f c( )  as an instantaneous change.

 A geometrical meaning of the Lagrange’s mean value theorem is that the instantaneous rate of 
change at some interior point is equal to the average rate of change over the entire interval. This is 
illustrated as follows :

x a= x c= x b=

y f x= ( )

f a( )
f b( )

′ =

−
−

f c
f b

f a

b a
( )

( )
( )

x

y

Fig.7.13
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 If a car accelerating from zero takes just 8 seconds to travel 200 m, its average velocity for the 8 

second interval is 200

8
25=  m/s. The Mean Value Theorem says that at some point during the travel 

the speedometer must read exactly 90 km/h which is equal to 25  m/s.

 Theorem 7.4
 If f x( )  is continuous in [ , ]a b  and differentiable in ( , )a b  and if ′ > ∀ ∈f x x a b( ) , ( , )0 , then 

for, x x a b1 2, [ , ]∈ , such that x x1 2<  we have, f x f x( ) ( )1 2< .

Proof 
 By the mean value theorem, there exists a c x x a b∈ ⊂( , ) ( , )1 2  such that,

  f x f x
x x

( ) ( )2 1

2 1

−
−

 =  ′f c( )  

  Since ′f c( )  >  0 , and

  x x2 1−  >  0  

 We conclude that, whenever x x1 2< , we have f x f x( ) ( )1 2< .

Remark

 If ′ < ∀ ∈f x x a b( ) , ( , )0 , then for, x x a b1 2, [ , ]Î , such that x x1 2<  we have, f x f x( ) ( )1 2< .
 The proof is similar.

Example 7.25
 Find the values in the interval ( , )1 2  of the mean value theorem satisfied by the function 

f x x x( ) = − 2  for 1 2£ £x .
Solution

 f ( )1 0=  and f ( )2 2= − . Clearly f x( )  is defined and differentiable in 1 2< <x . Therefore, by 

the Mean Value Theorem, there exists a c∈ ( , )1 2  such that

  ′f c( )  =  f f c( ) ( )2 1

2 1
1 2

−
−

= −

  That is,  1 2− c  =  − ⇒ =2
3

2
c .

Geometrical meaning

 Geometrically, the mean value theorem says the secant to the curve 

y f x= ( )  between x a=  and x b=  is parallel to a tangent line of the 

curve, at some point c a b∈ ( , ) .

Consequences of Lagrange’s Mean Value Theorem
 There are three important consequences of MVT for derivatives.
 (1) To determine the monotonicity of the given function (Theorem 7.4)
 (2) If ′ =f x( ) 0  for all x  in ( , )a b , then f  is constant on ( , )a b .
 (3) If ′ = ′f x g x( ) ( )  for all x , then f x g x C( ) ( )= +  for some constant C .

Tangent

Seca
nt

x a= x c= x b=

y f x= ( )

f a( )
f b( )

′ =

−
−

f c
f b

f a

b a
( )

( )
( )

x

y

Fig.7.14
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7.3.3 Applications

Example 7.26
 A truck travels on a toll road with a speed limit of 80 km/hr. The truck completes a  
164 km journey in 2 hours. At the end of the toll road the trucker is issued with a speed violation 
ticket. Justify this using the Mean Value Theorem.

Solution

 Let f t( )  be the distance travelled by the trucker in ' 't  hours. This is a continuous function in 
[ , ]0 2  and differentiable in ( , )0 2 . Now, f ( )0 0=  and f ( )2 164= . By an application of the Mean 
Value Theorem, there exists a time c  such that,

′ =
−
−

= >f c( )
164 0

2 0
82 80 .

 Therefore at some point of time, during the travel in 2 hours the trucker must have travelled with 
a speed more than 80 km which justifies the issuance of a speed violation ticket.

Example 7.27
 Suppose f x( )  is a differentiable function for all x  with ′ ≤f x( ) 29  and f ( )2 17= . What is the 
maximum value of f ( )7 ?

Solution
 By the mean value theorem we have, there exists ' ' ( , )c ∈ 2 7  such that,

  f f( ) ( )7 2

7 2

−
−

 =  ′ ≤f c( ) 29 .

  Hence, f ( )7 5 29 17≤ × +  =  162

 Therefore, the maximum value of f ( )7  is 162 .

Example 7.28

 Prove, using mean value theorem, that
| sin sin | | |, ,α β α β α β− ≤ − ∈ .

Solution

 Let f x x( ) sin=  which is a differentiable function in any open interval. Consider an interval 

[ , ]α β . Applying the mean value theorem  there exists c∈ ( , )α β  such that,

  sin sinβ α
β α
−
−

 =  ′ =f c c( ) cos( )

  Therefore,  sin sinα β
α β
−
−

 =  cos( )c £1 

  Hence, | sin sin |α β−  £  | |α β− .

Remark
 If we take β = 0  in the above problem, we get | sin | | |α α≤ .
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Example 7.29
 A thermometer was taken from a freezer and placed in a boiling water. It took 22 seconds for the 
thermometer to raise from − °10 C  to 100°C . Show that the rate of change of temperature at some 
time t is5°C  per second.

Solution
 Let  f t( )  be the temperature at time t. By the mean value theorem, we have 

  ¢f c( )  =  
f b f a
b a

( ) ( )−
−

   =  100 10

22

− −( )

   =  
110

22

   =  5°C  per second.
 Hence the instantaneous rate of change of temperature at some time t should be 5°C  per 
second.

EXERCISE 7.3
 1. Explain why Rolle’s theorem is not applicable to the following functions in the respective 

intervals.

   (i) f x
x
x( ) , [ , ]= ∈ −

1
1 1   (ii) f x x x( ) tan , [ , ]= ∈ 0 π

  (iii)  f x x x x( ) log , [ , ]= − ∈2 2 7  

 2. Using the Rolle’s theorem, determine the values of x  at which the tangent is parallel to the  

x -axis for the following functions :

   (i) f x x x x( ) , [ , ]= − ∈2 0 1   (ii) f x x x
x

x( ) , [ , ]=
−
+

∈ −
2 2

2
1 6  

   (iii) f x x x x( ) , [ , ]= − ∈
3

0 9

 3. Explain why Lagrange’s mean value theorem is not applicable to the following functions in the 
respective intervals :

   (i) f x x
x

x( ) , [ , ]=
+

∈ −
1

1 2   (ii) f x x x( ) | |, [ , ]= + ∈ −3 1 1 3

 4. Using the Lagrange’s mean value theorem determine the values of x  at which the tangent is 
parallel to the secant line  at the end points of the given interval:

   (i) f x x x x( ) , [ , ]= − + ∈ −3 3 2 2 2   (ii) f x x x x( ) ( )( ), [ , ]= − − ∈2 7 3 11  

 5. Show that the value in the conclusion of the mean value theorem for

   (i) f x
x

( ) =
1  on a closed interval of positive numbers [ , ]a b  is ab

   (ii) f x Ax Bx C( ) = + +2  on any interval [ , ]a b  is a b+
2

.

 6. A race car driver is racing at 20th km. If his speed never exceeds 150 km/hr, what is the maximum 
distance he can cover in the next two hours.

 7. Suppose that for a function f x f x( ), ( )′ ≤1 for all 1 4£ £x . Show that f f( ) ( )4 1 3− ≤ .
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 8. Does there exist a differentiable function f x( )  such that f f( ) , ( )0 1 2 4= − =  and ′ ≤f x( ) 2  for 

all x . Justify your answer.

 9. Show that there lies a point on the curve f x x x e x( ) ( ) ,= + − ≤ ≤
−

3 3 02

π

 where tangent drawn is 

parallel to the x -axis.
 10. Using mean value theorem prove that for,  a b e e a ba b> > − < −− −0 0, , | | | | .

7.4 Series Expansions
 Taylor’s series and Maclaurin's series expansion of a function which are infinitely differentiable.

 Theorem 7.5
(a) Taylor’s Series
 Let f x( )  be a function infinitely differentiable at x a= . Then f x( )  can be expanded as a 
series, in an interval ( , )x a x a− + , of the form

  f x( )  =  f a
n

x a f a f a x a f a
n

x a
n

n

n
n

n
( ) ( )( )

!
( ) ( )

( )

!
( )

( )

!
( )

=

∞

∑ − = + ′ − + + − +
0 1

  .

(b) Maclaurin’s series
 If a = 0 , the expansion takes the form

  f x( )  =  f
n

x f f x f
n

x
n

n

n
n

n
( ) ( )( )

!
( )

( )

!

( )

!
.

0
0

0

1

0

0=

∞

∑ = +
′

+ + +   

Proof 
 The series of f x( ) , in powers of ( )x a− , be given by

  f x( )  =  A A x an
n

n
0

1

+ −
=

∞

∑ ( )   ... (7)

 Then A f a0 = ( ) . Differentiation of (7) gives

  ′f x( )  =  1 1

1

2

! ( )A nA x an
n

n
+ − −

=

∞

∑   ... (8)

  Substituting x a=  gives A f a1 = ′( ) . Differentiation of (8) gives

  ′′f x( )  =  2 12

2

3

! ( ) ( )A n n A x an
n

n
+ − − −

=

∞

∑   ... (9)

  Substituting x a=  gives A f a
2

2
=

′′( )

!
. Differentiation of (9) gives

  ′′′f x( )  =  3 1 23

3

4

! ( )( ) ( )A n n n A x an
n

n
+ − − − −

=

∞

∑   ... (10)

 Differentiation of (10) ( )k −3  times gives

  f xk( ) ( )  =  k A n n n k A x ak n
n k

n k
! ( )...( ) ( )+ − − + − −

= +

∞

∑ 1 1
1

 ...(11)
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 Substituting x a=  gives A f a
kk

k

=
( ) ( )

!
 which completes the proof of the theorem.

 In order to expand a function around a point say x a= , equivalently in powers of ( )x a−  we 

need to differentiate the given function as many times as the required powers and evaluate at x a= . 

This will give the value for the coefficients of the required powers of ( )x a− .

Example 7.30
 Expand log( )1+ x  as a Maclaurin’s series upto 4 non-zero terms for  –1 < x ≤ 1.

Solution

 Let f x x( ) log( )= +1 , then the Maclaurin series of f x( )  is f x a xn
n

n

n
( ) =

=

=∞∑ 0
, where, 

a f
nn

n

=
( ) ( )

!

0   various derivatives of the function f x( )  evaluated at x = 0  are given below:

Function and its 
derivatives

log( )1++ x  and its 

derivatives
value at x = 0

f x( ) log( )1+ x 0

′f x( )
1

1+ x 1

′′f x( ) −
+
1

1 2( )x −1

′′′f x( )
2

1 3( )+ x 2

f xiv( ) ( ) −
+
6

1 4( )x −6

Table 7.2

 Substituting the values and on simplification we get the required expansion of the function given 
by,

log( )1
2 3 4

2 3 4

+ = − + − +x x x x x
 ; –1 < x ≤ 1.

Example 7.31
 Expand tan x in ascending powers of x  upto 5th power for − < <p p

2 2
x .

Solution
 Let f x x( ) tan= , then the Mclaurin series of f x( )  is

f x a xn
n

n

n

( ) =
=

=∞

∑
0

, where, a f
nn

n

=
( ) ( )

!

0  .

 Various derivative’s of the function f x( )  evaluated at x = 0  is given below :
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 Now,

  ′f x( )  =  d
dx

x x(tan ) sec ( )= 2

  ′′f x( )  =  
d
dx

x x x x x x(sec ( )) sec sec tan sec tan2 22 2= ⋅ ⋅ = ⋅
   

  ′′′f x( )  =  d
dx

x x x x x x x x( sec ( ) tan ) sec ( ) sec tan sec sec tan2 2 42 2 2⋅ = ⋅ + ⋅ ⋅ ⋅

   =  2 44 2 2sec sec tanx x x+ ⋅
  f xiv( ) ( )

 =  
8 4 2 83 2 2 2sec sec tan sec tan sec sec sec tan tanx x x x x x x x x x⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅

   =  16 84 2 3sec tan sec tanx x x x+ ⋅  

  f xv( ) ( )  =  16 64 8 34 2 3 2 2 2sec sec sec sec tan tan sec tan secx x x x x x x x x⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅

    + ⋅ ⋅ ⋅16 3sec sec tan tanx x x x
   =  16 88 166 4 2 2 4sec sec tan sec tanx x x x x+ ⋅ + ⋅ .

Function and 
its derivatives

tan x  
and its derivatives

value at x = 0

f x( ) tan x  0

′f x( ) sec2 x  1

′′f x( ) 2 2sec tanx x  0

′′′f x( ) 2 44 2 2sec sec tanx x x+ ⋅  2

f xiv( ) ( ) 16 84 2 3sec tan sec tanx x x x⋅ + ⋅  0

f xv( ) ( ) 16 88 166 4 2 2 4sec sec tan sec tanx x x x x+ ⋅ + ⋅  16  

Table 7.3
 Substituting the values and on simplification we get the required expansion of the function as

tan x x x x= + + +
1

3

2

15

3 5
 ; − < <p p

2 2
x .

Example 7.32

 Write the Taylor series expansion of 1
x

 about x = 2  by finding the first three non-zero terms.

Solution

 Let f x
x

( ) =
1 , then the Taylor series of f x( )  is

f x a xn
n

n

n

( ) ( )= −
=

=∞

∑ 2
0

, where a f
nn

n

=
( ) ( )

!

2 .
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 Various derivatives of the function f x( )  evaluated at x = 2  are given below.

Functions and its 
derivatives

1
x

 and its 

derivatives
value at x = 2

f x( )
1
x

 1

2
 

′f x( ) −
1

2x
 −

1

4
 

′′f x( )
2

3x
 1

4
 

′′′f x( ) −
6

4x
 − 3

8
 

Table 7.4
 Substituting these values, we get the required expansion of the function as

  1
x

 =  1

2

1

4

2

1

1

4

2

2

3

8

2

3

2 3

− − + − − − +( )

!

( )

!

( )

!

x x x
  

 which is, 1
x

 =  
1

2

2

4

2

8

2

16

2 3

− − + − − − +( ) ( ) ( )x x x
 

EXERCISE 7.4
 1. Write the Maclaurin series expansion of the following functions:

   (i) ex    (ii) sin x    (iii) cos x

   (iv) log( )1- x ; –1 ≤ x < 1 (v) tan ( )-1 x  ; –1 ≤ x ≤ 1 (vi) cos2 x

 2. Write down the Taylor series expansion, of the function log x  about x =1  upto three non-zero 
terms for x > 0.

 3. Expand sin x  in ascending powers x − π
4

 upto three non-zero terms.

 4. Expand the polynomial f (x) = x2 – 3x + 2 in powers of x – 1.

7.5 Indeterminate Forms
 In this section, we shall discuss various “indeterminate forms” and methods of evaluating the 
limits when we come across them.

7.5.1 A Limit Process
 While computing the limits

lim ( )
x
R x

→α

 of certain functions R x( ) , we may come across the following situations like,
0

0
0 1 00 0, , , , , ,

∞
∞

×∞ ∞−∞ ∞∞ .
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 We say that they have the form of a number. But values cannot be assigned to them in a way that is  
consistent with the usual rules of addition and mutiplication of numbers. We call these expressions 
Indeterminate forms. Although they are not numbers, these indeterminate forms play a useful role in 
the limiting behaviour of a function.
 John (Johann) Bernoulli discovered a rule using derivatives to compute the limits of fractions 
whose numerators and denominators both approach zero or ¥ . The rule is known today as l’Hôpital’s 
Rule (pronounced as Lho pi tal Rule), named after Guillaume de l’Hospital’s, a French nobleman who 
wrote the earliest introductory differential calculus text, where the rule first appeared in print.

7.5.2  The l’Hôpital’s Rule 
 Suppose f x( )  and g x( )  are differentiable functions and ′ ≠g x( ) 0  with

  lim ( )
x a

f x
→

 =  0 =
→

lim ( )
x a
g x . Then lim

( )

( )
lim

( )

( )x a x a

f x
g x

f x
g x→ →

=
′
′

 

  lim ( )
x a

f x
→

 =  ±∞ =
→

lim ( )
x a
g x . Then lim

( )

( )
lim

( )

( )x a x a

f x
g x

f x
g x→ →

=
′
′

 

7.5.3  Indeterminate forms  0

0
0, , ,

∞
∞

×∞ ∞−∞

Example 7.33

 Evaluate : lim
x

x x
x x→

− +
− +











1

2

2

3 2

4 3
 .

Solution
 If we put directly x =1  we observe that the given function is in an indeterminate form 0

0
. As the 

numerator and the denominator functions are polynomials of degree 2 they both are differentiable. 
Hence, by an application of the l’Hôpital Rule, we get

  lim
x

x x
x x→

− +
− +











1

2

2

3 2

4 3
 =  lim

x

x
x→

−
−









1

2 3

2 4
 

   =  1
2

.

 Note that this limit may also be evaluated through the factorization of the numerator and 

denominator as x x
x x

x x
x x

2

2

3 2

4 3

1 2

1 3

− +
− +

=
− −
− −

( )( )

( )( )
 .

Example 7.34

 Compute the limit   lim
x a

n nx a
x a→

−
−









 .

Solution
 If we put directly x a=  we observe that the given function is in an indeterminate form  
0
0

. As the numerator and the denominator functions are polynomials they both are differentiable. 
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 Hence by an application of the l’Hôpital Rule we get,

  lim
x a

n nx a
x a→

−
−









  =  lim

x a

nn x
→

−×









1

1
 

   =  n an× −1 .
Example 7.35

 Evaluate the limit lim
sin

x

mx
x→









0
 .

Solution

 If we directly substitute x = 0  we get an indeterminate form 0
0

 and hence we apply the l’Hôpital’s 

rule to evaluate the limit as,

  lim
sin

x

mx
x→









0
 =  lim cos

x

m mx
→

×







0 1

   =  m
 The next example tells that the limit does not exist.

Example 7.36

 Evaluate the limit lim
sin

x

x
x→









0 2
 .

Solution
 If we directly substitute x = 0  we get an indeterminate form 0

0
 and hence we apply the l’Hôpital’s 

rule to evaluate the limit as,

   lim
sin

x

x
x→ +









0
2

 =  lim cos

x

x
x→ +







 = ∞

0 2
 

   lim
sin

x

x
x→ −









0
2

 =  lim cos

x

x
x→ −







 = −∞

0 2
 

 As the left limit and the right limit are not the same we conclude that the limit does not exist.

Remark

 One may be tempted to use the l’Hôpital’s rule once again in lim
cos

x

x
x→ +









0 2
 to conclude

  lim
cos

x

x
x→ +









0 2
 =  lim

sin

x

x
→ +

−





=
0 2

0 .

 which is not true because it was not an indeterminate form.
Example 7.37

 If lim
cos

cosθ

θ
θ→

−
−







 =

0

1

1
1

m
n

, then prove that m n= ± .

Solution

 As this is an indeterminate form 0
0






 , using the l’Hôpital’s Rule

  lim
cos

cosθ

θ
θ→

−
−









0

1

1

m
n

 =  lim sin

sinθ

θ
θ→









0

m m
n n
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 Now using the example 7.35, we have

  lim
sin

sinθ

θ
θ
θ

θ
→

×










0

m
n

m

n
 =  m
n

2

2

  Therefore m2  =  n2  
  That is m  =  ±n .
Example 7.38

 Evaluate : lim
log( )

cot( )x

x
x→ −

−









1

1

π
 .

Solution
 This is an indeterminate form ¥

¥
 and hence we use the l’Hôpital’s Rule to evaluate

  lim
log( )

cot( )x

x
x→ −

−
1

1

π
 =  lim

( )x

x

x→

−
−

−
−










∞
∞








1

1
1

2π πcosec

 On Simplication, 
   =  lim sin ( )

( )x

x
x→ − −











1

2

1

π
π

      0
0






  

 again applying the l’Hôpital Rule

   =  lim sin( ) cos( )

x

x x
→ −

⋅
−









1

2π π π
π

 

   =  lim sin( ) cos( )
x

x x
→ −

− ⋅( )
1

2 π π  

   =  0 .
Example 7.39

 Evaluate : lim
x xx e→ +

−
−









0

1 1

1
.

Solution
 This is an indeterminate of the form ∞−∞ . To evaluate this limit we first simplify and bring it in 

the form 0
0






  and applying the l’Hôpital Rule, we get

  lim
x xx e→ +

−
−









0

1 1

1
 =  lim

( )x

x

x

e x
x e→ +

− −
−



















0

1

1

0

0
 

 Now,

  lim
( )x

x

x

e x
x e→ +

− −
−











0

1

1
 =  lim

x

x

x x

e
xe e→ +

−
+ −


















0

1

1

0

0
 

   =  lim
x

x

x x

e
xe e→ + +









 =

0 2

1

2
.
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Example 7.40

 Evaluate : lim log
x

x x
→ +0

.

Solution
 This is an indeterminate of the form ( )0×∞ . To evaluate this limit, we first simplify and bring it 

to the form ∞
∞






  and apply l’Hôpital Rule

  lim log
x

x x
→ +0

 =  lim log

x
x

x
→ +











∞
∞








0 1
 

   =  lim
x

x

x
→ + −









0

1

1
2

  =  lim ( )
x

x
→ +

− =
0

0 .

Example 7.41

 Evaluate : lim
x

x x
x→∞

+ +









2

4

17 29 .

Solution

 This is an indeterminate of the form ∞
∞






 . To evaluate this limit, we apply l’Hôpital Rule.

  lim
x

x x
x→∞

+ +









2

4

17 29  =  lim
x

x
x→∞

+







2 17

4 3

   =  lim
x x→∞









2

12 2
  =  0 .

Example 7.42

 Evaluate : lim ,
x

x

m

e
x

m N
→∞









 ∈ .

Solution

 This is an indeterminate of the form ∞
∞






 . 

 To evaluate this limit, we apply l’Hôpital Rule m  times

  lim
x

x

m

e
x→∞

 =  lim
!x

xe
m→∞

 

   =  ¥ .

7.5.4  Indeterminate forms 00,1∞ and ∞0

 In order to evaluate the indeterminate forms like this, we shall first state the theorem on the limit 
of a composite function.

 Theorem 7.6

 Let lim ( )
x
g x

→α
 exist and let it be L  and let f x( )  be a continuous function at x L= . Then,

  lim ( ( ))
x

f g x
→α

 =  f g x
x
lim ( )
→( )α

.
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The evaluation procedure for evaluating the limits

 (1) Let A g x
x a

=
→

lim ( ) . Then taking logarithm, with the assumption that A > 0  to ensure the 

continuity of the logarithm function, we get, log lim log( ( ))A g x
x a

=
→

. Therefore using the above 

theorem with f x x( ) log=  we have the limit

   lim log( ( ))
x a

g x
→

 =  log lim ( )
x a
g x

→( ) .

 (2) We have the limit limlog( ( ))
x a

g x
→

into either 0
0






  or ∞

∞






  evaluate it using l’Hôpital Rule.

 (3) Let that evaluated limit be say α . Then the required limit is eα .

Example 7.43

 Using the l’Hôpital Rule prove that, lim ( )
x

xx e
→ +

+ =
0

1

1 .

Solution

 This is an indeterminate of the form 1¥ . Let g x x x( ) ( )= +1
1

. Taking the logarithm, we get

  log ( )g x  =  log( )1+ x
x

 

  lim log( ( )
x

g x
→ +0

 =  lim
log( )

x

x
x→ +

+














0

1 0

0

   =  lim
x

x

→

+
+









0

1
1

1
         (by l’Hôpital Rule)

   =  1 .

  But, lim log ( )
x

g x
→ +0

 =  log lim ( )
x

g x
→ +( )

0
 

  Therefore, log lim ( )
x

g x
→ +( )

0
 =  1.

 Hence by exponentiating, we get lim ( )
x

g x e
→ +

=
0

.

Example 7.44

 Evaluate : lim( ) log

x

xx
→∞

+1 2

1

2 .

Solution
 This is an indeterminate of the form ¥0 . 

  Let  g x( )  =  ( ) log1 2

1

2+ x x .

 Taking the logarithm, we get

  log ( )g x  =  log( )

log

1 2

2

+ x
x
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  lim log ( )
x

g x
→∞

 =  lim log( )

logx

x
x→∞

+









∞
∞








1 2

2
 

   =  lim
x

x

x
→∞

+









2
1 2

2
    (by l’Hôpital Rule)

   =  lim
x

x
x→∞ +









∞
∞








1 2
 

   = 





 =→∞

lim
x

1

2

1

2
  but,

  lim log ( )
x

g x
→∞

 =  log lim ( )
x
g x

→∞( ) .

 Hence by exponentiating, we get the required limit as e .

Example 7.45

 Evaluate : lim
x

xx
→

−

1

1

1 .

Solution

 Let g x x x( ) = −
1

1 . This is an indeterminate of the form 1¥ . Taking the logarithm,

  log ( )g x  =  log x
x1−

.

  Therefore, lim log ( )
x

g x
→1

 =  lim log

x

x
x→ −
















1 1

0

0
.

 An application of l’Hôpital rule,

  lim
x

x

→ −








1

1

1
 =  −1

  But,  lim log ( )
x

g x
→1

 = log lim ( )
x
g x

→( )
1

 Hence on exponentiating, we get

  lim
x

xx
→

−

1

1

1  =  e
e

− =1 1 .

EXERCISE 7.5
Evaluate the following limits, if necessary use l’Hôpital Rule :

 1. lim
cos

x

x
x→

−
0 2

1   2. lim
x

x
x x→∞

−
− +

2 3

5 3

2

2
 3. lim

logx

x
x→∞

 4. lim
sec

tanx

x
x→

−π
2

 5. lim
x

xe x
→∞

−  6. lim
sinx x x→

−







0

1 1  

 7. lim
x x

x
x→ + −

−
−









1
2

2

1 1  
8. lim

x

xx
→ +0

 9. lim
x

x

x→∞
+






1

1  
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 10. lim(sin )tan

x

xx
→p

2

 11. lim (cos )
x

xx
→ +0

1
2

 12. If an initial amount A0 of money is invested at an interest rate r compounded n  times a year, 

the value of the investment after t years is A A r
n

nt

= +





0 1 .  If the  interest is compounded 

continuously, (that is as n →∞ ), show that the amount after t years is A A ert= 0

7.6 Applications of First Derivative
 Using the first derivative we can test a function f x( )  for its monotonicity  
(increasing or decreasing), focusing on a particular point in its domain and  
the local extrema (maxima or minima) on a domain.

7.6.1 Monotonicity of functions
 Monotonicity of functions are its behaviour of increasing or decreasing.

Definition 7.4

 A function f x( )  is said to be an increasing function in an interval I  
 if a b f a f b a b I< ⇒ ≤ ∀ ∈( ) ( ), , .

Definition 7.5

 A function f x( )  is said to be a decreasing function in an interval I  
 if a b f a f b a b I< ⇒ ≥ ∀ ∈( ) ( ), , .

 The function f x x( ) =  is an increasing function in the entire real line, whereas the function 

f x x( ) = −  is a decreasing function in the entire real line. In general, a given function may be increasing 

in some interval and decreasing in some other interval, say for instance, the function f x x( ) | |=  is 

decreasing in ( , ]−∞ 0  and is increasing in [ , )0 ¥ . These functions are simple to observe for their 
monotonicity. But given an arbitrary function how we determine its monotonicity in an interval of a 
real line? That is where following theorem will be useful, which is stated here.

 Theorem 7.7

 If the function f x( )  is differentiable in an open interval ( , )a b  then we say,
 (1) if

   d
dx

f x( ( ))  ≥  0, ( , )∀ ∈x a b . ... (1)

  then f x( )  is increasing in the interval ( , )a b .

 (2) if

   d
dx

f x( ( ))  >  0, ( , )∀ ∈x a b . ... (2)

  then f x( )  is strictly increasing in the interval ( , )a b .

  The proof of the above can be observed from Theorem 7.3.
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 (3) f x( )  is decreasing in the interval ( , )a b  if

   d
dx

f x( ( ))  £  0, ( , )∀ ∈x a b . ...(3)

 (4) f x( )  is strictly decreasing in the interval ( , )a b  if

   d
dx

f x( ( ))  <  0, ( , )∀ ∈x a b . ... (4)

Remark
 It is very important to note the following fact. It is false to say that if a differentiable function 
f x( )  on I  is strictly increasing on I , then ′ >f x( ) 0  for all x I∈ . For instance, consider 
y x x= ∈ −∞ ∞3, ( , ) . It is strictly increasing on ( , )−∞ ∞ . To prove this, let a b> . Then we have to 
prove that f a f b( ) ( )> . For this purpose, we have to prove a b3 3 0− > .

 Now,
  a b3 3−  =  ( )( )a b a ab b− + +2 2

   =  ( ) ( )a b a ab b− + +
1

2
2 2 22 2

   =  ( ) ( )a b a b a b− + + +( )1

2

2 2 2  

   >  0  since a b− > 0  and other terms inside the bracket are > 0 .
 Hence it is clear that the quadratic expression is always positive (it is equal to zero only if 
a b= = 0 , which contradicts the condition a b< ). Therefore the function is y x= 3  is strictly increasing 
in ( , )−∞ ∞ . But ′ =f x x( ) 3 2  which is equal to zero at x = 0 .

Definition 7.6

 A stationary point ( , ( ))x f x0 0  of a differentiable function f x( )  is where ′ =f x( )0 0 .

Definition 7.7

 A critical point ( , ( ))x f x0 0  of a function f x( )  is where ′ =f x( )0 0  or does not exist.

 Every stationary point is a critical point however all critical points need not be stationary points. 
As an example, the function f x x( ) | |= −17  has a critical point at ( , )17 0  but ( , )17 0  is not a stationary 
point as the function has no derivative at x =17 .
Example 7.46
 Prove that the function f x x( ) = +2 2  is strictly increasing in the interval ( , )2 7  and strictly 
decreasing in the interval ( , )−2 0 .
Solution
 We have, 
  ′f x( )  =  2 0 2 7x x> ∀ ∈, ( , )  and
  ′f x( )  =  2 0 2 0x x< ∀ ∈ −, ( , )  
 and hence the proof is completed.
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Example 7.47
 Prove that the function f x x x( ) = − −2 2 3  is strictly increasing in ( , )2 ¥ .

Solution
 Since f x x x( ) = − −2 2 3 , ′ = − > ∀ ∈ ∞f x x x( ) ( , )2 2 0 2 . Hence f x( )  is strictly increasing in 
( , )2 ¥ .

7.6.2 Absolute maxima and minima
 The absolute maxima and absolute minima are referred to describing the largest and smallest 
values of a function on an interval.

Definition 7.8
 Let x0  be a number in the domain D of a function f x( ) . Then f x( )0  is the absolute 

maximum value of f x( ) on D , if  f x f x x D0( ) ≥ ( )∀ ∈ and f x( )0  is the absolute minimum 

value of f x( )  on D  if f x f x x D0( ) ≤ ( )∀ ∈ .

 In general, there is no guarantee that a function will actually have an absolute maximum or 
absolute minimum on a given interval. The following figures show that a continuous function may or 
may not have absolute maxima or minima on an infinite interval or on a finite open interval.

 However, the following theorem shows that a continuous function must have both an absolute 
maximum and an absolute minimum on every closed interval.

 Fig. 7.15 Fig. 7.16

x

y

x

y

f x( )  has an absolute minimum but no absolute 
maximum on −∞ ∞( ), f x( ) has no absolute extrema on −∞ ∞( ), .

f x( )  has an 
absolute maximum and 
an absolute minimum 

on −∞ ∞( ),

f x( ) has no absolute 
extrema on a b,( ) .

f x( )  has an 
absolute maximum and 
an absolute minimum 

on a,b[ ]

x

y

x

y

x

y

(a )b [a ]b

Fig. 7.18 Fig. 7.19Fig. 7.17
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Theorem 7.8 (Extreme Value Theorem)
 If f x( ) is continuous on a closed interval a b,[ ] , then f has both an absolute maximum and 
an absolute minimum on a b,[ ] .

 The absolute extrema of f x( ) occur either at the endpoints of closed interval a b,[ ]or inside 

the open interval a b,( ) .If the absolute extrema occurs inside, then it must occur at critical numbers 

of f x( ) . Thus, we can use the following procedure to find the absolute extrema of a continuous 

function on closed interval a b,[ ] .

	 A	 procedure	 for	 finding	 the	 absolute	 extrema	 of	 a	 continuous	 function	 f x( ) on closed 

interval a b,[ ] . 

 Step 1 : Find the critical numbers of f x( )  in a b,( )

 Step 2 : Evaluate f x( ) at all the critical numbers and at the endpoints a and b

 Step 3 : The largest and the smallest of the values in step 2 is the absolute maximum and 
absolute minimum of f x( )  respectively on the closed interval a b,[ ] .  

Example 7.48
 Find the absolute maximum and absolute minimum values of the function f x x x x( ) = + −2 3 123 2

on −[ ]3 2,

Solution
 Differentiating the given function,  we get
   ′( )f x  =  6 6 122x x+ −
    =  6 22x x+ −( )
   ′( )f x  =  6 2 1x x+( ) −( )
  Thus,  ′( ) = ⇒ = − ∈ −( )f x x0 2 1 3 2, , .

 Therefore, the critical numbers are x = −2 1, . Evaluating f x( ) at the endpoints x = −3 2, and at 
critical numbers x = −2 1, , we get f −( ) =3 9 , f 2 4( ) = , f −( ) =2 20  and f 1 7( ) = − . 

 From these  values, the absolute maximum is 20  which occurs at x = −2 , and the absolute 
minimum is −7 which occurs at x =1.

Example 7.49
 Find the absolute extrema of the function f x x( ) = 3cos on the closed interval 0 2, π[ ] .
Solution
 Differentiating the given function,  we get ′( ) = −f x x3sin .

 Thus, ′( ) = ⇒ = ⇒ = ∈( )f x x x0 0 0 2sin ,π π . Evaluating f x( ) at the endpoints x = 0 2, π and 
at critical number x = π , we get f 0 3( ) = , f 2 3π( ) = , and f π( ) = −3 .

 From these values, the absolute maximum is 3 which occurs at x = 0 2, π , and the absolute 
minimum is −3 which occurs at x = π .
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7.6.3  Relative Extrema on an Interval
 A function f x( ) is said to have a relative maximum at x0 , if there is an open interval containing 
x0  on which f x( )0 is the largest value. Similarly, f x( ) is said to have a relative minimum at x0 , if 
there is an open interval containing x0  on which f x( )0  is the smallest value.
 A relative maximum need not be the largest value on the entire domain, while a relative minimum 
need not be the smallest value on the entire domain. Therefore, there may be more than one relative 
maximum or relative minimum on the entire domain.
 A relative extrema of a function is the extreme values (maximum or minimum) of the functions 
among all the evaluated values of f x x I D( ),∀ ∈ ⊂  where I  may be open or closed. Usually the 
local extreme value of a function is attained at a critical point. Note that, a function may have a critical 
point at x c=  without having a local extreme value there. For instance, both of the functions y x= 3  

and y x=
1

3  have critical points at the origin, but neither function has a local extreme value at the 
origin. 

Theorem 7.9 (Fermat)
 If f x( )  has a relative extrema at x c=  then c  is a critical number. Invariably there will be 
critical numbers of the function obtained as solutions of the equation ′ =f x( ) 0  or as values of x 
at which ′f x( )  does not exist.

7.6.4 Extrema using First Derivative Test
 After we have determined the intervals on which a function is increasing or decreasing, it is not 
difficult to locate the relative extrema of the function. The location or points at which the relative 
extrema occurs for a given function f x( )  can be observed through the graph y f x= ( ) . However to 
find the exact point and the value of the extrema of functions we need to use certain test on functions. 
One such test is the first derivative test, which is stated in the following theorem.

 Theorem 7.10 (First Derivative Test)

 Let ( , ( ))c f c  be a critical point of 

function f x( )  that is continuous on 

an open interval I  containing c . If 

f x( )  is differentiable on the 

interval, except possibly at c , then 

f c( )  can be classified as follows:

(when moving across the interval I 
from left to right)

 (i) If ′f x( )  changes from negative to positive at c , then f x( )  has a local minimum f c( ) .

 (ii) If ′f x( )  changes from positive to negative at c , then f x( )  has a local maximum f c( ) .

 (iii) If ′f x( )  is positive on both sides of c  or negative on both sides of c , then f c( )  is neither 
a local minimum nor a local maximum.

Fig. 7.20

c1 c2 c3

y f x= ( )
( , ( ))c f c1 1

( , ( ))c f c2 2

( , ( ))c f c3 3

′ =f c( )1 0

′ =f c( )2 0

′f c( )3 does not exist

f c( )1 is a local maximum

f c( )2

is not a
local 

extremum f c( )3
is a local minimum

0 0+ + + + + + + + + + + + + + + + + + + +– – – – – – – – – – – –
′ >f x( ) 0 ′ >f x( ) 0′ <f x( ) 0 ′ <f x( ) 0
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Example 7.50

 Find the intervals of monotonicity and hence find the local extrema for the 

function f x x x( ) = − +2 4 4 .
Solution
 We have,
  f x( )  =  ( )x − 2 2 , then
   ′f x( )  =  2 2 0( )x − =  gives x = 2  .

 The intervals of monotonicity are ( , )−∞ 2  and ( , )2 ¥ . Since ′ <f x( ) 0 , for x∈ −∞( , )2  the 
function f x( )  is strictly decreasing on ( , )−∞ 2 . As ′ >f x( ) 0 , for x∈ ∞( , )2  the function f x( )  is 
strictly increasing on ( , )2 ¥ . Because ¢f x( ) changes its sign from negative to positive when passing 
through x = 2  for the function f x( ) , it has a local minimum at x = 2 . The local minimum value is 
f ( )2 0= .

Example 7.51
 Find the intervals of monotonicity and hence find the local extrema for the function f x x( ) =

2
3 .

Solution

 We have, f x x( ) =
2
3 , then ′( ) = =−f x x

x
2

3

2

3

1
3

1
3

. ′ ( ) ≠ ∀ ∈f x x0   and ′( )f x  does not exist at 

x = 0 . Therefore, there are no stationary points but there is a critical point at x = 0 .

Interval (-∞, 0) (0, ∞)

Sign of ′ ( )f x  _ +
Monotonicity strictly decreasing strictly increasing

 Table 7.5

 Because ′( )f x changes its sign from negative to positive when passing through x = 0 for the 

function f x( ) , it has a local minimum at x = 0 .The local minimum value is f 0 0( ) = . Note that here 
the local minimum occurs at a critical point which is not a stationary point.    

Example 7.52
 Prove that the function f x x x( ) sin= −  is increasing on the real line. Also discuss for the existence 
of local extrema.
Solution
 Since ′ = − ≥f x x( ) cos1 0  and zero at the points x n n= ∈2 π , 

and hence the function is 
increasing on the real line.
 Since there is no sign change in ′f x( )  when passing through x n n= ∈2 π , 

 by the first derivative 

test there is no local extrema.

Example 7.53
 Discuss the monotonicity and local extrema of the function

f x x x
x
x( ) log( ) ,= + −

+
> −1

1
1 and hence find the domain where, log( )1

1
+ >

+
x x

x
.

Fig.7.21

x

y
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Solution
 We have,
  f x( )  =  log( )1

1
+ −

+
x x

x

  Therefore,  ′f x( )  =  1

1

1

1 2+
−

+x x( )

   =  x
x( )1 2+

.

 Hence,

′f x( )  is 
< − < <
= =
> >









0 1 0

0 0

0 0

when

when

 when  

x
x
x

 

 Therefore f x( )  is strictly increasing for x > 0  and strictly decreasing for x < 0 . Since ′f x( )  
changes from negative to positive when passing through x = 0 , the first derivative test tells us there 
is a local minimum at x = 0  which is f ( )0 0= . Further, for x > 0 , f x f( ) ( )> =0 0  gives

log( ) log( )1
1

0 1
1

+ −
+

> ⇒ + >
+

x x
x

x x
x

  on ( , )0 ¥ .

Example 7.54
 Find the intervals of monotonicity and local extrema of the function f x x x x( ) log= + 3 .
Solution
 The given function is defined and is differentiable at all x∈ ∞( , )0 .

  f x( )  =  x x xlog + 3 .

  Therefore ′f x( )  =  log logx x+ + = +1 3 4 .

 The stationary points are given by 4+ log x  =  0 .
  That is  x  =  e−4 .
 Hence the intervals of monotonicity are ( , )0 4e−  and ( , )e− ∞4 .

 At x e e f e= ∈ ′ = − <− − −5 4 50 1 0( , ), ( )  and hence in the interval ( , )0 4e−  the function is strictly 

decreasing.
 At x e e f e= ∈ ∞ ′ = >− − −3 4 3 1 0( , ), ( )  and hence strictly increasing in the interval ( , )e− ∞4 . Since 
′f x( )  changes from negative to positive when passing through x e= −4 , the first derivative test tells 

us there is a local minimum at x e= −4  and it is f e e( )− −= −4 4 .

Example 7.55
 Find the intervals of monotonicity and local extrema of the function f x

x
( ) =

+
1

1 2
 .

Solution
 The given function is defined and is differentiable at all x∈ −∞ ∞( , ) . As

  f x( )  =  1

1 2+ x
.

  We have ′f x( )  =  −
+
2

1 2 2

x
x( )

.
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 The stationary points are given by −
+
2

1 2 2

x
x( )

 =  0  that is x = 0 .

 Hence the intervals of monotonicity are  ( , )−∞ 0 and ( , )0 ¥ .

 On the interval  ( , )−∞ 0 the function strictly increases because ′ >f x( ) 0  in that interval.

 The function f x( )  strictly decreases in the interval  ( , )0 ¥ because ′ <f x( ) 0  in that interval. 
Since ′f x( )  changes from positive to negative when passing through x = 0 , the first derivative test 
tells us there is local maximum at x = 0  and the local maximum value is f ( )0 1= .

Example 7.56
 Find the intervals of monotonicity and local extrema of the function f x x

x
( ) =

+1 2
.

Solution
 The given function is defined and differentiable at all x∈ −∞ ∞( , ) , As

  f x( )  =  x
x1 2+

  ′f x( )  =  1

1

2

2 2

−
+

x
x( )

 The stationary points are give by 1 2− x  =  0   that is x = ±1
 Hence the intervals of monotonicity are ( , ), ( , )−∞ − −1 1 1 and ( , )1 ¥ .

Interval (-∞, -1) (-1, 1) (1, ∞)

Sign of ′ ( )f x  _ + _

Monotonicity strictly decreasing strictly increasing strictly decreasing

Table 7.6

 Therefore, f x( ) strictly increasing on ( , )−∞ −1

and ( , )1 ¥ , strictly decreasing on ( , )-1 1 .

 Since ′f x( )  changes from negative to positive 

when passing through x = −1 , the first derivative test 

tells us there is a local minimum at x = −1  and the local 

minimum value is f ( )− = −1
1

2
. As ′f x( )  changes from positive to negative when passing through 

x =1 , the first derivative test tells us there is a local maximum at x =1 and the local maximum value 

is f ( )1
1

2
= .

f x x
x

( ) �
�1 2

0�1�2�3 1 2 3

�1

1
y

x

Fig.7.22
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EXERCISE 7.6
 1. Find the absolute extrema of the following functions on the given closed interval.

   (i) f x x x( ) = − +2 12 10  ; 1 2,[ ]  (ii) f x x x( ) = −3 44 3  ; −[ ]1 2,

   (iii) f x x x( )= −6 3
4

3

1

3  ; [ , ]-1 1  (iv) f x x x( ) cos sin= +2 2  ; 0
2

,
π





 2. Find the intervals of monotonicities and hence find the local extremum for the following 
functions:

 (i) f x x x x( ) = + −2 3 123 2  (ii) f x x
x

( ) =
−5

 (iii) f x e
e

x

x( ) =
−1

 (iv) f x x x( ) log= −
3

3

 (v) f x x x x( ) sin cos , ( , )= + ∈5 0 2π

7.7 Applications of Second Derivative
 Second derivative of a function is used to determine the concavity, convexity, the points of 
inflection, and local extrema of functions.

7.7.1 Concavity, Convexity, and Points of Inflection
 A graph is said to be concave down (convex up) 
at a point if the tangent line lies above the graph in 
the vicinity of the point. It is said to be concave up 
(convex down) at a point if the tangent line to the 
graph at that point lies below the graph in the vicinity 
of the point. This may be easily observed from the adjoining graph. 

Definition 7.8

 Let f x( )  be a function whose second derivative exists in an open interval I a b= ( , ) . Then the 
function f x( )  is said to be 
 (i) If ′f x( )  is strictly increasing on I , then the function is concave up on an open interval I .
 (ii) If ′f x( )  is strictly decreasing on I , then the function is concave down on an open interval I.

 Analytically, given a differentiable function whose graph y f x= ( ) , then the concavity is given 
by the following result.

 Theorem 7.11 (Test of Concavity)
 (i) If ′′ >f x( ) 0  on an open interval I , then f x( )  is concave up on I .
 (ii) If ′′ <f x( ) 0  on an open interval I , then f x( )  is concave down on I .

Remark
 (1) Any local maximum of a convex upward function defined on the interval [ , ]a b  is also its 

absolute maximum on this interval.
 (2) Any local minimum of a convex downward function defined on the interval [ , ]a b  is also its 

absolute minimum on this interval.

Fig.7.23

Concave
Down

Concave
Up
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 (3) There is only one absolute maximum (and one absolute minimum) but there can be more 
than one local maximum or minimum.

Points of Inflection

Definition 7.9
 The points where the graph of the function changes from “concave up to concave down” or 
“concave down to concave up” are called the points of inflection of f x( ) .

 Theorem 7.12 (Test for Points of Inflection)

 (i) If ′′f c( )  exists and ′′f c( )  changes sign when passing through x c= , then the point 

( , ( ))c f c  is a point of inflection of the graph of f . 

 (ii) If ′′f c( )  exists at the point of inflection, then ′′ =f c( ) 0 .

Remark 
 To determine the position of points of inflexion on the curve y f x= ( )  it is necessary to find the 
points where ′′f x( )  changes sign. For ‘smooth’ curves (no sharp corners), this may happen when 
either
 (i) ′′ =f x( ) 0  or
 (ii) ′′f x( )  does not exist at the point.

Remark
 (1) It is also possible that ′′f c( )  may not exist, but ( , ( ))c f c  could be a point of inflection. For 

instance, f x x( ) =
1

3  at c = 0 .

 (2) It is possible that ′′ =f c( ) 0  at a point but ( , ( ))c f c  need not be a point of inflection. For 

instance, f x x( ) = 4  at c = 0 .

 (3) A point of inflection need not be a stationary point. For instance, if f x x( ) sin=  then, 
′ =f x x( ) cos  and ′′ = −f x x( ) sin   and hence ( , )p 0  is a point of inflection but not a stationary 

point for f x( ) .

Example 7.57
 Determine the intervals of concavity of the curve f x x x x( ) ( ) ( ),= − ⋅ − ∈1 53

  and, points of 
inflection if any.

Solution
 The given function is a polynomial of degree 4. Now,
  ′f x( )   =  ( ) ( ) ( )x x x− + − ⋅ −1 3 1 53 2  
   =  4 1 42( ) ( )x x− ⋅ −

  ′′f x( )  =  4 1 2 1 42(( ) ( ) ( ))x x x− + − ⋅ −

   =  12 1 3( ) ( )x x− ⋅ −

 Now,
   ′′f x( )  =  0   ⇒ = =x x1 3, . Fig.7.24

1 2 3 4
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40

60

80

x

′′f x( )
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 The intervals of concavity are tabulated in the table 7.7.

Interval (-∞, 1) (1, 3) (3, ∞)

Sign of ′′ ( )f x  + _ +

Concavity concave up concave down concave up

 The curve is concave upwards on ( , )−∞ 1  and ( , )3 ¥ .
 The curve is concave downwards on ( , )1 3 .
 As ′′f x( )  changes its sign when it passes through x =1 and x f= =3 1 1 1 0, ( , ( )) ( , )  and 
( , ( )) ( , )3 3 3 16f = −  are points of inflection for the graph y f x= ( ) . This may be observed from the 

adjoining figure of the curve ′′f x( ) . 

Example 7.58
 Determine the intervals of concavity of the curve y x= +3 sin .
Solution
 The given function is a periodic function with period 2p  and hence there will be stationary 
points and points of inflections in each period interval. We have,

  dy
dx

 =  cos x  and d y
dx

x
2

2
= −sin  

  Now,  d y
dx

2

2  =  − = ⇒ =sin x x n0 π .

 We now consider an interval, ( , )−π π  by splitting into two sub 
intervals ( , )−π 0  and ( , )0 p .

 In the interval ( , )−π 0 , d y
dx

2

2
0>  and hence the function is concave upward.

 In the interval ( , ),0 0
2

2
π
d y
dx

<   and hence the function is concave downward. Therefore ( , )0 3  is 

a point of inflection. The general intervals need to be considered to discuss the concavity of the curve 
are ( , ( ) )n nπ π+1 , where n  is any integer which can be discussed as before to conclude that ( , )np 3  
are also points of inflection.

7.7.2 Extrema using Second Derivative Test
 The Second Derivative Test: The Second Derivative Test relates the concepts of critical points, 
extreme values, and concavity to give a very useful tool for determining whether a critical point on 
the graph of a function is a relative minimum or maximum.

Theorem 7.13 (The Second Derivative Test)

   Suppose that c  is a critical point at which ′ =f c( ) 0 , that ′f x( )  exists in a neighborhood of c , 

and that ′f c( )  exists. Then f  has a relative maximum value at c  if ′′ <f c( ) 0  and a relative 

minimum value at c  if ′′ >f c( ) 0 . If ′′ =f c( ) 0 , the test is not informative.

2.0

2.5

3.0

3.5

4.0

-2π -π 0 π 2π
x

y

Fig.7.25

Table 7.7
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Example 7.59

 Find the local extremum of the function f x x x( ) = +4 32 .
Solution

 We have,
  ′f x( )  =  4 32 03x + =  gives x3 8= −

  ⇒ x  =  −2

  and  ′′f x( )  =  12 2x .

 As ′′ − >f ( )2 0 , the function has local minimum at x=−2 . The local minimum value is
f ( )− =−2 48 . Therefore, the extreme point is ( , )− −2 48 .

Example 7.60

 Find the local extrema of the function f x x x( )= −4 66 4 .

Solution

 Differentiating with respect to x, we get 

  ′( )f x   =  24 245 3x x-

   =  24 13 2x x −( )

   =  24 1 13x x x+( ) −( )

 ′( )=f x 0 Þ x=−1 0 1, , . Hence the critical 
numbers are x = −1 0 1, ,    
 Now, ′′( )= − = −( )f x x x x x120 72 24 5 34 2 2 2 .
 Þ ′′ −( )=f 1 48 , ′′( )=f 0 0 , ′′( )=f 1 48 .   

As ′′ −( )f 1 and ′′( )f 1  are positive by the second derivative test, the function f x( )has local 
minimum. But at x = 0 , ′′ =f ( )0 0 . That is the second derivative test does not give any information 
about local extrema at x = 0 . Therefore, we need to go back to the first derivative test. The intervals 
of monotonicity is tabulated in the table 7.8.

Interval ( , )−∞ −1 ( , )−1 0 ( , )0 1 ( , )1 ∞

Sign of ′f x( ) - + - +

Monotonicity
strictly 

decreasing
strictly 

increasing
strictly 

decreasing
strictly 

increasing

Table 7.8

By the first derivative test f x( )  has local minimum at x = −1, its local minimum value is −2 . 
At x = 0 , the function f x( )  has local maximum at x = 0 , and its local maximum value is 0 . At x = 1 ,  
the function f x( )  has local minimum at x = 1 , and its local minimum value is −2 .
Remark
 When the second derivative vanishes, we have no information about extrema. We have used the 
first derivative test to find out the extrema of the function!

y

x

Fig.7.26
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Example 7.61
 Find the local maximum and minimum of the function x y2 2  on the line x y+ =10 .
Solution

 Let the given function be written as f x x x( ) ( )= −2 210 . Now,

  f x( )  =  x x x x x x2 2 4 3 2100 20 20 100( )− + = − +

  Therefore,  ′f x( )  =  4 60 200 4 15 503 2 2x x x x x x− + = − +( )

  ′f x( )  =  4 15 50 0 0 5 102x x x x( ) , ,− + = ⇒ =  

  and  ′′f x( )  =  12 120 2002x x− +

 The stationary points of f x( )  are x = 0 5 10, ,  at these points the values of ′′f x( )  are respectively 
200 100,−  and 200 . At x = 0 , it has local minimum and its value is f ( )0 0= . At x = 5 , it has local 
maximum and its value is f ( )5 625= . At x =10 , it has local minimum and its value is f ( )10 0= .

EXERCISE 7.7
 1. Find intervals of concavity and points of inflexion for the following functions:
   (i) f x x x( ) ( )= − 4 3   (ii) f x x x x( ) sin cos ,= + < <0 2π   (iii) f x e ex x( ) ( )= − −1

2

 2. Find the local extrema for the following functions using second derivative test :
   (i) f x x x( ) = − +3 55 3   (ii) f x x x( ) log=    (iii) f x x e x( ) = −2 2  

 3. For the function f x x x x( ) = + − +4 3 6 13 2  find the intervals of monotonicity, local extrema, 
intervals of concavity and points of inflection.

7.8 Applications in Optimization
 Optimization is a process of finding an extreme value (either maximum 
or minimum) under certain conditions.
 A procedure for solving for an extremum or optimization problems.
 Step 1 : Draw an appropriate figure and label the quantities relevant to the problem.
 Step 2 : Find  a experssion for the quantity to be maximized or minimized.
 Step 3 : Using the given conditions of the problem, the quantity to be extremized .
 Step 4 : Determine the interval of possible values for this variable from the conditions given in 

the problem.
 Step 5 : Using the techniques of extremum (absolute extrimum, first derivative test or second 

derivative test) obtain the maximum or minimum.

Example 7.62

 We have a 12 square unit piece of thin material and want to make an open box by cutting small 
squares from the corners of our material and folding the sides up. The question is, which cut produces 
the box of maximum volume?
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Solution
 Let  x  =  length of the cut on each side of the little squares.
  V  =  the volume of the folded box.
 The length of the base after two cuts along each edge of size x  is 12 2− x . The depth of the box 
after folding is x , so the volume is V x x= × −( )12 2 2 . Note that, when x = 0  or 6 , the volume is zero 

and hence there cannot be a box. Therefore the problem is to maximize, V x x x= × − ∈( ) , ( , )12 2 0 62 . 

Now, dV
dx

 =  ( ) ( )12 2 4 12 22− − −x x x

   =  ( )( )12 2 12 6− −x x .
 dV

dx
= 0  gives the stationary points x = 2 6, . Since 

6 0 6∉ ( , )  the only stationary point is at x = ∈2 0 6( , ) . 

Further, 
dV
dx

changes its sign from postive to negative 

when passing through x = 2 . Therefore at x = 2  the 

volume V  is local maximum. The local maximum volume 
value is V =128  units. Hence the maximum cut can only be 2 units.

Example 7.63

 Find the points on the unit circle x y2 2 1+ =  nearest and farthest from ( , )1 1 .

Solution

 The distance from the point ( , )1 1  to any point ( , )x y  is d x y= − + −( ) ( )1 12 2 . Instead of 

extremising  d , for convenience we extremise D d x y= = − + −2 2 21 1( ) ( ) , subject to the condition 

x y2 2 1+ = . Now, dD
dx

x y dy
dx

= − + − ×2 1 2 1( ) ( )  , where the dy
dx

 will be computed by differentiating 

x y2 2 1+ =  with respect to x . Therefore we get, 2 2 0x y dy
dx

+ =  which gives us dy
dx

x
y

=− .

 Substituting this, we get 
dD
dx

x y x
y

= − + − −







2 1 2 1( ) ( )  

   =  
2[ ]xy y xy x

y
− − +

   =  2 0
x y
y
−







 =

   ⇒  x y=

 Since ( , )x y  lie on the circle x y2 2 1+ =   we get, 2 12x =  gives x=± 1

2
. Hence the points at 

which the extremum distance occur are, 1

2

1

2

1

2

1

2
, , ,









 − −








. 

Fig.7.28
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(0,-1)

(-1,0) (1,0)

(1,1)
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y

Fig.7.27
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 To find the extrema, we apply second derivative test. So,

  d D
dx

2

2  =  2
2 2

3

y x
y
+

.

 The value of 
d D
dx

d D
dx

2

2
1

2

1

2

2

2
1

2

1

2

0 0






>






<






− −





, ,

; .

 This implies the nearest and farthest points are 1

2

1

2

1

2

1

2
, ,







− −





and .

 Therefore, the nearest and the farthest distances are respectively  2 1-  and 2 1+ .

Example 7.64

 A steel plant is capable of producing x tonnes per day of a low-grade steel and y tonnes per day 

of a high-grade steel, where y x
x

=
−
−

40 5

10
. If the fixed market price of low-grade steel is half that of 

high-grade steel, then what should be optimal productions in low-grade steel and high-grade steel in 
order to have maximum receipts.
Solution

 Let the price of low-grade steel be `p per tonne. Then the price of high-grade steel is `2p per 
tonne. 

 The total receipt per day is given by R px py px p x
x

= + = +
−
−







2 2

40 5

10
. Hence the problem is 

to maximise R . Now, simplifying and differentiating R  with respect to x , we get

   R  =  p
x
x

80

10

2−
−











  dR
dx

 =  p
x x

x

2

2

20 80

10

− +
−









( )

  d R
dx

2

2  =  -
-

40

10 3

p
x( )

  Now,  dR
dx

 =  0 20 80 02⇒ − + =x x  and hence x =  10 2 5±

  At x d R
dx

= −10 2 5
2

2
,  <  0

and hence R   will be maximum. If x = 10 2 5-  then y = 5 5− . Therefore the steel plant must 
produce low-grade and high-grade steels respectively in tonnes per day are

10 2 5-  and 5 5− .

Example 7.65
 Prove that among all the rectangles of the given area square has the least perimeter.

Solution
 Let x y,  be the sides of the rectangle. Hence the area of the rectangle is xy k=  (given). The 

perimeter of the rectangle P is 2( )x y+ . So the problem is to minimize 2( )x y+  suject to the condition 

xy k= . Let P x x k
x

( ) = +





2 .
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  ′ ( )P x  =  2 1
2

−








k
x

  ′ ( )P x  =  0   gives 1 0
2

−






=

k
x

 

  Therefore x  =  k

 Substituting x k=  in  xy k=  we get y k= . Therefore the minimum perimeter rectangle of 

a given area is a square.

EXERCISE 7.9
 1. Find two positive numbers whose sum is 12 and their product is maximum.

 2. Find two positive numbers whose product is 20 and their sum is minimum.

 3. Find the smallest possible value of x y2 2+ given that x y+ =10 . 

 4. A garden is to be laid out in a rectangular area and protected by wire fence. What is the largest 
possible area of the fenced garden with 40 metres of wire.

 5. A rectangular page is to contain 24 cm2 of print. The margins at the top and bottom of the page 
are 1.5 cm and the margins at other sides of the page is 1 cm. What should be the dimensions 
of the page so that the area of the paper used is minimum.

 6. A farmer plans to fence a rectangular pasture adjacent to a river. The pasture must contain 
1,80,000 sq.mtrs in order to provide enough grass for herds. No fencing is needed along the 
river. What is the length of the minimum needed fencing material?

 7. Find the dimensions of the rectangle with maximum area that can be inscribed in a circle of 
radius 10 cm.

 8. Prove that among all the rectangles of the given perimeter, the square has the maximum area.

 9. Find the dimensions of the largest rectangle that can be inscribed in a semi circle of radius  
r  cm.

 10. A manufacturer wants to design an open box having a square base and a surface area of  
108 sq.cm. Determine the dimensions of the box for the maximum volume.

 11. The volume of a cylinder is given by the formula V r h= π 2 . Find the greatest and least values 
of V if r h+ = 6 .

 12. A hollow cone with base radius a cm and height b cm is placed on a table. Show that the 

volume of the largest cylinder that can be hidden underneath is 4

9
times volume of the cone.

7.9 Symmetry and Asymptotes
7.9.1 Symmetry
 Consider the following curves and observe that each of them is having some special properties, 
called symmetry with respect to a point, with respect to a line.
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 Fig.7.29 Fig.7.30 Fig. 7.31
 We now formally define the symmetry as follows :
 If an image or a curve is a mirror reflection of another image with respect to a line, we say the 
image or the curve is symmetric with respect to that line. The line is called the line of symmetry.
 A curve is said to have a θ  angle rotational symmetry with respect to a point if the curve is 
unchanged by a rotation of an angle  θ  with respect to that point.
 A curve may be symmetric with respect to many lines. Specifically, we consider the symmetry 
with respect to the co-ordinate axes and symmetric with respect to the origin. Mathematically, a curve 
f x y( , ) = 0  is said to be 

 • Symmetric with respect to the y-axis if f x y f x y( , ) ( , )= −  ∀x y,  or if  ( , )x y  is a point on 
the graph of the curve then so is ( , )−x y . If we keep a mirror on the y-axis the portion of the 
curve on one side of the mirror is the same as the portion of the curve on the other side of the 
mirror.

 • Symmetric with respect to the x-axis  if f x y f x y x y( , ) ( , ) ,= − ∀  or if ( , )x y  is a point on 
the graph of the curve then so is ( , )x y− . If we keep a mirror on the x -axis the portion of the 
curve on one side of the mirror is the same as the portion of the curve on the other side of the 
mirror.

 • Symmetric with respect to the origin if f x y f x y x y( , ) ( , ) ,= − − ∀  or if ( , )x y  is a point on 
the graph of the curve then so is ( , )− −x y . That is the curve is unchanged if we rotate it by 

180°  about the origin.
 For instance, the curves mentioned above x y y x= =2 2,  and y x=  are symmetric with respect to  
x-axis, y-axis and origin respectively.

7.9.2 Asymptotes
 An asymptote for the curve y f x= ( )   is a straight line which is a tangent at ¥  to the curve. In 
other words the distance between the curve and the straight line tends to zero when the points on the 
curve approach infinity.  There are three types of asymptotes. They are 

 1. Horizontal asymptote, which is parallel to the x -axis. The line y L=  is said to be a horizontal 

asymptote for the curve y f x= ( )  if either lim ( )
x

f x L
→+∞

=  or lim ( )
x

f x L
→−∞

= .

 2. Vertical asymptote, which is parallel to the y -axis. The line x a=  is said to be vertical 

asymptote for the curve y f x= ( )  if  lim ( )
x a

f x
→ −

= ±∞  or lim ( )
x a

f x
→ +

= ±∞ .

 3. Slant asymptote, A slant (oblique) asymptote occurs when the polynomial in the numerator is 
a higher degree than the polynomial in the denominator.

  To find the slant asymptote you must divide the numerator by the denominator using either long 
division or synthetic division.

-1 0. -0 5.

-0 5.

-1 0.

0.5 1.0

0.5

1.0
y
x=

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-1 0. -0 5. 0.5 1.0

y
x

=
2

-2

-1

-2

2

2 4

1

y

x
y= 2

0
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Example 7.66

 Find the asymptotes of the function f x
x

( ) =
1 .

Solution

 We have, lim
x x→ −

= −∞
0

1  and  lim
x x→ +

= ∞
0

1 . Hence, 

the required vertical asymptote is x = 0  or the  
y -axis.
 As the curve is symmetric with respect to both 
the axes, y = 0  or the x -axis is also an asymptote. 
Hence this (rectangular hyperbola) curve has both 
the vertical and horizontal asymptotes.

Example 7.67
 Find the slant (oblique) asymptote for the function f x x x

x
( ) =

− +
+

2 6 7

5
.

Solution
 Since the polynomial in the numerator is a higher degree (2nd) than the denominator (1st), we 
know we have a slant asymptote. To find it, we must divide the numerator by the denominator. We 
can use long division to do that:

)x x x
x x

x
x

x
+ − +

+
− +
− −

−
5 6 7

5

11 7

11 55

62

11
2

2

 Notice that we don't need to finish the long division 
problem to find the remainder. We only need the terms that 
will make up the equation of the line. The slant asymptote 
is  y x= −11.

 As you can see in this graph of the function, the curve approaches the slant asymptote y x= −11
but never crosses it: 
Example 7.68

 Find the asymptotes of the curve f x x
x

( ) = −
−

2 8

16

2

2
.

Solution

 As lim
x

x
x→− +

−
−

= −∞
4

2

2

2 8

16
 and lim

x

x
x→ +

−
−

= ∞
4

2

2

2 8

16
. 

 Therefore x=−4  and x = 4  are vertical asymptotes.

  As  lim
x

x
x→∞

−
−

2 8

16

2

2
 =  lim

x

x

x
→∞

−

−

2
8

1
16

2

2

= 2

Fig.7.32
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  and  lim
x

x
x→−∞

−
−

2 8

16

2

2
 =  lim

x

x

x
→−∞

−

−

2
8

1
16

2

2

= 2

 Therefore, y = 2 is a horizontal asymptote. This can also be obtained by synthetic division.

7.10 Sketching of Curves
 When we are sketching the graph of functions either by hand or through any graphing software 
we cannot show the entire graph. Only a part of the graph can be sketched. Hence a crucial question 
is which part of the curve we need to show and how to decide that part. To decide on this we use the 
derivatives of functions. We enlist few guidelines for determining a good viewing rectangle for the 
graph of a function. They are :
 (i) The domain and the range of the function. (ii) The intercepts of the cure (if any).
 (iii) Critical points of the function. (iv) Local extrema of the function.
 (v) Intervals of concavity. (vi) Points of inflexions (if any).
 (vii) Asymptotes of the curve (if exists)

Example 7.69
 Sketch the curve y f x x x= = − −( ) 2 6 .
Solution
 Factorising the given function, we have 
 y f x x x= = − +( ) ( )( )3 2 .
 (1) The domain of the given function f x( )  is the entire 

real line.
 (2) Putting y = 0  we get x = −2 3, . Therefore the x

-intercepts are ( , )−2 0  and ( , )3 0  putting x = 0  we get 
y = −6 . Therefore the y -intercept is ( , )0 6− .

 (3) ′ = −f x x( ) 2 1  and hence the critical point of the curve 

occurs at x = 1

2
.

 (4) ′′ = > ∀f x x( ) ,2 0 . Therefore at x = 1

2
 the curve has a 

local minimum which is f 1

2

25

4







 = − .

 (5) The range of the function is y≥− 25

4

 (6) Since ′′ = > ∀f x x( ) ,2 0  the function is concave upward in the entire real line.
 (7) Since f x x( ) ,= ≠ ∀2 0  the curve has no points of inflection.
 (8) The curve has no asymptotes.
 The rough sketch of the curve is shown on the right side.

Fig.7.35
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  Example 7.70
 Sketch the curve y f x x x= = − −( ) 3 6 9 .
Solution
 Factorising the given function, we have

y f x x x x= = − + +( ) ( )( )3 3 32 .
 (1) The domain and the range of the given function f x( )  are 

the entire real line.

 (2) Putting y = 0 , we get the x = 3 . The other two roots are 

imaginary. Therefore, the x -intercept is ( , )3 0 . Putting x = 0

, we get y = −9. Therefore, the y-intercept is ( , )0 9− .

 (3) ′ = −f x x( ) ( )3 22  and hence the critical points of the curve 

occur at x = ± 2 .

  (4) ′′ =f x x( ) 6 . Therefore at x = 2  the curve has a local 

minimum because ′′( ) = >f 2 6 2 0 . The local minimum 

is f 2 4 2 9( ) = − − . Similarly x = − 2  the curve has a 

local maximum because ′′ −( ) = − <f 2 6 2 0 . The local 

maximum is f −( ) = −2 4 2 9 .

 (5) Since ′′( ) = > ∀ >f x x x6 0 0,  the function is concave upward in the positive real line. As 
′′( ) = < ∀ <f x x x6 0 0,  the function is concave downward in the negative real line.

  (6) Since ′′( ) =f x 0  at x = 0  and ′′f x( )  changes its sign when passing through x = 0 . Therefore 

the point of inflection is 0 0 0 9, ,f ( )( ) = ( ) .

 (7) The curve has no asymptotes.

 The rough sketch of the curve is shown on the right side.

Example 7.71

 Sketch the curve y x x
x

=
−
−

2 3

1( )
.

Solution
 Factorising the given function we have,

y f x x x
x

= =
−
−

( )
( )

( )

3

1
.

 (1) The domain and the range of f x( )   are respectively 

R \{ }1   and the entire real line.

 (2) Putting y = 0  we get the x = 0 3, . Therefore the  

x -intercept is ( , )3 0 . Putting x = 0 , we get y = 0 . 

Therefore the curve passes through the origin.

Fig.7.36
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 (3) ′ =
− +
−

f x x x
x

( )
( )

2

2

2 3

1
 and hence the critical point of the curve occurs at x =1 as ′f ( )1  does not 

exist. But x x2 2 3 0− + =  has no real solution. Hence the only critical point occurs at x =1.
 (4) x =1 is not in the domain of the function and ′ ≠ ∀ ∈f x x( ) \{ }0 1 , there is no local 

maximum or local minimum.

 (5) ′′ = −
−

∀ ∈f x
x

x( )
( )

\{ }
4

1
1

3
 . Therefore when x f x< ′′ >1 0, ( )  the curve is concave upwards 

in ( , )−∞ 1  and when x f x> ′′ <1 0, ( )  the curve is concave downwards in ( , )1 ¥ . Since 
′′ ≠ ∈f x x( ) \{ }0 1  there is no point of infection for f x( ) . 

 (6) Since, lim
( )x

x x
x→ −

−
−

= +∞
1

2 3

1
 and lim

( )
,

x

x x
x

x
→ +

−
−

= −∞ =
1

2 3

1
1 is a vertical asymptote.

  The rough sketch is shown on the right side.

Example 7.72
 Sketch the graph of the function y x

x
=

−
3

12
.

Solution

 (1) The domain of f x( ) is  \ ,−{ }1 1 .

 (2) Since f x y f x y− −( ) = ( ), , , the curve is symmetric about the origin.

 (3) Putting y = 0 , we get x = 0 . Hence the x -intercept is 0 0,( ) .

 (4) Putting x = 0 , we get y = 0 . Hence the y -intercept is 0 0,( ) . 

 (5) To determine monotonicity, we find the first derivative as ′( ) = − +( )

−( )
f x x

x

3 1

1

2

2
2

.

  Hence, ′( )f x does not exist at x = −1 1, . Therefore, critical numbers are x = −1 1, . 

The intervals of monotonicity is tabulated in Table 7.9.

Interval (-∞, -1) (-1, 1) (1, ∞)

Sign of ′ ( )f x  _ _ _

Monotonicity strictly decreasing strictly decreasing strictly decreasing

Table 7.9

 (6) Since there is no sign change in ′( )f x when passing through critical numbers. There is no 
local extrema.

 (7) To determine the concavity, we find the second derivative as ′′( ) = +( )

−( )
f x x x

x

6 3

1

2

2
3

 . 

′′( ) = ⇒ =f x x0 0 and ′′( )f x does not exist at x = −1 1, .
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  The intervals of concavity is tabulated in Table 7.10.

Interval (-∞, -1) (-1, 0) (0, 1) (1, ∞)

Sign of ′′ ( )f x  _ + _ +

Concavity concave 
down concave up concave 

down concave up

  

Table  7.10

 (8) As x = −1  and 1are not in the domain of f x( ) and at x = 0 ,the second derivative is zero and 

′′( )f x  changes its sign from positive to negative when passing through x = 0 . .Therefore, 

the point of inflection is 0 0 0 0, ,f ( )( ) = ( ) .

 (9) lim lim lim
x x x

f x x
x x

x
→±∞ →±∞ →±∞

( ) =
−

=
−

=
3

1

3

1
0

2
. Therefore y = 0  is a horizontal asymptote. Since 

the denominator is zero, when x = ±1 .

 lim
x

x
x→− − −

= −∞
1

2

3

1
, lim

x

x
x→− + −

= +∞
1

2

3

1
,

 lim
x

x
x→ − −

= −∞
1

2

3

1
, lim

x

x
x→ + −

= ∞
1

2

3

1
.

 Therefore x = −1  and x =1  are 

vertical asymptotes. 

 The rough sketch of the curve is 

shown on the right side.

EXERCISE 7.9
 1. Find the asymptotes of the following curves : 

 (i) f x x
x

( ) =
−

2

2 1
 (ii) f x

x
x

( ) =
+

2

1
 (iii) f x

x
x

( ) =
+

3

22

 (iv) f x x x
x

( ) =
− −
+

2 6 1

3
 (v) f x x x

x
( ) =

+ −
−

2 6 4

3 6

 2. Sketch the graphs of the following functions:

 (i) y x x= − − +
1

3
3 23( )  (ii) y x x= −4  (iii) y x

x
=

+
−

2

2

1

4

 (iv) y
e x=

+ −

1
1

 (v)  y x x= −
3

24
log

Fig.7.38

x = –1

x = 1

x

y

0

Chapter 7 Differential Calculus Original-new.indd   53 7/25/2019   6:31:44 PM



54XII - Mathematics

EXERCISE 7.10

Choose the correct or the most suitable answer from the given four alternatives :
 1. The volume of a sphere is increasing in volume at the rate of  3 3p cm / sec .  

The rate of change of its radius when radius is 1

2
 cm 

  (1) 3 cm/s (2) 2 cm/s (3) 1 cm/s (4) 1
2

 cm/s

 2. A balloon rises straight up at 10 m/s. An observer is 40 m away from the spot where the 
balloon left the ground. Find the rate of change of the balloon’s angle of elevation in radian 
per second when the balloon is 30 metres above the ground.

  (1) 3

25
 radians/sec (2) 4

25
 radians/sec (3) 1

5
 radians/sec (4) 1

3
 radians/sec

 3. The position of a particle moving along a horizontal line of any time t is given by 
s t t t( ) = − −3 2 82 .  The time at which the particle is at rest is

  (1) t = 0   (2) t = 1

3
  (3) t =1  (4) t = 3  

 4. A stone is thrown up vertically. The height it reaches at time t seconds is given by x t t= −80 16 2 . 
The stone reaches the maximum height in time t seconds is given by

  (1) 2  (2) 2.5 (3) 3 (4) 3.5

 5. Find the point on the curve 6 23y x= +  at which y-coordinate changes 8 times as fast as 
x-coordinate is

  (1) ( , )4 11   (2) ( , )4 11−   (3) ( , )−4 11   (4) ( , )− −4 11  

 6. The abscissa of the point on the curve f x x( ) = −8 2   at which the slope of the tangent is  

−0 25. ?
  (1) −8  (2) −4   (3) −2   (4) 0

 7. The slope of the line normal to the curve f x x( ) cos= 2 4  at x = π
12

 is

  (1) −4 3   (2) −4   (3) 3

12
  (4) 4 3  

 8. The tangent to the curve y xy2 9 0− + =  is vertical when

  (1)  y = 0  (2) y = ± 3  (3) y = 1

2
 (4) y = ±3

 9. Angle between y x2 =  and x y2 =  at the origin is

  (1) tan−1 3

4
  (2) tan− 








1 4

3
  (3) p

2
  (4) p

4
 

 10. What is the value of the limit lim cot
x

x
x→

−







0

1 ?

  (1) 0 (2) 1 (3) 2 (4) ∞
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 11. The function sin cos4 4x x+  is increasing in the interval

  (1) 5

8

3

4

π π
,







  (2) π π
2

5

8
,







  (3) π π
4 2

,






  (4) 0
4

,
π





 

 12. The number given by the Rolle’s theorem for the function x x x3 23 0 3− ∈, [ , ]  is

  (1) 1 (2) 2   (3) 3

2
  (4) 2

 13. The number given by the Mean value theorem for the function 
1

1 9
x

x, [ , ]∈  is

  (1) 2 (2) 2.5 (3) 3 (4) 3.5
 14. The minimum value of the function | |3 9− +x  is

  (1) 0 (2) 3 (3) 6 (4) 9
 15. The maximum slope of the tangent to the curve y e x xx= ∈sin , [ , ]0 2π  is at

  (1) x = π
4

  (2) x = π
2

  (3) x = π   (4) x = 3

2

π  

 16. The maximum value of the function x e xx2 2 0− >,  is

  (1) 1
e

  (2) 1

2e
  (3) 1

2e
  (4) 4

4e
 

 17. One of the closest points on the curve x y2 2 4− =  to the point ( , )6 0  is 

  (1) ( , )2 0   (2) 5 1,( )   (3) 3 5,( )   (4) 13 3,−( )  

 18. The maximum product of two positive numbers, when their sum of the squares is 200, is
  (1) 100   (2) 25 7   (3) 28   (4) 24 14  

 19. The curve y ax bx= +4 2  with ab > 0  

  (1) has no horizontal tangent (2) is concave up
  (3) is concave down  (4) has no points of inflection
 20. The point of inflection of the curve y x= −( )1 3  is

  (1) ( , )0 0   (2) ( , )0 1   (3) ( , )1 0   (4) ( , )1 1  
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SUMMARY
 • If y f x= ( ) ,then dy

dx
represents instantaneous rate of change of y with respect to x .

 • If y f g t= ( )( ) , then dy
dt

f g t g t= ′ ( )( )⋅ ′ ( ) which is called the chain rule.

 • The equation of tangent at  a b,( ) to the curve y f x= ( ) is given by y b dy
dx

x a
a b

− = 



 −( )

( ),

 or 

y b f a x a− = ′ ( ) −( ) .

 • Rolle’s Theorem
  Let f x( ) be continuous in a closed interval a b,[ ] and differentiable on the open interval 

a b,( ) . If f a f b( ) = ( ) , then there is at least one point c a b∈( ), where ′ ( ) =f c 0 .

 • Lagrange’s Mean Value Theorem

  Let f x( ) be continuous in a closed interval a b,[ ] and differentiable on the open interval a b,( )  
(where f (a) and f (b) are not necessarily equal). Then there is at least one point c a b∈( ), such 

that ′ ( ) =
( ) − ( )

−
f c f b f a

b a
.     

 • Taylor’s series
  Let f x( ) be a function infinitely differentiable at x a= . Then f x( ) can be expanded as a 

series in an interval x a x a− +( ), ,of the form

  f x f a
n

x a f a f a x a f a
n

x a
n

n

n
n

n( ) =
( )

−( ) = ( ) + ′ ( )
−( ) + +

( )
−( )

( )

=

∞ ( )

∑
0 1

 ++         

 • Maclaurin’s series

  In the Taylor’s series if a = 0 , then the expansion takes the form

  f x f
n

x f f x f
n

x
n

n

n
n

n( ) =
( ) ( ) = ( ) + ′ ( ) ( ) + +

( ) ( ) +
( )

=

∞ ( )

∑ 0
0

0

1

0

0

 

     

 • The l’Hôpital’s rule

  Suppose f x( ) and g x( ) are differentiable functions and ′ ( ) ≠g x 0 with       

  lim lim
x a x a

f x g x
→ →

( ) = = ( )0 . Then lim lim
x a x a

f x
g x

f x
g x→ →

( )
( ) = ′ ( )

′ ( )  

  lim lim
x a x a

f x g x
→ →

( ) = ±∞ = ( ) . Then lim lim
x a x a

f x
g x

f x
g x→ →

( )
( ) = ′ ( )

′ ( )
  

 • If the function f x( ) is differentiable in an open interval a b,( ) then we say,  if d
dx

f x( )( ) > 0 , 

∀ ∈( )x a b, then f x( )  is strictly increasing in the interval a b,( ) .
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if d
dx

f x( )( ) < 0 , ∀ ∈( )x a b, then f x( )  is strictly decreasing in the interval a b,( )

• A procedure for finding the absolute extrema of a continous function f x( ) on a closed interval
a b,[ ] .

Step 1 :  Find the critical numbers of f x( )  in a b,( ) .

Step 2 : Evaluate f x( ) at all critical numbers and at the endpoints a and b .
Step 3 : The largest and the smallest of the values in Step 2 is the absolute maximum 

and absolute minimum of f x( ) respectively on the closed interval a b,[ ] .

• First Derivative Test

Let c f c, ( )( ) be a critical point of function f x( )  that is continuous on an open interval I
containing c . If f x( ) is differentiable on the interval, except  possibly at c , then f c( )  can
be classified as follows:(when moving across I from left to right)

(i) If ′ ( )f x  changes from negative to positive at c , then f x( )  has a local minimum
f (c).

(ii) If ′ ( )f x  changes from positive to negative at c , then f x( )  has a local maximum
f (c).

(iii) If ′ ( )f x  is positive on both sides of c , or negative on both sides of c  then f x( )  has
neither a local minimum nor a local minimum.

• Second Derivative Test

Suppose that c is a critical point at which ′ ( ) =f c 0 , that ′′ ( )f x exists in a neighbourhood of
c , and that ′ ( )f c exists. Then f has a relative maximum value at c if ′′ ( ) <f c 0  and a
relative minimum value at c if ′′ ( ) >f c 0 . If ′′ ( ) =f c 0 , the test is not informative.
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“He who hasn’t tasted bitter things hasn’t earned sweet things”
-  Gottfried Wilhelm Leibniz

Chapter

8 Differentials and Partial Derivatives

Motivation
 In real life we have to deal with many functions. Many times we have to estimate the change in 
the function due to change in the independent variable. Here are some real life situations.

 • Suppose that a thin circular metal plate is heated uniformly. Then it’s radius increases and 
hence its area also increases. Suppose we can measure the approximate increase in the 
radius. How can we estimate the increase in the area of a circular plate?

 •	 Suppose	water	is	getting	filled	in	water	tank	that	is	in	the	shape	of	an	inverted	right	circular	
cone. In this process the height of the water level changes, the radius of the water level 
changes	 and	 the	 volume	 of	 the	water	 in	 the	 tank	 changes	 as	 time	 changes.	 In	 a	 small	
interval of time, if we can measure the change in the height, change in the radius, how can 
we estimate the change in the volume of the water in the interval?

 • A satellite is launched into the space from a launch pad. A camera is being set up, to 
observe the launch, at a safe distance from the launch pad. As the satellite lifts up, camera’s 
angle	of	elevation	changes.	If	we	know	the	two	consecutive	angles	of	elevation,	within	a	
small interval of time, how can we estimate the distance traveled by the satellite during that 
short interval of time?

 To address these type of questions, we shall use the ideas of derivatives and partial derivatives 
to	find	linear	approximations	and	differentials	of	the	functions	involved.

8.1 Introduction
 In the earlier chapters we have learnt the concept of derivative of a real-
valued function of a single real variable. We have also learnt its applications in 
finding	extremum	of	a	function	on	its	domain,	and	sketching	the	graph	of	a	
function. In this chapter, we shall see one more application of the derivative in 
estimating	values	of	a	function	at	some	point.	We	know	that	linear	functions,	
y mx b= + , are easy to	 work	 with;	 whereas	 nonlinear	 functions	 are	
computationally	a	bit	tedious	to	work	with.

Godfried W Leibniz
(1646 - 1716)

58
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Differentials and Partial Derivatives59

 For instance, if we have two functions, say f x x g x x( ) , ( )= + = −1 2 7  and suppose that we 

want to evaluate these functions at say x = 3 25. . Which one will be easy to evaluate? Obviously, 
g( . )3 25  will be easier to calculate than f ( . )3 25 . If we are ready to accept some error in calculating 
f ( . )3 25 ,	 then	we	 can	 find	 a	 linear	 function	 that	 approximates	 f  near x = 3  and use this linear 

function to obtain an approximate value of f ( . )3 25 .We	 know	 that	 the	 graph	 of	 a	 function	 is	 a	
nonvertical	 line	 if	 and	only	 if	 it	 is	 a	 linear	 function.	Out	of	 infinitely	many	straight	 lines	passing	
through any given point on the graph of the function, only tangent line gives a good approximation to 
the function, because the graph of f looks	 approximately	 a	 straight	 line	 on	 the	 vicinity  
of the point ( , )3 2 .

 Fig. 8.1 Fig. 8.2  Tangent Line
	 From	the	figures	above	it	 is	clear	 that	among	these	straight	 lines,	only	 the	 tangent	 line	 to	 the	
graph of f x( )  at x = 3   gives a good approximation near the point x = 3 . Basically we are “linearizing” 
the given function at a selected point ( , )3 2 . This idea helps us in estimating the change in the function 
value near the chosen point through the change in the input. We shall use “derivative” to introduce 
the concept of “differential” which approximates the change in the function and will also be useful 
in calculating approximate values of a function near a chosen point. The derivative measures the 
instantaneous rate of change where as the differential approximates the change in the function values. 
Also,	differentials	are	useful	later	in	solving	differential	equations	and	evaluating	definite	integrals	by	
the substitution method.

 After learning differentials, we will focus on real valued functions of several variables. For 
functions of several variables, we shall introduce “partial derivatives”, a generalization of the 
concept of “derivative” of real-valued function of one variable. Why should we consider functions 
of more than one variable? Let us consider a simple situation that will explain the need. Suppose that 
a	company	is	producing	say	pens	and	notebooks.	This	company	is	interested	in	maximizing	its	profit;	
then	it	has	to	find	out	the	production	level	that	will	give	maximum	profit.	To	determine	this,	it	has	
to	analyze	its	revenue,	cost,	and	profit	functions,	which	are,	in	this	case,	functions	of	two	variables	
(pen,	notebook).	Similarly,	 if	we	want	 to	consider	 the	volume	of	a	box,	 then	 it	will	be	a	function	
of three variables namely length, width, and height. Also, the economy of a country depends on so 
many sectors and hence it depends on many variables. Thus it is necessary and important to consider 
functions involving more than one variable and develop the “concept of derivative” for functions of 
more than one variable. We shall also develop “differential” for functions of two and three variables 
and consider some of its applications. In this chapter, we shall consider only real-valued functions.
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Learning Objectives

Upon completion of this chapter,  students will be able to
 • calculate the linear approximation of a function of one variable at a point
 • approximate the value of a function using its linear approximation without calculators
 • calculate the differential of a function
 • apply linear approximation, differential in problems from real life situations
 •	 find	partial	derivatives	of	a	function	of	more	than	one	variable
 • calculate the linear approximation of a function of two or more variables
 • determine if a given function of several variables is homogeneous or not
 • apply Euler’s theorem for homogeneous functions.

8.2 Linear Approximation and Differentials

8.2.1 Linear Approximation
 In this section, we introduce linear approximation of a function at a point. Using the linear 
approximation, we shall estimate the function value near a chosen point. Then we shall introduce 
differential of a real-valued function of one variable, which is also useful in applications.

 Let f a b: ( , ) →   be a differentiable function and x a b∈ ( , ) . Since f  is differentiable at x , we 
have

   lim
( ) ( )

∆ →

+ ∆ −
∆x

f x x f x
x0

  =  ′f x( )  ... (1)

 If Dx  is small, then by (1) we have
   f x x f x( ) ( )+ ∆ −  »  ′ ∆f x x( ) ;	 ...	(2)

which is equivalent to
   f x x( )+ ∆  »  f x f x x( ) ( )+ ′ ∆ , ... (3)

where »  means “approximately” equal. Also, observe that as the independent variable changes from 
x  to x x+ ∆ , the function value changes from f x( )  to f x x( )+ ∆ . Hence if Dx  is small and the 
change in the output is denoted by Df  or Dy , then (2) can be rewritten as

   change in the output =  ∆ = ∆ = + ∆ − ≈ ′ ∆y f f x x f x f x x( ) ( ) ( ) .

 Note that (3) helps in approximating the value of f x x( )+ ∆  using f x( )  and ′ ∆f x x( ) . Also, for 
a	fixed	x y x f x f x x x x0 0 0 0, ( ) ( ) ( )( ),= + ′ − ∈ , gives the tangent line for the graph of f  at ( , ( ))x f x0 0  
which gives a good approximation to the function f  near x0 .	This	leads	us	to	define

Definition 8.1 (Linear Approximation)

 Let f a b: ( , ) →   be a differentiable function and x a b0 ∈ ( , ) .	We	define	the	linear	approximation	
L  of f  at x0  by
   L x( )  =  f x f x x x x a b( ) ( )( ), ( , )0 0 0+ ′ − ∀ ∈   ... (4)
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 Note that by (3) and (4) we see that
 f x x( )+ ∆  »  f x f x x( ) ( )+ ′ ∆ ,

which is useful in approximating the value of 
f x x( )+ ∆ .

 Note that linear approximation for f  at 

x0  gives a good approximation to f x( )  if x  

is close to x0 , because

   Error = f x L x f x f x f x x x( ) ( ) ( ) ( ) ( )( )− = − − ′ −0 0 0  ... (5)

approaches zero as x  approaches to x0  by continuity of f  at x0 . Also, if f x mx c( ) = + , then its 
linear approximation is L x mx c m x x mx c f x( ) ( ) ( ) ( )= + + − = + =0 0 , for any point x a b∈ ( , ) . That is, 
the linear approximation, in this case, is the original function itself (is it not surprising?).

Example 8.1
 Find the linear approximation for f x x x( ) ,= + ≥ −1 1, at x0 3= . Use the linear approximation 
to estimate f ( . )3 2 .

Solution

	 We	 know	 from	 (4),	 that	 L x f x f x x x( ) ( ) ( )( )= + ′ −0 0 0 . We have x x0 3 0 2= =, .∆  and hence 

f ( )3 1 3 2= + = . Also,

   ′f x( )  =  1

2 1+ x
 and hence ′ =

+
=f ( )3

1

2 1 3

1

4
.

   Thus, L x( )  =  2 1

4
3

4

5

4
+ − = +( )x x  gives the required linear approximation.

   Now,   f ( . )3 2  =  4 2 3 2
3 2

4

5

4
2 050. ( . )

.
.≈ = + =L .

 Actually, if we use a calculator to calculate we get 4 2 2 04939. .= .

8.2.2 Errors: Absolute Error, Relative Error, and Percentage Error
 When we are approximating a value, there occurs an error. In this section, we consider the error, 
which occurs by linear approximation, given by (4). We shall consider different types of errors. 
Taking	 h x x= − 0 ,  we get x x h= +0 , then (5) becomes

   E h( )  =  f x h f x f x h( ) ( ) ( )0 0 0+ − − ′ . ... (6)

 Note that E( )0 0=  and as we have already observed lim ( )
h
E h

→
=

0
0  follows from the continuity of 

f  at x0 . In addition, if f  is differentiable, then from (1), it follows that

Fig. 8.3
Linear Approximation by Tangent Line

}
f x x( )0 + ∆

f x( )0

∆y

Tangent line
x f x f x x x= + ′ −( ) ( )( )0 0 0

y f x= ( )

( , ( ))x f x0 0

x0 x x0 + ∆O
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   lim
( )

h

E h
h→0

 =  lim ( ) ( )
( )

h

f x h f x
h

f x
→

+ −
− ′ =

0
0 .

 Thus when f  is differentiable at x0 , then the above equation shows that E h( )  actually approaches 
zero faster than h 	approaching	zero.	Now,	we	define

Definition 8.2

 Suppose that certain quantity is to be determined. It’s exact value is called the actual value. 
Some times we obtain its approximate value through some approximation process. In this case, 
we	define

Absolute error = Actual value − Approximate value.

	 So	(6)	gives	the	absolute	error	that	occurs	by	a	linear	approximation.	Let	us	look	at	an	example	
illustrating the use of linear approximation.

Example 8.2
	 Use	linear	approximation	to	find	an	approximate	value	of	 9 2.  without using a calculator.
Solution

	 We	need	to	find	an	approximate	value	of	 9 2.  using linear approximation. Now by (3), we have 

f x x f x f x x( ) ( ) ( )0 0 0+ ∆ ≈ + ′ ∆ . To do this, we have to identify an appropriate function f , a point x0  

and Dx . Our choice should be such that the right side of the above approximate equality, should be 

computable without the help of a calculator. So, we choose f x x x( ) ,= =0 9  and ∆ =x 0 2. . Then, 

′ =f x( )0

1

2 9
 and hence

   9 2.  »  f f( ) ( )( . )
.

.9 9 0 2 3
0 2

6
3 03333+ ′ = + = .

	 Now	if	we	use	a	calculator,	just	to	compare,	we	find	 9 2 3 03315. .= . We see that our approximation 

is accurate to three decimal places and the error is 3 03315 3 03333 0 00018. . .− = − . [Also note that one 

could choose f x x x( ) ,= + =1 80  and ∆x = 0 2. . So the choice of f  and x0  are not necessarily 
unique].
 So in the above example, the absolute error is 3 03315 3 03333 0.00018.. . . Note that the 
absolute	 error	 says	 how	much	 the	 error;	 but	 it	 does	 not	 say	how	good	 the	 approximation	 is.	 For	
instance, let us consider two simple cases.
 Case 1 : Suppose that the actual value of something is 5  and its approximated value is 4 , then 
the absolute error is 5 4 1− =  .

 Case 2 : Suppose that the actual value of something is 100  and its approximated value is  
95 . In this case, the absolute error is 100 95 5− = .	So	the	absolute	error	in	the	first	case	is	smaller	
when compared to the second case.

	 Among	these	two	approximations,	which	is	a	better	approximation;	and	why?	The	absolute	error	
does not give a clear picture about whether an approximation is a good one or not. On the other hand, 
if	we	calculate	relative	error	or	percentage	of	error	(defined	below),	it	will	be	easy	to	see	how	good	
an	approximation	is.	If	the	actual	value	is	zero,	then	we	do	know	how	close	our	approximate	answer	
is	to	the	actual	value.	So	if	the	actual	value	is	not	zero,	then	we	define,
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Definition 8.3 
 If the actual value is not zero, then 

   Relative error =  Actual value  Approximate value

Actual value

−

   Percentage error =  Relative error ×100 .

 Note: Absolute error has unit of measurement where as relative error and percentage error are units free.
 Note that, in the case of the above examples

 The relative error = =
1

5
0 2. ;	and	the	percentage	error	= × =

1

5
100 20% .

 In the second case

 The relative error = 5

100
;	and	the	percentage	error	= × =

5

100
100 5% .

	 So	the	second	approximation	is	a	better	approximation	than	the	first	one.	Note	that,	in	order	to	
calculate	the	relative	error	or	the	percentage	error	one	should	know	the	actual	value	of	what	we	are	
approximating.
 Let us consider some examples.
Example 8.3
 Let us assume that the shape of a soap bubble is a sphere. Use linear approximation to approximate 
the increase in the surface area of a soap bubble as its radius increases from 5 cm to 5.2 cm. Also, 
calculate the percentage error.
Solution 
 Recall that surface area of a sphere with radius r  is given by S r r( ) = 4 2π . Note that even though 
we can calculate the exact change using this formula, we shall try to approximate the change using 
the linear approximation. So, using (4), we have
   Change in the surface area =  S S S( . ) ( ) ( )( . )5 2 5 5 0 2− ≈ ′

    =  8 5 0 2p( )( . )

    =  8p  cm2

 Exact calculation of the change in the surface gives
   S S( . ) ( )5 2 5−  =  108 16 100 8 16 2. .  cm .

   Percentage error =  relative error × =
−

× =100
8 16 8

8 16
100 1 9607

.

.
. %

π π
π

 

Example 8.4
 A right circular cylinder has radius r =10  cm. and height h = 20  cm. Suppose that the radius of 
the cylinder is increased from 10  cm to 10 1.  cm and the height does not change. Estimate the change 
in the volume of the cylinder. Also, calculate the relative error and percentage error.

Solution
 Recall that volume of a right circular cylinder is given by V r h= π 2 , where r  is the radius and h  

is the height. So we have V r r h r( ) = =π π2 220 .

   V V( . ) ( )10 1 10−  »  dV
dt r 10

10 1 10 20 2 10 0 1( . ) ( ( . )) .
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 Thus the estimate for the change in the volume is 40p cm3 .
 Exact calculation of the volume change gives

   V V( . ) ( )10 1 0−  =  2040 2 2000 40 2 3. .π π π− = cm .

   So relative error =  40 2 40

40 2

1

201
0 00497

.

.
.

π π
π
−

= = ;	and	hence

    the percentage error =  relative error × = × =100
1

201
100 0 497. % .

EXERCISE 8.1
 1. Let f x x( ) = 3 . Find the linear approximation at x = 27 . Use the linear approximation to 

approximate 27 23 . .
 2.	 Use	the	linear	approximation	to	find	approximate	values	of

   (i) ( )123
2

3  (ii) 154   (iii) 263  

 3. Find a linear approximation for the following functions at the indicated points.

   (i) f x x x x( ) ,= − + =3

05 12 2   (ii) g x x x( ) ,= + = −2

09 4  

   (iii) h x x
x

x( ) ,=
+

=
1

10  

 4. The radius of a circular plate is measured as 12 65.  cm instead of the actual length 12 5.  cm. 
find	the	following	in	calculating	the	area	of	the	circular	plate:

   (i) Absolute error (ii) Relative error (iii) Percentage error
 5. A sphere is made of ice having radius 10  cm. Its radius decreases from 10  cm to  

9 8.  cm. Find approximations for the following:
   (i) change in the volume   (ii) change in the surface area
 6. The time T ,	taken	for	a	complete	oscillation	of	a	single	pendulum	with	length	 l , is given by 

the equation T
l
g

= 2p , where g  is a constant. Find the approximate percentage error in 

the calculated value of T  corresponding to an error of 2  percent in the value of l .

 7. Show that the percentage error in the n th root of a number is approximately 1
n

 times the 

percentage error in the number 
8.2.3 Differentials
 Here again, we use the derivative concept to introduce “Differential”.	Let	us	take	another	look	
at (1),

   df
dx

 =  lim
( ) ( )

( ) lim
∆ → ∆ →

+ ∆ −
∆

= ′ =
∆
∆x x

f x x f x
x

f x f
x0 0

. ...(7)

 Here df
dx

is a notation, used by Leibniz, for the limit of the difference quotient, which is called the 

differential coefficient of y with respect to x .Will it be meaningful to treat df
dx

 as a quotient of df  

and dx ? In other words, is it possible to assign meaning to df  and dx  so that derivative is equal to 
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the quotient of df  and dx .Well, in some cases yes. For instance, if f x mx c m c( ) , ,= +  are constants, 
then, y f x= ( ) .

   Dy  =  f x x f x m x f x x( ) ( ) ( )+ ∆ − = ∆ = ′ ∆   for all x∈   and Dx  

and hence equality in both (2), and (3). In this case changes in x  and y f( )= 	are	taking	place	along	

straight lines, in which case we have,

   change in 

change in 

f
x

 =  ∆
∆

= ′ = =
y
x

f x df
dx

dy
dx

( ) .

 Thus in this case the derivative df
dx

 is truly a quotient of df dxand ,	if	we	take	df f dy= ∆ =  and 

dx x= ∆ .	This	leads	us	to	define	the	differential	of	 f  as follows:

Definition 8.4
 Let f a b: ( , ) →   be a differentiable function, for x a b∈ ( , )  and  the increment given to x , 
we	define	the	differential	of	 f  by
   df f x x= ′( )∆ . ... (8)

 First we note that if f x x( ) = , then by (8) we get dx f x x x= ′ =( )∆ ∆1  which means that the 
differential dx x= ∆ , which is the change in 
x -axis. So the differential given by (8) is 
same as df f x dx= ′( ) .

 Next we explore the differential for an 
arbitrary differentiable function y f x= ( ) . 
Then ∆f f x dx f x= + −( ) ( )  gives the 
change in output along the graph of 
y f x= ( )  and ′f x( )  gives the slope of the 

tangent line at ( , ( ))x f x . Let dy  or df  
denote the increment in f  along the tangent 

line. Then by the above observation, we 
have  dy f x dx= ′( ) .

	 From	 the	 figure	 it	 is	 clear	 that	 ∆ ≈ = = ′f dy df f x dx( )  and hence ′f x( )  can be viewed 

approximately as the quotient of Df  and Dx . So we may interpret df
dx

 as the quotient of df  and dx . 

Remark

	 We	know	that	derivative	of	a	function	is	again	a	function.	On	the	other	hand,	differential	df  of a 

function f  is not only a function of the independent variable but also depends on the change in the 

input namely dx x= ∆ . So df  is a function of two changing quantities namely x xand d . Observe that 

∆ ≈f df , which can be observed from the Fig. 8.4.

{ }
{

∆y y f t= ( )

f x dx( )+

y f x= ( )

dy f x dx= ′( )

Tangent line

x x+dx
dx

O

Fig. 8.4
Linear Approximation and Differential
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 In the table below we give some functions, their derivatives and their differentials side by side 
for comparative purpose.

S.
No.

Function Derivative Differential

1 f x xn( ) =  ′ = −f x nxn( ) 1  df nx dxn= −1  

2 f x x x( ) cos( )= +2 7  f x x x x( ) sin( )( )2 7 2 7  df x x x dx= − + +sin( )( )2 7 2 7  

3 f x x( ) cot( )= 2  f x x x( ) cosec2 ( )2 2  dxf x x x( ) cosec2 ( )2 2  

4 f x x( ) sin-1( )�  
′ =

−
f x

x
( )

1

1 2
 df

x
dx=

−

1

1 2
 

5 f x x( ) tan= −1  ′ =
+

f x
x

( )
1

1 2
 df

x
dx=

+
1

1 2
 

6 f x ex x( ) = − +3 5 7  ′ = −− +f x e xx x( ) ( )
3 5 7 23 5  df e x dxx x= −− +3 5 7 23 5( )  

7 f x x( ) log( )= +2 1  ′ =
+

f x x
x

( )
2

12
 df x

x
dx=

+
2

12
 

	 Next	we	look	at	the	properties	of	differentials.	These	results	easily	follow	from	the	definition	of 
differential and the rules for differentiation. We give a proof for (5) below and the other proofs are left 
as exercises.

Properties of Differentials
 Here we consider real-valued functions of real variable.

 (1) If f  is a constant function, then df = 0 .

 (2) If f x x( ) =  identity function, then df dx=1 .

 (3) If f  is differentiable and c∈ , then d cf cf x dx( ) ( )= ′ .

 (4) If f g,  are differentiable, then d f g df dg f x dx g x dx( ) ( ) ( )+ = + = ′ + ′ .

 (5) If f g,  are differentiable, then d fg fdg gdf f x g x f x g x dx( ) ( ( ) ( ) ( ) ( )) .

 (6) If f g,  are differentiable, then d f g gdf fdg
g

g x f x f x g x
g x

dx( / )
( ) ( ) ( ) ( )

( )
=

−
=

′ − ′
2 2

, where 

g x( ) ¹ 0 .

 (7) If f g,  are differentiable and h f g=  	is	defined,	then	 dh f g x g x dx= ′ ′( ( )) ( ) .

 (8) If h x e f x( ) ( )= , then dh e f x dxf x= ′( ) ( ) .

 (9) If f x( ) > 0  for all x  and g x f x( ) log( ( ))= , then dg f x
f x

dx=
′( )

( )
. 
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Example 8.5
 Let f g a b, : ( , ) →   be differentiable functions. Show that d fg fdg gdf( ) = + .

Solution
 Let f g a b, : ( , ) →   be differentiable functions and h x f x g x( ) ( ) ( )= . Then h , being product 

differentiable functions, is differentiable on ( , )a b 	 .	So	by	definition	 dh h x dx= ′( ) . Now by using 

product rule we have ′ = ′ + ′h x f x g x f x g x( ) ( ) ( ) ( ) ( ) . 

 Thus dh h x dx= ′( )  =  ( ( ) ( ) ( ) ( )) ( ) ( ) ( ) ( )f x g x f x g x dx f x g x dx f x g x dx′ + ′ = ′ + ′

    =  f x dg g x df fdg gdf( ) ( )+ = +

Example 8.6
 Let g x x x( ) sin= +2 . Calculate the differential dg .

Solution
 Note that g  is differentiable and ′ = +g x x x( ) cos2 .
 Thus dg x x dx= +( cos )2 .

Example 8.7
 If the radius of a sphere, with radius 10  cm, has to decrease by 0 1.  cm, approximately how much 
will its volume decrease?

Solution 
	 We	 know	 that	 volume	 of	 a	 sphere	 is	 given	 by	 V r=

4

3

3π ,  where r > 0  is the radius. So the 

differential dV r dr= 4 2π  and hence

   ∆ ≈V dV  =  4 10 2 3p( ) (9.9-10)cm  
    =  4 10 0 12 3( . ) cm  
    =  − 40 3π cm .

 Note that we have used dr = −( . )9 9 10 cm,  because radius decreases from 10 to 9.9. Again the 

negative sign in the answer indicates that the volume of the sphere decreases about 40 3cm .

EXERCISE 8.2
 1. Find differential dy  for each of the following functions :

   (i) y x
x

=
−
−

( )1 2

3 4

3

  (ii) y x= +( sin( )) /3 2 2 3  (iii) y e xx x2 5 7 2cos ( )1  

 2. Find df  for f x x x( ) = +2 3  and evaluate it for
   (i) x = 2  and dx = 0 1.   (ii) x = 3  and dx = 0 02.

 3. Find Df  and df  for the function f  for the indicated values of  and compare

   (i) f x x x x x dx( ) ; , .= − = = =3 22 2 0 5∆

   (ii) f x x x x x dx( ) ; . , .= + + = − = =2 2 3 0 5 0 1∆

 4. Assuming log .10 0 4343e = ,	find	an	approximate	value	of	 log10 1003 .
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 5.	The	trunk	of	a	tree	has	diameter	30	cm.	During	the	following	year,	the	circumference	grew	
6 cm. 

  (i)  Approximately, how much did the tree’s diameter grow?
  (ii) What is the percentage increase in area of the tree’s cross-section?
 6. An egg of a particular bird is very nearly spherical. If the radius to the inside of the shell is 5 

mm	and	radius	to	the	outside	of	the	shell	is	5.3	mm,	find	the	volume	of	the	shell	approximately.
 7. Assume that the cross section of the artery of human is circular. A drug is given to a patient 

to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1 mm, how much 
is cross-sectional area increased approximately?

 8. In a newly developed city, it is estimated that the voting population (in thousands) will 
increase according to V t t t t( ) ,= + − ≤ ≤30 12 0 82 3  where t  is the time in years. Find the 

approximate change in voters for the time change from 4 to 4
1

6
  year.

 9. The relation between the number of words y  a person learns in x  hours is given by 

y x x= ≤ ≤52 0 9,  . What is the approximate number of words learned when x  changes 

from
   (i) 1 to 1.1 hour? (ii) 4 to 4.1 hour?
 10.	A	circular	plate	expands	uniformly	under	the	influence	of	heat.	If	it’s	radius	increases	from	

10.5	 cm	 to	 10.75	 cm,	 then	find	 an	 approximate	 change	 in	 the	 area	 and	 the	 approximate	
percentage change in the area.

 11.	A	coat	of	paint	of	thickness	0 2.  cm is applied to the faces of a cube whose edge is 10  cm. 
Use	the	differentials	to	find	approximately	how	many	cubic	centimeters	of	paint	is	used	to	
paint this cube. Also calculate the exact amount of paint used to paint this cube.

8.3 Functions of several Variables
 Recall that given a function f  of x ;	we	sketch	the	graph	of	 y f x= ( )  to understand it better. 
Generally, the graph of y f x= ( )  gives a curve in the xy -plane. Also, the derivative ′f a( )  of f  at 
x a=  represents the slope of the tangent at x a= , to the graph of f . In the introduction we have seen 
the need for considering functions of more than one variable. Here we shall develop some concepts 
to understand functions of more than one variable. First we shall consider functions of two variables. 
Let F x y( , )  be a function of x  and y . To obtain graph F , we graph z F x y= ( , )  in the xyz -space. 
Also, we shall develop the concepts of continuity, partial derivatives of a function of two variables.
	 Let	us	look	at	an	example,	 g x y x y( , ) ,= − −30 2 2  for x y, ∈ . Given a point ( , )x y ∈2 , then 
z x y= − −30 2 2  gives the z  coordinate of the point on the graph. Thus the point ( , , )x y x y30 2 2− −  
lies 30 2 2− −x y  high just above the point ( , )x y  in xy -plane. For instance, for ( , )2 3 2∈ , the point 
( , , ) ( , , )2 3 30 2 3 2 3 172 2− − =  lies on the graph of g .	If	we	fix	the	value	 y = 3 , then g x x( , )3 212= − +  
which is a function that depends only on x 	variable;	so	its	graph	must	be	a	curve.	Similarly,	if	we	fix	
value x = 2 , then we have g y y( , )2 26 2= −  which is a function that depends only on y . In each case 
the graph, as the resulting function being quadratic, will be a parabola. The surface we obtain from 
z g x y= ( , )  is called paraboloid.
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z = 30 - x2 - y2

z = 30 - x2 - y2

y = 3 x = 2

 Note that g x x( , )3 21 2= − 	represents	a	parabola;	which	is	obtained	by	intersecting	the	surface	of	
z x y= − −30 2 2  with the plane y = 3  [see Fig. 8.5). Similarly g y y( , )2 26 2= − 	represents	a	parabola;	
which is obtained by intersecting the surface of z x y= − −30 2 2  with the plane x = 2  [see Fig. 8.6). 
Following graphs describes the above discussion.

 Fig. 8.5 Fig. 8.6 
 In the same way, given a function F  of a two variables say x y, , we can visualize it in the three 
space by considering the equation z F x y= ( , ) . Generally, this will represent a surface in 3 .

8.3.1 Recall of Limit and Continuity of Functions of One Variable
	 Next	we	shall	look	at	continuity	of	a	function	of	two	variables.	Before	that,	it	will	be	beneficial	
for	us	to	recall	the	continuity	of	a	function	of	single	variable.	We	have	seen	the	following	definition	
of continuity in XI Std.
 A function f a b: ( , ) →   is said to be continuous at a point x a b0 ∈ ( , )  if the following hold:

 (1) f 	is	defined	at	 x0 . (2) lim ( )
x x

f x L
→

=
0

 exists       (3) xL
0

	 The	key	idea	in	the	continuity	lies	in	understanding	the	second	condition	given	above.	We	write	

lim ( )
x x

f x L
→

=
0

 whenever the value f x( )  gets closer and closer to L  as x  gets closer and closer to x0 .

	 To	make	it	clear	and	precise,	let	us	rewrite	the	second	condition	in	terms	of	neighbourhoods.	This	
will	help	us	when	we	talk	about	continuity	of	functions	of	two	variables.

Definition 8.5 (Limit of a Function)

 Suppose that f a b: ( , ) →   and x a b0 ∈ ( , ) . We say that f  has a limit L  at x x= 0  if for every 

neighbourhood ( , ),L L− + >ε ε ε 0  of L , there   exists  a  neighbourhood ( , ) ( , ),x x a b0 0 0− + ⊂ >δ δ δ  

of x0  such that
f x L L( ) ( , )∈ − +ε ε  whenever x x x x∈ − +( , ) \{ }0 0 0δ δ .

 The above condition in terms of neighbourhoods can also be equivalently stated using modulus 
(or absolute value) notation as follows:
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 such that | ( ) |f x L  whenever 0 0< − <| |x x δ .

 This means whenever x x¹ 0  and is within δ  distance from x0 , then f x( )  is within  distance 
from L .	Following	figures	explain	the	interplay	between	ε  and δ . 

 Fig. 8.7 Fig. 8.8 
	 We	also	know,	from	XI	Std,	that	a	function	 f 	defined	in	the	neighbourhood	of	 x0  except possibly 

at x0  has a limit at x0  if the following hold :

 (1) lim ( )
x x

f x L
→ +

=
0

1  (right hand limit) exists (2) lim ( )
x x

f x L
→ −

=
0

2  (left hand limit) exists

 (3) 
0

0( ) , lim ( )
x x

f x L and f x L
→

= = (say).

 The function f  is continuous at x= x0  if L = L1 = L2 .Note that in the limit and continuity of a 

single variable functions, neighbourhoods play an important role. In this case a neighbourhood of a 

point x0 ∈ 	 looks	 like	 ( , )x r x r0 0− + , where r > 0 . In order to develop limit and continuity of 

functions	of	two	variables,	we	need	to	define	neighbourhood	of	a	point	( , )u v ∈2 . So, for ( , )u v ∈2  

and r > 0 , a r -neighbourhood of the point ( , )u v  is the set

B u v x y x u y v rr (( , )) {( , ) | ( ) ( ) }= ∈ − + − <

2 2 2 2 .

 So a r -neighbourhood of a point ( , )u v  is an open disc with centre ( , )u v  and radius r > 0 . If the 
centre is removed from the neighbourhood, then it is called a deleted neighbourhood.

8.4 Limit and Continuity of Functions of Two Variables
Definition 8.6 (Limit of a Function)

 Suppose that A x y a x b c y d F A( , ) , , :� �2 . We say that F  has a limit L at 

( , )u v  if the following hold :
 For every neighboourhood ( , ),L L− + >e e e 0 , of L , there exists a δ -neighbourhood 
B u v Aδ (( , )) ⊂  of ( , )u v  such that ( , ) (( , )) \{( , )}, ( ) ( , )x y B u v u v f x L L∈ > ⇒ ∈ − +d d e e0 .
 We denote this by lim ( , )

( , ) ( , )x y u v
F x y L

→
=  if such a limit exists.

y
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Fig. 8.9 Limit of a function

 When compared to the case of a function of single variable, for a function of two variables, there is 
a subtle depth in the limiting process. Here the values of F x y( , )  should approach the same value L ,  
as ( , )x y  approaches ( , )u v  along every possible path to ( , )u v  (including paths that are not straight 
lines). Fig.8.9 explains the limiting process.

 All the rules for limits (limit theorems) for functions of one variable also hold true for 
functions of several variables.

	 Now,	following	the	idea	of	continuity	for	functions	of	one	variable,	we	define	continuity	of	a	
function of two variables.

Definition 8.7 (Continuity)

 Suppose that A x y a x b c y d F A= < < < <{ } ⊂ →( , ) , , : 

2 . We say that F  is continuous 

at ( , )u v  if the following hold :

 (1) F 	is	defined	at	 ( , )u v   (2) lim ( , )
( , ) ( , )x y u v

F x y L
→

=  exists (3) L F u v= ( , ) .

y

O x
a b

f

R

f x y( , )0 0 +ε

f x y( , )0 0

f x y( , )0 0 −ε

( , )x y0 0

d

c

�2

Fig. 8.10 Continuity of a function
Remark
	 (1)	 In	Fig.	8.10	taking	 L F x y= ( , )0 0  will illustrate continuity at ( , )x y0 0 .
 (2) Continuity for f x x xn( , , , )1 2  	is	also	defined	similarly	as	defined	above.
  Let us consider few examples as illustrations to understand continuity of functions of two 
variables.

Example 8.8

 Let f x y x y
x y

( , ) =
− +
+ +

3 5 8

12 2
 for all ( , )x y ∈2 . Show that f  is continuous on 2 .

y

O x
a b

f

R

L( , )x y0 0

L +ε

L −ε

d

c

�2
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Solution
Let ( , )a b ∈2  be an arbitrary point. We shall investigate continuity of f  at ( , )a b . 
That	is,	we	shall	check	if	all	the	three	conditions	for	continuity	hold	for	 f  at ( , )a b .

To	check	first	condition,	note	that	 f a b a b
a b

( , ) =
− +
+ +

3 5 8

12 2
	is	defined.	

Next	we	want	to	find	if	 lim ( , )
( , ) ( , )x y a b

f x y
→  

exists or not.

So we calculate lim ( )
( , ) ( , )x y a b

x y a b
→

− + = − +3 5 8 3 5 8  and lim ( )
( , ) ( , )x y a b

x y a b
→

+ + = + + ≠2 2 2 21 1 0 .

Thus, by the properties of limits, we see that

lim ( , )
lim ( )

lim( , ) ( , )

( , ) ( , )

( , ) ( , )

x y a b

x y a b

x y a b

f x y
x y

→

→

→

=
− +3 5 8

(( )
( , )

x y
a b
a b

f a b
2 2 2 21

3 5 8

1+ +
= − +

+ +
=  = L exists.

Now we note that lim ( , ) ( , )
, ( , )x y a b

f x y L f a b
→

= = . Hence f 	 satisfies	 all	 the	 three	 conditions	 for	

continuity of f  at ( , )a b . Since ( , )a b  is an arbitrary point in R2 , we conclude that f  is continuous 
at every point of 2 .

Example 8.9
 Consider f x y xy

x y
( , ) =

+2 2
 if ( , ) ( , )x y ¹ 0 0  and f ( , )0 0 0= . Show that f  is not continuous at 

( , )0 0  and continuous at all other points of 2 .

Solution
 Note that f 	is	defined	for	every	 ( , )x y ∈2 .	First	let	us	check	the	continuity	at	 ( , ) ( , )a b ¹ 0 0 . 

Let us say, just for instance, ( , ) ( , )a b = 2 5 . Then f ( , )2 5
10

29
= . Then, as in the above example, we 

calculate lim ( )
( , ) ( . )x y

xy
→

= =
2 5

2 5 10  and lim
( , ) ( . )x y

x y
→

+ = + = ≠
2 5

2 2 2 22 5 29 0 .

Hence   lim
( , ) ( , )x y

xy
x y→ +

=
2 5 2 2

10

29
.

 Since f xy
x yx y

( , ) lim
( , ) ( , )

2 5
10

29 2 5 2 2
= =

+→
, it follows that f  is continuous at ( , )2 5 .

 Exactly by similar arguments we can show that f  is continuous at every point  
( , ) ( , )a b ¹ 0 0 .	Now	let	us	check	the	continuity	at	 ( , )0 0 . Note that f ( , )0 0 0= 	by	definition.	Next	we	

want	to	find	if	 lim
( , ) ( , )x y

xy
x y→ +0 0 2 2

 exists or not.

	 First	let	us	check	the	limit	along	the	straight	lines	 y mx= , passing through ( , )0 0 .

lim lim
( )

( , )
( , ) ( , )x y x

xy
x y

mx
m x

m
m

f
→ →+

=
+

=
+

≠
0 0 2 2 0

2

2 2 21 1
0 0 , if m 0.

 So for different values of m , we get different values m
m1 2+

 and hence we conclude that 

lim
( , ) ( , )x y

xy
x y→ +0 0 2 2

 does not exist. Hence f  cannot be continuous at ( , )0 0 .
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Example 8.10

 Consider g x y x y
x y

( , ) =
+

2 2

2 2
 if ( , ) ( , )x y ¹ 0 0  and g( , )0 0 0= . Show that g  is continuous on 2 .

Solution
 Observe that the function g 	is	defined	for	all	 ( , )x y ∈2 .	It	is	easy	to	check,	as	in	the	above	

examples, that g  is continuous at all point ( , ) ( , )x y ¹ 0 0 .	Next	we	shall	check	the	continuity	of	 g  at 

( , )0 0 . For that we see if g  has a limit L  at ( , )0 0  and if L g= =( , )0 0 0 . So we consider

   g x y g( , ) ( , )− 0 0  =  2
0

2 22

2 2

2

2 2 2 2

2 2

2 2

x y
x y

x y
x y

xy x
x y

x y x
x y

x
+

− =
+

=
+

≤
+
+

≤
( )

  ... (9)

	 Note	 that	 in	 the	final	step	above	we	have	used	 2 2 2xy x y≤ +  (which follows by considering 

0 2≤ −( )x y ) for all x y, ∈ . Note that ( , ) ( , )x y → 0 0  implies x → 0 . Then from (9) it follows that 

lim ( , )
( , ) ( , )x y

x y
x y

g
→ +

= =
0 0

2

2 2

2
0 0 0 ;	which	proves	 that	 g is continuous at ( , )0 0 . So g  is continuous at 

every point of 2 .

EXERCISE 8.3
 1. Evaluate lim ( , )

( , ) ( , )x y
g x y

→ 1 2
, if the limit exists, where g x y x xy

x y
( , ) =

−
+ +

3

3

2

2 2
.

 2. Evaluate lim cos
( , ) ( , )x y

x y
x y→

+
+ +











0 0

3 2

2
. If the limit exists.

 3. Let f x y y xy
x y

( , ) = −
−

2

 for ( , ) ( , )x y ¹ 0 0 . Show that lim ( , )
( , ) ( , )x y

f x y
→

=
0 0

0 .

 4. Evaluate lim cos
sin

( , ) ( , )x y

xe y
y→











0 0
, if the limit exists.

 5. Let g x y x y
x y

( , ) =
+

2

4 2
 for ( , ) ( , )x y ¹ 0 0  and f ( , )0 0 0= .

   (i) Show that lim ( , )
( , ) ( , )x y

g x y
→

=
0 0

0  along every line y mx m= ∈,  .

   (ii) Show that lim ( , )
( , ) ( , )x y

g x y k
k→

=
+0 0 21

 along every parabola y kx k= ∈2 0, \{ } .

 6.  Show that f x y x y
y

( , ) =
−
+

2 2

2 1
 is continuous at every ( , )x y ∈2 .

 7. Let g x y e x
x

y

( , )
sin

= , for x ¹ 0  and g( , )0 0 1= . Show that g  is continuous at ( , )0 0 .
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8.5 Partial Derivatives
 In this section, we shall see how the concept of derivative for functions of one variable may be 
generalized to real-valued function of several variables. First we consider functions of two variables. 
Let A x y a x b c y d= < < < <{ } ⊂( , ) , 

2 , and F A: →   be a real-valued function. Suppose that 

( , )x y A0 0 ∈ ;	and	we	are	interested	in	finding	the	rate	of	change	of	 F  at ( , )x y0 0  with respect to the 
change only in the variable x . As we have seen above F x y( , )0  is a function of x  alone and it will 
represent a curve obtained by intersecting the surface z F x y= ( , )  with y y= 0  plane. So we can 
discuss the slope of the tangent to the curve z F x y= ( , )0  at x x= 0 	by	finding	derivative	of	 F x y( , )0  
with respect to x  and evaluating it at x x= 0 .	Similarly,	we	can	find	the	slope	of	the	curve	 z F x y= ( , )0  
at y y= 0 	by	finding	derivative	of	 F x y( , )0  with respect to y  and evaluating it at y y= 0 . These are 
the	key	ideas	that	motivate	us	to	define	partial	derivatives	below.

 Fig. 8.11 Fig. 8.12

Definition 8.8

 Let A x y a x b c y d F A= < < < <{ } ⊂ →( , ) , , : 

2  and ( , )x y A0 0 ∈ .

 (i) We say that F  has a partial derivative with respect to x  at ( , )x y A0 0 ∈  if

   lim
( , ) ( , )

h

F x h y F x y
h→

+ −
0

0 0 0 0   ... (10)

  exists. In this case, the limit value is denoted by ∂
∂
F
x
x y( , )0 0 .

 (ii) We say F  has a partial derivative with respect to y  at ( , )x y A0 0 ∈  if

   lim
( , ) ( , )

k

F x y k F x y
k→

+ −
0

0 0 0 0   ... (11)

  exists. In this case, the limit value is denoted by ∂
∂
F
x
x y( , )0 0 .

Remarks
	 1.	Partial	derivatives	for	functions	of	three	or	more	variables	are	defined	exactly	in	a	similar	

manner.
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 2. We read ∂F  as “partial F ” and ∂x  as “partial x ”. And we read ∂
∂
F
x

 as “partial F  by 

partial x ”. It is also read as “dho F  by dho x ”.

 3. Similarly, we read ∂
∂
F
x

 as “partial F  by partial y ” or as “dho F  by dho y .

 4. Sometimes ∂
∂
F
x
x y( , )0 0  is also denoted by F x yx ( , )0 0  or ∂

∂
F
x
x y( , )( , ). ( , ) ( , ),x y y

F
y

x y F x y
0 0 0 0 0 0 Similarly  is denoted by  or

�
�

  
�
�
F
y

x y
x y

( , )
( , )0 0

 

( , ). ( , ) ( , ),x y y
F
y

x y F x y
0 0 0 0 0 0 Similarly  is denoted by  or

�
�

  
�
�
F
y

x y
x y

( , )
( , )0 0

	 5.	An	important	thing	to	notice	is	that	while	finding	partial	derivative	of	 F  with respect to x , 
we treat the y 	variable	as	a	constant	and	find	derivative	with	respect	to	 x . That is, except 
for	the	variable	with	respect	to	which	we	find	partial	derivative,	all	other	variables	are	treated	
as constants. That is why we call them as “partial derivative”.

 6. If F  has a partial derivative with respect to x  at every point of A , then we say that ∂
∂
F
x
x y( , )  

exists on A . Note that in this case ∂
∂
F
x
x y( , ) 	is	again	a	real-valued	function	defined	on	 A .

 7. In the light of ( )4 , it is easy to see that all the rules (Sum, Product, Quotient, and Chain rules) 
of differentiation and formulae that we have learnt earlier hold true for the partial differentiation 
also.

 Recall that for a function of one variable, differentiability at a point always implies continuity at 

that point. For a function F  of two variables x y, 	we	have	defined	 ∂
∂
F
x
u v( , )  and ∂

∂
F
y
u v( , ) . Do the 

existence of partial derivatives of F  at a point ( , )u v  implies continuity of F  at ( , )u v ? Following 
example illustrates that this may not necessarily happen always.

Example 8.11
 Let f x y( , ) = 0  if xy¹ 0  and f x y( , ) =1  if xy = 0 .

 (i) Calculate : 
∂
∂

∂
∂

f
x

f
y

( , ), ( , )0 0 0 0 .

 (ii) Show that f  is not continuous at ( , )0 0 .

Solution
 Note that the function f 	takes	value	1 on the x y, -axes and 0  everywhere else on 2 . So let us 
calculate

   ∂
∂
f
x

( , )0 0  =  lim ( , ) ( , )
lim

h h

f h f
h h→ →

+ −
=

−
=

0 0

0 0 0 0 1 1
0 ;

   ∂
∂
f
y

( , )0 0  =  lim ( , ) ( , )
lim

k k

f k f
k k→ →

+ − = − =
0 0

0 0 0 0 1 1
0 .

This completes (i).
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Now for (ii) let us calculate the limit of f  as ( , ) ( , )x y → 0 0  along the line y x= . Then 

lim ( , )
( , ) ( , )x y

f x y
→

=
0 0

0 ;	because	along	the	line	 y x=  when x f x y≠ =0 0, ( , ) , But f ( , )0 0 1 0= ≠ ;	hence	

f  cannot be continuous at ( , )0 0 .

Example 8.12
 Let F x y x y y x( , ) = + +3 2 7  for all ( , )x y ∈2 . Calculate ∂

∂
−

F
x

( , )1 3  and ∂
∂

−
F
y

( , )2 1 .

Solution

 First we shall calculate ∂
∂
F
x
x y( , ) , then we evaluate it at ( , )−1 3 . As we have already observed, 

we	find	the	derivative	with	respect	to	 x  holding y  as a constant. That is,

   ∂
∂

= ∂ + +
∂

F
x
x y x y y x

x
( , )

( )3 2 7  =  ∂
∂

+ ∂
∂

+ ∂
∂

( ) ( ) ( )x y
x

y x
x x

3 2 7

    =  3 02 2x y y+ +

    =  3 2 2x y y+ .

 So ∂
∂

− = − + =
F
x

( , ) ( )1 3 3 1 3 3 182 2 .

	 Next	similarly	we	find	partial	derivative	with	respect	to	y.

   ∂
∂

= ∂ + +
∂

F
y
x y x y y x

y
( , )

( )3 2 7  =  ∂
∂

+ ∂
∂

+ ∂
∂

( ) ( ) ( )x y
y

y x
y y

3 2 7

    =  x yx3 2 0+ +

    =  x yx3 2+ .

 Hence we have ∂
∂

− = − + − = −
F
y

( , ) ( ) ( )( )2 1 2 2 1 2 123 .

Note that in the above example ∂
∂

= +
F
x
x y x y y( , ) 3 2 2 , which is again a function of two variables. So 

we	can	take	the	partial	derivative	of	this	function	with	respect	to	 x  or y .	For	instance,	if	we	take	

G x y x y y( , ) = +3 2 2 ,	 then	we	find	 ∂
∂

=
G
x

xy6 . Since G x y F
x

( , ) =
∂
∂

, we have ∂
∂

=
∂
∂

∂
∂







 =

G
x x

F
x

xy6 . 

We denote this as ∂
∂

2

2

F
x

;	which	is	called	the	second order partial derivative of F  with respect to x  . 

Also, ∂
∂

= +
G
y

x y3 22 . Since G x y F
x

( , ) =
∂
∂

, we have ∂
∂

=
∂
∂

∂
∂







 = +

G
y y

F
x

x y3 22 . We denote this as 

∂
∂ ∂

2F
y x

;	which	is	called	the	mixed partial derivative of F  with respect to x y, . Similarly we can also 

calculate ∂
∂

∂
∂









 = +

x
F
y

x y3 22 .
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 Also, if we differentiate ∂
∂
F
y
x y( , )  partially with respect to y  we obtain ∂

∂

2

2

F
y

;	which	is	called	the	

second order partial derivatives of F  with respect to y . So for any function F 	defined	on	any	subset	 
{(x,y) | a < x < b, c < y < d} ⊂ 2  we have the following notation :

   ∂
∂

2

2

F
x

 =  ∂
∂

∂
∂







= ∂
∂ ∂

= ∂
∂

∂
∂







=
x

F
x

F F
x y x

F
y

Fxx xy,
2

   ∂
∂ ∂

2F
y x

 =  ∂
∂

∂
∂







= ∂
∂

= ∂
∂

∂
∂







=
y

F
x

F F
y y

F
y

Fyx yy,
2

2
 

 All the above are called second order partial derivatives of F .	Similarly	we	can	define	higher	

order partial derivatives. For example, ∂
∂ ∂

=
∂
∂

∂
∂

∂
∂



















3

2

F
y x y y

F
x

, and ∂
∂ ∂ ∂

= ∂
∂

∂
∂

∂
∂













3F
x y x x y

F
x

. 

 Next we shall see more examples on partial differentiation.

Example 8.13

 Let f x y xy ex y( , ) sin( )= + +2 53

 for all ( , )x y ∈2 . Calculate ∂
∂

∂
∂

f
x

f
y

, , ∂
∂ ∂

2 f
y x

 and ∂
∂ ∂

2 f
x y

.

Solution
 First we shall calculate ∂

∂
f
x
x y( , ) . Note that f  is a sum of two functions and so

   ∂
∂
f
x

 =  ∂
∂

+
∂
∂ ( )+

x
xy

x
ex ysin( )2 53

 

    =  cos( ) ( ) ( )xy
x
xy e

x
x yx y2 2 5 33

5
∂
∂

+
∂
∂

++

    =  cos( )xy y e xx y2 2 5 23

3+ + .

 Similarly,

   ∂
∂
f
y

 =  ∂
∂

+
∂
∂ ( )+

y
xy

y
ex ysin( )2 53

 

    =  cos( ) ( ) ( )xy
y
xy e

y
x yx y2 2 5 33

5
∂
∂

+
∂
∂

++

    =  cos( )xy xy ex y2 52 5
3

+ + .

 Next we consider,

   ∂
∂ ∂

2 f
y x

 =  ∂
∂

∂
∂







 =

∂
∂

+( )+

y
f
x y

y xy x ex y2 2 2 53
3

cos( )

    =  ∂
∂

+
∂
∂ ( )+

y
y xy

y
x ex y( cos( ))2 2 2 53

3

    =  2 2 3 52 2 2 2 53

y xy y xy xy x ex ycos( ) sin( )+ −( ) + +

    =  2 2 152 3 2 2 53

y xy xy xy x ex ycos( ) sin( )− + + . 
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Finally, 

   ∂
∂ ∂

2 f
x y

 =  ∂
∂

∂
∂








 =

∂
∂

+( )+

x
f
y x

xy xy ex ycos( )2 52 5
3

    =  − + + +sin( ) cos( )xy y xy xy y e xx y2 2 2 5 22 2 5 3
3

    =  2 2 152 3 2 2 53

y xy xy xy x ex ycos( ) sin( )− + + .

Note	that	we	have	first	used	sum	rule,	then	in	the	next	step	we	have	used	chain	rule.	In	the	third	step,	
product rule is used. Also, we see that f fxy yx= . Is it a coincidence? or is it always true? Actually, 

there are functions for which f fxy yx¹  at some points. The following theorem gives conditions under 

which f fxy yx= .

Theorem 8.1 (Clairaut’s Theorem)
 Suppose that A x y a x b c y d= < < < <{ } ⊂( , ) | , 

2 , F A: →  .  If fxy  and f yx  exist in A  are 
continuous in A , then f fxy yx=  in A .

We omit the discussion on the proof at this stage.

Example 8.14

 Let w x y xy e
y

y

( , ) = +
+2 1

 for all ( , )x y ∈2 . Calculate ∂
∂ ∂

2w
y x

 and ∂
∂ ∂

2w
x y

.

Solution

 First we calculate ∂
∂

=
∂
∂

+
∂

+










∂
w
x
x y xy

x

e
y
x

y

( , )
( )

2 1
. 

 This gives ∂
∂

= +
w
x
x y y( , ) 0  and hence ∂

∂ ∂
=

2

1
w
y x

x y( , ) . On the other hand,

   ∂
∂
w
y
x y( , )  =  ∂

∂
+
∂

+










∂
( )xy
y

e
y
y

y

2 1
.

    =  x y e e y
y

y y

+
+ −

+
( )

( )

2

2 2

1 2

1
.

 Hence ∂
∂ ∂

=
2

1
w
x y

x y( , ) .

Definition 8.9

 Let A x y a x b c y d= < < < <{ } ⊂( , ) | , 

2 . A function u A: → 

2  is said to be harmonic in 

A 	if	it	satisfies	 ∂
∂

+
∂
∂

= ∀ ∈
2

2

2

2
0

u
x

u
y

x y A, ( , ) . This equation is called Laplace’s equation.

Laplace’s	equation	occurs	in	the	study	of	many	natural	phenomena	like	heat	conduction,	electrostatic 
field,	fluid	flows	etc.
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Example 8.15
 Let u x y e xy( , ) cos( )= −2 2  for all ( , )x y ∈2 . Prove that u  is a harmonic function in 2 .

Solution
 We need to show that u 	 satisfies	 the	 Laplace’s	 equation	 in	 2 . Observe that 

u x y e xx
y( , ) ( )sin( )= −−2 2 2  and hence u x y e xxx

y( , ) ( )( ) cos( )= −−2 2 2 2 .

Similarly, u x y e xy
y( , ) ( ) cos( )= −−2 2 2  and u x y e xyy

y( , ) ( )( ) cos( )= − − −2 2 22 .

Thus, u u e x e xxx yy
y y+ = − + =− −4 2 4 2 02 2cos( ) cos( ) .

EXERCISE 8.4
 1. Find the partial derivatives of the following functions at the indicated points.

   (i) f x y x xy y x( , ) , ( , )= − + + + −3 2 5 2 2 52 2  

   (ii) g x y x y x( , ) , ( , )= + + + −3 5 2 1 22 2  

   (iii) h x y z x xy z x( , , ) sin( ) , , ,= + 





2 2
4

1
p   

   (iv) G x y e x yx y( , ) log( ), ( , )= + −+3 2 2 1 1  

 2.	For	each	of	the	following	functions	find	the	 f fx y, , and show that f fxy yx= .

  (i) f x y x
y x

( , )
sin

=
+
3  (ii) f x y x

y
( , ) tan=











−1  (iii) f x y x xy( , ) cos( )= −2 3

 3. If U x y z x y
xy

z y( , , ) =
+

+
2 2

23 ,	find	 ∂
∂

∂
∂

U
x

U
y

, , and ∂
∂
U
z

.

 4. If U x y z x y z( , , ) log( )= + +3 3 3 ,	find	 U
x

U
y

U
z

.

 5.	For	each	of	the	following	functions	find	the	 g g gxy xx yy, ,  and gyx .

   (i) g x y xe x yy( , ) = + 3 2   (ii) g x y x y( , ) log( )= +5 3

   (iii) g x y x xy y x( , ) cos( )= + − +2 3 7 5

 6. Let w x y z
x y z

x y z( , , ) , ( , , ) ( , , )=
+ +

≠1
0 0 0

2 2 2
. Show that ∂

∂
+
∂
∂

+
∂
∂

=
2

2

2

2

2

2
0

w
x

w
y

w
z

. 

 7. If V x y e x y y yx( , ) ( cos sin )= − , then prove that ∂
∂

+
∂
∂

=
2

2

2

2
0

V
x

V
y

.

 8. If w x y xy xy( , ) sin( )= + , then prove that 
2 2w

y x
w

x y
.
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 9. If v x y z x y z xyz( , , ) = + + +3 3 3 3 , show that ∂
∂ ∂

=
∂
∂ ∂

2 2v
y z

v
z y

.

 10.	A	firm	produces	two	types	of	calculators	each	week,	 x  number of type A  and y  number of 

type B .	 The	 weekly	 revenue	 and	 cost	 functions	 (in	 rupees)	 are	

R x y x y xy x y( , ) . . .= + + − −80 90 0 04 0 05 0 052 2  and C x y x y( , ) = + +8 6 2000  respectively.

	 	 	 (i)	Find	the	profit	function	P x y( , ) , 

   (ii) Find ∂
∂
P
x

( , )1200 1800  and ∂
∂
p
y

( , )1200 1800  and interpret these results. 

8.6 Linear Approximation and Differential of a function of several variables
 Earlier in this chapter, we have seen that linear approximation and differential of a function of 
one variable. Here we introduce similar ideas for functions of two variables and three variables. In 
general	for	functions	of	several	variables	these	concepts	can	be	defined	similarly.

Definition 8.10

 Let A x y a x b c y d F A= < < < <{ } ⊂ →( , ) | , , : 

2 , and ( , )x y A0 0 ∈ .

 (i) The linear approximation of F  at ( , )x y A0 0 ∈ 	is	defined	to	be

  F x y F x y F
x

x x( , ) ( , ) ( )0 0 0
y y( )0

x y( , )0 0

F
x x y( , )0 0

  ... (12)

 (ii) The differential of F 	is	defined	to	be

  dF F
x
x y dx F

y
x y dy=

∂
∂

+
∂
∂

( , ) ( , ) , ... (13)

  where dx x= ∆  and dy y= ∆ ,

Here we shall outline the linear approximations and differential for the functions of three variables. 
Actually,	we	can	define	linear	approximations	and	differential	for	real	valued	function	having	more	
variables, but we restrict ourselves to only three variables.

Definition 8.11

 Let A x y z a x b c y d e z f F A= < < < < < <{ } ⊂ →( , , ) | , , , : 

3  and ( , , )x y z A0 0 0 ∈ .

 (i) The linear approximation of F  at ( , , )x y z A0 0 0 ∈ 	is	defined	to	be

      F x y z F x y z F
x

x x F
y

y
x y z x y z

( , , ) ( , , ) ( ) (
( , , ) ( , , )

= + ∂
∂

− + ∂
∂0 0 0 0

0 0 0 0 0 0

−− + ∂
∂

−y F
z

z z
x y z

0 0

0 0 0

) ( );
( , , )

 

      ...(14)
 (ii) The differential of F 	is	defined	by

   dF F
x
x y z dx F

y
x y z dy F

z
x y z dz=

∂
∂

+
∂
∂

+
∂
∂

( , , ) ( , , ) ( , , ) , ...(15)) 

  where dx x dy y= =∆ ∆,  and dz z= ∆ ,
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Geometrically, in the case of function f  of one 

variable, the linear approximation at a point x0  

represents the tangent line to the graph of y f x= ( )  at 

x0 . Similarly, in the case of a function F  of two 

variables, the linear approximation at a point ( , )x y0 0  

represents the tangent plane to the graph of z F x y= ( , )  

at ( , )x y0 0 .

Example 8.16
 If w x y z x y y z z x x y z( , , ) , , ,= + + ∈2 2 2

 ,	find	the	differential	dw .

Solution
	 First	let	us	find	w wx y, , and wz .

 Now w xy z w yz xx y= + = +2 22 2,  and w zx yz = +2 2 .

 Thus,by (15), the differential is
dw xy z dx yz x dy zx y dz= + + + + +( ) ( ) ( )2 2 22 2 2 .

Example 8.17
 Let U x y z x xy z x y z( , , ) sin , , ,= − + ∈2 3  . Find the linear approximation for U  at  

( , , )2 1 0− .

Solution
 By (14), Linear approximation is given by

 L x y z U x y z U
x

x x U
y

y
x y z x y z

( , , ) ( , , ) ( ) (
( , , ) ( , , )

= + ∂
∂

− + ∂
∂0 0 0 0

0 0 0 0 0 0

−− + ∂
∂

−y U
z

z z
x y z

0 0

0 0 0

) ( )
( , , )

.

 Now U x y U xx y= − = −2 ,  and U zz = 3cos .

 Here ( , , ) ( , , )x y z0 0 0 2 1 0= − , hence U Ux y( , , ) , ( , , )2 1 0 5 2 1 0 2− = − = −  and Uz ( , , )2 1 0 3− = .

 Thus L x y z x y z x y z( , , ) ( ) ( ) ( )= + − − + + − = − + −6 5 2 2 1 3 0 5 2 3 6  is the required linear 

approximation for U  at ( , , )2 1 0− .

EXERCISE 8.5
 1. If w x y x xy y x y( , ) , ,= − + ∈3 23 2  ,	find	the	linear	approximation	for	w  at ( , )1 1− .

 2. Let z x y x y xy x y( , ) , ,= + ∈2 43  . Find the linear approximation for z  at ( , )2 1− .

 3. If v x y x xy y x y R( , ) , ,= − + + ∈2 21

4
7 ,	find	the	differential	dv .

Fig. 8.13
Linear Approximation by Tangent Plane
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Fig. 8.14

w x t y t( ( ), ( ))

dw
dt

∂w
∂x

dx
dt

∂w
∂y

dy
dt

� �

dx
dt

dy
dt

dw
dx

dw
dy

x y

 4. Let W x y z x xy z x y z( , , ) sin , , ,= − + ∈2 3  . Find the linear approximation at ( , , )2 1 0− .

 5. Let V x y z xy yz zx x y z( , , ) , , ,= + + ∈ . Find the differential dV .

8.6.1 Function of Function Rule
 Let F  be a function of two variables x y, . Sometimes these variables may be functions of a 

single variable having same domain. In this case, the function F  ultimately depends only on one 

variable. So we should be able to treat this F  as a function of single variable and study about dF
dt

. In 

fact, this is not a coincidence, it can be proved that

Theorem 8.2
Suppose that W x y( , )  is a function of two variables x y,  having 

partial derivatives ∂
∂

∂
∂

W
x

W
y

, . If both the variables x y,  are 

differentiable functions of a single variable t , then W  is a differentiable 

function of t  and

   ∂
=
∂
∂

+
∂
∂

W
dt

W
x
dx
dt

W
y
dy
dt

 ...(16)

 Let us consider an example illustrating the above theorem.

Example 8.18

 Verify the above theorem for F x y x y xy( , ) = − +2 22 2  and  
x t t y t t t( ) cos , ( ) sin , [ , ]= = ∈ 0 2π .

Solution

 Let F(x,y) = x2 – 2y2 + 2xy and x(t) = cost, y(t) = sint.

 Then F x y t t t t( , ) cos sin cos sin= − +2 22 2  and thus F  has becomes a function of one variable 
t . So by using chain rule, we see that

   dF
dt

 =  2 4 2 2 2cos ( sin ) sin cos ( sin cos )t t t t t t− − + − +

    =  − + − +6 2 2 2cos sin ( sin cos )t t t t .
 On the other hand if we calculate

   ∂
∂

+
∂
∂

F
x
dx
dt

F
y
dy
dt

 =  ( ) ( )2 2 2 4x y dx
dt

x y dy
dt

+ + −

    =  2 2 2(cos sin )( sin ) (cos sin )(cos )t t t t t t+ − + −

    =  − + − +6 2 2 2cos sin ( sin cos )t t t t  

    =  dF
dt

.
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Example 8.19
 Let g x y x yx x y x t e y t t tt( , ) sin( ), ( ) , ( ) ,= − + + = = ∈2 3 2    . Find dg

dt
.

Solution
 We shall follow the tree diagram to calculate.

So	first	we	need	to	find	 ∂
∂

∂
∂

g
x

g
y

dx
dt

, ,   and dy
dt

.

Now ∂
∂

= − + + ∂
∂

= − + + =g
x

x y x y g
y

x x y dx
dt

e t2 3 3cos( ), cos( ),   and dy
dt

t= 2 .

Thus
   dg

dt
 =  

∂
∂

+ ∂
∂

g
x
dx
dt

g
y
dy
dt

 

    =  2 3 23x y x y e x x y tt− + +( ) + − + +( )( )cos( ) cos( )

    =  ( cos( )) ( cos( ))( )2 3 23 2 3 2 3 3 3 2e t e t e e e t tt t t t t− + + + − + +

    =  6 3 3 2 26 2 3 3 3 2 3 3 2e t e e e t te t e tt t t t t t− + + − + +cos( ) cos( ) .
 Also, some times our W x y( , )  will be such that x x s t= ( , ) , and y y s t= ( , )  where s t, ∈ . Then 
W  can be considered as a function that depends on s  and t . If x y,  both have partial derivatives with 
respect to s t,  and W  has partial derivatives with respect to x yand , then we can calculate the partial 
derivatives of W  with respect to s  and t  using the following theorem.

Theorem 8.3
 Suppose that W x y( , )  is a function of two variables x y,  

having partial derivatives ∂
∂

∂
∂

W
x

W
y

, . If both variables x = x(s,t) 

and y = y(s,t), where s t, ∈ , have partial derivatives with 
respect to both s and t, then 

 ∂
∂
W
s

 =  ∂
∂

∂
∂
+
∂
∂

∂
∂

W
x
x
s

W
y
y
s

, ... (17)

 ∂
∂
W
t

 =  ∂
∂

∂
∂
+
∂
∂

∂
∂

W
x
x
t

W
y
y
t

. ... (18)

We omit the proof. The above theorem is very useful. For instance, consider the situation in which 
x r= cosθ , and y r= ≥sin ,θ 0  and θ ∈ , (change from cartesian co-ordinate to polar  
co-ordinate system). The above theorem can be generalized for functions having n  number of variables.
 Let us consider an example.

Example 8.20
 Let g x y y x x r s y r s r s( , ) , , , ,= + = − = + ∈2 2 22 2

 . Find ∂
∂

∂
∂

g
r

g
s

, .

Solution
 Here again we shall use the tree diagram to calculate ∂

∂
∂
∂

g
r

g
s

,

	 Hence	we	find		 ∂
∂
g
x

 =  2 2 2 1 2x g
y

x
r

x
s

y
r

r, , , ,    
∂
∂

= ∂
∂

= ∂
∂

= − ∂
∂

=  , and ∂
∂

=
y
s

2 .

Fig. 8.15
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 Now ∂
∂
g
r

 =  ∂
∂

∂
∂

+ ∂
∂

∂
∂

= + = −g
x
x
r

g
y
y
r

x r r s2 2 2 2 12 4( ) ( ) .

 also, ∂
∂
g
s

 =  ∂
∂

∂
∂

+ ∂
∂

∂
∂

= − + = − +g
x
x
s

g
y
y
s

x s r2 1 2 2 2 4 4( ) ( ) .

EXERCISE 8.6

 1. If u x y x y xy x et( , ) ,= + =2 43   and y t= sin , 	find	 du
dt

 and evaluate it at t = 0 .

 2. If u x y z xy z x t y t z e du
dt

t( , , ) , sin , cos , ,= = = = +2 3 21   find .

 3. If w x y z x y z x e y e tt t( , , ) , , sin= + + = =2 2 2    and z e tt= cos ,	find	 dw
dt

.

 4. Let U x y z xyz x e y e t z t tt t( , , ) , , cos , sin ,= = = = ∈− −     . Find dU
dt

.

 5. If w x y x xy y x e y s ss( , ) , , cos ,= − + = = ∈6 3 23 2     ,	find	 dw
ds

, and evaluate at s = 0 ,

 6. If z x y x xy x t y se tt( , ) tan ( ), , , s,= = = ∈−1 2   . Find ∂
∂
z
s

 and ∂
∂
z
t

 at s = t = 1.

 7. Let U x y e yx( , ) sin= , where x st y s t s t= = ∈2 2, , ,    . Find ∂
∂

∂
∂

U
s

U
t

,  and evaluate  
them at s = t = 1.

 8. Let z x y x x y( , ) = −3 2 33 , where x se y se s tt t= = ∈−, , ,  . Find ∂
∂
z
s

 and ∂
∂
z
t

.

 9. W x y z xy yz zx x u v y uv z u v u v( , , ) , , , , ,= + + = − = = + ∈    . Find ∂
∂

∂
∂

W
u

W
v

, , and 

evaluate them at 1

2
1,







 .

8.6.2 Homogeneous Functions and Euler’s Theorem

Definition 8.12

 (a) Let A x y a x b c y d F A= < < < < ⊂ →{( , ) | , } , :   

2 , we say that F  is a homogeneous 

function on A , if there exists a constant p  such that F x y F x yp( , ) ( , )λ λ λ=  for all λ∈  

such that ( , )λ λx y A∈ . This constant p  is called degree of F .

 (b) Let B x y z a x b c y d u z v G B= < < < < < < ⊂ →{( , , ) | , , } , :    

3 , we say that G  is a 

homogeneous function on B , if there exists a constant p such that G x y z G x y zp( , , ) ( , , )λ λ λ λ=  

for all λ∈  such that ( , , )λ λ λx y z B∈ . This constant p  is called degree of G . 
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 These types of functions are important in Ordinary differential equations (Chapter 10). Let us 
consider some examples.
 Consider F x y( , )  =  x y xy x y3 3 2 22 5− + ∈, ( , )  . Then

   F x y( , )λ λ  =  ( ) ( ) ( )( ) ( )λ λ λ λ λx y x y x y xy3 3 2 3 3 3 22 5 2 5− + = − +

and hence F  is a homogeneous function of degree 3.
 On the other hand, 
   G x y( , )  =  e yx2

3+ 2  is not a homogeneous function because,

   G x y( , )λ λ  =  e y G x yx p( ) ( ) ( , )λ λ λ
2

3 2+ ≠  
 for any λ ≠1 and any p .

Example 8.21

 Show that F x y x xy y
x y

( , ) =
+ −

+

2 25 10

3 7
 is a homogeneous function of degree 1. 

Solution

 We compute

   F x y( , )λ λ  =  ( ) ( )( ) ( )λ λ λ λ
λ λ

λ
λ

λx x y y
x y

x xy y
x y

2 2 2 2 25 10

3 7

5 10

3 7

+ −
+

= + −
+







= FF x y( , )

for all λ∈ . So F  is a homogeneous function of degree 1.
We state the following theorem of Leonard Euler on homogeneous functions.

Definition 8.13 (Euler)
Suppose that A x y a b c y d F A= < < <{ } ⊂ →( , ) | , , :   

2 2 . If F  is having continuous partial 
derivatives and homogeneous on A , with degree p , then

 x F
x
x y y F

f
x y pF x y x y A∂

∂
+ ∂

∂
= ∀ ∈( , ) ( , ) ( , ) ( , )  .

 Suppose that B x y z a x b c y d u z v F B= < < < < < <{ } ⊂ →( , , ) | , , , :    

3 3 . If F  is having 
continuous partial derivatives and homogeneous on B , with degree p , then

   x F
x
x y z y F

f
x y z z F

y
x y z pF x y z x y z∂

∂
+ ∂

∂
+ ∂

∂
= ∀( , , ) ( , , ) ( , , ) ( , , ) ( , , )  ∈∈B .

We omit the proof. The above theorem is also true for any homogeneous function of n variables;	and 
is	useful	in	certain	calculations	involving	first	order	partial	derivatives.

Example 8.22

 If u x y
x y

=
+
+











−sin 1 , Show that x u
x

y u
y

u∂
∂

+
∂
∂

=
1

2
tan .

Solution
 Note that the function u  is not homogeneous. So we cannot apply Euler’s Theorem for u . 

However, note that f x y x y
x y

u( , ) sin=
+
+

= 	is	homogeneous;	because
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f tx ty tx ty
tx ty

t
t
t f x y x y t( , ) ( , ), , ,/= +

+
= = ∀ ≥1 2 0  .

 Thus f  is homogeneous with degree 1

2
, and so by Euler’s Theorem we have

   x f
x
y f
y

∂
∂

+
∂
∂

 =  1
2
f x y( , ) .

 Now substituting f u= sin  in the above equation, we obtain

   x u
x

y u
y

∂
∂

+
∂
∂

(sin ) (sin )  =  1

2
sin u

   x u u
x

y u u
y

cos cos
∂
∂

+
∂
∂

 =  1

2
sin u  ... (19)

 Dividing both sides by cosu  we obtain

   x u
x

y u
y

∂
∂

+
∂
∂

 =  1

2
tan u .

 Note: 
	 Solving	this	problem	by	direct	calculation	will	be	possible;	but	will	involve	lengthy	calculations.

EXERCISE 8.7

 1. In each of the following cases, determine whether the following function is homogeneous or 
not.	If	it	is	so,	find	the	degree.

   (i) f x y x y x( , ) = + +2 36 7  (ii) h x y x y y x y
x y

( , ) =
− +
+

6 9

2020 2019

2 3 5 4

2 2

π  

   (iii) g x y z
x y z
x y

( , , ) =
+ +
+

3 5

4 7

2 2 2

  (iv) U x y z xy y z
xy

( , , ) sin= + −





2 22
.

 2. Prove that f x y x x y xy y( , ) = − + +3 2 2 32 3 	 is	 homogeneous;	 what	 is	 the	 degree?	 Verify	

Euler’s Theorem for f .

 3. Prove that g x y x y
x

( , ) log= 





 	is	homogeneous;	what	is	the	degree?	Verify	Euler’s	Theorem 

for g .

 4. If u x y x y
x y

( , ) =
+
+

2 2

, prove that x u
x

y u
y

u∂
∂

+
∂
∂

=
3

2
.

 5. If v x y x y
x y

( , ) log=
+
+











2 2

, prove that x v
x
y v
y

∂
∂
+

∂
∂

=1.

 6. If w x y z x y y xz y z
x y

( , , ) log=
+ −

+










5 7 753 4 2 4 3 4

2 2
,	find	 x w

x
y w
y

z w
z

∂
∂

+ ∂
∂

+ ∂
∂

 .
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EXERCISE 8.8

Choose the correct or the most suitable answer from the given four alternatives :
 1. A circular template has a radius of  10 cm. The measurement of radius has an approximate 

error of 0.02 cm. Then the percentage error in calculating area of this template is
  (1) 0.2% (2) 0.4% (3) 0.04% (4) 0.08%
 2.	 The	percentage	error	of	fifth	root	of	31	is	approximately	how	many	times	the	percentage	

error in 31?

  (1) 1

31
  (2) 1

5
 (3) 5 (4) 31

 3. If u x y ex y( , ) = +2 2

, then ∂
∂
u
x

 is equal to 

  (1) ex y2 2+   (2) 2xu  (3) x u2   (4) y u2  

 4. If v x y e ex y( , ) log( )= + , then ∂
∂
+
∂
∂

v
x

v
y

 is equal to

  (1) e ex y+     (2) 1
e ex y+

    (3) 2    (4) 1

 5. If w x y x xy( , ) ,= > 0 , then ∂
∂
w
x

 is equal to

  (1) x xy log  (2) y xlog   (3) yxy−1  (4) x ylog

 6. If f x y exy( , ) = , then ∂
∂ ∂

2 f
x y

 is equal to

  (1) xyexy  (2) ( )1+ xy exy   (3) ( )1+ y exy  (4) ( )1+ x exy

 7. If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our 
calculation of the volume is

  (1) 0.4 cu.cm (2) 0.45 cu.cm (3) 2 cu.cm (4) 4.8 cu.cm
 8. The change in the surface area S x= 6 2  of a cube when the edge length varies from x0  to 

x dx0 +  is

  (1) 12 0x dx+   (2) 12 0x dx   (3) 6 0x dx   (4) 6 0x dx+  

 9. The approximate change in the volume V of a cube of side x  metres caused by increasing 

the side by 1%  is
  (1) 0 3 3. xdxm   (2) 0 03 3. xm   (3) 0 03 2 3. x m   (4) 0 03 3 3. x m

 10. If g x y x y y x t et( , ) , ( )= − + =3 5 22 2  and y t t( ) cos= , then dg
dt

 is equal to

  (1) 6 5 42e t t tt + −sin cos sin  (2) 6 5 42e t t tt − +sin cos sin

  (3) 3 5 42e t t tt + +sin cos sin  (4) 3 5 42e t t tt − +sin cos sin
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 11. If f x x
x

( ) =
+1

, then its differential is given by

  (1) −
+
1

1 2( )x
dx   (2) 1

1 2( )x
dx

+
  (3) 1

1x
dx

+
  (4) −

+
1
1x
dx  

 12. If u x y x xy y( , ) = + + −2 3 2019 , then ∂
∂ −

u
x ( , )4 5

 is equal to

  (1) −4   (2) −3   (3) −7   (4) 13

 13. Linear approximation for g x x( ) cos=  at x = π
2

 is

  (1) x + π
2

  (2) − +x π
2

  (3) x − π
2

  (4) − −x π
2

 

 14. If w x y z x y z y z x z x y( , , ) ( ) ( ) ( )= − + − + −2 2 2 , then ∂
∂

+
∂
∂

+
∂
∂

w
x

w
y

w
z

 is

  (1) xy yz zx+ +   (2) x y z( )+   (3) y z x( )+   (4) 0

 15. If f x y z xy yz zx( , , ) = + + , then f fx z−  is equal to

  (1) z x−   (2) y z−   (3) x z−   (4) y x−  

SUMMARY
 • Let f a b R: ( , ) ®  be a differentiable function and x a b0 Î ( , )  then linear approximation L 

of f at x0  is given by
  L x f x f x x x x a b( )= + ′( ) −( )∀ ∈( )( ) ,0 0 0

 • Absolute error =Actual value – Approximate value

  Relative error= Absolute error

Actual error

  Percentage error= ×Relative error 100

  (or)

  Absolute error

Acutal error
100´

 • Let f a b: ,( )→   be a differentiable function. For x a b∈( ),  and Dx  the increment given 

to x, the differential of f	is	defined	by	 df f x x= ′( )∆ .

 • All the rules for limits (limit theorems) for functions of one variable also hold true for 

functions of several variables.

 • Let A x y a x b c y d R F A= ( ) < < < <{ }⊂ →, , , :2
  and x y A0 0,( )∈ .
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(i) F has a partial derivative with respect to x at x y A0 0,( )∈  if lim
, ,

h

F x h y F x y
h→

+( )− ( )
0

0 0 0 0

exists and it is denoted by ∂
∂ ( )

F
x x y0 0,

.

F has a partial derivative with respect to y at x y A0 0,( )∈  if lim
, ,

k

F x y k F x y
k→

+( )− ( )
0

0 0 0 0

exists	and	limit	value	is	defined	by	 ∂
∂ ( )

F
y x y0 0,

.

• Clariant’s Theorem: Suppose that A x y a x b c y d= ( ) < < < <{ }⊂, , 

2 , F A: ®  . If 

fxy  and f yx  exist in A and are continuous in A, then f fxy yx=  in A.

• Let A x y a x b c y d= ( ) < < < <{ }⊂, , 

2 . A function U A: ®   is said to be harmonic 

in A	if	it	satisfies ∂
∂
+
∂
∂
= ∀( )∈

2

2

2

2
0

u
x

u
y

x y A, , . This equation is called Laplace’s equation.

• Let A x y a x b c y d= ( ) < < < <{ }⊂, , 

2 , F A: ®   and x y A0 0,( )∈ .

(i) The linear approximation of F at x y A0 0,( )∈ 	is	defined	to	be

 L x y F x y F
x

x x F
y

y y
x y x y

, ,
, ,

( )= ( )+ ∂
∂

−( )+ ∂
∂

−( )
( ) ( )

0 0 0 0

0 0 0 0

(ii) The differential of F	is	defined	to	be	dF F
x
dx F

y
dy=

∂
∂

+
∂
∂

 where ∆x dx=  and ∆y dy= .

• Suppose w is a function of two variables x, y where x and y are functions of a single variable

‘t’ then dw
dt

w
x
dx
dt

w
y
dy
dt

=
∂
∂
⋅ +

∂
∂
⋅

• Suppose w is a function of two variables x and y where x and y are functions of two variables

s and t then, ∂
∂
=
∂
∂
⋅
∂
∂
+
∂
∂
⋅
∂
∂

w
s

w
x

x
s

w
y

y
s

,  ∂
∂
=
∂
∂
⋅
∂
∂
+
∂
∂
⋅
∂
∂

w
t

w
x

x
t

w
y

y
t

• Suppose that A x y a x b c y d= ( ) < < < <{ }⊂, , 

2 , F A: ® 

2 . If  F is having continuous 

partial derivatives and homogeneous on A, with degree p, then x F
x

y F
y

pF∂
∂
+
∂
∂
= .
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“Give me a place to stand and I will move the earth”
- Archimedes

Chapter

9 Applications of Integration

9.1.Introduction
       One of the earliest mathematicians who made wonderful discoveries to 
compute the areas and volumes of geometrical objects was Archimedes. 
Archimedes proved that the area enclosed by a parabola and a  straight line  
is 4

3
 times the area of an inscribed triangle  

(see Fig. 9.1).
 He obtained the area by segmenting it into 
infinitely many elementary areas and then finding 
their sum. This limiting concept is inbuilt in the 
definition of definite integral which we  are going 
to develop here and apply the same in finding 
areas and volumes of certain geometrical shapes.

Learning Objectives

 Upon completion of this Chapter, students will be able to
  • define a definite integral as the limit of a sum
  • demonstrate a definite integral geometrically
  • use the fundamental theorem of integral calculus
  • evaluate definite integrals by evaluating anti-derivatives
  • establish some properties of definite integrals
  • identify improper integrals and use the gamma integral
  • derive reduction formulae
  • apply definite integral to evaluate area of a plane region
  • apply definite integral to evaluate the volume of a solid of revolution

 We briefly recall what we have already studied about anti-derivative of  a given function f x( ) . 

If a function F x( )  can be found such that d
dx
F x f x( ) ( )= , then the function F x( )  is called an  

anti-derivative of f x( ) .

Fig. 9.1

Archimedes of Syracuse  
(288BC(BCE)-212BC(BCE))  
was a Greek mathematician, 
physicist, engineer, inventor

B( , )2 4

C
1

2

1

4
,









( , )−1 1 A
1

2

3

4

−2 −1 O 1 2
x

y

y
x=
2

90
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      It is not unique, because, for any arbitrary constant C , we get d
dx
F x C d

dx
F x f x[ ( ) ] [ ( )] ( )+ = = . 

That is, if F x( )  is an anti-derivative of f x( ) , then the function F x C( ) +  is also an anti-derivative of  
the same function f x( ) . Note that all anti-derivatives of  f x( )  differ by a constant only. The  
anti-derivative of f x( )  is usually called the indefinite integral of f x( )  with respect to x and is 
denoted  by f x dx( )ò .  

 A well-known property of indefinite integral is its linear property :

 α β α βf x g x dx f x dx g x dx( ) ( ) ( ) ( )+[ ] = +∫ ∫∫ , where α  and β  are constants.

 We list below some functions and their anti-derivatives (indefinite integrals): 

Function f x( ) Indefinite integral f x dx( )ò
K , a constant Kx C+  

( )ax b n+ ,where a ¹ 0  and b  are constants; and 
n ≠ −1

1

1

1

a
ax b
n

C
n( )+

+








 +

+

 

1
ax b+

, where a ¹ 0  and b  are constants 1

a
ax b Celog ( )+ +  

eax  , where a  is a non-zero constant
e
a

C
ax

+

sin( )ax b+ , where a ¹ 0  and b  are constants −
+

+
cos( )ax b

a
C

 

cos( )ax b+ , where a ¹ 0  and b  are constants
sin( )ax b

a
C+

+
 

tan( )ax b+ , where a ¹ 0  and b  are constants
1

a
ax b Clog sec( )+ +

 

cot( )ax b+ , where a ¹ 0  and b  are constants
1

a
ax b Clog sin( )+ +

sec( )ax b+ , where a ¹ 0  and b  are constants
1 log | sec( ) tan( ) |ax b ax b C
a

+ + + +

cosec( )ax b+ , where a ¹ 0  and b  are constants
 
− + − + +

1

a
ax b ax b Clog ( ) cot( )cosec

1
2 2a x+

, where a ¹ 0  is a constant 1 1

a
x
a

Ctan− 





 +

 
1

2 2a x−
, where a ¹ 0  is a constant 1

2a
a x
a x

Celog
+
−

+
 

1
2 2x a−

, where a ¹ 0  is a constant 1

2a
x a
x a

Celog
−
+

+
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Function f x( ) Indefinite integral f x dx( )ò  

1

2 2a x+
, where a  is a constant loge x a x C+ + +2 2

 

1

2 2a x−
, where a ¹ 0  is a constant sin− 






 +

1 x
a

C  

1

2 2x a−
, where a  is a constant loge x x a C+ − +2 2

 

a x2 2+ , where a  is a constant x a x a x a x Ce

2 2 2
2 2

2 2

+
+ + + +log

 

a x2 2− , where a  is a constant x a x a x
a

C
2 2 2

1

2 2

−
+ 






 +

−sin

 

x a2 2− , where a  is a constant x x a a x x a Ce

2 2 2
2 2

2 2

−
− + − +log

 

9.2 Definite Integral as the Limit of a Sum
9.2.1 Riemann Integral
 Consider a real-valued, bounded function f x( )  defined 
on the closed and bounded interval[ , ], .a b a b < The function 
f x( )  need not have the same sign on [ , ]a b ; that is, f x( )

may have positive as well as negative values on [ , ]a b . See 
Fig 9.2. Partition the interval [ , ]a b  into n  subintervals
[ , ],[ , ], ,[ , ],[ , ]x x x x x x x xn n n n0 1 1 2 2 1 1 − − −  such that

a x x x x x bn n= < < < < < =−0 1 2 1 .

 In each subinterval [ , ], , , , ,x x i ni i− =1 1 2   choose a real number ξi arbitrarily such that 
x xi i i− ≤ ≤1 ξ .

    Consider the sum f x xi i i
i

n

( )( )ξ − −
=
∑ 1

1

 = f x x f x x f x xn n n( )( ) ( )( ) ( )( )ξ ξ ξ1 1 0 2 2 1 1− + − + + − −  ….(1)

 The sum in (1) is called a Riemann sum of f x( )  corresponding to the partition  

[ , ],[ , ], ,[ , ]x x x x x xn n0 1 1 2 1 −  of [ , ].a b  Since there are infinitely many values ξi  satisfying the condition 

x xi i i− ≤ ≤1 ξ ,  there are infinitely many Riemann sums of f x( )  corresponding to the same partition  

[ , ],[ , ], ,[ , ]x x x x x xn n0 1 1 2 1 −  of [ , ].a b  If, under the limiting process n xi xi→∞ − −( )→ and max ,
1

0  

the sum in (1) tends to a finite value, say A,  then the value A  is called the definite integral of f x( )

with respect to x on [ , ]a b . It is also called the Riemann integral of f x( )  on [ , ]a b  and is denoted by 

 f x dx
a

b

( )ò and is read as the integral of f x( )  with respect to x from a to b . If a b= ,  then we have 

 f x dx
a

a

( ) .=∫ 0

x a=
x b=

xx1 x2

xn

y
f x

=
(

)

xi xn−1

x3
xi−1x0

ξ3

Fig. 9.2
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Note
 In the present chapter, we consider bounded functions f x( ) that are continuous  on[ , ]a b . 
However, the Riemann integral of  f x( )  on [ , ]a b also exists for bounded functions f x( ) that are 
piece-wise continuous  on[ , ]a b .We have used the same symbol ò both for definite integral and anti-
derivative (indefinite integral). The reason will be clear after we state the Fundamental Theorems of 
Integral Calculus. The  variable x  is dummy in the sense that it is selected at our choice only. So we 

can write  f x dx
a

b

( )ò as f u du
a

b

( )ò . So, we have  f x dx f u du
a

b

a

b

( ) ( )∫ ∫= . As max ,xi xi− −( )→1
0  all the  

three points x xi i i−1,ξ , and  of each subinterval [ , ]x xi i−1  are dragged into a single point. We have 

already indicated that there are infinitely many ways of choosing the evaluation point ξi  in the 

subinterval [ , ]x xi i−1 , i n=1 2, , , . By choosing ξi ix = −1 , i n=1 2, , , , we have 

 
  

 and max(x
f x dx f x x x

a

b

n x i i i
i

n

i i

( ) lim ( )( )
)

= −∫ ∑→∞ − →
− −

=−1 0
1 1

1

..  ...(2)

 Equation (2) is known as the left-end rule for evaluating the Riemann integral. 

 By choosing ξi ix = , i n=1 2, , , , we have 

 

  
 and max (x

f x dx f x x x
a

b

n x i i i
i

n

i i

( ) lim ( )( ).
)

= −∫ ∑→∞ − →
−

=−1 0
1

1  ...(3)

 Equation (3) is known as the right-end rule for evaluating the Riemann integral. 

 By choosing ξi i ix x
 = − +1

2
, i n=1 2, , , , we have 

 

  
 and max

f x dx f x x x x
a

b

n x x

i i
i i

i i

( ) lim (
( )

=
+






 −∫ →∞ − →

−

−1 0

1

2
−−

=
∑ 1

1

).
i

n

 ...(4)

 Equation (4) is known as the mid-point rule for evaluating the Riemann integral. 

Remarks

 (1) If the Riemann integral f x dx
a

b

( )ò  exists, then the Riemann integral f u du
a

x

( )ò is a  

well-defined real number for every x a b∈[ , ] . So, we can define a function F x( ) on [ , ]a b

such that F x f u du x a b
a

x

( ) ( ) , [ , ]= ∈∫ .

 (2) If f x( ) ≥ 0  for all x a b∈[ , ] , then the Riemann integral  

f x dx
a

b

( )ò is equal to the geometric area of the region bounded by 

the graph of y f x= ( ) , the x-axis, the lines x a= and x b= .  See 

Fig. 9.3.
Fig. 9.3

y

x
x a=

x b=

y f x= ( )

∆x

f
x(
)

O
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 (3) If f x( )£ 0  for all x a b∈[ , ] , then the Riemann integral 

f x dx
a

b

( )ò is equal to the negative of the geometric area of the 

region bounded by the graph of y f x= ( ) , the x-axis, the  

lines x a= and x b= . See Fig. 9.4. In this case, the geometric 
area of  the region bounded by the graph of y f x= ( ) , 

the x-axis, the lines x a= and x b= is given by  f x dx
a

b

( )ò .

 (4) If f x( )  takes positive as well as negative values on [ , ]a b , then the interval [ , ]a b  can be  

divided into subintervals [ , ]a c1 , [ , ]c c1 2 , , [ , ]c bk such that f x( )  has the same sign 

throughout each of subintervals. So, the Riemann integral f x dx
a

b

( )ò is given by 

  f x dx
a

b

( )ò = f x dx f x dx f x dx
a

c

c

c

c

b

k

( ) ( ) ( )

1

1

2

∫ ∫ ∫+ + + . 

  In this case, the geometric area of the region bounded by the graph of y f x= ( ) , the x-axis, 

the lines x a= and x b= is given by 

f x dx f x dx f x dx
a

c

c

c

c

b

k

( ) ( ) ( )

1

1

2

∫ ∫ ∫+ + + .

 For instance, consider the following graph of a 
function f x x a b( ), [ , ]∈ . See Fig. 9.5. Here, A1 , A2 and, 
A3 denote geometric areas of the individual parts.  

Then, the definite  integral  f x dx
a

b

( )ò is given by 

 
f x dx

a

b

( )ò
 
=  f x dx f x dx f x dx

a

c

c

c

c

b

( ) ( ) ( )

1

1

2

2

∫ ∫ ∫+ +

  =  A A A1 2 3− + .

 The geometric area of the region bounded by the graph of y f x= ( ) , the  x − axis, the lines 
x a= and x b=  is given by A A A1 2 3+ + . In view of the above discussion, it is clear that a Riemann 
integral need not represent geometrical area.

Note
 Even if we do not mention explicitly, it is always understood that the areas are measured in 
square units and volumes are measured in cubic units.

Example 9.1

 Estimate the value of x dx2

0

0 5.

ò  using the Riemann sums corresponding to 5 subintervals of equal 

width and applying (i) left-end rule (ii) right-end rule (iii) the mid-point rule.

Fig. 9.4

y

O

x a= x b=
− f x( )

∆x
x

Fig. 9.5

y f x
= ( )

x

y

x b=x a=

a Oc1
c2

A2

b

A1

A3
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Solution
   Here a  =  0 0 5 5 2, . , , ( )b n f x x= = =  

 So, the width of each subinterval is 

   h  =  ∆x b a
n

=
−

=
−

=
0 5 0

5
0 1

.
. .

 The partition of the interval is given by the points

   x0  =  0,

   x1  =  x h0 0 0 1 0 1+ = + =. .  

   x2  =  x h1 0 1 0 1 0 2+ = + =. . .

   x3   = x h2 0 2 0 1 0 3+ = + =. . .

   x4  =  x h3 0 3 0 1 0 4+ = + =. . .

   x5  =  x h4 0 4 0 1 0 5+ = + =. . .

 (i) The left-end rule for Riemann sum with equal width Dx is 

   S  =  f x f x f x xn0 1 1( ) + ( ) + + ( )  ∆− .

    ∴S  =  f f f f f0 0 1 0 2 0 3 0 4 0 1( ) + ( ) + ( ) + ( ) + ( ) . . . . ( . )

    =  0 00 0 01 0 04 0 09 0 16 0 1 0 03. . . . . ( . ) .+ + + +[ ] =

   ∴ ∫ x dx2

0

0 5.

 is approximately 0 03. .

 (ii) The right-end rule for Riemann sum with equal width Dx is 

   S  =  f x f x f x xn1 2( ) + ( ) + + ( )  ∆ .

   ∴ S  =  f f f f f0 1 0 2 0 3 0 4 0 5 0 1. . . . . ( . )( ) + ( ) + ( ) + ( ) + ( ) 

    =  0 01 0 04 0 09 0 16 0 25 0 1 0 055. . . . . ( . ) .+ + + +[ ] = .

  ∴ ∫ x dx2

0

0 5.

 is approximately 0 055. .

 (iii) The mid-point rule for Riemann sum with equal width Dx is 

   S  =  f x x f x x f x x xn n0 1 1 2 1

2 2 2

+





 +

+





 + +

+















 ∆

−
  

   ∴ S  =  f f f f f0 05 0 15 0 25 0 35 0 45 0 1. . . . . ( . )( ) + ( ) + ( ) + ( ) + ( )   

 =  0 0025 0 0225 0 0625 0 1225 0 2025 0 1. . . . . ( . )+ + + +[ ]

 =  0 04125. .

  ∴ ∫ x dx2

0

0 5.

 is approximately 0 04125. .
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EXERCISE 9.1

 1. Find an approximate value of xdx
1

1 5.

ò  by applying the left-end rule with the partition 

1 1 1 2 1 3 1 4 1 5. , . , . , . , .{ } .

 2. Find an approximate value of x dx2

1

1 5.

ò by applying the right-end rule with the partition 

1 1 1 2 1 3 1 4 1 5. , . , . , . , .{ } .

 3. Find an approximate value of ( )

.

2

1

1 5

−∫ x dx by applying the mid-point rule with the partition 

1 1 1 2 1 3 1 4 1 5. , . , . , . , .{ } .

9.2.2 Limit Formula to Evaluate  f x dx
a

b

( )ò  

 Divide the interval [ , ]a b  into n  equal subintervals  [ , ],[ , ], ,[ , ],[ , ]x x x x x x x xn n n n0 1 1 2 2 1 1 − − − such 

that a x x x x x bn n= < < < < < =−0 1 2 1 . Then, we have x x x x x x b a
nn n1 0 2 1 1− = − = = − =
−

− .Put

h b a
n

=
− .Then, we get x a ih i ni = + =, , , , .1 2 

 So, by the definition of definite integral, we get 

 
lim ( )( )

( )n x x i i i
i

n

i i

f x x x
→∞ − →

−
=−

−∑
 and max 1 0

1

1

(Right-end rule)

  =  limn i

nb a
n

f a i b a
n→∞

=

−
+

−





∑

1

.

 ∴      f x dx
a

b

( )ò  

 
=  lim ( )
n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

1

.

 Note. lim ( )
n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

0  
= lim ( ) ( )
n r

nb a
n

f a b a
n

f a b a r
n→∞

=

−
+

−
+ −
















∑

1

  =  lim ( )
n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

1

  =  f x dx
a

b

( )ò .

 ∴ f x dx
a

b

( )ò
 
=  lim ( )

n
r

nb a
n

f a b a r
n→∞

=

− + −



∑

1

  
=  lim ( )
n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

0

.

  If a = 0 and b =1, then we get    =f x dx
n

f r
n n

f r
nn

r

n

n
( ) lim lim=












∫ ∑

→∞
=

→∞
0

1

0

1 1 
=
∑
r

n

1

.
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Example 9.2

 Evaluate xdx,
0

1

ò  as the limit of a sum.

Solution
 Here f x x a b( ) , .= = =  and 0 1  Hence, we get

   
 f x dx
a

b

( )ò
 
=  lim lim

n r

n

n r

n

n
f r
n

xdx
n

r
n→∞

=
→∞

=







⇒ =∑ ∫ ∑1 1

1 0

1

1

    =  limn n
n

→∞
+ + +[ ]1

1 2
2



     =  lim
( )

lim
n nn

n n
n→∞ →∞

+
+






 =

1 1

2

1

2
1

1 1

22
= .

Example 9.3

 Evaluate x dx3

0

1

,ò  as the limit of a sum.

Solution
 Here f x x a b( ) , .= = =3 0 1  and   Hence, we get

   
 f x dx
a

b

( )ò
 
=  lim lim

n r

n

n r

n

n
f r
n

x dx
n

r
n→∞

=
→∞

=







⇒ =∑ ∫ ∑1 1

1

3

0

1 3

3
1

     =  lim lim
( )

n nn
n

n
n n

→∞ →∞
+ + +  =

+1
1 2

1 1

44

3 3 3

4

2 2



     =  lim
n n→∞

+





 =

1

4
1

1 1

4

2

.
Example 9.4

 Evaluate 2 32

1

4

x dx+( )∫ ,  as the limit of a sum.

Solution

 We use the formula

 
 f x dx
a

b

( )ò
 
=  lim ( )

n r

nb a
n

f a b a r
n→∞

=

−
+ −






∑

1

 Here f x x a b( ) ,= + = =2 3 1 42   and . 

 So, we get 

 
f a b a r

n
+ −






( )

 
=  f

r
n

1 4 1+ −





( ) = f r

n
1

3
+






 = 2 1

3
3

2

+





 +
r
n

= 5
18 122

2
+ +

r
n

r
n

.

Hence, we get 

 
( )2 32

1

4

x dx+∫
 
=  lim lim

n r

n

n r

n

n
r
n

r
n n n

r
→∞

=
→∞

=

+ +








 = + +∑ ∑3

5
18 12 15

1
54 362

2
1 1

3

2

nn
r

r

n

r

n

2
11 ==
∑∑






   =  limn n
n

n
n

n
n

→∞
+ + + +( ) + + + +( )





15 54
1 2

36
1 2

3

2 2 2

2
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  =  lim
( )( ) ( )

n n
n n n

n
n n

→∞
+

+ +
+

+





15
54 1 2 1

6

36 1

23 2

  =  limn n n n→∞
+ +






 +





 + +
















15 9 1

1
2

1
18 1

1

  =  15+9 1 0 2 0 18 1 0+( ) +( ) + +( ) = 51.

EXERCISE 9.2
 1. Evaluate the following integrals as the limits of sums:

   (i) ( )5 4
0

1

x dx+∫   (ii) ( )4 12

1

2

x dx−∫  

9.3 Fundamental Theorems of Integral Calculus and their Applications

 We observe in the above examples that evaluation of   f x dx
a

b

( )ò  as a limit of the sum is quite 

tedious, even if f x( )  is a very simple function. Both Newton and Leibnitz, more or less at the same 

time, devised an easy method for evaluating definite integrals. Their method is based upon two 
celebrated theorems known as First Fundamental Theorem and Second Fundamental  Theorem   
of   Integral Calculus.  These theorems establish the connection between a function and its  
anti-derivative (if it exists). In fact, the two theorems provide a link between differential calculus and 
integral calculus. We state below the above important theorems without proofs.

Theorem 9.1 (First Fundamental Theorem of Integral Calculus)

  If f x( )  be a continuous function defined on a closed interval [ , ]a b andF x f u du a x b
a

x

( ) ( ) ,= < <∫    

then, d
dx
F x f x( ) ( ).=  In other words, F x( )  is an anti-derivative of f x( ).

Theorem 9.2 (Second Fundamental Theorem of Integral Calculus)

 If f x( )  be a continuous function defined on a closed interval [ , ] ( )a b F x  and   is an  

anti-derivative of f x( ),  then,          

f x dx F b F a
a

b

( ) ( ) ( ).= −∫

Note

 SinceF b F a( ) ( )−  is the value of the definite integral (Riemann integral)  f x dx
a

b

( ) ,ò  any arbitrary 

constant added to the anti-derivative F x( ) cancels out and hence it is not necessary to  add an arbitrary 
constant to the anti-derivative, when we are evaluating definite integrals. As a  short-hand form, we 

write F b F a F x
a

b
( ) ( ) ( ) .− = [ ] The value of a definite integral is unique. 
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 By the second fundamental theorem of integral calculus, the following  properties of definite 
integrals  hold. They are stated here without proof.

 Property 1 : f x dx f u du
a

b

a

b

( ) ( )=∫ ∫ , a < b

 i.e., definite integral is independent of the change of variable.

 Property 2 : f x dx f x dx
b

a

a

b

( ) ( )= −∫∫
 i.e., the value of the definite integral changes by minus sign if the limits are interchanged.

 Property 3 :  f x dx f x dx f x dx
a

c

a

b

c

b

( ) ( ) ( )= +∫∫ ∫ , a < c < b

 Property 4 :  α β α βf x g x dx f x dx g x dx
a

b

a

b

a

b
( ) ( ) ( ) ( )+[ ] = +∫ ∫ ∫ , where α  and β  are constants.

 Property 5 : If x = g(u), then f x dx f g u dg u
du

du
a

b

c

d
( ) ( ( ))

( )∫ ∫=
 
 where  and g c a g d b( ) ( )= =

 
.

 This property is used for evaluating definite integrals by making substitution.
 We illustrate the use of the above properties by the following examples.

Example 9.5

 Evaluate :  ( )3 4 52

0

3

x x dx− +∫ .

Solution

   ( )3 4 52

0

3

x x dx− +∫  =  3 4 52

0

3

0

3

0

3

x dx x dx dx− + ∫∫∫

    =  3 4 52

0

3

0

3

0

3

x dx x dx dx− +∫ ∫ ∫

    =  3
3

4
2

5
3

0

3
2

0

3

0

3x x x








 −









 + [ ]

    =  ( ) ( ) ( )27 0 2 9 0 5 3 0− − − + −

    =  27 18 15− + = 24 .

Example 9.6

 Evaluate :  2 7

5 92

0

1 x
x

dx+
+∫  .

Solution

   

2 7

5 92

0

1 x
x

dx+
+∫

 
=  2

5 9
7

5 32

0

1

2 2

0

1x
x

dx
x+

+
+∫ ∫ ( )

=
1

5
5 9

7

5 3

5

2

0

1

2

2

0

1

log[ ]x dx

x
+ +

+ 







∫
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    =  1

5
14 9

7

5

5

3 3

5

1

5

14

9

1

0

1

[log log ] tan log− + ×
























= +− x 77

3 5

5

3

1tan− .

Example 9.7

 Evaluate :   [ ]2

0

1

x dxò where [ ]⋅  is the greatest integer function.

Solution

  [ ]2

0

1

x dxò =  [ ] [ ]2 2

0

1

2

1

2

1

x dx x dx+∫ ∫ = 0 1
1

2

1

0

1

2

dx dx+∫∫ = 0 1

2

1+ [ ]x = 1
1

2
− =

1

2
.

Example 9.8

 Evaluate  :   sec tan

sec

x x
x
dx

1 2

0

3

+∫
π

.

Solution

   Let I  =  sec tan

sec

x x
x
dx

1 2

0

3

+∫
π

.           Put sec x = u . Then, sec tanx x dx = du .

 When x =0,  u = =sec0 1 .  When x =
p
3

, u = =sec
p
3

2 .

   ∴ I  =  
du
u1 2

1

2

+∫ = [tan ]−1

1

2u =  tan ( ) tan− −−1 12 1 = tan ( )− −1 2
4

π .

Example 9.9

 Evaluate  : 1

0

9

x x
dx

+∫ .

Solution

 Let x = u . Then x u= 2 , and so dx = 2u du .

 When x = 0 , u = 0 . When x = 9 , u = 3 .

 ∴
+∫
1

0

9

x x
dx =

1
2

2

0

3

u u
u du

+∫ ( ) =  2
1

1
0

3

+∫ u
du = 2 1

0

3

log + u = 2 4 0[log ]− = log16 .

Example 9.10

 Evaluate: x
x x

dx
( )( )+ +∫ 1 2

1

2

.

Solution

   Let I  =  x
x x

dx
( )( )+ +∫ 1 2

1

2

. 

Chapter 9 Applications of Integration.indd   100 7/25/2019   7:08:36 PM



Applications of Integration101

   I  =  −
+

+
+









∫

1

1

2

2
1

2

( )x x
dx

                
(Using partial fractions)

     =  − + + +[ ]log( ) log( )x x1 2 2
1

2

    =  log
( )x

x
+
+











2

1

2

1

2

    =  log log
16

3

9

2
−

    =  log
32

27
.

Example 9.11

 Evaluate  :  cos

( sin )( sin )

θ
θ θ

θ

π

1 2
0

2

+ +∫ d .

Solution

   Let I  =  cos

( sin )( sin )

θ
θ θ

θ

π

1 2
0

2

+ +∫ d .    Put u = 1+ sinθ . Then, du d= cosθ θ .

   When θ  =  0 1, u = . When  θ π
= =

2
2, u .

   ∴ I  =  
du

u u( )1
1

2

+∫ =  ( )

( )

1

1
1

2 + −
+∫
u u

u u
du  =  

1 1

1
1

2

u u
du−

+






∫ = log log( )u u− +[ ]1

1

2

    =  (log log ) (log log )2 3 1 2− − − = 2 2 3log log− = log
4

3
.

Example 9.12

 Evaluate : sin

( )

−

−
∫

1

2

3

20

1

2

1

x

x
dx .

Solution

 Let I  =  
sin

( )

−

−
∫

1

2

3

20

1

2

1

x

x
dx .  

 Put u  =  sin−1 x . Then, x u= sin  and so, du = 1

1 2− x
dx .

 When x  =  0 0, u = . When  x =  1

2 4
, u = π .

 ∴ I  =  u
u
du

cos2

0

4

π

∫ = u u dusec2

0

4

π

∫  =  [ tan ] tan tan log cosu u u du u u u0
4

0

4

0
4

0
4

π
π

π π

− = [ ] + [ ]∫

  = π
4

1

2
+ log =

π
4

1

2
2− log .
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Example 9.13

 Evaluate : tan cotx x dx+( )∫
0

2

π

.

Solution

 Let I  =  tan cotx x dx+( )∫
0

2

π

. Then, we get 

 I  =  sin

cos

cos

sin

x
x

x
x
dx+









∫

0

2

π

 =  sin cos

sin cos

x x
x x

dx+
∫
0

2

π

= 2
20

2 sin cos

sin cos

x x
x x

dx+
∫
π

  =  2
1 2

0

2 (sin cos )

(sin cos )

x x dx
x x
+

− −
∫
π

.

 Put u  =  sin cosx x−  . Then, du x x dx= +(cos sin ) .

 When x  =  0 1, u = − . When  x =  π
2

1, u = .

 ∴ I  = 2
1 2

1

1 du
u−−

∫ = 2 1

1

1[sin ]−
−u  = 2 1 11 1sin ( ) sin ( ))− −− −  = p 2 .

Example 9.14

 Evaluate : x dx2

0

1 5

 ∫  

.

,  where [ ]x  is the greatest integer function.  

Solution

 We know that the greatest integer function [ ]x  is the largest integer less than or equal to x. In 
other words, it is defined by [ ]x n= , if  n x n≤ < +( )1 , where n  is an integer. 

So, we get     

if

if    

if

[ ]

.

x

x

x

x

2

0 0 1

1 1 2

2 2 1 5

=

≤ <

≤ <

≤ ≤









 We note that the above function is not continuous on [ , . ]0 1 5 . 

 But, it is continuous in each of the sub-intervals [ , )0 1 , [ , )1 2

and [ , . ]2 1 5 ; that is, it is piece-wise continuous on [ , . ]0 1 5 .  

See Fig. 9.6. Hence, we get

   x dx2

0

1 5

 ∫  

.

 =  x dx x dx x dx dx dx2

0

1

2

1

2

2

2

1 5

0

1

1

2

0 1 2  +   +   = + +∫ ∫ ∫ ∫ ∫     

.

22

1 5.

∫ dx

     =  0 2 2 1 3 2 2 2 2
1

2

2

1 5+ ( ) + ( ) = −( ) + −( ) = −x x .
.  

Example 9.15

 Evaluate : | |x dx+
−
∫ 3
4

4

 .

Fig. 9.6

y

xO

1

2

1 2 1 5.
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Solution

 By definition, we have  | |x
x x
x x

+ =
+ ≥ −

− − < −




3
3 3

3 3

        if  

    if  

  See Fig. 9.7 for the graph of  y x= +| |3  in − ≤ ≤4 4x .

 ∴ | |x dx+
−
∫ 3
4

4

 

 
=  | | | |x dx x dx+ + +

−

−

−
∫ ∫3 3
4

3

3

4

  = ( ) ( )− − + +
−

−

−
∫ ∫x dx x dx3 3
4

3

3

4

  

  =  − −








 + +











−

−

−

x x x x
2

4

3
2

3

4

2
3

2
3

 =  − +





 − − +






 + +






 − −








9

2
9

16

2
12

16

2
12

9

2
9 =

9

2
4 20

9

2







 − + + 






 = 25 .

 Next, we give examples to illustrate the application of Property 5.

Example 9.16

 Show that 
dx

x e
4 5

1

3
2

0

2

+
=∫ sin

log

π

.

Solution

  Put  u = tan
x
2

. Then, sin

tan

tan

, secx

x

x
u
u
du x dx dx du

u
=

+
=

+
= ⇒ =

+

2
2

1
2

2

1

1

2 2

2

12
2

2

2
.

           When x =  0 0 0, tanu = = .   When x u= = =
π π
2 4

1, tan .

 ∴ I  =  dx
x

du
u
u
u

du
u u

du
4 5

2

1

4 5
2

1

2 5 2

1

20

2
2

2

0

1

20

1

+
= +

+
+







=
+ +

=∫ ∫ ∫sin

π

uu u20

1

5

2
1+ +

∫  

  = 1
2 5

4

3

4

1

2

1

2
3

4

5

4

3

2 20

1 du

u

u

+



 − 





= ×
× 





+



 −

∫ log
44

5

4

3

4

1

3

1

2

2

0

1

u

u

u+



 +



































=
+

+











log























=

0

1

1

3
2log  .

Note

 To evaluate anti-derivatives of the type dx
a x b x ccos sin+ +∫ , we use the substitution method by 

putting u x
= tan

2
 so that cos ,sin ,x u

u
x u

u
dx du

u
=

−
+

=
+

=
+

1

1

2

1

2

1

2

2 2 2
. 

Example 9.17

 Prove that
sin

sin cos

2
4 40

4
x dx

x x
 

+∫
π

=
p
4

.

Fig. 9.7

x

y

( , )�3 0 O ( , )4 0( , )−4 0

y
x�
� 3

y
x

� �
�

(

)3
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Solution

 I  =  
sin

sin cos

2
4 40

4
x dx

x x
 

+∫
π

=
sin

sin cos sin cos

2

22 2
2

2 20

4
x dx

x x x x

 

+( ) −
∫

π

  =  
sin

sin cos

2

1
1

2
2

20

4
x dx

x x

 

− ( )
∫

π

=
2 2

2 220

4
sin

sin

x dx
x

 

−∫
π

=
2 2

1 220

4
sin

cos

x dx
x

 

+∫
π

.

 Put  u  =  cos 2x ,   Then, du x dx= −2 2sin  . 

 When  x  =  0 , we have u = =cos 0 1 . When x = π
4

, we have u = =cos
π
2

0 .

 ∴ I  =  
−
+

=
+

=   =∫ ∫ −du
u

du
u

u
1 1 421

0

20

1
1

0

1

tan
π .

Example 9.18

 Prove that  
dx

a x b x2 2 2 20

4

sin cos+∫
π

=
1 1

ab
a
b

tan− 





 , where a b,  > 0 . 

Solution

 Put I  =  
dx

a x b x2 2 2 20

4

sin cos+∫
π

=
sec

tan

2

2 2 20

4
x dx

a x b
 

+∫
π

.

 Put  u  =  tan x .  Then du x dx= sec2  . 

 When  x  =  0 ,  we have u = =tan 0 0 . When x = π
4

, we have u = =tan
π
4

1. 

 ∴ I  =  
du

a u b2 2 20

1

+∫ = 1
2

2

20

1

a
du

u b
a

+ 





∫ =
1

2

1

0

1

a
a
b

au
b

tan− 















 =

1 1

ab
a
b

tan− 





 .

 We derive some more properties of definite integrals. 

Property 6

 f x dx f a b x dx
a

b

a

b
( ) ( )∫ ∫= + −

Proof
   Let u  =  a b x+ − . Then, we get dx du= − .

   When  x  =  a , u a b a b= + − = . When x b= , we getu a b b a= + − = .

   ∴ f x dx
a

b
( )ò  

=  f a b u du
b

a
( )( )+ − −∫ = f a b u du

a

b
( )+ −∫

    
=  f a b x dx

a

b
( )+ −∫ .

Note

 Replace a  by 0  and b  by a  in the above property we get the following property

 f x dx f a x dx
a a

( ) ( )
0 0∫ ∫= − .
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Example 9.19

 Evaluate 1

0

4

sin cosx x
dx

+∫
π

 

Solution

   I  =  
1

0

4

sin cosx x
dx

+∫
π

 =
1

2
1

2

1

2

0

4

sin cosx x
dx

+





∫
π

 

    =  
1

2

1

4 4

0

4

cos cos sin sin
π π

π

x x
dx

+





∫  =
1

2

1

4

0

4

cos
π

π

−





∫
x
dx 

    =  1

2

1

0

4

cos x
dx

π

∫  , since f x dx f a x dx
a a

( ) ( )
0 0∫ ∫= −

    =  1

2

1

20

4

0
4sec log(sec tan )x dx x x

π π

∫ = +[ ]  

    =  1

2
2 1 1 0log( ) log( )+ − +



  

    =  1

2
2 1log( )+ .

Property 7

 f x dx f x f a x dx
a a

( ) ( ) ( ) .
0

2

0
2∫ ∫= + −[ ]

Proof
 By property 3, we have f x dx

a
( )

0

2

ò  
=  f x dx f x dx

a

a

a
( ) ( )

0

2

∫ ∫+ . (1)

 Let us make the substitution x  =  2a u−  in f x dx
a

a
( )

2

ò . Then, dx du= − .

 When  x  =  a , we haveu a a a= − =2 . When x a= 2 , we haveu a a= − =2 2 0 .So, we get 

 
f x dx

a

a
( )

2

ò  
=  f a u du

a
( )2

0

− −( )∫ = f a u du
a

( )2
0

−∫ = f a x dx
a

( )2
0

−∫ . ...(2)

 Substituting equation (2) in equation (1), we get 

 
f x dx

a
( )

0

2

ò  
=  f x dx f a x dx

a a
( ) ( )

0 0
2∫ ∫+ −

  
=  f x f a x dx

a
( ) ( )+ −[ ]∫ 2

0
.

Property 8
 If f x( )  is an even function, then f x dx f x dx

a

a a
( ) ( ) .

−∫ ∫= 2
0

 (Recall that a function f x( )  is an even function if and only if f x f x( ) ( ).− = )
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Proof

 By property 3, we have

 f x dx
a

a
( )

−∫  =  f x dx f x dx
a

a
( ) ( )

−∫ ∫+
0

0
.

 In the integral f x dx
a

( )
−∫
0

, let us make the substitution, x u= − .Then, dx du= − .

 When  x  =  −a , we get u a= , when x = 0 , we get u = 0 , So, we get 

 
f x dx

a
( )

−∫
0

 
=  f u du

a
( )( )− −∫

0

= f u du
a

( )−∫0
= f x dx

a
( )−∫0

= f x dx
a

( )
0
ò . ... (2)

 Substituting equation (2) in equation (1), we get 

 f x dx
a

a
( )

−∫  =  f x dx f x dx f x dx
a a a

( ) ( ) ( )
0 0 0

2∫ ∫ ∫+ = .

Property 9

 If f x( )  is an odd function, then f x dx
a

a
( ) .

−∫ = 0

 (Recall that a function f x( )  is an odd function if and only if f x f x( ) ( ).− = − )
Proof

 By property 3, we have 

 f x dx
a

a
( )

−∫  =  f x dx f x dx
a

a
( ) ( )

−∫ ∫+
0

0
. ... (1)

 Consider f x dx
a

( )
−∫
0

. In this integral, let us make the substitution, x u= − .Then, dx du= − .

 When  x  =  −a , we get u a= ; when x = 0 , we get u = 0 . So, we get

 
f x dx

a
( )

−∫
0

 
=  f u du

a
( )( )− −∫

0

= f u du
a

( )−∫0
= f x dx

a
( )−∫0

= −∫ f x dx
a

( )
0

. ... (2)

 Substituting equation (2) in equation (1), we get 

 f x dx
a

a
( )

−∫  =  f x dx f x dx
a a

( ) ( )
0 0

0∫ ∫− =  

Property 10

 If f a x f x( ) ( ),2 − =  then f x dx f x dx
a a

( ) ( ) .
0

2

0
2∫ ∫=

Proof

 By property 7, we have 

 
f x dx f x f a x dx

a a
( ) ( ) ( ) .

0

2

0
2∫ ∫= + −[ ]        ...(1)

 Setting the condition f a x f x( ) ( )2 − =  in equation (1), we get 

 
f x dx f x f x dx f x dx

a a a
( ) ( ) ( ) ( ) .

0

2

0 0
2∫ ∫ ∫= +[ ] =

Property 11

 If f a x f x( ) ( ),2 − = −  then f x dx
a

( ) .
0

2

0∫ =
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Proof

 By property 7, we have

 
f x dx f x f a x dx

a a
( ) ( ) ( ) .

0

2

0
2∫ ∫= + −[ ]   ... (1)

 Setting the condition f a x f x( ) ( )2 − = −  in equation (1), we get 

 
f x dx f x f x dx

a a
( ) ( ) ( ) .

0

2

0
0∫ ∫= −[ ] =

Property 12

 x f x dx a f x dx
a a

( ) ( )=∫ ∫2
0 0

 if f a x f x( ) ( )− = .

Proof

   Let  I  =  x f x dx
a

( )

0

ò  ... (1)

   Then  I  =  ( ) ( )a x f a x dx
a

− −∫
0

, since g x dx g a x dx
aa

( ) ( )= −∫∫
00

 =  ( ) ( )a x f x dx
a

−∫
0

,  since f a x f x( ) ( )− = .

   ∴ I  =  ( ) ( )a x f x dx
a

−∫
0

  ... (2)

 Adding (1) and (2), we get

   2I  =  ( ) ( )x a x f x dx
a

+ −∫
0

 =  a f x dx
a

( )

0

ò .

   ∴ I  =  a f x dx
a

2
0

( )ò .

Note
 This property help us to remove the factor x  present in the integrand of the  LHS.

Example 9.20

 Show that g x dx g x dx(sin ) (sin )=∫ ∫0 0

22
π π

, where g x(sin )  is a function of sin x .

Solution
 We know that
   f x dx

a
( )

0

2

ò  =  2
0
f x dx

a
( )ò  if f a x f x( ) ( )2 − = .

   Take  2a  = p  and f x g x( ) (sin )= .

   Then, f a x( )2 −  =  g x g x f x(sin( )) (sin ) ( )π − = = .
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    ∴∫ f x dx
a

( )
0

2

 =  2
0
f x dx

a
( )ò .

    g x dx(sin )
0

π

∫  =  2
0

2 g x dx(sin )

π

∫ .

Result 

 g x dx g x dx(sin ) (sin ) .=∫ ∫0 0

22
π π

Note
 The above result is useful in evaluating definite integrals of the type g x dx(sin )

0

π

∫ .

Example 9.21

 Evaluate x
x
dx

10 +∫ sin

π
.

Solution
  Let  I  =  x

x
dx

10 +∫ sin

π
.

   =  x
x
dx1

10 +∫ sin

π

  Let f x( )  =  1

1+ sin x
.  Then f x

x x
f x( )

sin( ) sin
( )π

π
− =

+ −
=

+
=

1

1

1

1
 

  ∴
+∫ x

x
dx

10 sin

π
 =  π π

2

1

10 +∫ sin x
dx ,  (  x f x dx a f x dx

a a

( ) ( )=∫ ∫2
0 0

 if f a x f x( ) ( ))− =

 =  2
1

10

2

+∫ sin x
dx

π

,   since g(sin ) g(sin )x dx x dx=∫ ∫0 0

22
π π

 = 2
1

1
2

0

2

+ −





∫
sin

π

π

x
dx   since f x dx f a x dx

a a
( ) ( )

0 0∫ ∫= −

 =  2
1

1
2

1

2
2

20

2

20

2 2

0

2

+
= =∫ ∫ ∫cos

cos

sec
x
dx x dx

x dx
π π π

 

 =  2
2

2
4

0 2
0

2

tan tan tan
x





= −




=

π

π .

Example 9.22

 Show that g x dx g x dx(cos ) (cos )=∫ ∫0

2

0
2

π π

, where g x(cos )  is a function of cos x .

Solution
   Take  2a  =  2p   and f x g x( ) (cos )= .
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   Then,  f a x( )2 −  =  f x g x g x f x( ) (cos( )) (cos ) ( )2 2π π− = − = =

   ∴ ∫ f x dx
a

( )
0

2

 =  2
0
f x dx

a
( )ò .

   ∴ ∫ g x dx(cos )
0

2p

 =   2
0
g x dx(cos )

π

∫ .
Result
 g x dx g x dx(cos ) (cos ) .=∫ ∫0

2

0
2

π π

Note
 The above result is useful in evaluating definite integrals of the type g x dx(cos ) .

0

2π

∫
Example 9.23
  If f x f a x( ) ( )= + , then f x dx

a
( )

0

2

ò = 2
0
f x dx

a
( )ò

Solution
 We write  f x dx

a
( )

0

2

ò = f x dx f x dx
a

a

a
( ) ( )

0

2

∫ ∫+         ... (1)

 Consider f x dx
a

a
( )

2

ò  

 Substituting x  =  a u+ , we have dx du= ; when x a u= =, 0 and when x a u a= =2 , .

  ∴∫ f x dx
a

a
( )

2

 =  f a u du f u du
a a

( ) ( )+ =∫ ∫0 0
, since f x f a x( ) ( )= +

                          = f x dx
a

( )
0
ò .     ... (2)

 Substituting (2) in (1), we get

   f x dx
a

( )
0

2

ò  
=  2

0
f x dx

a
( )ò .

Example 9.24

 Evaluate : x x dxcos . 

−

∫
π

π

2

2

Solution
  Let   f x( )  =  x xcos . Then f x x x x x f x( ) ( ) cos( ) cos ( ).− = − − = − = −

 So  f x( )  =  x xcos  is an odd function.

 Hence, applying the property, for odd function f(x), f x dx
a

a

( )
−
∫ =  0 , 

 ∴ we get x x dxcos . 

−

∫ =
π

π

2

2

0

Example 9.25

 Evaluate : e dxx−

−
∫ | |

log

log

2

2

 .

Solution
   Let  f x( )   =   e

x−| | . Then f x e e f xx x( ) ( )| | | |− = = =− − −
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 So f x( )  is an even function.

 Hence  e dxx−

−
∫ | |

log

log

2

2

 =  2 2 2 2 2
0

2

0

2

0

2 2 0e dx e dx e e e ex x x− − − −∫ ∫= = − = − + = −| |

log log

log log( ) ( )
llog

1

2 1+










    =  2
1

2
1 1− +






 = .

Example 9.26

 Evaluate :  f x
f x f a x

dx
a ( )

( ) ( )
.

+ −∫0

Solution
   Let  I  =  f x

f x f a x
dx

a ( )

( ) ( )+ −∫0
 ... (1)

 Applying the formula f x dx f a x dx
a a

( ) ( )= −∫ ∫0 0
in equation (1), we get

   I  =  f a x
f a x f a a x

dx
a ( )

( ) ( ( ))

−
− + − −∫0

    =  
f a x

f x f a x
dx

a ( )

( ) ( )

−
+ −∫0

. ... (2)

 Adding equations (1) and (2), we get  

   2I  =  
f x

f x f a x
dx f a x

f x f a x
dx

a a( )

( ) ( )

( )

( ) ( )+ −
+ −

+ −∫ ∫0 0
 

    =  
f x f a x
f x f a x

dx
a ( ) ( )

( ) ( )

+ −
+ −∫0

    =  dx a
a

0∫ = .

  Hence,  we get I  =  a
2

.

Example 9.27

 Prove that log( tan ) log .1
8

2
0

4 + =∫ x dx ππ

Solution
  Let us put  I  =  log( tan )1

0

4 +∫ x dx
π

  ... (1)

 Applying the property f x dx
a

( )
0
ò  =  f a x dx

a
( )−∫0

 in equation (1), we get

  I  =  log tan1
40

4 + −









∫ ππ

x dx = log

tan tan

tan tan

1 4

1
4

0

4 +
−

+

















∫
π

π

π x

x
dx

   =  log
tan

tan
1

1

10

4 + −
+





∫ x
x
dx

π

= log
tan tan

tan

1 1

10

4
+ + −

+




∫ x x

x
dx

π
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   =  log
tan

2

10

4

+




∫ x
dx

π

= − +[ ]∫ log log( tan )2 1
0

4 x dx
π

   =  log log( tan )2 1
0

4

0

4dx x dx
π π

∫ ∫− +  

  =  π
4

2log − I

  So, we get  2I  =  p
4

2log .  Hence, we get I = π
8

2log .

Example 9.28
 Show that tan tan ( ) log− −+ −( ) = −∫ 1 1

0

1

1
2

2x x dx e 
π .

Solution
   I  =  tan tan ( )− −+ −( )∫ 1 1

0

1

1x x dx 

    =  tan tan ( )− −∫ ∫+ −1

0

1
1

0

1

1x dx x dx  

    =  tan tan ( ( ))− −∫ ∫+ − −1

0

1
1

0

1

1 1x dx x dx  , since f x dx f a x dx
a a

( ) ( )
0 0∫ ∫= −

    =  tan tan− −∫ ∫+1

0

1
1

0

1

x dx x dx  

    =  2 1

0

1

tan−∫ x dx 

    =  2
0

1

udv∫ 
 , where u x= −tan 1  and dv dx=

    =  2
0

1

uv vdu−



∫ , applying  integration  by parts

    =  2
1

2
1

2
1

2

1

2

0

1

1 2

0

1

x x x dx
x

x x xtan tan log− −−
+







 = − +( )






 = −∫

π
llog 2  

Example 9.29

 Evaluate x
x x

dx
52

3

− +∫ .

Solution
 Let us put  I  =  x

x x
dx

52

3

− +∫  ... (1)

 Applying the formula f x dx
a

b
( )ò  =  f a b x dx

a

b
( )+ −∫ , we get

 I  =  
( )

( ) ( )

2 3

5 2 3 2 3

5

52

3

2

3+ −
− + − + + −

= −
+ −∫ ∫

x
x x

dx x
x x

dx   ... (2)
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 Adding (1) and (2), we get

 2I  =  x x
x x

dx dx x+ −
+ −

= = [ ] = − =∫ ∫5

5
3 2 1

2

3

2

3

2

3 .

 Hence, we get  I  =  1

2
.

Example 9.30

 Evaluate cos2

1

x
a
dxx+−

∫
π

π

Solution

    Let  I  =  cos2

1

x
a
dxx+−

∫
π

π

 ... (1)

   Using f x dx
a

b

( )ò  =  f a b x dx
a

b

( )+ −∫  we get,

   I  =  cos ( )2

1

π π
π π

π

π − −
+ − −

−
∫

x
a

dxx  

    =  cos ( )2

1

−
+ −

−
∫

x
a

dxx
π

π

     =  a x
a

dxx
x

cos2

1+










−
∫
π

π

 ... (2) 

 Adding (1) and (2) we get

   2I  =  cos
( )

2

1
1

x
a

a dxx
x

+
+

−
∫
π

π

= cos2 x dx
−
∫
π

π

    =  2 2

0

cos x dx 

π

∫ (since cos2 x  is  an   even function)

   Hence I  =  ( cos )1 2

2
0

+
∫

x dx
π

=
1

2

2

2 0

x x
+





sin
π

= 1

2
[ ]p =

p
2

 .

EXERCISE 9.3

 1. Evaluate the following definite integrals :

   (i)  
dx
x2

3

4

4−∫   (ii)   
dx

x x2

1

1

2 5+ +−
∫   (iii) 

1

1
0

1 −
+∫
x
x
dx  

  (iv) 1

1
0

2 +
+







∫

sin

cos

x
x
dx

π

  (v) cos sinθ θ θ

π

0

2
3∫ d   (vi)  

1

1

2

2
2

0

1 −

+( )∫
x

x
dx
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 2. Evaluate the following integrals using properties of integration :

   (i)  x e
e

dx
x

xcos
−
+











−
∫

1

1
5

5

 (ii)  ( cos tan )x x x x dx5 3

2

2

1+ + +
−

∫
π

π

 

   (iii) sin2

4

4

x dx
−

∫
π

π

 (iv) x x
x
dxlog

cos

cos

3

3
0

2 +
−







∫

π

   (v) sin cos4

0

2

3x dx
π

∫  (vi) 5 3
0

1

x dx−∫

   (vii) sin cos

cossin

− −+ ∫∫ 1 1

00

22

t dt t dt
xx

  (viii) log( )1

1 2

0

1 +
+∫

x
x

dx  

   (ix)  x x
x
dxsin

sin1
0
+∫

π

  (x) 1

18

3

8

+∫
tan x

dxπ

π

 

   (xi) x x x dxsin (sin ) cos (cos )2 2

0

+ ∫
π

9.4 Bernoulli’s Formula
 The evaluation of an indefinite integral of the form u x v x dx( ) ( )ò  becomes very simple, when u  

is a polynomial function of x (that is, u x a x a x an n
n( ) = + + +−

0 1

1
 ) and v x( )  can be easily integrated 

successively.  It is accomplished by a formula called Bernoulli’s formula. This formula is actually 
an extension of the formula of integration by parts. To derive the formula, we use the following 
notation: 

   u ( )1

 =  
du
dx

,   u ( )2 =
du
dx

( )1

,     u ( )3 =
du
dx

( )2

, 

   v( )1  =  
vdxò , v( )2 = v dx( )1ò , v( )3 = v dx( )2ò ,

 Then, we have 

   dv( )1  =  vdx , dv( )2 = v dx( )1 , dv( )3 = v dx( )2 , 

 Now, by integration by parts, we get 

   
uvdxò  

=
 

udv( )1ò = uv( )1 −∫ v du( )1 = uv( )1 −∫ v
du
dx
dx( )1

    =  uv( )1 −∫u dv( )

( )

1

2

    =  uv( )1 − −( )∫u v v du( )

( ) ( )

( )1

2 2

1

    =  uv( )1 − + ∫u v v du
dx
dx( )

( ) ( )

( )
1

2 2

1
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    =  uv( )1 − + ∫u v u dv( )

( )

( )

( )

1

2

2

3

    =  uv( )1 − + −( )∫u v u v v du( )

( )

( )

( ) ( )

( )1

2

2

3 3

2

    =  uv( )1 − + − ∫u v u v v du( )

( )

( )

( ) ( )

( )1

2

2

3 3

2 .

 Proceeding in this way, we get 

   
uvdxò  

=
 
uv( )1

− + − +u v u v u v( )

( )

( )

( )

( )

( )

1

2

2

3

3

4  .

 The above result is called the Bernoulli’s formula for integration of product of two functions.

Note
 Since u  is a polynomial function of x , the successive derivative u m( ) will be zero for some 
positive integer m and so all further derivatives will be zero only. Hence the  

right-hand-side of the above formula contains a finite number of terms only.

Example 9.31

 Evaluate x nx dx2

0

π

∫ cos , where n  is a positive integer.

Solution

 Taking u x= 2 and v nx= cos , and applying the Bernoulli’s formula, we get 

   I  =  x nx dx2

0

π

∫ cos = x nx
n

x nx
n

nx
n

2

2 3
2 2( )






 − ( ) −






 + −

















sin cos
( )

sin


0

π

    =  
2 1

2

π ( )− n

n
, since cos ( )n nπ = −1 and sin nπ = 0 .

Example 9.32

 Evaluate : e ( )− + −∫ 2 3

0

1

1 2x x x dx . 

Solution

 Taking u x x= + −1 2 3 and v x= −e 2 , and applying the Bernoulli’s formula, we get 

   I  =  e ( )− + −∫ 2 3

0

1

1 2x x x dx

    =  ( ) ( )1 2
2

1 6
4

12
8

3
2

2
2 2

+ −
−









 − −( )







 + −

−









− − −

x x e x e x ex x x

 − −




















−

( )12
16

2

0

1

e x

    =  
e x x x

x−

+ +( )









2
3 2

0

1

16
16 24 16

    =  
7

2 2e
.
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Example 9.33

 Evaluate :  x nx dx2

0

2π

∫ sin , where n  is a positive integer.

Solution
 Taking u x= 2 and v nx= sin , and applying the Bernoulli’s formula, we get 

   I  =  x nx dx2

0

2π

∫ sin = x nx
n

x nx
n

nx
n

2

2 3
2 2( ) −






 − ( ) −






 +


















cos sin
( )

cos


0

2π

    =  4
1

0 2
1

0 0 2
12

3 3
π( ) −






 − + 
















 − − + 
















n n n

( ) ( ) , since cos 2 1nπ = and sin 2 0nπ =

    =  − + −
4 2 22

3 3

π
n n n

= −
4 2π

n
.

Example 9.34

 Evaluate : e ( )−

−
−∫ λx x dx1 2

1

1

. 

Solution
 Taking u x= −1 2 and v x= −e λ , and applying the Bernoulli’s formula, we get 

   I  =  e ( )−

−
−∫ λx x dx1 2

1

1

= ( ) ( )1 2 22

2 3
−

−








 − −( )







 + −

−















− − −

x e x e ex x xλ λ λ

λ λ λ 

−1

1

    =  2 2 2 2
2 3 2 3

e e e e− −







 +









 +









 −











λ λ λ λ

λ λ λ λ

    =  
2 2

2 3λ λ
λ λ λ λe e e e+( ) − −( )− − .

EXERCISE 9.4
Evaluate the following:

 1. x e dxx3 2

0

1

−∫  2. sin( tan ) tan3

1

1 1

2

0

1 − −

+∫
x x
x

dx   3. e x
x

dx
a xsin sin

− −

−
∫

1 1

2
0

1

2

1
 4. x x dx2

0

2

2cos

π

∫

9.5 Improper Integrals
 In defining the Riemann integral f x dx

a

b
( )ò , the interval [ , ]a b  of integration is finite and f x( )  

is  finite at every point in [ , ]a b . In many physical applications, the following types of integrals arise:

f x dx
a

( )
∞

∫ , f x dx
a

( )
−∞∫ , f x dx( )

−∞

∞

∫ ,

where a  is a real number and f x( )  is a continuous function on the interval of integration. They  are 
defined as the limits of Riemann integrals as follows:
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 (i) f x dx
a

( )
∞

∫  
=  lim ( )

t
a

t

f x dx
→∞ ∫

 (ii) f x dx
a

( )
−∞∫  

=  lim ( )
t

t

a

f x dx
→−∞ ∫

 (iii) f x dx( )
−∞

∞

∫  
=  lim ( )

t
t

t

f x dx
→∞

−
∫

 They are called improper integrals of first kind. If the limits exist, then the improper 
integrals are said to be convergent. 

Note
 By the Fundamental theorem of integral calculus, there exists a function F t( )  such that

   
f x dx

a

t
( )ò  =  F t F a( ) ( )−

   ∴ f x dx
a

( )
∞

∫  
=  lim ( ) lim[ ( ) ( )] ( )

t a

t

t a
f x dx F t F a f x dx

→∞ →∞

∞

∫ ∫= − = 



 .

Example 9.35

 Evaluate 1
2 2a x

dx
b +

∞

∫ , a b> ∈0,  .

Solution

 We have  1
2 2a x

dx
b +

∞

∫ =
1 1

a
x
a b

tan−
∞







=
1 11 1

a a
b
a

tan tan− −∞ − =
1

2

1

a
b
a

π
−





−tan .

Note
 From the above example, we get

 (i) 1
2 2

0
a x

dx
+

∞

∫
 
=  1

2
01

a
π
−





−tan =
p
2a

.

 (ii) 1
2 2a x

dx
a +

∞

∫
 
=  1

2
11

a
π
−





−tan =
1

2 4a
π π
−




=

p
4a

.

 (iii) 1
2 2a x

dx
+−∞

∞

∫  =  lim lim
t t

t

t

t

a x
dx

a x
dx

→∞ − →∞+
=

+∫ ∫1
2

1
2 2 2 20

, since 1
2 2a x+

 is even function

   = 2
1

2 2

0
a x

dx
+

∞

∫ = 2
2
π
a







 =

p
a

.

Example 9.36

 Evaluate dx
x x4 52 2

0

2

sin cos+∫
π

.

Solution

 Let I  =  dx
x x x4 52 2

0

2

sin cos+∫
π
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  =  
sec

tan

2

2

0

2

4 5

x
x

dx
+∫

π

 
(

cos ).

Dividing both numerator and

denominator by 2 x




 Let u  =  tan x . Then du x dx= sec2

 When x  =  0 0 0, tanu = =

 When x  =  
π π
2 2

, tanu = = ∞ .

 ∴ I  =   du
u4 52

0
+

∞

∫ (This is an improper integral)

  = 1

4 5

2

20

du

u +






















∞

∫  = 1

4

2

5

1

0

5
2

×






















−

∞

tan
u =

1

2 5
01 1(tan tan )− −∞ − =

1

2 5 2

π





 =

p
4 5

.

EXERCISE 9.5
1. Evaluate the following: 

 (i) dx
x1 5 2

0

2

+∫ cos

π

   (ii)  dx
x5 4 2

0

2

+∫ sin

π

9.6 Reduction Formulae
 Certain definite integrals can be evaluated by an index-reduction method. In this section, 
 we obtain the values of the following definite integrals:

 
sinnx dx

0

2

π

∫  , cosnx dx
0

2

π

∫  , sinm nx x dx
0

2

π

∫  cos  , x x dxm n

0

1

1∫ −( ) .

 We also obtain the value of the improper integral e x dxx n−∞

∫0
.

 The method of obtaining a reduction formula has the following steps:

 Step 1 : Identify an index (positive integer) n in the integral.

 Step 2 : Put the integral as In .

 Step 3 : Applying integration by parts, obtain the equation for In in terms of  In−1 or In−2 . 

 The resulting equation is called the reduction formula for In . 

 We list below a few reduction formulae without proof:

 Reduction Formula I : If In = sinn xdx
0

2

p

ò , then In =
( )n
n

In
−

−

1
2 , n ≥ 2 .

 Reduction Formula II : If In = cosn xdx
0

2

p

ò , then In =
( )n
n

In
−

−

1
2 n ≥ 2 .

 Reduction Formula III : If Im n, = sin cosm nx x dx 
0

2

p

ò , then Im n, =
( )

,

n
m n

Im n
−
+ −

1
2 , n ≥ 2 .

 Reduction Formula IV : If Im n, = x x dxm n

0

1

1ò  ( - ) , then Im n, =
n

m n
Im n+ + −

1
1, , n ≥1.
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 Using the reduction formulas I and II, we obtain the following result (stated without proofs):   

 sinnx dx
0

2

π

 ∫  =  cosn x dx
0

2

π

∫  =  

( ) ( )
( )

, , , ,

( ) ( )
( )

n
n

n
n

n

n
n

n
n

− × −
−

× × × =

− × −
−

×

1 3
2

1
2 2

2 4 6

1 3
2

 



 if 

×× =










2
3

3 5 7, , , , if n 

π

Note
  As illustrations, we have 

   
cos5

0

2

π

∫ x dx 
 
=  sin5

0

2

π

∫ x dx =
4

5

2

3
1× ×

   
sin6

0

2

π

∫ x dx 
 
=  cos6

0

2

π

∫ x dx =
5

6

3

4

1

2 2
× × ×

π

Example 9.37

 Evaluate sin cos2 4

0

2 x x dx+( )∫
π

Solution

Given that I = sin cos2 4

0

2 x x dx+( )∫
π

= sin2

0

2 x dx 

π

∫ + cos4

0

2 x dx 

π

∫ =
1

2 2
×
π

+
3

4

1

2 2
× ×

π
=

7

16

p .

Example 9.38

 Evaluate
cos

sin

4

50

2
7

3

x
x

dx
π

∫ .

Solution
   I  =  3 74 5

0

2 cos sinx x dx−( )∫
π

= 3 4

0

2 cos x dx 

π

∫ − 7 5

0

2 sin x dx 

π

∫

    =  3
3

4

1

2 2
× × ×

π
− 7

4

5

2

3
× × =

9

16

p
−

56

15
.

 By applying the reduction formula III iteratively, we get the following results (stated without 
proof):
 (i) If n is even and m is even,  

sinm nx x dx
0

2

π

∫  cos  =
( )
( )

( )
( )

( )
( ) ( )

( ) ( )
( )

(n
m n

n
m n

n
m n m

m
m

m
m

−
+

−
+ −

−
+ − +

− −
−

1 3
2

5
4

1
2

1 3
2



mm
m
−
−

5
4

1
2 2

)
( )



π

 (ii) If n  is odd and m is any positive integer (even or odd), then 

sinm nx x dx
0

π
2∫  cos  =

( )

( )

( )

( )

( )

( ) ( ) ( )

n
m n

n
m n

n
m n m m

−
+

−
+ −

−
+ − + +

1 3

2

5

4

2

3

1

1
 .

Note
 If one of m and n  is odd, then it is convenient to get the power of cos x  as odd. For instance, if 
m is odd and n  is even, then 

sinm nx x dx
0

2

π

∫  cos  = sinn mx x dx
0

2

π

∫  cos  =
( )

( )

( )

( )

( )

( ) ( ) ( )

m
n m

m
n m

m
n m n n

−
+

−
+ −

−
+ − + +

1 3

2

5

4

2

3

1

1
 .

Example 9.39
 Find the values of the following:

  (i) sin5

0

2 4

π

∫ x x dx cos    (ii) sin4

0

2 6

π

∫ x x dx cos  
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Solution

 (i)   sin4

0

2 6

π

∫ x x dx cos  
 
=  

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

6 1

6 4

6 3

6 4 2

6 5

6 4 4

4 1

4

4 3

4 2

−
+

⋅ −
+ −

⋅ −
+ −

⋅ − ⋅ −
−

⋅ π
22

 

    =  
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

5

10

3

8

1

6

3

4

1

2 2

p
=

3

512

p

   Also, sin4

0

2 6

π

∫ x x dx cos  
 
=  sin6

0

2 4

π

∫ x x dx cos  =
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

3

10

1

8

5

6

3

4

1

2 2

p
=

3

512

p

 (ii)   sin5

0

2 4

π

∫ x x dx cos  
 
=  ( )

( )

( )

( )

( )

( )

( )

( )

3

9

1

7

4

5

2

3
=

( )

( )

( )

( )

( )

( )

4

9

2

7

1

5
=

8

315

   Also, sin5

0

2 4

π

∫ x x dx cos  
 
=  sin4

0

2 5

π

∫ x x dx cos  =
( )

( )

( )

( )

( )

( )

4

9

2

7

1

5
=

8

315

Example 9.40

 Evaluate x ax x dx
a

2 2

0

2

2 −∫ .

Solution
  Put  x  =  2 2a cos θ . Then, dx a d= −4 cos sinθ θ θ . 

  When  x  =  0 , 2 02a cos θ = and so θ π
=

2
. When x a= 2 , 2 22a acos θ = and so θ = 0 . 

 Hence, we get 

  I  =  x ax x dx
a

2 2

0

2

2 −∫

   = 4 4 4 42 2 2 2 2 4

2

0

a a a a dcos cos cos ( cos sin )θ θ θ θ θ θπ − −∫

   =  4 2 42 2

0

2 a a a dcos cos sin ( cos sin )θ θ θ θ θ θ
π

∫

   =  32 4 4 2

0

2a dcos sinθ θ θ
π

∫

   =  32
1

6

3

4

1

2 2

4a × × × ×
π

= pa4 .

Example 9.41

 Evaluate x x dx5 2
5

0

1

1−( )∫ .

Solution
  Put  x  =  sinθ .Then, dx d= cosθ θ . 

  When  x  =  0 , sinθ = 0 and so θ = 0 . When x =1, sinθ =1and so θ π
=

2
. 

 Hence, we get 

  I  =  sin sin cos5 2
5

0

2 1θ θ θ θ
π

−( )∫ d

   =  sin cos5

0

2 11θ θ θ
π

∫ d =
10

16

8

14

6

12

4

10

2

8

1

6
× × × × × =

1

336
.
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 By applying the reduction formula III iteratively, we get the following results (stated without 
proof):

 
x x dxm n

0

1

1ò  ( - )
 
=  

m n
m n

! !

( )!

×
+ +1

, where m and n are positive integers.

Example 9.42

 Evaluate x x dx3 4

0

1

1−( )∫ .
Solution
 x x dxm n

1
0

1

−( )∫  
=  

m n
m n

! !

( )!

×
+ +1

.

 ∴ x x dx3 4

0

1

1−( )∫  
=  

3 4

3 4 1

! !

( )!

×
+ +

=
3 4

8

! !

!

×
=

3 2 1 4 3 2 1

8 7 6 5 4 3 2 1

× × × × × ×
× × × × × × ×

=
1

280
.

EXERCISE 9.6
1. Evaluate the following: 

 (i) sin10

0

2

x dx

π

∫
 

(ii) cos7

0

2

x dx

π

∫  (iii) sin6

0

4

2x dx

π

∫
 

(iv) sin5

0

6

3x dx

π

∫

 (v) sin cos2 4

0

2

x x dx

π

∫
 

(vi) sin7

0

2

4

x dx
π

∫  (vii) sin cos3 5

0

2 θ θ θ
π

d∫  (viii)  x x dx2 3

0

1

1( )−∫   

9.7 Gamma Integral
 In this section, we study about a special improper integral of the  form e x dxx n−∞ −∫0

1 , where n is 

a positive integer. Here, we have 

   e∞  =  lim
x

xe
→∞

= ∞  and e e
ex

x

x

x
−∞

→∞

−

→∞

= = =
∞

=lim
lim

1 1
0  

 By L’Ho ̂pital’s rule, for every positive integer m , we get,

   lim
x

m xx e
→∞

−  =  lim lim
!

x

m

x x x

x
e

m
e→∞ →∞

= = 0 .

Example 9.43
 Prove that e x dx nx n−∞

∫ =
0

!, where n is a  positive integer. 

Solution
 Applying integration by parts, we get

  
e x dxx n−∞

∫0
 =  x e e nx dxn x x n−( )  − −( )( )− ∞ −∞ −∫0 0

1 = n e x dxx n− −∞

∫ 1

0
.

  Let  In  =  e x dxx n−∞

∫0
.Then, I nIn n= −1 . 

  So, we get In  =  n n In( )− −1 2 . 

 Proceeding in this way, we get ultimately, 
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  In  =  n n n I( )( ) ( )( )− −1 2 2 1 0 . 

  But, I0  =  e x dx ex x−∞ − ∞

∫ = −( ) = + =
0

0

0
0 1 1 . So, we get In = n n n n( )( ) ( )( ) !− − =1 2 2 1 .  

Hence, we get 
Result

 e x dxx n−∞

∫0
= n!, where n  is a nonnegative integer. 

Note
     The integral e x dxx n−∞ −∫0

1 defines a unique positive integer for every positive integer n ≥1. 

Definition 9.1

e x dxx n−∞ −∫0

1 is called the gamma integral. It is denoted by Γ( )n  and is read as  

“gamma of  n ”. 

Note
  Γ( )n +1  =  n nΓ( ) .

  Γ( )1  =  e x dx ex x−∞ − ∞

∫ = −( ) = + =
0

0

0
0 1 1 ,

           Γ( )n  =   e x dxx n−∞ −∫ 0

1 .

   =  ( )!n −1 , n =  1, 2, 3, ...

Example 9.44

 Evaluate e x dxax n−∞

∫0
,where a > 0 .

Solution
 Making the substitution t ax= , we get dt adx= and x t x t= ⇒ = = ∞⇒ = ∞0 0 and . 

 Hence, we get

  
e x dxax n−∞

∫0  
=  e t

a
dt
a

t
n

−∞ 



∫0

=
1

1 0a
e t dtn
t n

+
−∞

∫

   =  
1

1 0a
e x dxn
x n

+
−∞

∫ =
n
an

!
+1

.

   Thus
 e x dxax n−∞

∫0
 =  n

an
!
+1

Example 9.45

 Show that Γ( ) .n e x dxx n= − −
∞

∫2
2 2 1

0

Solution
 Using the substitution x  =  u , we get dx

u
du=

1

2
.

 When x  =  0 , we get u = 0 .When x = ∞ , we get u = ∞ .

 ∴ 2
2 2 1

0

e x dxx n− −
∞

∫
 
=  2

1

2

2 1

0

e u
u
duu n

−
−∞

( )∫ = − −
∞

∫ e u duu n 1

0

= Γ( )n .
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Example 9.46

 Evaluate x
n
dx

n

x
0

∞

∫ , where n is a positive integer≥ 2 . 

Solution

  Using the formula  n  =  e e nlog , we get

  I  =  
x
n
dx

n

x
0

∞

∫ = n x dxx n−
∞

∫
0

= e x dxn x nlog( )−
∞

∫
0

= e x dxx n n−
∞

∫ log

0

.

  Using the substitution u  =  x nlog , we get dx du
n

=
log

.

  When  x  =  0 , we get u = 0 .When x = ∞ , we get u = ∞ .

  ∴ I  =  e
u
n

du
n

u
n

−
∞ 







∫ log log

0

   =  
1

1

1 1

0
(log )

( )

n
e u dun
u n

+
− + −

∞

∫ =
Γ( )

(log )

n
n n
+

+

1
1
=

n
n n
!

(log ) +1
.

EXERCISE 9.7
Evaluate the following

 1. (i) x e dxx5 3

0

−
∞

∫  (ii)  
e

x
dx

x−

∫
tan

cos6

0

2

π

 2. If e x dxx−
∞

= >∫ a a
2 3

0

32 0, ,  find  α

9.8 Evaluation of a Bounded Plane Area by Integration
 In the beginning of this chapter, we have already introduced definite integral by a geometrical 
approach. In that approach, we have noted that, whenever the integrand of the definite integral is 
non-negative, the definite integral yields the geometrical area. In the present section, we apply the 
approach for finding areas of plane regions bounded by plane curves.

9.8.1 Area of the region bounded by a curve, x – axis and the lines x = a 
and  x = b.
Case (i)
 Let y f x a x b= ≤ ≤( ),  be the equation of the portion of the 
continuous curve that lies above the x − axis (that is, the portion  
lies either in the first quadrant or in the second quadrant) between 
the lines x a= and x b= . See Fig.9.8. Then, y ≥ 0  for every point of 
the portion of the curve. Consider the region bounded by the curve, 
x − axis, the ordinates x a=  and x b= . It is important to note that 
y does not change its sign in the region.  Then, the area A of  the region is found as follows:

Fig. 9.8

y f x= ( )

x a=
x b=

∆x

y

x
O
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 Viewing in the positive direction of the y − axis, divide the region into elementary vertical strips 

(thin rectangles) of height y and width Dx . Then, A is the limit sum of the areas of the vertical strips. 

Hence, we get A = lim − ∆
≤ ≤
∑ y x
a x b

=− =∫ ∫ydx ydx
a

b

a

b
.

Case (ii)

 Let y f x a x b= ≤ ≤( ),  be the equation of the portion of 

the continuous curve that lies below the x − axis (that is, the 

portion lies either in the third quadrant or in the fourth 

quadrant). Then, y £ 0  for every point of the portion of the 

curve. It is important to note that y does not change its sign in 

the region. Consider the region bounded by the curve,  

x − axis, the ordinates x a=  and x b= . See  Fig.9.9. Then, the 

area A  of  the region is found as follows:
 Viewing in the negative direction of the y − axis, divide the region into elementary vertical strips 

(thin rectangles) of height y y= −  and width Dx . Then, A is the limit of the sum of the areas of the 

vertical strips. Hence, we get A = lim − ∆
≤ ≤
∑ y x
a x b

= − =∫ ∫ydx ydx
a

b

a

b
.

Case (iii)
 Let y f x a x b= ≤ ≤( ),  be the equation of the portion 

of the continuous curve that lies above as well as below 
the x − axis (that is, the portion may lie in all quadrants). 
Draw the graph of y f x= ( )  in the XY −  plane. The  
graph lies alternately above and below the x − axis and it 
is intercepted between the ordinates  and  .x a x b= =  
Divide the interval[ , ]a b  into subintervals [ , ]a c1 , [ , ]c c1 2 ,
 , [ , ]c bk  such that f x( )  has the same sign on each of 
subintervals. Applying cases (i) and (ii),  we can obtain 
individually, the geometrical areas of the regions 
corresponding to the subintervals. 
 Hence the geometrical area of the region bounded by the graph of y f x= ( ) , the x-axis, the lines 

x a=  and x b= is given by f x dx f x dx f x dx
a

c

c

c

c

b

k

( ) ( ) ( )
1

1

2

∫ ∫ ∫+ + + . 

 For instance, consider the shaded region in Fig. 9.10.  Here A1 , A2 , A3 , and A4  denote geometric 
areas of the individual parts.  Then, the total area is given by 

A = A A A A1 2 3 4+ + + = f x dx f x dx f x dx f x dx
a

c

c

c

c

c

c

b

( ) ( ) ( ) ( )
1

1

2

2

3

3

∫ ∫ ∫ ∫+ + + .

Fig. 9.9

y

x
∆x

x a= x b=

O

−y

Fig. 9.10

c1 O
A2

c2

A3

A4 b x

y

x b=
x a=

a
A1
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9.8.2  Area of the region bounded by a curve, y– axis and the lines y = c 
and y = d.
Case (iv)
 Let x f y c y d= ≤ ≤( ),  be the equation of the portion of the 
continuous curve that lies to the right side of  
y − axis (that is, the portion lies either in the first quadrant or in the 
fourth quadrant). Then, x ≥ 0  for every point of the portion of the 
curve. It is important to note that x does not change its sign in the 
region. 
 Consider the region bounded by the curve, y − axis, the lines 
y c= and y d= . The region is sketched as in Fig. 9.11. Then, the area 
A of the region is found as follows:
 Viewing in the positive direction of the x − axis, divide the region into thin horizontal strips (thin 

rectangles) of length x and width Dy . Then, A is the limit of the sum of the areas of the horizontal 

strips. Hence, we get A = lim x y
c y d

∆
≤ ≤
∑ = xdy

c

d

ò .

Case (v)
 Let x f y c y d= ≤ ≤( ),  be the equation of the portion of 
the continuous curve that lies to the left side of y − axis (that 
is, the portion lies either in the second quadrant or in the third 
quadrant). Then, x £ 0  for every point of the portion of the 
curve. It is important to note that x does not change its sign in 
the region. Consider the region bounded by the curve,  
y − axis, the lines y c= and y d= . The region is sketched as 
in Fig. 9.12. Then, the area A of the region is found as follows:

 Viewing in the positive direction of the x − axis, divide 
the region into thin horizontal strips (thin rectangles) of length 
x x= − and width Dy . Then, A is the limit of the sum of the 

areas of the horizontal strips. 

 Hence, we get A = lim −( )∆
≤ ≤
∑ x y
c y d

= −∫ x dy
c

d
= x dy

c

d

ò .

Case (vi)
 Let x f y c y d= ≤ ≤( ),  be the equation of the portion of the continuous curve that lies to the 
right as well as to the left of the y − axis (that is, the portion may lie in all quadrants). Draw the graph 
of x f y= ( )  in the XY −  plane. The graph lies alternately to the right and to the left of the y − axis 
and it is intercepted between the lines y c= and y d= . Divide the interval [ , ]c d into subintervals 
[ , ]c a1 , [ , ]a a1 2 , , [ , ]a dk  such that f y( )  has the same sign on each of subintervals. Applying cases 

y

x
O

x f y= ( )

y c=

x
∆y

y d=

Fig. 9.12

y

x
O

x
f

y
=

(
) y c=

−x ∆y

y d=

Fig. 9.11
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(iii) and (iv),  we can obtain individually, the geometrical areas of the regions corresponding to the 
subintervals. 
 Hence the geometrical area A of the region bounded by the 
graph of x f y= ( ) , the y-axis, the lines y c= and y d= is given 

by A = f y dy f y dy f y dy
c

a

a

a

a

d

k

( ) ( ) ( )
1

1

2

∫ ∫ ∫+ + + . 

     For instance, consider the shaded region in Fig. 9.13. Here, B1 , B2 ,

B3 and B4 denote geometric areas of the individual parts.  Then, the 
total area B of the region bounded by the curve x f y= ( ) ,  
y − axis and the lines y c= and y d= is given by

 B    =  B B B B1 2 3 4+ + +

  =  f y dy f y dy f y dy f y dy
c

a

a

a

a

a

a

d

( ) ( ) ( ) ( )
1

1

2

2

3

3

∫ ∫ ∫ ∫+ + + .

Example 9.47
 Find the area of the region bounded by the line 6 5 30x y+ = , x − axis and the lines x = −1  and 
x = 3 .

Solution
 The region is sketched in Fig. 9.14.  It lies above the 
x − axis. Hence, the required area is given by 

 A  =  y dx
−∫ 1

3

=
30 6

51

3 −



−∫
x dx = 30 3

5

2

1

3

x x−








−

  =  
90 27

5

30 3

5

−





 −

− −





 =

96

5
.

Example 9.48

 Find the area of the region bounded by the line 7 5 35x y− = , x − axis and the lines x = −2  and 
x = 3 .
Solution
 The region is sketched in Fig. 9.15. It lies below the x − axis. Hence, the required area is given 
by 

 A  =  y dx x dx
− −∫ ∫= −



2

3

2

3 7 35

5
 

  =  
1

5
7

2
35

2

2

3

x x








 −










−

 

  =  
1

5

63

2
105 84

63

2







 −









 − =( ) .

Fig. 9.14

x=− 1

∆x

y

x( , )5 0

x= 3

O

(6,0)

6

5

30

x
y

�
�

Fig. 9.15

O x

y

y x
=

−7 35

5

x=− 2

( , )5 0

x= 3

( , )0 7−

∆x (3,0)

( , )−2 0

Fig. 9.13

y

x

y d=

y c=

O

a3

a2

a1

d

Chapter 9 Applications of Integration.indd   125 7/25/2019   7:11:12 PM



126XII - Mathematics

Example 9.49

 Find the area of the region bounded by the ellipse x
a

y
b

2

2

2

2
1+ = .

Solution
 The ellipse is symmetric about both major and 
minor axes. It is sketched as in Fig.9.16. So, viewing in 
the positive direction of y -axis, the required area A is 

four times the area of the region bounded by the portion 

of the ellipse in the first quadrant y b
a
a x x a= − < <








2 2 0, ,  

x -axis, x = 0  and x a= .

 Hence, by taking vertical strips, we get 

 A =  4 4
0

2 2

0
y dx b

a
a x dx

a a
= −∫ ∫

  =  
4

2 2

4

4

2 2 2
1

0

2b
a
x a x a x

a
b
a

a ab
a

−
+ 



















= × =−sin

π
π  

Note
 Viewing in the positive direction of x -axis, the required 
area A is four times the area of the region bounded by the 
portion of the ellipse in the first quadrant 

x a
b
b y y b= − < <








2 2 0,  y-axis, y = 0  and y b= . Hence, by 

taking horizontal strips (see Fig.9.17), we get 

   A =  x dy a
b
b y dy

ba
= −∫∫ 4 2 2

00

    =  
4

2 2

4

4

2 2 2
1

0

2a
b

y b y b y
b

a
b

b ab
b

−
+ 



















= × =−sin

p
p .

Note
 Putting b a=  in the above result, we get that the area of the region enclosed by the circle

x y a2 2 2+ = is pa2 .

Example 9.50
 Find the area of the region bounded between the parabola y ax2 4=
and its latus rectum.
Solution
 The equation of the latus-rectum is x a= . It intersects the parabola at 
the points L a a( , )2  and L a a1 2( , )− . The required area is sketched in Fig. 
9.18. By symmetry, the required area A is twice the area bounded by the 
portion of the parabola

y a x x= 2 , -axis, x = 0   and x a=  .

x a
b

b y= −2 2

y= 0 (a,0)

y b=

∆y

y

x
O

( , )0 b

Fig. 9.17

Fig. 9.18

y

x
O

y a x= 2

( , )a a2

( , )a 0

( , )a a−2

∆x

x= 0

x a=

Fig. 9.16

y

x
O

y
b

a
a

x

=

−2

2

∆x

x= 0

x a=

(a,0)( , )−a 0

( , )0 b

( , )0 −b
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 Hence, by taking vertical strips, we get

   A  =  2 2 2 4
2

3

3

2

00
0

y dx a x dx a x
aa

a

= =








∫∫  

    =  4
2

3

8

3

3

2

2

a a a
× = . 

Note
 Viewing in the positive direction of x -axis, and making horizontal 

strips (see Fig. 9.19), we get 

     A =  2 2
4

2

0

2

0

2

( )a x dy a y
a
dy

aa
− = −





∫∫  

  =  2
12

2 2
8

12

8

3

3

0

2

2
3 2

ay y
a

a a
a

a
a

−






= −






= .

Note
 It is quite interesting to note that the above area is equal to 
two-thirds the base (latus-rectum) times the height (the distance between the focus and the vertex). 
This verifies Archimedes’ formula for areas of parabolic arches which states that the area under a 
parabolic arch  is two-thirds the area of the rectangle having base of the arch as length and height of 
the arch as the breadth.   It is also equal to four-thirds the area of the triangle with base (latus-rectum) 
and height (the distance between the focus and the vertex).

Example 9.51
 Find the area of the region bounded by the y -axis and the parabola x y y= − −5 4 2 .
Solution
 The equation of the parabola is ( ) ( )y x+ = − −2 92 . The parabola crosses 
the y  -axis at ( , )0 5−  and ( , )0 1  .The vertex is at ( , )9 2− and the axis of the 
parabola is y = −2 . The required area is sketched as in Fig. 9.20. 
 Viewing in the positive direction of x − axis, and making horizontal strips, 
the required area A is given by  

 A = xdy
−
∫
5

1

= ( )5 4 2

5

1

− −
−
∫ y y dy = 5 2

3

2
3

5

1

y y y
− −










−

=
8

3

100

3
− −





 = 36 .

Note
 As in the previous problem, we again verify Archimedes’ formula that the area of the parabolic  
arch is equal to two-thirds the base times the height. 

Example 9.52
 Find the area of the region bounded by x − axis, the sine curve y x= sin , the lines x = 0  and 
x = 2π .
Solution
 The required area is sketched in Fig. 9.21.  One portion of 
the region lies above the x − axis between x = 0 and x = π , and 
the other portion lies below x − axis between x = π and x = 2π .  
So, the required area is given by

y

x
O

( , )a a2

( , )a 0

( , )a a−2

∆x

y= 0

x a=

y a= 2

Fig. 9.19

( , )9 2�

(0,1)

x

y

( , )0 5�

O

Fig. 9.20

Fig. 9.21

x

y

x = 0 x = 2π

O ( , )π 0

x = π

( , )2 0π
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 A  =  ydx ydx
0

2π

π

π

∫ ∫+ = sin sinxdx xdx
0

2π

π

π

∫ ∫+ = −[ ] + −[ ]cos cosx x
0

2π

π

π

  =  − +[ ]+ − +[ ]cos cos cos cosπ π π0 2 = 2 2+ − = 4 .

Note

 If we compute the definite integral sin xdx
0

2π

∫ , we get 

 
sin xdx

0

2π

∫ = −[ ]cos x
0

2π = −[ ]− −[ ]cos cos2 0π = 0 .

 So f x dx( )
0

2π

∫ does not represent the area of the region bounded by the curve y x= sin , x − axis, 

the lines x = 0 and x = 2π . 

Example 9.53
 Find the area of the region bounded by x − axis, the curve y x= cos , the lines x = 0 and x = π .
Solution

 The given curve is y
x x

x x
=

≤ ≤

− ≤ ≤










  cos ,

cos ,

0
2

2

π

π
π

 It lies above the x − axis. The required area is sketched in 

Fig. 9.22. So, the required area is given by 

 A  =  ydx
0

π

∫ = cos cosxdx x dx
0

2

2

π

π

π

∫ ∫+ −( ) = sin sinx x[ ] −[ ]
0
2

2

π

π
π

  =  1 0 0 1−[ ]− −[ ] = 2 .

9.8.3 Area of the region bounded between two curves 
Case (i)
 Let y f x= ( ) and y g x= ( ) be the equations of two curves in the XOY −plane such that 

f x g x( ) ( )≥ for all x a b∈[ , ] . We want to find the area A of the 

region bounded between the two curves, the ordinates x a= and 

x b= . 

 The required area is sketched in Fig. 9.23. To compute A , we 

divide the region into thin vertical strips of width Dx and height 
f x g x( ) ( )− . It is important note that f x g x( ) ( )− ≥ 0  for all 

x a b∈[ , ] . As before, the required area is the limit of the sum of the 

areas of the vertical strips. Hence, we get A = [ ( ) ( )]f x g x dx
a

b
−∫ .

O ππ
2

x= 0

x

y

x= π
2

x= π

Fig. 9.22

Fig. 9.23

( , ( ))x f x
y f x= ( )

y g x= ( )

x b=
( , ( ))x g xx a=

y

x
O
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Note
 Viewing in the positive direction of y − axis, the curve y f x= ( ) can be termed as the upper 

curve (U) and the curve y g x= ( ) as the lower curve (L). Thus, we get A y y dxU La

b
= −∫ [ ] .

Case (ii) 
 Let x f y= ( ) and x g y= ( ) be the equations of two curves in 

the XOY −plane such that f y g y( ) ( )≥ for all y c d∈[ , ] . We want 
to find the area A of the region bounded between the two curves, 
the lines y c= and y d= . The required area is sketched in  

Fig. 9.24. To compute A , we view in the positive direction of the x −
axis and divide the region into thin horizontal strips of width Dy  and 
height f y g y( ) ( )− . It is important note that f y g y( ) ( )− ≥ 0  for all 
y c d∈[ , ] . As before, the required area is the limit of the sum of 
the areas of the horizontal strips. Hence, we get   

A = [ ( ) ( )]f y g y dy
c

d
−∫ .

Note
 Viewing in the positive direction of x − axis, the curve x f y= ( ) can be termed as the right curve 

(R) and the curve x f y= ( ) as the left curve (L). Thus, we get A x x dyR La

b
= −∫ [ ] .

Example 9.54
 Find the area of the region bounded between the parabolas y x2 4=  

and x y2 4=  .
Solution
 First, we get the points of intersection of the parabolas. For this, we 
solve y x2 4=  and x y2 4=  simultaneously: Eliminating y between them, 
we get x x4 64=  and so x = 0  and x = 4 . Then the points of intersection 

are ( , )0 0  and ( , )4 4 . The required region is sketched in Fig.9.25. 
 Viewing in the direction of y -axis, the equation of the upper boundary 

is y x= 2  for 0 4£ £x  and the equation of the lower boundary is y x
=

2

4
  

for 0 4£ £x . So, the required area D  is 

A y Y dx x x dx x x
U L= − = −







=






−








∫ ∫( )

/

0

4
2

0

4
3 2 3

0

2
4

2
2

3 12

44

2
2 8

3

64

12
0

16

3
= ×





−





− =  .

Note
 Viewing in the positive direction of x -axis, the right bounding 

curve is 2 4x y= and the left bounding curve is y x2 4=  . See Fig. 

9.26. The equation of the right boundary is x y= 2  for 0 4£ £y  

and  the equation of the left boundary is  x y
=

2

4
 for 0 4£ £y .  So, 

the required area A  is

y

x

( ( ), )f y y

y d=

( ( ), )g y y

x g y= ( )
x f y= ( )

y c=

O

Fig. 9.24

( , )0 0

( , )4 4y
x

= 2

y
x
=

2

4

x= 0

x= 4

y

x
( , )4 0

Fig. 9.26

( , )0 0

( , )4 4

x y= 2

x
y
=

2

4

y

x

y = 4( , )0 4

Fig. 9.25
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A x x dx y y dy y y
R L= − = −







=






−








∫ ∫( )

/

0

4
2

0

4
3 2 3

0

2
4

2
2

3 12

44

2
2 8

3

64

12
0

16

3
= ×





−





− =  .

Example 9.55
 Find the area of the region bounded between the parabola x y2 =  and the curve y x= .
Solution
 Both the curves are symmetrical about y -axis. 

 The curve y x=  is y
x x
x x

=
≥

− ≤




if  

if

0

0
.

 It intersects the parabola x y2 =  at ( , )1 1  and ( , )−1 1  . 
 The area of the region  bounded by the curves is 
sketched in Fig. 9.27.  It lies in the first quadrant as well as 
in the second quadrant.  By symmetry, the required area is 
twice the area in the first quadrant. 
 In the first quadrant, the upper curve is y x x= ≤ ≤,0 1  
and  the lower curve is y x x= ≤ ≤2 0 1, . Hence, the required 
area is given by 
   A  =  2 2

0

1
2

0

1

[ ] [ ]y y dx x x dxU L− = −∫ ∫  

    =  2
2 3

2 3

0

1

x x
−









  

    =  2 1

2

1

3

1

3
−






 = .

Example 9.56
 Find the area of the region bounded by y x y x= =cos , sin , the lines x = p

4
 and x = 5

4

p .

Solution
 The region is sketched in Fig. 9.28. The upper boundary of the region is y x= sin  for p p

4

5

4
£ £x  

and the lower boundary of the region is y x= cos   for p p
4

5

4
£ £x . So the required area A  is given 

by

 A  =  y y dx x x dx x xU L−( ) = − = − −[ ]∫∫ (sin cos ) cos sinπ

π

π

π

π

π

4

5
4

4

5
4

4

5
4

  =  − −





 − − −






sin cos sin cos

5

4

5

4 4 4

π π π π   

  =  − −





 − −
















 − −






 −



















1

2

1

2

1

2

1

2
 

  =  2
2

2
2

2 2+ = .

y
x=

2y
x

=(
, )

−1
1

( , )1 1y
x

= −

y

x
O (1,0)( , )−1 0

Fig. 9.27

Fig. 9.28

O π
4

π
2

x= 5

4

π

5

4

π3

4

π
π

y

x

x= π
4
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Example 9.57
 The region enclosed by the circle x y a2 2 2+ =  is divided into two segments by the line x h= . 

Find the area of the smaller segment.
Solution
 The smaller segment is sketched in Fig. 9.29. Here 0< <h a . By symmetry about the x -axis, 

the area of the smaller segment is given by 

 A  =  2 2
2 2

2 2
2 2 2

1a x dx x a x a x
ah

a

h

a

− = − + 

















−∫ sin  

  =  2 0
2

1 2
2 2

2
1

2 2 2
1+









 −

−
+ 




















− −a h a h a h
a

sin ( ) sin  

  =  a h a h a h
a

2 2 2 2 1

2

π





 − − − 








−sin  

  =  a
h
a

h a h2 1 2 2

2

π
− 
















 − −−sin  

  =  a
h
a

h a h2 1 2 2cos−






 − − .

Example 9.58
 Find the area of the region in the first quadrant bounded by the parabola y x2 4= , the line 
x y+ = 3  and y -axis.

Solution
 First, we find the points of intersection of x y+ = 3  and y x2 4− : 

 x y+ = 3  ⇒  y x= −3 .

 ∴ =y x2 4  ⇒  ( )3 42− =x x

  ⇒  x x2 10 9 0− + =

  ⇒  x x= =1 9, .

 ∴ =x 1 in x y y+ = ⇒ =3 2 , and x = 9  in x y y+ = ⇒ = −3 6 .

 ∴( , )1 2  and ( , )9 6−  are the points of intersection.

 The line x y+ = 3  meets the y -axis at ( , )0 3 .

 The required area is sketched in Fig. 9.30.
 Viewing in the direction of y -axis, on the right bounding curve is given by

  x  =  
y y

y y

2

4
0 2

3 2 3

,

,

≤ ≤

− ≤ ≤






 

  ∴A  =  x dy x dy y dy y dy+ = + −∫∫∫ ∫
2

0

2

2

3

0

2

2

3

4
3( )

   =  y y y3

0

2
2

2

3

12
3

2

8

12
0 9

9

2
6

4

2









 + −









 = −






 + −






 − −






 =

7

6
.

Fig. 9.30

x

y

x h=

O
x a=

( , )a 0

Fig. 9.29

( , )0 3

( , )0 2

y

y x2 4�

x

( ,
)

9
6�

x y� � 3

( , )1 2

O
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Example 9.59
 Find, by integration, the area of the region bounded by the lines 5 2 15x y− = ,  x y+ + =4 0  and 
the x-axis.

Solution
 The lines 5 2 15x y− = ,  x y+ + =4 0  intersect at 1 5,−( ) . The line 5 2 15x y− =   meets the x-axis 

at 3 0,( ) . The line x y+ + =4 0  meets the x-axis at −( )4 0, . The required area is shaded in Fig.9.31. 

It lies below the x-axis. It can be computed either by considering vertical strips or horizontal strips.

 When we do by vertical strips, the region has to be divided into two sub-regions by the line 
x =1. Then, we get

   A  =  ydx ydx
−
∫ ∫+
4

1

1

3

 

    =  − −( ) +
−








−
∫ ∫4

5 15

2
4

1

1

3

x dx x dx

    =  − −








 + −











−

4
2

5

4

15

2

2

4

1
2

1

3

x x x x  

    =  −





 − ( ) + −






 − −








9

2
8

45

4

25

4
 

    =  25

2
5+

    =  35

2
.

 
When we do by horizontal strips, there is no need to subdivide the region. In this case, the area 

is bounded on the right by the line 5 2 15x y− =  and on the left by x y+ + =4 0 . So, we get

   A  =  x x dy y y dyR L−[ ] =
+

− − −( )



− −

∫ ∫
5

0

5

0
15 2

5
4

    =  7
7

5
7

7

10
5

0 2

5

0

+





= +










− −
∫

y dy y y

    =  0 35
35

2

35

2
− − +




= .

Note
 The region is triangular with base 7 units and height 5 units. Hence its area is 35

2
 without using 

integration.
Example 9.60
 Using integration find the area of the region bounded by triangle ABC, whose vertices A, B, and 
C are −( )1 1, ,  3 2,( ) , and 0 5,( )  respectively.

Fig. 9.31

(
, )

−4 0

( , )1 5−

∆y

y

O
x( , )3 0

( , )1 0

x + y + 4 = 0 5x −2y = 15
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Solution
 See Fig. 9.32.

 Equation of AB is y x−
−

=
+
+

1

2 1

1

3 1
  or y x= +( )1

4
5

 Equation of BC is  y x−
−

=
−
−

5

2 5

0

3 0
  or y x= − + 5

 Equation of AC is  y x−
−

=
+
+

1

5 1

1

0 1
  or y x= +4 5

   ∴ Area of DABC  =  Area DACO+ Area of OCBE −  Area of DABE

    =  4 5 5
1

4
5

1

0

0

3

1

3

x dx x dx x dx+( ) + − +( ) − +( )
−

−∫ ∫ ∫  

    =  4

2
5

2
5

1

4 2
5

2

1

0
2

0

3
2

1

3

x x x x x x+








 + − +









 − +











− −

 

    =  0 2 5
9

2
15 0

1

4

9

2
15

1

4

1

2
5

15

2
− + −( ) + − +





− − +





+ −





=

Example 9.61
 Using integration, find the area of the region which is bounded by x-axis, the tangent and normal 

to the circle x y2 2 4+ =  drawn at 1 3,( ) .

Solution
 We recall that the equation of the tangent to the circle 
x y a2 2 2+ =  at x y1 1,( )  is xx yy a1 1

2+ =  . So, the equation of the 

tangent to the circle x y2 2 4+ =  at 1 3,( )  is x y+ =3 4 ; that is, 

y x= − −1

3
4( ) . The tangent meets the x-axis at the point (4,0). 

The slope of the tangent is − 1

3
. So the slope of the normal is −

1

3
 
and hence equation of the normal 

is y x− = −3 3 1( ) ; that is y x= 3  and it passes through the origin. The area to be found is shaded 

in the adjoining figure. It can be found by two methods.

Method 1
 Viewing in the postive direction of y-axis, the required area is the area of the region bounded by 

x-axis, y x= 3  and x y+ =3 4 . So it can be obtained by applying the formula ydx
a

b

ò . For this, we 

have to split the region into sub-regions, one sub-region bounded by x-axis, the normal y x= 3  and 

the line x =1 ; the other sub-region bounded by x-axis, the tangent x y+ =3 4  and the line x =1 

axis.
    ∴  Area required =  y dx y dx x dx x dx

0

1

1

4

0

1

1

4

3
1

3
4∫ ∫ ∫ ∫+ = + − −( )





    =  3
2

1

3 2
4

2

0

1
2

1

4

x x x








 + − −



















 =  3

2

8

3

7

2 3
2 3+ − = .

A( , )−1 1

B( , )3 2

O ED

C( , )0 5
y

x

Fig. 9.32

O (1,0) (2,0)

y

x

Tangent

N
or

m
al

(4
,0)

1 3,( )

Fig. 9.33
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Method 2
 Viewing in the direction of x-axis, the required area is the area of the region bounded between 

y x= 3  and x y+ =3 4 , y = 0  and y = 3 . So, it can be obtained by applying the formula  

x x dyR Lc

d
−( )∫  

 Here, c = 0 , d = 3 , xR  is the x-value on the tangent x y+ =3 4   and xL  is the x-value on the 

normal y x= 3 .

   ∴ Area required  =  x x dy y y dyR Lc

d
−( ) = −( ) −



∫ ∫ 4 3

30

3

 

    =  4
2

3
2 3

2 2

0

3

y y y
−









 −











    =  4 3
3

2
3

3

2 3
2 3− − = .

Working rule for finding area of the region bounded by y = f1(x), y = f2(x), the lines x a==  and 
x b== , where a b<<  :
 Draw an arbitrary line parallel to y-axis cutting the plane region. First, find the y-coordinate of 
the point where the line enters the region. Call it yENTRY . Next, find the y-coordinate of the point 

where the line exits the region. Call it yEXIT . Both yENTRY  and yEXIT  can be found from the equations 

of the bounding curves. Then, the required area is given by y y dxEXIT ENTRYa

b
−[ ]∫  .

Working rule for finding area of the region bounded by x = g1(y), x = g2(y), the lines y c==  and 
y d== , where c d<<  :

 Draw an arbitrary line parallel to x-axis cutting the plane region.
 First, find the x-coordinate of the point where the line enters the region. Call it xENTRY  .

 Next, find the x-coordinate of the point where the line exits the region. Call it xEXIT . Both 
xENTRY  and xEXIT  can be found from the equations of the bounding curves. Then, the required area is 

given by x x dyEXIT ENTRYc

d
−[ ]∫ . 

EXERCISE 9.8
 1. Find the area of the region bounded by 3 2 6 0x y− + = , x = −3 , x =1 and x-axis.

 2. Find the area of the region bounded by 2 1 0x y− + = , y = −1, y = 3  and y-axis.

 3. Find the area of the region bounded by the curve 2 02+ − + =x x y , x-axis, x = −3 and x = 3.
 4. Find the area of the region bounded by the line y x= +2 5  and the parabola y x x= −2 2 . 
 5. Find the area of the region bounded between the curves y x= sin  and y x= cos  and the 

lines x = 0  and x = π .
 6. Find the area of the region bounded by y x= tan , y x= cot  and the lines x = 0 , x = π

2
, y = 0.

 7. Find the area of the region bounded by the parabola y x2 =   and the line y x= − 2 .
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 8. Father of a family wishes to divide his square field bounded by x = 0 , x = 4 , y = 4  and 
y = 0  along the curve y x2 4=  and x y2 4=  into three equal parts for his wife, daughter 

and son. Is it possible to divide? If so, find the area to be divided among them.
 9. The curve y x= −( ) +2 1

2  has a minimum point at P. A point Q on the curve is such that the 

slope of PQ is 2. Find the area bounded by the curve and the chord PQ.
 10. Find the area of the region common to the circle x y2 2 16+ =  and the parabola y x2 6= .

9.9 Volume of a solid obtained by revolving area about an axis
 Definite integrals have applications in finding volumes of solids of 
revolution about a fixed axis. By a solid of revolution about a fixed axis, 
we mean that a solid is generated when a plane region in  a given plane 
undergoes one full revolution about a fixed axis in the plane. For instance, 
consider the semi circular plane region inside the circle x y a2 2 2+ =  and 
above the x-axis. See Fig.9.34.

 If this region is given one complete rotation (revolution for 360 2° = π
radians) about x-axis, then a solid called a sphere is generated.

 In the same manner, if you want to generate a right-circular cylinder with 
radius a and height h, you can consider the rectangular plane region bounded 
between the straight lines y = 0 , y a= , x = 0  and x h=  in the xy-plane.  See 
Fig.9.35. If this region is given one complete rotation (revolution for 360 2° = π  
radians) about x-axis, then a solid called a cylinder is generated.

 We restrict ourselves to obtain volume of solid of revolution about x-axis or y-axis. Whenever 
solid of revolution about x-axis is considered, the plane region that is revolved about x-axis lies above 
the x-axis. So, in this region y ≥ 0 . Whenever solid of revolution about y-axis is considered, the plane 
region that is revolved about y-axis lies to the right of y-axis. So, in this region x ≥ 0 . We shall find 
the formula for finding the volume of the solid of revolution of the plane region in the first quadrant 
bounded by the curve y f x= ( ) , x-axis and the lines x a=  and x b a= >  about x-axis. The derivation 
of the formula is based upon the formula that the volume of a cylinder of radius r and the height 
h is pr h2 . 
 Assume that every line parallel to y-axis lying between the lines x a=  and x b a= >   cuts the 
curve y f x= ( )  in the first quadrant exactly at one point. Divide a b,[ ]  into n segments by x x xn1 2 1, ,..., −  
such that

a x x x x x bn n= < < < < < =−0 1 2 1... , x x x b a
ni i− = =
−

−1 ∆ , i n=1 2, ,..., .

 For each i n= −0 1 2 1, , ,..., , the region in the xy-plane between the ordinates at xi  and x xi + ∆  
which lies between the x-axis and the curve y f x= ( )  can be approximated to an infinitesimal 
rectangle having area y xiD , where y f xi i= ( ) . When the plane region bounded by the curve 
y f x= ( ) , x-axis, and lines x a=  and x b=  is rotated by 360°  about x-axis, each of the infinitesimal 
rectangles at x xi=  also revolves and generates an elementary solid which is approximately a thin 

cylindrical disc with radius yi  and height Dx . See Fig.9.36. The volume of the cylindrical disc at 

x a= −
y

xO

x y a2 2 2+ =

x a=

Fig. 9.34

y a�

x 0�

y 0�

x h�
O x

y

Fig. 9.35
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x xi=  is given by π y xi
2∆ , i n= −0 1 2 1, , ,..., . Summing all these elementary 

volumes, we get the approximate volume of the solid of revolution as 

π y xi
i

n
2

0

1

∆
=

−

∑ . Let n become larger and larger n →∞( )  such that Dx becomes 

smaller and smaller ∆x →( )0 . Then  π y xi
i

n
2

0

1

∆
=

−

∑  tends to the volume of 

the solid of revolution. Hence the volume of the solid of revolution is

π y dx
a

b
2∫ .

 Similarly, we can find the formula for finding the volume of the solid of 
revolution of the region bounded by the curve x f y= ( ) , y-axis, and the lines 

y c=  and y d=  about y-axis. The curve x f y= ( )  lies to the right of y-axis 

between the lines y c=  and y d c= > . Assume that every line parallel to 

x-axis between y c=  and y d c= >  cuts the curve x f y= ( )  in the first 
quadrant exactly at one point. See Fig.9.37. Then, the volume of the solid of 

revolution is given byπ x dy
c

d
2∫ . 

Example 9.62
 Find the volume of a sphere of radius a.

Solution
 By revolving the upper semicircular region enclosed between the circle 
x y a2 2 2+ =  and the x-axis, we get a sphere of radius a. See Fig. 9.38.

 The boundaries of the region are y a x= −2 2 ,  x-axis, the lines x a= −  

and x a= . Hence, the volume of the sphere is given by 
V y dx a x dx

a

a

a

a
= = −( )

− −∫ ∫π π2 2 2  

  =  2 2 2

0
π a x dx

a
−( )∫ , since the integrand a x2 2−( )  is an even function.

  =  2
3

2
3

4

3

2
3

0

3
3

3π π πa x x a a a
a

−








 = −









 = .

Example 9.63
 Find the volume of a right-circular cone of base radius r and height h.
Solution
 Consider the triangular region in the first quadrant which is bounded 

by the line y r
h
x=  , x-axis, the lines x = 0  and x h= . See Fig.9.39. By 

revolving the region about the x-axis, we get a cone of base radius r and 
height h.
 Hence, the volume of the cone is given by 

V y dx r
h
x dx r

h
x dx r

h
xh

= = 





= 





= 













∫π π π π2

0

2 2

2

2 3

3
 =∫∫

0
00

2

3

h
hh r hπ

x

y

x a=
O ∆x

y f x= ( )

x b=
Fig. 9.36

Fig. 9.38

x

y

∆y

y d=

y c=
x f y= ( )

O

Fig. 9.37

y

xO

y
a

x

=

−2

2

x a=x a=−

z = 0

O h
r

y
r

h
x

=x h=

x

y

Fig. 9.39
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Example 9.64
 Find the volume of the spherical cap of height h cut of from 
a sphere of radius r.

Solution
 If the region in the first quadrant bounded by the circle 
x y r2 2 2+ = , the x-axis, the lines x r h= −  and x r=  is revolved 
about the x-axis, then the solid generated is a spherical cap of 
height h cut of from a sphere of radius r. See Fig. 9.40. Hence, 
the required volume is given by

   V  =  π π πy dx r x dx r x x
r h

r

r h

r

r h

r
2 2 2 2

3

3
= −( ) = −





−

−
− ∫∫

    =  π πr r r h
r r h

r h
r r r h rh h

2

3 3

2

3 3 2 2

3

3 3
− −( )( ) −

− −( )( )












= −

− − + − 33

3

( )( )













 

    =  π π
3

3

1

3
3

2 3
2rh h h r h−







 = −( ) .

Note
 We can rewrite the above volume in terms of the radius of the cap.
 If ρ  is the radius of the cap, then ρ 2 2 2+ −( ) =r h r .

 Then, we have r h
h

=
+ρ 2 2

2
. Eliminating r, we get

V h h
h

h h h h=
+







 −









 =

+

















 =

1

3
3

2

1

3

3

2

1

6

2
2 2 2 2

π
ρ

π
ρ

π 33 2 2ρ +( )h .

Example 9.65
 Find the volume of the solid formed by revolving the region bounded by the parabola y x= 2 , 
x-axis, ordinates x = 0  and x = 1 about the x-axis.
Solution
 The region to be revolved about the x-axis is sketched as in 
Fig.9.41. Hence, the required volume is given by

   V  =  π πy dx x x dx2 2
2

0

1

0

1

4 5= + +( )∫∫

    =  π x x x x x dx4 2 3 2

0

1

16 25 8 40 10+ + + + +( )∫
    =  π x x x x x

5 4 3 2

0

1

5
8

4
26

3
40

2
25+ + + +









  

    =  π π
1

5
2

26

3
20 25

838

15
+ + + +






 = .

Example 9.66
 Find the volume of the solid formed by revolving the region bounded by the ellipse 
x
a

y
b

a b
2

2

2

2
1+ = >,  about the major axis.

x

x
r
=

x
y

h
=

−

r
O

S

y

h S

O r

Fig. 9.40

x
O

y x= 2

x= 0
x= 1

y

Fig. 9.41
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Solution
 The ellipse is symmetric about both the axes. The major axis lies along x-axis. The region to be 
revolved is sketched as in Fig.9.42.
 Hence, the required volume is given by

   V  =  π πy dx b
a
a x dx

a

a

a

a2
2

2
2 2

− −∫ ∫= −( )
    =  2 2

2

2 2

0

πb
a

a x dx
a

−( )∫ , since the integrand is an even function.

    =  2

3

2

3

2 2

3

2

2

2
3

0

2

2

3
3 2

2

3π π πb
a

a x x b
a

a a b
a

a
a

−








 = −









 =









 =

44

3

2πab  

Note
 If the region bounded by ellipse x

a
y
b

2

2

2

2
1+ =   is revolved about the y-axis, then the volume of 

the solid of revolution is 4
3

2πa b . The solid is called an ellipsoid.

Example 9.67
 Find, by integration, the volume of the solid generated by revolving about y-axis the region 
bounded between the parabola x y= +2 1, the y-axis, and the lines y =1 and y = −1.
Solution
 The parabola x y= +2 1 is y x2 1= − . It is symmetrical about x-axis and has the vertex at 1 0,( )  

and focus at 5

4
0,







 . The region for revolution is shaded in Fig.9.43. Hence, the required volume is 

given by
  V  =  π x dy2

1

1

−∫
   =  π y dy2

2

1

1

1+( )
−∫

   =  2 2 14 2

0

1

π y y dy+ +( )∫ , since the integrand is an even function.

   =  2
5

2
3

2
1

5

2

3
1

56

15

5 3

0

1

π π π
y y y+ +









 = + +






 = .

Example 9.68
 Find, by integration, the volume of the solid generated by revolving about y-axis the region 

bounded between the curve y x= −
3

4
162 , x ≥ 4 , the y-axis, and the lines y =1 and y = 6 . 

Solution

 We note that y x x y
= − ⇒ − =

3

4
16

16 9
12

2 2

. So, the given curve is a 

portion of the hyperbola x y2 2

16 9
1− =  between the lines y =1 and y = 6  and it 

lies above the x-axis.

 The region to be revolved is sketched in Fig.9.44.
 Since revolution is made about y-axis, we write the equation of the 

O

y

x

(0, b)

(a,0)(-a,0)

Fig. 9.42

x y� �2 1

x

y

y = 1

y = -1

Fig. 9.43

Fig. 9.44

y b=
y =1
x

y

O
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portion of the hyperbola as x y= +
4

3
9 2 . So, the volume of the solid generated is given by

   V  =  π π πx dy y dy y dy2

1

6
2

2

1

6
2

1

64

3
9

16

9
9∫ ∫ ∫= +





= 





+( )

    =  π π16

9
9

3

16

9
54 72 9

1

3

563

1

6







+






= 





+( ) − +





=y y
( )

000

27
π  

Example 9.69
 Find, by integration, the volume of the solid generated by revolving about y-axis the region 
bounded by the curves y x= log , y = 0 , x = 0  and y = 2 .

Solution
 The region to be revolved is sketched in Fig.9.45.
 Since revolution is made about the y-axis, the volume of the solid 
generated is given by

   V  =  π πx dy e dyy2

0

2

0

2

= ∫∫

    =  π πe ey  = −( )
0

2
2 1 .

EXERCISE 9.9

 1. Find, by integration, the volume of the solid generated by revolving about the x-axis, the 
region enclosed by y x= 2 2 , y = 0  and x = 1.

 2. Find, by integration, the volume of the solid generated by revolving about the x-axis, the 
region enclosed by y e x= −2  y = 0,   x = 0 and x = 1

 3. Find, by integration, the volume of the solid generated by revolving about the y-axis, the 
region enclosed by x y2 1= +  and y = 3 .

 4. The region enclosed between the graphs of y x=  and y x= 2  is 
denoted by R, Find the volume generated when R is rotated through 
360°  about x-axis.

 5. Find, by integration, the volume of the container which is in the shape 
of a right circular conical frustum as shown in the Fig 9.46.

 6. A watermelon has an ellipsoid shape which can be obtained by 
revolving an ellipse with major-axis 20 cm and minor-axis 10 cm about 
its major-axis. Find its volume using integration.

EXERCISE 9.10
Choose the correct or the most suitable answer from the given four alternatives :

 1.  The value of dx
x4 9 2

0

2

3

−
∫  is

(1) p
6

  (2) p
2

  (3) p
4

  (4) p  

y = 0
x = 0

O

y

x
y = 2

y x= log

Fig. 9.45

1 m

2 m

2 m

Fig. 9.46
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 2. The value of x dx
−∫ 1

2

  is

(1) 1

2
 (2) 3

2
 (3) 5

2
 (4) 7

2

 3. For any value of  n e n x dxx∈ +[ ]∫, cos ( )cos2 3

0
2 1

π

is

  (1) p
2

  (2) p   (3) 0 (4) 2

 4. The value of sin cos2

2

2

x x dx
−

∫
π

π

 is

  (1) 
3

2
 (2) 

1

2
 (3) 0 (4) 

2

3

 5. The value of tan tan− −

− +






+ +













∫ 1

2

4

1
4

24

4

1

1x
x

x
x

dx  is

  (1) p  (2) 2p  (3) 3p  (4) 4p

 6. The value of 2 3 7 17 5 3

2

4

4
x x x x

x
dx− + − +



−∫ cos

π

π

 is

  (1) 4 (2) 3 (3) 2 (4) 0

 7. If f x t t dt
x

( ) cos= ∫  
0

, then df
dx

=

  (1) cos sinx x x−  (2) sin cosx x x+  (3) x xcos  (4) x xsin

 8. The area between y x2 4=  and its latus rectum is

  (1) 
2

3
 (2) 

4

3
 (3) 

8

3
 (4) 

5

3

 9.  The value of x x dx( )1 99

0

1

−∫  is

  (1) 1

11000
 (2) 1

10100
 (3) 1

10010
 (4) 1

10001

 10.  The value of dx
x1 50 +∫ cos

π
 is

  (1) p
2

 (2) p  (3) 3

2

p  (4) 2π

 11. If 
Γ

Γ
( )

( )

n
n
+ =2

90  then n  is

  (1) 10 (2) 5 (3) 8 (4) 9

 12.  The value of cos3

0

6 3x dx 

π

∫  is

  (1) 2

3
 (2) 2

9
 (3) 1

9
 (4) 1

3
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 13.  The value of sin4

0
x dx 

π

∫ = is

  (1) 3

10

p  (2) 3

8

p  (3) 3

4

p  (4) 3

2

p

 14. The value of e x dxx−∞
=∫ 3 2

0
 is

  (1) 7

27
 (2) 5

27
 (3) 4

27
 (4) 2

27

 15. If 1

4 820 +
=∫ x

dx
a π  then a   is

  (1) 4 (2) 1 (3) 3 (4) 2

 16. The volume of solid of revolution of the region bounded by y x a x2 = −( )  about x-axis is

  (1) pa3  (2) 
pa3

4
 (3) 

pa3

5
 (4) 

pa3

6

 17. If f x e
u
du x

ux
( ) ,

sin

= >∫ 1
1

 and 

  e
x
dx f a f

xsin

( ) ( ) ,

2

1

2
1

1

3

= −[ ]∫   then one of the possible value of a  is

  (1) 3 (2) 6 (3) 9 (5)

 18. The value of sin−( )∫ 1
2

0

1

x dx  is

  (1) π
2

4
1−  (2) π

2

4
2+  (3) π

2

4
1+   (4) π

2

4
2−

 19. The value of a x dx
a

2 2

0

3

−( )∫  is

  (1) pa3

16
  (2) 3

16

4pa   (3) 3

8

2pa   (4) 3

8

4pa  

 20. If f t dt x tf t dt
x

x
( ) ( )= + ∫∫

1

0
, then the value of f ( )1  is

  (1) 1

2
  (2) 2 (3) 1 (4) 3

4
 

Chapter 9 Applications of Integration.indd   141 7/25/2019   7:12:46 PM



142XII - Mathematics

SUMMARY
(1) Definite integral as the limit of a sum

   (i) f x dx
a

b

( )ò =  lim ( )
n

r

nb a
n

f a b a r
n→∞

=

− + −



∑

1

   (ii)    =f x dx
n

f r
n n

f r
nn

r

n

n
( ) lim lim=












∫ ∑

→∞
=

→∞
0

1

0

1 1 
=
∑
r

n

1

.

(2) Properties of definite integrals

   (i)  f x dx f u du
a

b

a

b

( ) ( )=∫ ∫  (ii) f x dx f x dx
b

a

a

b

( ) ( )= −∫∫

   (iii) f x dx f x dx f x dx
a

c

a

b

c

b

( ) ( ) ( )= +∫∫ ∫   (iv) f x dx f a b x dx
a

b

a

b
( ) ( )∫ ∫= + −

   (v) f x dx f a x dx
a a

( ) ( )
0 0∫ ∫= −  (vi) f x dx f x f a x dx

a a
( ) ( ) ( ) .

0

2

0
2∫ ∫= + −[ ]

   (vii) If f (x) is an even function, then f x dx f x dx
a

a a
( ) ( ) .

−∫ ∫= 2
0

   (ix)  If f (x) is an odd function, then f x dx
a

a
( ) .

−∫ = 0

   (x)   If f a x f x( ) ( ),2 − =  then f x dx f x dx
a a

( ) ( ) .
0

2

0
2∫ ∫=

   (xi) If f a x f x( ) ( ),2 − = −  then f x dx
a

( ) .
0

2

0∫ =

   (xii) x f x dx a f x dx
a a

( ) ( )=∫ ∫2
0 0

 if f a x f x( ) ( )− =

(3) Bernoulli’s Formula

  uvdxò =
 
uv( )1

− + − +u v u v u v( )

( )

( )

( )

( )

( )

1

2

2

3

3

4  .

(4) Reduction Formulas

   (i) sinnx dx
0

2

π

 ∫ = cosn x dx
0

2

π

∫ =

( ) ( )
( )

, , , ,

( ) ( )
( )

n
n

n
n

n

n
n

n
n

− × −
−

× × × =

− × −
−

×

1 3
2

1
2 2

2 4 6

1 3
2

 



 if 

×× =










2
3

3 5 7, , , , if n 

π

   (ii) If n is even and m is even,  

    sinm nx x dx
0

2

π

∫  cos  = ( )
( )

( )
( )

( )
( ) ( )

( ) ( )
( )

(n
m n

n
m n

n
m n m

m
m

m
m

−
+

−
+ −

−
+ − +

− −
−

1 3
2

5
4

1
2

1 3
2



mm
m
−
−

5
4

1
2 2

)
( )



π

   (iii) If n  is odd and m is any positive integer (even or odd), then 

     sinm nx x dx
0

π
2∫  cos  =

( )

( )

( )

( )

( )

( ) ( ) ( )

n
m n

n
m n

n
m n m m

−
+

−
+ −

−
+ − + +

1 3

2

5

4

2

3

1

1
 .
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(5) Gamma Formulas
(i) Γ( )n  = e x dxx n−∞ −∫ 0

1 = −( )!n 1

  (ii) e x dxax n−∞

∫0
 =

n
an

!
+1

(6) Area of the region bounded by a curve and lines

(i) The  area of the region bounded by a curve, above x -axis and the lines x a=  and x b=

is A =  ydx
a

b

ò .

(ii) The  area of the region bounded by a curve, below x -axis and the lines x a=  and x b=

is A = − =∫ ∫ydx ydx
a

b

a

b
.

 (iii) Thus area of the region bounded by the curve to the right of y -axis, the lines y c=  and

y d=  is A = xdy
c

d

ò .

 (iv) The area of the region bounded by the curve to the left of y -axis, the lines y c=  and

y d=  is  A = − =∫ ∫xdy xdy
c

d

c

d
.

(7) Volume of the solid of revolution

(i) The volume of the solid of revolution about x-axis is V =  π y dx
a

b
2∫ .

(ii) The volume of the solid of revolution about y-axis is V =  π x dy
c

d
2∫ .
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Chapter

10 Ordinary Differential Equations
“Mathematics is the most beautiful and 

most powerful creation of the human  spirit”
-  Stefan Banach

10.1 Introduction
Motivation and Early Developments
 Just we look at some real life situations where 
	 ●	 the	motion	of	projectile,	rocket,	satellite	and	planets
	 ●	 the	charge	or	current	in	the	electric	circuit
	 ●	 the	conduction	of	heat	on	a	rod	or	in	a	slab
	 ●	 the	vibrations	of	a	wire	or	membrane	etc
are	to	be	determined.	The	mathematical	formulations	of	such	problems	emerge	as	differential	equations	
under	certain	scientific	laws.	These	laws	involve	various	rates	of	change	(derivatives)	of	one	or	more	
quantities	with	respect	to	other	quantities.	Thus	the	scientific	laws	manifest	as	mathematical	equations	
involving	derivatives,	viz.	differential	equations.		
	 Differential	Equations	emanate	from	the	problems	in	geometry,	mechanics,	physics,	chemistry,	
and	engineering	studies.	We	have	studied	about	“rates”	in	our	early	classes.	This	is	also	known	as	

instantaneous	rate	of	change	which	is	denoted	as	 dy
dx

.

	 We	give	below	some	relations	between	the	rate	of	change	and	unknown	functions	that	occur	in	
real	life	situations.
	 (a)	 The	rate	of	change	of	y	with	respect	to	x is	directly	proportional	to	 y :

   
dy
dx

 =  ky .

	 (b)	 The	rate	of	change	of	y with	respect	to	x is	directly	proportional	to	the	product	of	 y2 and	 x  :

   
dy
dx

 =  ky x2 .

	 (c)	 The	rate	of	change	of	y with	respect	to	x	is	inversely	proportional	to	 y :

   
dy
dx

 =  
k
y .

	 (d)	 	The	rate	of	change	of	 y  with	respect	to	x is	directly	proportional	to	 y2 	and	inversely	

proportional	to x :
   dy

dx
 =  k y

x

2

.

 A	differential	equation	is	an	equation	in	which	some	derivatives	of	the	unknown	function	occur.
	 In	many	cases	the	independent	variable	is	taken	to	be	time.		

144
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	 In	order	to	apply	mathematical	methods	to	a	physical	or	“real	life”	problem,	we	must	formulate	
the	problem	in	mathematical	terms;	that	is,	we	must	construct	a	mathematical	model	for	the	problem.	
Many	physical	problems	concern	relationships	between	changing	quantities.	Since	rates	of	change	
are	represented	mathematically	by	derivatives,	mathematical	models	often	involve	equations	relating	
to	an	unknown	function	and	one	or	more	of	its	derivatives.	Such	equations	are	differential	equations.	
They	 are	 of	 basic	 significance	 in	 science	 and	 engineering	 since	 many	 physical	 laws	 as	 well	 as	
relations	are	modelled	in	the	form	of	differential	equations.		Differential	equations	are	much	useful	
in	describing	mathematical	models	involving	population	growth	or	radio-active	decay.	The	study	of	
biological	sciences	and	economics	is	incomplete	without	the	application	of	differential	equations.
	 The	subject	of	differential	equations	was	invented	along	with	calculus	by	
Newton	 and	Leibniz	 in	 order	 to	 solve	 problems	 in	 geometry	 and	 physics.	 It	
played	a	crucial	part	in	the	development	of	Newtonian	physics	by	the	Bernoulli	
family,	 Euler,	 and	 others.	 Some	 of	 the	 applications	 of	 differential	 equations	
in	our	daily	life	are	found	in	mobile	phones,	motor	cars,	air			flights,	weather	
forecast,	internet,	health	care,	or	in	many	other	daily	activities.

	 In	this	chapter,	we	introduce	and	discuss	the	first	order	ordinary	differential	
equations	and	some	methods	to	find	their	solutions.	

Learning Objectives

	 Upon	completion	of	this	chapter,	students	will	be	able	to	
 • classify	differential	equations
 • construct	differential	equations
 • find	the	order	and	degree	of	the	differential	equations
 • solve	differential	equation	using	the	methods	of	variables	separable,	substitution,	integrating	

factor
 • apply		differential	equation	in	real	life	problems

10.2  Differential Equation, Order, and Degree
Definition 10.1 

 A differential equation is	any	equation	which	contains	at	least	one	derivative	of	an	unknown	
function,	either	ordinary	derivative	or	partial	derivative.

	 For	instance,	let		 y f x= ( )  where y 	is	a	dependent	variable	( f 	is	an	unknown	function)		and	 x  

is	an	independent	variable.

	 (1)	 The	equation	 dy
dx

= 0 	is	a	differential	equation.

	 (2)	 The	equation	 dy
dx

x= sin 	is	a	differential	equation.

Johann	Bernoulli
(1667-1748)
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	 (3)	 The	equation	 dy
dx

y x+ = +7 5 	is	a	differential	equation.

	 (4)	 The	equation	 d y
dx

dy
dx

y x
2

2
+ + = sin 	is	a	differential	equation.

	 (5)	 The	equation	 e x x
dy
dx = >ln , 0 	is	a	differential	equation.

	 (6)	 The	equation	 tan− + +








 =

1
2

2

2 2
d y
dx

y x dy
dx

	is	a	differential	equation.

Definition 10.2 (Order of a differential equation)  

 The	order of a differential	equation	is the highest	order	derivative	present	in	the	differential	
equation.

	 Thus,	if	the	highest	order	derivative	of	the	unknown	function	y	in	the	equation	is	kth derivative,	
then	the	order	of	the	differential	equation	is	k.	Clearly	k	must	be	a	positive	integer.

	 For	example,	 d y
dx

d y
dx

dy
dx

3

3

2

3 2

2
3 5 4 0









 − + + = 	is	a	differential	equation	of	order	three.

Definition 10.3 (Degree of a differential equation)

 If	a	differential	equation	 is	expressible	 in	a	polynomial	 form,	 then	 the	 integral	power	of	 the	
highest	order	derivative	appears	is	called	the	degree	of	the	differential	equation

	 In	other	words,	the	degree	of	a	differential	equation	is	the	power	of	the	highest	order	derivative	
involved	in	the	differential	equation	when	the	differential	equation	(after	expressing	in	polynomial	
form)		satisfies	the	following	conditions	:
	 (i)	All	of	the	derivatives	in	the	equation	are	free	from	fractional	powers,	if	any.
	 (ii)	Highest	order	derivative	should	not	be	an	argument	of	a	transcendental	function,	trigonometric	

or	 exponential,	 etc.	 The	 coefficient	 of	 any	 term	 containing	 the	 highest	 order	 derivative	
should	just	be	a	function	of	x, y,	or	some	lower	order	derivative	but	not	as	transcendental,	
trigonometric,	exponential,	logarithmic		function	of	derivatives.	

	 If	one	or	more	of	the	aforementioned	conditions	are	not	satisfied	by	the	differential	equation,	it	
should	be	first	reduced	to	the	polynomial	form	in	which	it	satisfies	all	of	the	above	conditions.
 If a differential equation is not expressible to polynomial equation form having the highest 
order derivative as the leading term then that the degree of the differential equation is not 
defined. 
	 The	determination	of	 the	degree	of	 a	given	differential	 equation	can	be	 tricky	 if	 you	are	not	
well	versed	with	the	conditions	under	which	the	degree	of	the	differential	equation	is	defined.	So	go	
through	the	given	solved	examples	carefully	and	master	the	technique	of	calculating	the	degree	of	the	
given	differential	equation	just	by	sheer	inspection!

Examples for the calculation of degree:

	 (1)	 Consider	the	differential	equation	3 2

3 2

2

2y dy
dx

d y
dx

x





 − = sin .
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	 	 The	highest	order	derivative	involved	here	is		2,	and	its	power	is	1	in	the	equation.	Thus,	the	
order	of	the	differential	equation	is	2	and	degree	is	1.

	 (2)	 Consider	the	differential	equation	 1

2 3

3
+ 





 =

dy
dx

y d y
dx

	.

	 	 Since	this	equation	involves	fractional	powers,	we	must	first	get	rid	of	them.	On	squaring	the	
equation,	we	get

1

2

2
3

3

2

+ 





 =











dy
dx

y d y
dx

.

  Now,	we	can	clearly	make	out	that	the	highest	order	derivative	is	3.	Therefore	order	of	the	
differential	equation	is	3	and	since	its	power	is	2	in	the	equation,	the	degree	of	the	differential	
equation	is	2.

	 (3)	 Consider	the	differential	equation	 sin
dy
dx

d y
dx

x





 + + =

2

2
3 0 .

	 	 Here,	 the	highest	 order	derivative	 is	 	 2.	Because	of	 sine	of	first	 derivative,	 the	given	
differential	 equation	 can	 not	 be	 expressed	 as	 polynominal	 equation.	 So,	 the	 order	 of	
the	differential	equation	is	2,	and,	it	is	not	in	polynomial	equation	in	derivatives	and	so	
degree	is	not	defined.

	 (4)	 Consider	the	equation	e x dy
dx

d y
dx

2

2

2+ =sin( ) .

  Here,	the	highest	order	derivative	(order	is	2)	has	involvement	in	an	exponential	function.	
This	 cannot	 be	 expressed	 as	 polynomial	 equation	with	 d y

dx

2

2 	 as	 the	 leading	 term	So,	 the	

degree	of	the	equation	is	not	defined.	The	order	of	the	equation	is	2.
	 (5)	 Further,	the	following	differential	equations	do	not	have	degrees.

	 	 (i)	 e dy
dx

dy
dx + = 0 							(ii)	 log

d y
dx

dy
dx

2

2
0









 + = 		and							(iii)	 cos

d y
dx

d y
dx

3

3

2

2
2 0









 + = .

	 (6)	 The	 differential	 equation	 10 7 5 04 5( ) ( ) sin( )′′′ + ′′ + ′ + =y y y  has	 order	 3	 but	 degree	 is	 not	
defined.

	 (7)	 The	differential	equation	cos( ) sin′ ′′′ + ′′ + ′ =y y y y x5 7 	has	order	3	and	degree	is	not	defined.	

Remark
 Observe	that	the	degree	of	a	differential	equation	is	always	a	positive	integer.	
Example 10.1 
 Determine	the	order	and	degree	(if	exists)	of	the	following	differential	equations:

	 (i)	 dy
dx

x y= + + 5 		 (ii)	 d y
dx

dy
dx

y x
4

4

3 7

4 6 5 3








 + 






 + = cos

	 (iii)	 d y
dx

dy
dx

x d y
dx

2

2

2

2
2

2
3+ 





 =









log 		 (iv)	 3 4

2

2

2
3

2d y
dx

dy
dx









 = + 




















 

	 (v)	 dy xy x dx+ −( ) =cos 0  
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Solution
	 (i)	 In	this	equation,	the	highest	order	derivative	is	 dy

dx
	whose	power	is	1

	 	 Therefore,	the	given	differential	equation	is	of	order	1	and	degree	1.

	 (ii)	 Here,	the	highest	order	derivative	is	 d y
dx

4

4 	whose	power	is	3.

	 	 Therefore,	the	given	differential	equation	is	of	order	4	and	degree	3.

	 (iii)	 In	the	given	differential	equation,	the	highest	order	derivative	is	 d y
dx

2

2 	whose	power	is	1.

	 	 Therefore,	the	given	differential	equation	is	of	order	2.	
	 	 The	given	differential	 equation	 is	 not	 a	 polynomial	 equation	 in	 its	 derivatives	 and	 so	 its	

degree	is	not	defined.

	 (iv)	 The	given	differential	equation	is		3 4
2

2

2
3

2d y
dx

dy
dx









 = + 




















	 	 Squaring		both	sides,	we	get		9 4
2

2

2 2
3

d y
dx

dy
dx









 = + 



















.

	 	 In	this	equation,	the	highest	order	derivative	is	 d y
dx

2

2 	whose	power	is	2.

	 	 Therefore,	the	given	differential	equation	is	of	order	2	and	degree	2.
	 (v)	 dy xy x dx+ −( ) =cos 0 is	a	first	order	differential	equation	with	degree	1,	since	the	equation	

can	be	rewritten	as		 dy
dx

xy x+ − =cos 0 .

EXERCISE 10.1
 1.	 For	each	of	the	following	differential	equations,	determine	its	order,	degree	(if	exists)	

	 	 	 (i)	 dy
dx

xy x+ = cot 		 (ii)	 d y
dx

d y
dx

dy
dx

3

3

2

3 2

2
3 5 4 0









 − + + =

	 	 	(iii)	 d y
dx

dy
dx

x d y
dx

2

2

2 2 2

2









 + 






 =









sin 		 (iv)	 dy

dx
dy
dx

x− − =4 7 0

	 	 	 (v)	 y dy
dx

x
dy
dx

dy
dx







 =







 +








3 		 (vi)	 x d y

dx
dy
dx

2
2

2

2
1

2

1 0+ + 


















=  

	 	 	(vii)	 d y
dx

dy
dx

2

2

3

1








 = + 






 		 (viii)	 d y

dx
xy dy

dx

2

2
= + 






cos  

	 	 	(ix)	 d y
dx

dy
dx

ydx x
2

2

35+ + =∫ 		 (x)	 x e
xy dy
dx=
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10.3  Classification of Differential Equations 
Definition 10.4: (Ordinary Differential Equation)

 If	a	differential	equation	contains	only	ordinary	derivatives	of	one	or	more	functions	with	respect	
to	a	single	independent	variable,	it	is	said	to	be	an Ordinary Differential Equation (ODE).	

Definition 10.5: (Partial Differential Equation)

 An	equation	 involving	only	partial	derivatives	of	one	or	more	 functions	of	 two	or	more	
independent	variables	is	called	a	Partial Differential Equation (PDE).

	 For	instance, let y denote	the	unknown	function	and	x	be	independent	variable.	Then	

 
dy
dx

y e x+ = −2 ,	 	 	 d y
dx

dy
dx

y
2

2
5 0− − = 	 	 and	 dx

dt
dy
dt

x y+ = −3 4 	 are	 some	 examples	 of	 ordinary	

differential	equations.	

	 For	 instance,	 ∂
∂

= −
∂
∂

u
y

u
x
,	 	 ∂

∂
+
∂
∂

=
2

2

2

2
0

u
x

u
y

	 and	 ∂
∂

=
∂
∂

−
∂
∂

2

2

2

2 2u
x

u
t

u
t
are	 some	 examples	 of	 partial	

differential	equations.

	 In	this	chapter,	we	discuss	ordinary	differential	equations	only.

	 Ordinary	differential	equations	are	classified	into	two	different	categories	namely	linear ordinary	
differential	equations	and	nonlinear	ordinary	differential	equations.

Definition 10.6
 A general linear ordinary differential equation of order n is	any	differential	equation	that	
can	be	written	in	the	following	form.

 a x y a x y a x y a y g xn
n

n
n( ) + ( ) + + ( ) + = ( )( )

−
−( )

1

1

1 0

' 		 ...	(1)

where	 the	 coefficients	 a x a x a x a xn n( ) ≠ ( ) ( ) … ( )−0 0 1 1, , , , 	 and	 g x( ) 	 are	 any	 function	 of	
independent	variable	 x 	(including	the	zero	function)

Note
	 (1)	 The	important	thing	to	note	about	linear	differential	equations	is	that	there	are	no	products	of	

the	function,	 y x( ) ,	and	its	derivatives	and	neither	the	function	nor	its	derivatives	occur	to	any	
power	other	than	the	first	power.	

	 (2)	 No	transcendental	functions	–	(trigonometric	or	logarithmic	etc)	of	 y 	or	any	of	its	derivatives	

occur	in	differential	equation.

	 (3)	 Also	 note	 that	 neither	 the	 function	 nor	 its	 derivatives	 are	 “inside”	 another	 function,	 for	
instance,	 ′y  or ey′ .

	 (4)	 The	coefficients	 a x a x a xn0 1 1( ) ( ) … ( )−, , , 	and	 g x( ) 	can	be	zero	or	non-zero	functions,	or	

constant	or	non-constant	functions,	linear	or	non-linear	functions.	Only	the	function,	 y x( ) ,	

and	its	derivatives	are	used	in	determining	whether	a	differential	equation	is	linear.
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Definition 10.7

 A nonlinear ordinary differential equation is	simply	one	that	is	not	linear.	

	 If	the	coefficients	of	 y y y y n, , , , ( )′ ′′
 	contain	the	dependent	variable	 y 	or	its	derivatives	or	if	

powers	of		 y y y y n, , , , ( )′ ′′
 ,	such	as	 ( )′y 2 ,	appear	in	the	equation,	then	the	differential	equation	is	

nonlinear.	Also,	nonlinear	functions	of	the	dependent	variable	or	its	derivatives,	such	as	 sin y  or ey′   

cannot	appear	in	a	linear	equation.

	 For	instance,

	 	 (1)	 dy
dx

ax= 3 ,	 d y
dx

dy
dx

y
2

2
2 0+ + = 	 and	 dy

dx
p x y q x+ =( ) ( )  are	 linear	 differential	 equations	

where as y dy
dx

x+ =sin 0 	is	a	nonlinear	differential	equation.

	 	 (2)	 ′′ + ′ = +y x y xy x2 73 2 	is	a	second	order	linear	ODE.

	 	 (3)	 ′′ + ′ =y y x 	is	a	second	order	linear	ODE.

	 	 (4)	 y y x2 + ′ = 	is	a	first	order	nonlinear	ODE.

	 	 (5)	 ′ =y x ysin( ) 	is	a	first	order	nonlinear	ODE.

	 	 (6)	 ′′ =y y xsin( ) 	is	a	second	order	linear	ODE.

Definition 10.8

 If g x( ) = 0 	in	(1),	then	the	above	equation	is	said	to	be	homogeneous,	otherwise	it	is		called	
non-homogeneous.

Remark

 If y x ii ( ), ,=1 2 are	any	two	solutions	of	homogeneous	equation						  

 a x y x a x y x a x y x a x y xn
n

n
n( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) '+ + + + =−
−

1

1

1 0 0 							 …(2)

 then a x y x a x y x a x y x a x y xn i
n

n i
n

i i( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )+ + + + =−
−

1

1

1 0 0 , ii =1 2, .

	 Suppose	u x c y x c y x( ) ( ) ( )= +1 1 2 2 ,		where	c1 	and	c2 are	arbitrary	constants.	Then,	it	can	be	easily	

verified	that	u x( ) 	is	also	a	solution	of	(2).	

	 Thus,	 a	 first	 order	 linear	 differential	 equation	 is	 written	 as	 ′ + =y p x y f x( ) ( ) .	A	 first	 order	

differential	equation	that	can’t	be	written	like	this	is	nonlinear.	Since	 y = 0 		is	obviously	a	solution	of 
the	 homogeneous	 equation ′ + =y p x y( ) 0 ,	 we	 call	 it	 the	 trivial	 solution.	 Any	 other	 solution	 is	

nontrivial.	In	fact	this	is	true	for	a	general	linear	homogeneous	differential	equation	as	well.
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10.4. Formation of Differential Equations
10.4.1  Formation of Differential equations from Physical Situations  
	 Now,	we	provide	some	models	to	describe	how	the	differential	equations	arise	as	models	of	real	
life	problems.

Model 1: (Newton’s Law)
 According	to	Newton’s	second	law	of	motion,	 the	
instantaneous	acceleration	a	of	an	object	with	constant	

mass m 	is	related	to	the	force	F 	acting	on	the	object	by	

the	equation	F ma= .	In	the	case	of	a	free	fall,	an	object	

is	released	from	a	height	 h t( ) 	above	the	ground	level.	

Then,	 the	Newton’s	 second	 law	 is	described	by	 the	differential	 equation	 m d h
dt

f t h t dh
dt

2

2
= ( )






, , ,	

where m 	is	the	mass	of	the	object,	 h 	is	the	height	above	the	ground	level.	This	is	the	second	order	

differential	equation	of	the	unknown	height	as	a	function	of	time.

Model 2: (Population Growth Model)
 The	population	will	increase	whenever	the	offspring	
increase.	For	instance,	let	us	take	rabbits	as	our	population.	
More	 number	 of	 rabbits	 yield	 more	 number	 of	 baby	
rabbits.	 As	 time	 increases	 the	 population	 of	 rabbits	
increases.	 If	 the	 rate	of	growth	of	biomass	 N t( )  of the 

population	at	time	t is	proportional	to	the	biomass	of	the	
population,	 then	 the	 differential	 equation	 governing	 the	 population	 is	 given	 by	 dN

dt
rN= ,	 where	

r > 0 	is	the	growth	rate.

Model 3: (Logistic Growth Model)
 The	 rate	 at	which	 a	 disease	 is	 spread	 (i.e.,	 the	 rate	 of	 increase	 of	 the	 number	 N 	 of	 people	
infected)	in	a	fixed	population	 L 	is	proportional	to	the	product	of	the	number	of	people	infected	and	
the	number	of	people	not	yet	infected:

dN
dr

kN L N k= − >( ), 0 .

EXERCISE 10.2
 1.	 Express	each	of	the	following	physical	statements	in	the	form	of	differential	equation.
	 	 	 (i)	Radium	decays	at	a	rate	proportional	to	the	amount	Q 	present.
	 	 	 (ii)	The	population	 P 	of	a	city	increases	at	a	rate	proportional	to	the	product	of	population	

and	to	the	difference	between	5,00,000	and	the	population.
	 	 	(iii)	For	a	certain	substance,	the	rate	of	change	of	vapor	pressure	P	with	respect	to	temperature	

T	is	proportional	to	the	vapor	pressure	and	inversely	proportional	to	the	square	of	the	
temperature.
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	 	 	(iv)	A	saving	amount	pays	8%	interest	per	year,	compounded	continuously.	In	addition,	the	
income	from	another	investment	is	credited	to	the	amount	continuously	at	the	rate	of  
` 400	per	year.

 2.	 Assume	that	a	spherical	rain	drop	evaporates	at	a	rate	proportional	to	its	surface	area.	Form	
a	differential	equation	involving	the	rate	of	change	of	the	radius	of	the	rain	drop.

10.4.2  Formation of Differential Equations from Geometrical Problems
	 Given	 a	 family	 of	 functions	 parameterized	 by	 some	 constants,	 a	 differential	 equation	 can	 be	
formed	by	eliminating	those	constants	of	this	family.	For	instance,	the	elimination	of	constants	A	and	

B  from y e ex x= + −A B ,	yields	a	differential	equation	 d y
dx

y
2

2
0− = .

	 Consider	an	equation	of	a	 family	of	curves,	which	contains	 n 	 arbitrary	constants.	To	 form	a	

differential	equation	not	containing	any	of	these	constants,	let	us	proceed	as	follows:

	 Differentiate	 the	given	equation	 successively	 n 	 times,	getting	 n 	 differential	 equations.	Then 

eliminate n 	arbitrary	constants	from		 ( )n +1 	equations	made	up	of	the	given	equation	and	 n 	newly	

obtained	equations	arising	 from	 n 	 successive	differentiations.	The	 result	of	elimination	gives	 the	

required	differential	equation	which	must	contain	a	derivative	of	the	nth	order.
Example 10.2
	 Find	the	differential	equation	for	the	family	of	all	straight	lines	passing	through	the	origin.
Solution
 The	 family	 of	 straight	 lines	 passing	 through	 
the	 origin	 is	 y mx= ,	 where	 m 	 is	 an	 arbitrary	 
constant.															 	 	 	 …	(1)
	 Differentiating	both	sides	with	respect	to	x,	we	get

  dy
dx

m= .								 	 	 	 	…	(2)

	 From	 (1)	 and	 (2),	 we	 get	 y x dy
dx

= .	 This	 is	 the	

required	differential	equation.
	 Observe	 that	 the	 given	 equation y mx= 	 contains	
only	 one	 arbitrary	 constant	 and	 thus	 we	 get	 the	
differential	equation	of	order	one.
Example 10.3
 Form	 the	 differential	 equation	 by	 eliminating	 the	 arbitrary	 constants	 A	 and	 B	 from	
y x x= +A Bcos sin .

Solution
 Given	that		 y  =  A Bcos sinx x+ 	 ...	(1)

	 Differentiating	(1)	twice	successively,	we	get

   dy
dx

 =  − +A Bsin cosx x .	 ...	(2)

   d y
dx

2

2  =  − − = − +A B A Bcos sin ( cos sin )x x x x .	 ...	(3)

Fig.	10.1

x

y

y
x=y

x
= 2

O

y
x

= −

y
x

= −
2
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	 Substituting	(1)	in	(3),	we	get	 d y
dx

y
2

2
0+ = 	as	the	required	differential	equation.

Example 10.4
	 Find	the	differential	equation	of	the	family	of	circles	passing	through	the	points	 ( , )a 0 	and	 −( )a,0 .

Solution
 A	circle	passing	through	the	points	 a,0( ) 	and	 −( )a,0 	has	its	centre	on	y -	axis.

	 Let	 0,b( ) 	be	the	centre	of	the	circle.		So,	the	radius	of	the	circle	is	 a b2 2+ .

	 Therefore	the	equation	of	the	family	of	circles	passing	through	the	points a,0( ) 	and	 −( )a,0 is 

x y b a b b2 2 2 2+ −( ) = + ,  is	an	arbitrary	constant.																 ...	(1)

	 Differentiating	both	sides	of	(1)	with	respect	to	x,	we	get	

   2 2x y b dy
dx

+ −( )  =  0⇒ − = − ⇒ = +y b x
dy
dx

b x
dy
dx

y .

	 Substituting	the	value	of		b	in	equation	(1),	we	get	

   x x
dy
dx

2
2

2+








 =  a x
dy
dx

y2

2

+ +

















 

   ⇒ 





 +x dy

dx
x2

2
2  =  a dy

dx
x y dy

dx
2

2 2 2







 + + 




















   ⇒ − −( ) −x y a dy
dx

xy2 2 2 2  =  0 ,	which	is	the	required	differential	equation.

Example 10.5
 Find	 the	 differential	 equation	 of	 the	 family	 of	 parabolas y ax2 4= ,	 where	 a 	 is	 an	 arbitrary	
constant.
Solution
 The	equation	of	the	family	of	parabolas	is	given	by	 y ax2 4= ,	a	is	an	arbitrary	constant.	 ...	(1)

	 Differentiating	both	sides	of	(1)	with	respect	to	 x ,	we	get	 2 4
2

y dy
dx

a a y dy
dx

= ⇒ =    

	 Substituting	the	value	of	 a 	in	(1)	and	simplifying,	we	get	 dy
dx

y
x

=
2

	as	the	required	differential	

equation.

Example 10.6
 Find	the	differential	equation	of	the	family	of	all	ellipses	having	foci	on	the	 x -axis	and	centre	at	
the	origin.
Solution
 The	equation	of	the	family	of	all	ellipses	having	foci	on	the	 x -axis	and	centre	at	the	origin	is	

given	by		 x
a

y
b

a b
2

2

2

2
1+ = >,   	 																 ...	(1)		
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 where a 	and	b 	are	arbitrary	constants.

	 Differentiating	equation	(1)	with	respect	to	x,	we	get	

   2 2
2 2

x
a

y
b
dy
dx

+  =  0 0
2 2

  ⇒ + =
x
a

y
b
dy
dx

		 ...	(2)

 
Differentiating	equation	(2)	with	respect	to	x,	we	get		

   1 1
2 2

2

2

2

a b
y d y
dx

dy
dx

+ + 



















 =  0 1 1
2 2

2

2

2

⇒ = − + 



















  
a b

y d y
dx

dy
dx

 

 
Substituting	the	value	of		 1

2a
	in	equation	(2)	and	simplifying,	we	get

   − + 



















+
1

2

2

2

2

2b
y d y
dx

dy
dx

x y
b
dy
dx

 =  0 0
2

2

2

⇒ + 





 − =xy d y

dx
x dy
dx

y dy
dx

 

which	is	the	required	differential	equation.

Remark
 The	result	of	eliminating	one	arbitrary	constant	yields	a	first	order	differential	equation	and	that	
of	eliminating	two	arbitrary	constants	leads	to	a	second	order	differential	equation	and	so	on.

EXERCISE 10.3

 1.	 Find	the	differential	equation	of	the	family	of		(i)	all	non-vertical	lines	in	a	plane	(ii)	all	non-

horizontal	lines	in	a	plane.

 2.	 Form	the	differential	equation	of	all	straight	lines	touching	the	circle	 x y r2 2 2+ = .

 3.	 Find	the	differential	equation	of	the	family	of	circles	passing	through	the	origin	and	having	
their	centres	on		the	 x -axis.

 4.	 Find	the	differential	equation	of	the	family	of	all	the	parabolas	with	latus	rectum	 4a 	and	

whose	axes	are	parallel	to	the	 x -axis.

 5.	 Find	the	differential	equation	of	the	family	of	parabolas	with	vertex	at	 ( , )0 1− 	and	having	

axis	along	the	 y -axis.

 6.	 Find	 the	 differential	 equations	 of	 the	 family	 of	 all	 the	 ellipses	 having	 foci	 on	 the	 
y -axis	and	centre	at	the	origin.

 7.	 Find	 the	 differential	 equation	 corresponding	 to	 the	 family	 of	 curves	 represented	 by	 the	
equation y e ex x= + −A B8 8 ,	where	A 	and	B 	are	arbitrary	constants.

 8.	 Find	the	differential	equation	of	the	curve	represented	by	 xy ae be xx x= + +− 2 .
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10.5  Solution of Ordinary Differential Equations
Definition 10.9 : (Solution of DE) 

 A solution of	a	differential	equation	is	an	expression	for	the	dependent	variable	in	terms	of	
the	independent	variable(s)	which	satisfies	the	differential	equation.	

Caution
	 (i)	There	is	no	guarantee	that	a	differential	equation	has	a	solution.	
	 	For	instance,	 y x y'( )( ) + + =2 2 1 0 	has	no	solution,	since	 y x y'( )( ) = − +( )2 2 1 	and	so	 y x'( )

cannot	be	real.
	 (ii)	Also,	a	solution	of	a	differential	equation,	if	exists,	is	not	unique.	
	 	 	For	 instance,	 the	 functions	 y e y ex x= =2 22, ,	 	 y e x= 8 2 are	 solutions	 of	 same	 equation	

dy
dx

y− =2 0. 	In	fact, y ce cx= ∈2 , , 	are	all	solutions	of	the	differential	equation	dy
dx

y− =2 0.  

Thus,	to	represent	all	possible	solutions	of	a	differential	equation,	we	introduce		the	notion	
of  the general	solution	of	a	differential	equation.

Definition 10.10 : (General solution)

 The	 solution	which	 contains	 as	many	 arbitrary	 constants	 as	 the	 order	 of	 the	 differential	
equation	is	called	the general solution

Remark
	 The	general solution includes	all	possible	solutions	and	typically	includes	arbitrary	constants	(in	
the	case	of	an	ODE)	or	arbitrary	functions	(in	the	case	of	a	PDE.)	

Definition 10.11 : (Particular solution)

 If	we	give	particular	values	to	the	arbitrary	constants	in	the	general	solution	of	differential	
equation,	the	resulting	solution	is	called	a	Particular	Solution.

Remark
	 (i)	Often	we	find	a	particular	solution	to	a	differential	equation	by	giving	extra	conditions.	
	 (ii)	The	 general	 solution	 of	 a	 first	 order	 differential	 equation	 y f x y' ,= ( ) 	 represents	 a	 one-

parameter	family	of	curves	in	 xy -plane.

	 	For	instance,		 y ce cx= ∈2 , , 	is	the	general	solution	of	the	differential	equation dy
dx

y− =2 0.  

  For	 instance,	 we	 have	 already	 seen	 that	 y a x b x= +cos sin satisfies	 the	 second	 order	

differential	equation	 d y
dx

y
2

2
0+ = .	Since	it	contains	two	arbitrary	constants,	it	is	the	general	

solution of d y
dx

y
2

2
0+ = .	If	we	put	a b= =1 0, 	in	the	general	solution,	then	we	get	 y x= cos  

is	a	particular	solution	of	the	differential	equation	 d y
dx

y
2

2
0+ = .
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 In	application,	differential	equations	do	not	arise	by	eliminating	 the	arbitrary	constants.	They	
frequently	arise	while	investigating	many	physical	problems	in	all	fields	of	engineering,	science	and	
even	in	social	sciences.	Mostly	these	differential	equations	are	also	accompanied	by	certain	conditions	
on	the	variables	to	obtain	unique	solution	satisfying	the	given	conditions.	
Example 10.7
	 Show	that	 x y r2 2 2+ = ,	where	r	is	a	constant,	is	a	solution	of	the	differential	equation dy

dx
x
y

= − .

Solution
 Given	that	 x y r2 2 2+ = , r∈ 																																				 		 	 ...	(1)

	 The	given	equation	contains	exactly	one	arbitrary	constant.	
	 So,	we	have	to	differentiate	the	given	equation	once.	Differentiate	(1)	with	respect	to	 x ,	we	get

2 2 0x y dy
dx

+ = ,		which	implies		 dy
dx

x
y

= − .

	 Thus, x y r2 2 2+ = 	satisfies	the	differential	equation	 dy
dx

x
y

= − .

	 Hence, x y r2 2 2+ = 	is	a	solution	of	the	differential	equation	 dy
dx

x
y

= − .

Example 10.8
 Show	that y mx

m
m= + ≠

7
0, 	is	a	solution	of	the	differential	equation	 xy

y
y'

'
+ − =7

1
0 .	

Solution
 The	given	function	is		 y mx

m
= +

7 	,	where	m 	is	an	arbitrary	constant.	 ...	(1)

	 Differentiating	both	sides	of	equation	(1)	with	respect	to	 x ,	we	get	 y m' = .

	 Substituting	the	values	of		 y ' 	and	 y 	in	the	given	differential	equation,	 

	 we	get	 xy
y

y xm
m

mx
m

′ +
′
− = + − − =

7 7 7
0 		.

	 Therefore,	the	given	function	is	a	solution	of	the	differential	equation	 xy
y

y'
'

+ − =7
1

0 .	

Example 10.9
	 Show	that	 y x Ce x= −( ) + −2 12 2

	is	a	solution	of	the	differential	equation	 dy
dx

xy x+ − =2 4 03 .

Solution
 The	given	function	is		 y x Ce x= −( ) + −2 12 2

,	where	C  is	an	arbitrary	constant.	 ...(1)

	 Differentiating	both	sides	of	equation	(1)	with	respect	to	 x ,	we	get	 dy
dx

x xCe x= − −4 2
2

.

	 Substituting	the	values	of		 dy
dx

	and	 y 	in	the	given	differential	equation,	we	get	
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 dy
dx

xy x+ −2 4 3  = 4 2
2

x xCe x− − + 2 2 12 2

x x Ce x−( ) +





− −4 3x  = 0

	 Therefore,	the	given	function	is	a	solution	of	the	differential	equation	 dy
dx

xy x+ − =2 4 03 .	

Example 10.10
 Show	 that	 y a x b x x= + ( ) >cos(log ) sin log , 0 	 is	 a	 solution	 of	 the	 differential	 equation		

x y xy y2 0′′ + ′ + = .

Solution
 The	given	function	is y a x b x= + ( )cos(log ) sin log      ...(1)

where  a b, 	are	two	arbitrary	constants.	In	order	to	eliminate	the	two	arbitrary	constants,	we	have	to	

differentiate	the	given	function	two	times	successively.	
	 Differentiating	equation	(1)	with	respect	to	 x ,	we	get

 ′ = − ( ) ⋅ + ( ) ⋅y a x
x
b x

x
sin log cos log

1 1
⇒ xy a x b x′ = − ( ) + ( )sin log cos log .	

	 Again	differentiating	this	with	respect	to	x,	we	get

 
xy y a x

x
b x

x
′′ + ′ = − ( ) ⋅ − ( ) ⋅cos log sin log

1 1
⇒ ′′+ ′ + =x y xy y2 0 .	

	 Therefore,	 y a x b x= + ( )cos(log ) sin log is	a	solution	of	the	given	differential	equation.

EXERCISE 10.4
 1.	Show	that	each	of	the	following	expressions	is	a	solution	of	the	corresponding	given	differential	

equation.
	 	 (i)	 y x= 2 2 	 ;	xy y' = 2

	 	 (ii)	 y ae bex x= + − 	 ;	 ′′ − =y y 0

 2.	Find	value	of	m	so	that	the	function	 y emx= is	a	solution	of	the	given	differential	equation.

	 	 (i)	 y y'+ =2 0 	 (ii)	y y y'' '− + =5 6 0  

 3.	The	slope	of	the	tangent	to	the	curve	at	any	point	is	the	reciprocal	of	four	times	the	ordinate	at	
that	point.	The	curve	passes	through	(2,5).	Find	the	equation	of	the	curve.

 4.	Show	that	 y e mx nx= + +− 	is	a	solution	of	the	differential	equation	 e d y
dx

x
2

2
1 0









 − = .

 5.	Show	that	 y ax b
x
x= + ≠, 0 	is	a	solution	of	the	differential	equation	 x y xy y2 0′′ + ′ − = .

 6.	Show	that	 y ae bx= +−3 ,	where	a 	and	b 	are	arbitrary	constants,	is	a	solution	of	the	differential	

equation	 d y
dx

dy
dx

2

2
3 0+ = .

 7.	Show	that	the	differential	equation	representing	the	family	of	curves	 y a x a2

2

32= +








 ,	where	

a 	is	a	positive	parameter,	is			 y xy dy
dx

y dy
dx

2

3 5

2 8−





 = 






 .
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 8.	Show	that	 y a bx= cos 	is	a	solution	of	the	differential	equation	 d y
dx

b y
2

2

2 0+ = .

	 Now,	we	discuss	some	standard	methods	of	solving	certain	type	of	differential	equations	of	the	
first	order	and	first	degree.

10.6  Solution of First Order and First Degree Differential Equations
10.6.1  Variables Separable Method 

	 In	solving	differential	equations,	separation	of	variables	was	introduced	initially	by	Leibniz	and	
later	it	was	formulated	by	John	Bernoulli	in	the	year	1694.
	 A	first	order	differential	equation	is	separable	if	it	can	be	written	as	h y y g x( ) ( )′ =   where the left 
side	is	a	product	of	 ′y 		and	a	function	of	 y 	and	the	right	side	is	a	function	of	 x .	Rewriting	a	separable	
differential	equation	in	this	form	is	called	the	method	of	separation	of	variables.

	 Finding	 a	 solution	 to	 a	 first	 order	 differential	 equation	will	 be	 simple	 if	 the	 variables	 in	 the	
equation	can	be	 separated.	An	equation	of	 the	 form	 f x g y dx f x g y dy1 1 2 2 0( ) ( ) ( ) ( )+ = 	 is	 called	an	
equation	with	variable separable or	simply	a	separable equation.

	 Rewrite	the	given	differential	equation	as	 f x
f x

dx g y
g y

dy1

2

2

1

( )

( )

( )

( )
= − .	 ...(1)

	 Integration	of	both	sides	of	(1)	yields	the	general	solution	of	the	given	differential	equation	as

f x
f x

dx g y
g y

dy C1

2

2

1

( )

( )

( )

( )∫ ∫= − + ,	where	C	is	an	arbitrary	constant.

Remarks
	 1.	No	need	to	add	arbitrary	constants	on	both	sides	as	the	two	arbitrary	constants	are	combined	

together	as	a	single	arbitrary	constant.
	 2.	A	solution	with	this	arbitrary	constant	is	the	general	solution	of	the	differential	equation.

“Solving	a	differential	equation”	is	also	referred	to	as	“integrating	a	differential	equation”,	since	the	
process	of	finding	the	solution	to	a	differential	equation	involves	integration.

Example 10.11
 Solve	 1 12 2+( ) = +x dy

dx
y .

Solution
   Given	that			 1 2+( )x dy

dx
 =  1 2+ y . ...	(1)

	 The	given	equation	is	written	in	the	variables	separable	form

   dy
y1 2+

 =  dx
x1 2+
.		 ...	(2)

	 Integrating		both	sides	of	(2),	we	get	 tan tan− −= +1 1y x C .	 ...	(3)

	 	 	 But		 tan tan− −−1 1y x  =  tan− −
+











1

1

y x
xy

.	 ...	(4)
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Using	(4)	in	(3)	leads	to	 tan− −
+











1

1

y x
xy

 =  C ,	which	implies	 y x
xy

C a−
+

= =
1

tan ( )say .

	 	 	 Thus,	 y x−  =  a xy( )1+ gives	the	required	solution.
Example 10.12
	 Find	the	particular	solution	of	 1 03 2+( ) − =x dy x ydx 	satisfying	the	condition y( )1 2= .
Solution
	 Given	that	 ( )1 3 2+ −x dy x ydx  =  0 .

	 The	above	equation	is	written	as		 dy
y

x
x
dx−

+

2

31
 =  0 .

 Integrating	both	sides	gives	 log log( )y x− +
1

3
1 3  =  C1 ,	which	implies,

 3 1 3log log( )y x− +  =  logC .

	 Thus,	3log y  =  log( ) log1 3+ +x C ,	

	 which	reduces	to	 log y3  =  log ( )C x1 3+ .

	 Hence,	 y C x3 31= +( ) 	gives	 the	general	solution	of	 the	given	differential	equation.	It	 is	given		

that when x y= =1 2, .	 	 Then 2 1 13 = +C( )  ⇒  C = 4 	 and	 hence	 the	 particular	 solution	 is 

y x3 34 1= +( ) .

10.6.2  Substitution Method 

	 Let	the	differential	equation	be	of	the	form dy
dx

f ax by c= + +( ).  

	 (i)	 If	a	≠	0	and	 b ¹ 0 ,	 then	the	substitution	 ax by c z+ + = 	reduces	the	given	equation	to	the	

variables	separable	form.
	 (ii)	 If	a = 0 or b = 0 ,	then	the	differential	equation	is	already	in	separable	form.

Example 10.13
	 Solve y x y' sin= − +( )2 1 .

Solution
   Given	that		 ′y  =  sin2 1x y− +( )  

	 	 	 Put		 z  =  x y− +1,	so	that	 dz
dx

dy
dx

= −1 .

  Thus,	the	given	equation	reduces	to	1− dz
dx

 =  sin2 z .

	 	 	 i.e.,		 dz
dx

 =  1 2 2− =sin cosz z .

	 	 	 Separating	the	variables	leads	to	 dz
zcos2

 =  dx 	(or)	 sec2 zdz dx= .

	 	 	 On	integration,	we	get	 tan z  =  x C+ 	(or)	 tan x y x C− +( ) = +1 .
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Example 10.14

 Solve	:		 dy
dx

x y= + −4 2 1 	.

Solution
 By	putting	 z x y= + −4 2 1 ,	we	have

   ′z  =  4 2 4 2+ ′ = +y z

	 	 	 hence		 dz
z4 2+

 =  dx .

	 	 	 Integrating,			 dz
z4 2+∫  =  x C+ .

	 	 	 Putting	 z  =  u2 ,	we	have

   dz
z4 2+∫  =  udu

u
u u C

+
= − + +

2
2 2ln ,   

   or    z z− +( )2 2ln  =  x C+  

	 	 	 from	which	on	substituting		 z  =  4 2 1x y+ − ,	we	have	the	general	solution

   4 2 1 2 4 2 1 2x y x y+ − − + − +( )ln  =  x C+ .

Example 10.15

	 Solve:	
( )

5
2 7

dy x y
dx x y

- +
=

- +
.

Solution

Given	that	
( )

5
2 7

dy x y
dx x y

- +
=

- +
Put	 		z = x –	y

 dz
dx

 = 	1	–	
dy
dx

 

 dy
dx

 =  1
dz
dx

-  

Thus,	the	given	equation	reduces	to

 1 dz
dx

-  =  
z
z
+
+
5

2 7
 

 1 dz
dx

-  =  1	–	
z
z
+
+
5

2 7
 

 dz
dx

 =  
z
z
+
+
2

2 7
 

Separating	the	variables,	we	get

   

2 7

2

z
z

dz dx+
+

=
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2 2 3

2

z
z

dz dx
+( ) +
+( ) =

 
2

3

2
+

+






=
z

dz dx

Integrating	both	sides,	we	get

 2 3 2z x C+ + = +log z

That	is,		2 3 2( ) logx y x y x C− + − + = + .

Example 10.16

 Solve	: dy
dx

x y= + +( )3 4
2 .	

Solution
 To	solve	the	given	differential	equation,	we	make	the	substitution3 4x y z+ + = .	

	 Differentiating	with	respect	to	x,	we	get	 dy
dx

dz
dx

= −3 .	So	the	given	differential	equation	becomes	

dz
dx

z= +2 3 .

	 In	this	equation	variables	are	separable.	So,	separating	the	variables	and	integrating,	we	get	the	

general	solution	of	the	given	differential	equation	as	 1

3

3 4

3

1tan− + +







 = +

x y x C .	

EXERCISE 10.5
 1. If F 	is	the	constant	force	generated	by	the	motor	of	an	automobile	of	mass	M ,	its	velocity	

V 	is	given	by	M dV
dt

F kV= − ,	where	 k 	is	a	constant.	Express	V  in terms of t 	given	that	

V = 0 when t = 0 .

 2. The	 velocity	 v ,	 of	 a	 parachute	 falling	 vertically	 satisfies	 the	 equation	 v dv
dx

g v
k

= −








1

2

2
,	

where g 	and	 k 	are	constants.	If	 v 	and	 x 	are	both	initially	zero,	find	 v  in terms of x .

 3.	 Find	 the	equation	of	 the	curve	whose	slope	 is	 y
x x
−
+

1
2

and	which	passes	 through	 the	point	

1 0,( ) .
 4.	 Solve	the	following	differential	equations:

	 	 	 (i)	 dy
dx

y
x

=
−
−

1

1

2

2
	 (ii)	 ydx x x dy+ +( ) =−1 02 1tan  

	 	 	(iii)	 sin ,
dy
dx

a y= ( ) =  0 1		 (iv)	
dy
dx

e x ex y y= ++ 3
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	 	 	(v)	 e x dx e x dyy y+( ) + =1 0cos sin  		 (vi)	 ydx xdy x
y

ny dx−( ) 







 =cot 2  

	 	 	(vii)	 dy
dx

x x− − =25 02 		 (viii)	 x y dy e x x dxxcos log = +( )1  

	 	 	(ix)	 tan cos cosy dy
dx

x y x y= +( ) + −( ) 		 (x)	 dy
dx

x y= +( )tan2  

10.6.3 Homogeneous Form or Homogeneous Differential Equation

Definition 10.12 : (Homogeneous Function of degree n)

 A	function	 f x y( , ) 	is	said	to	be	a homogeneous function	of	degree	n 	in	the	variables	 x 	and	

y 	if,	 f tx ty t f x yn( , ) ( , )= for some n∈ 	for	all	suitably	restricted	 x y, 	and	 t .	 This	is	known	as 

Euler’s homogeneity.

	 For	instance,	
	 (i)	 f x y x xy y( , ) = + +6 2 42 2 is	a	homogeneous	function	in	x	and	y,		of	degree	two.	

	 (ii)	 But	 f x y x x ey( , ) sin= + ( )3 	is	not	a	homogeneous	function.		

 If f x y( , ) is  a homogeneous	function	of	degree	zero,	then	there	exists	a	function	 g 	such	that

f x y( , ) 	is	always	expressed	in	the	form g y
x







  or g

x
y






.

Definition 10.13: (Homogeneous Differential Equation)

 An	ordinary	differential	equation	is	said	 to	be	 	 in	homogeneous form,	 if	 the	differential	 	

equation	is written as dy
dx

g y
x

= 





 .		

Caution
 The	word	“homogeneous”	used	in	Definition	10.7	is	different	from	in	Definition	10.12.
Remark
	 (i)	 The	 differential	 equation	 M x y dx N x y dy( , ) ( , )+ = 0 	 [in	 differential	 form]	 is	 said	 to	 be	

homogeneous if M 	and	N  are homogeneous functions of the same degree.	

	 (ii)	 	 The	 above	 equation	 is	 also	 written	 as	 	 dy
dx

f x y= ( , ) 	 [in	 derivative	 form]	 where	

f x y M x y N x y( , ) ( , ) / ( , )= − 		is	clearly	homogeneous	of	degree	0 .	

For	instance
	 (1)	 consider	the	differential	equation	 x y dx xy dy2 23 2 0−( ) + = .	The	given	equation	is	rewritten	

as dy
dx

y x
xy

=
−3

2

2 2

= 





 −











3

2

1

2

1y
x y x/

.	 Thus,	 the	 given	 equation	 is	 expressed	 as

dy
dx

y
x y x

g y
x

= 





 −









 =









3

2

1

2

1

/
.	 Hence,	 	 x y dx xy dy2 23 2 0−( ) + = is	 a	 homogeneous 

differential	equation.	
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	 (2)	 However,	the	differential	equation		 dy
dx

x y
x xy

=
+
−

3 2

3 22
	is	not	homogeneous.	(verify!)

 To	find	the	solution	of	a	homogeneous	differential	equation	 dy
dx

g y
x

= 





 ,	consider	the	substitution

v y
x

= . 	Then, y xv= 		and	 dy
dx

v x dv
dx

= + .Thus,	the	given	differential	equation	becomes x dv
dx

f v v= −( )

which	is	solved	using		variables	separable	method.		This	leads	to	the	following	result.

Theorem 10.1
 If M x y dx N x y dy( , ) ( , )+ = 0 	is	a	homogeneous	equation,	then	the	change	of	variable	 y vx= ,  

transforms	into	a	separable	equation	in	the	variablesv 	and	 x .

Example 10.17
 Solve x y dx xydy2 23 2 0−( ) + = .
Solution
 We	know	that	the	given	equation	is	homogeneous.

	 Now,	we	rewrite	the	given	equation	as	 dy
dx

 =  3

2 2

y
x

x
y

− .

	 Taking	 y vx= ,	we	have	 v x dv
dx

+  =  3

2

1

2

v
v

−    or  x dv
dx

v
v

=
−2 1

2
.

 Separating	the	variables,	we	obtain	 2

12

vdv
v −

 =  dx
x
.

	 On	integration,	we	get	 log v2 1−  =  log logx C+ ,

	 Hence	 v2 1−  =  Cx ,	where	C 	is	an	arbitrary	constant.

	 Now,	replace	 v 	by	 y
x
to	get	 y

x

2

2
1−  =  Cx .

	 Thus,	we	have	 y x2 2−  =  Cx3 .

	 Hence,	 y x2 2−  =   ±Cx3 	(or)	 y x kx2 2 3− = 	gives	the	general	solution.
Example 10.18

	 Solve y x y dx xdy y+ +( ) − = =2 2 0 1 0, ( ) .

Solution

 The	given	differential	equation	is	homogeneous	(verify!).

	 Now,	we	rewrite	the	given	equation	in	differential	form		 dy
dx

y x y
x

=
+ +2 2

.

	 Since	the	initial	value	of	x	is	1,		we	consider	 x > 0 	and	take	 x x= 2 	.	
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	 We	have dy
dx

y
x

y
x

= + + 





1

2

.

	 Let	 y vx= .	Then,							 v x dv
dx

v v+ = + +1 2 		,	which	becomes x dv
dx

v= +1 2 .

	 By	separating	variables,	we	have	 dv
v

dx
x2 1+

= .

	 Upon	integration,	we	get		 log log logv v x C+ + = +2 1  or    v v xC+ + =2 1 .

	 Now,	we	replace	v by	 y
x
,	we	get		 y

x
y
x

Cx+ + =
2

2
1 	(or)		 y x y Cx+ + =2 2 2 gives	the	general	

solution	of	the	given	differential	equation.

	 To	determine	the	value	of	C,	we	use	the	condition	that	 y = 0  when x =1.	So,	we	get	C =1.

	 Thus	 y x y x+ + =2 2 2 	is	the	particular	solution	of	the	given	differential	equation.

Example 10.19

	 Solve	 2 3 0x y dx y x dy+( ) + −( ) = .

Solution
 The	given	equation	can	be	written	as	 	 dy

dx
 =  2 3x y

x y
+
−

.

	 This	is	a	homogeneous	equation.

  Let	 y vx= .	Then	we	have  v x dv
dx

+  =  2 3

1

+
−

v
v
.

	 Thus,	 x dv
dx

v v
v

=
+ +
−

2 2

1

2

    or   1

1 1
2

−

+( ) +
=

v
v

dv dx
x

or− +
+ +

−
+( ) +













=
1

2

2 2

2 2

4

1 1
2 2

v
v v v

dv dx
x
.

	 Integrating	both	sides,	we	get	− + + + +( ) = +−1

2
2 2 2 12 1log tan log logv v v x C

 or log tan log logv v v x C2 12 2 4 1 2 2+ + − +( ) = − −−

 or log log tan logv v x v C2 2 12 2 4 1 2+ + + − +( ) = −−

 or  log tan logv v x v C2 2 12 2 4 1 2+ +( ) − +( ) = −− .

	 Now	replacing	 v 	by	 y
x
,	we	get,	 log tany xy x x y

x
k2 2 12 2 4+ + −

+





 =

− ,	where	 k C= −2log  

gives	the	required	solution.
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Example 10.20

 Solve		 y x dy
dx

xy dy
dx

2 2+ = .

Solution

   The	given	equation	is	rewritten	as	 dy
dx

 =  y
xy x

2

2−
.

	 This	is	a	homogeneous	differential	equation.

	 	 	 Put	 y vx= .	Then,	we	have	 x dv
dx

 =  v
v −1

.

	 	 	 By	separating	the	variables,	 v
v
dv−1  =  dx

x
.

   Integrating,	we	obtain	 v v− log  =  log logx C+   or v vxC= log .

	 Replacing	 v   by	 y
x
,	we	get,	

y
x

Cy= log or Cy ey x= / or y key x= / 			(how!)	which	is	the	required	

solution.

Example 10.21

	 Solve 1 2 2 1 0+( ) + −








 =e dx e x
y
dyx y x y/ / .

Solution

 The	given	equation	can	be	written	as dx
dy

x
y

e

e
g x
y

x y

x y=
−











+
=











1 2

1 2

/

/
.		 …(1)

	 The	appearance	of	 x
y
in	equation	(1),	suggests	that	the	appropriate	substitution	is	 x vy= .

	 Put	 x vy= .	Then,	we	have	 y dv
dy

e v
e

v

v= −
+

+
2

1 2
.

	 By	separating	the	variables,	we	have	 1 2

2

+
+

= −
e

v e
dv dy

y

v

v .

	 On	integration,	we	obtain	

 
log log log2e v y Cv + = − + or log log2ye vy Cv + =  or 2ye vy Cv + = ± .

	 Replace	 v 	by	 x
y
to		get,	 2ye x kx y/ + = ,	where	 k C= ± ,which	gives	the	required	solution.

EXERCISE 10.6
Solve	the	following	differential	equations:

 1. x y y
x

dx x y
x
dy+ 
















 = 






cos cos  2. x y dy x ydx3 3 2 0+( ) − =
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 3. ye dx xe y dy
x
y

x
y= +









  4. 2 2 02 2xydx x y dy+ +( ) =

 5. y xy dx x xy dy2 22 2−( ) = −( )  6. x dy
dx

y x y
x

= − 





cos2

 7. 1 3 3 1 0+








 + −






 =e dy e y
x
dx

y
x

y
x ,	given	that	y = 0 when x =1

 8. x y dy xy dx2 2+( ) = .	It	is	given	that	 y 1 1( ) = and	 y x e0( ) = .	Find	the	value	of	 x0 .

10.7 First Order Linear Differential Equations
 A first order differential equation of the form 

   dy
dx

Py+  =  Q .	 ...	(1)

where P 	and	Q 	are	functions	of	 x 	only.	Here	no	product	of	 y 	and	its	derivative	 dy
dx

	occur	and	the	

dependent	variable	 y 	and	its	derivative	with	respect	to	independent	variable	 x 	occurs	only	in	the	first	

degree.	

 To	integrate	(1),	let	us	consider	the	homogeneous	equation	 dy
dx

Py+ = 0 .								 ...(2)

	 The	equation	(2)	can	be	integrated	as	follows:

	 	 	 Separating	the	variables,		 dy
y

 =  −Pdx .

	 	 	 On	integration,	we	get	 ye
Pdxò  =  C .

	 	 	 Now,		 d
dx

ye Pdx∫





  =  e dy

dx
y PePdx Pdx∫ + ∫.  

    =  e dy
dx

Py QePdx Pdx∫ +





 =

∫ 		 ...	(3)	(using	(1))

	 Integrating	both	sides	of	(3)	with	respect	to	x,	we	get	the	solution	of	the	given	differential	equation	
as

   ye
Pdxò  =  Qe dx CPdx∫ +∫ .

 
Here	 e

Pdxò is known as the integrating factor (I.F.) of	(1).

Remarks
	 1.	 The	solution	of	linear	differential	equation	is
  y I F Q I F dx C× = +∫( . ) ( . ) ,	where	C	is	an	arbitrary	constant.

	 2.	 In	the	integrating	factor	e
Pdxò ,	P  is	the	coefficient	of	 y 	in	the	differential	equation	provided	

the	coefficient	of	 dy
dx

is	unity.
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	 3.	 A	first	order	differential	equation	of	the	form	 dx
dy

Px Q+ = ,	where	P 	and	Q 	are	functions	of	

y 	only.	Here	no	product	of	 x 	and	its	derivative	 dx
dy

	occur	and	the	dependent	variable	 x 	and	

its	derivative	with	respect	to	independent	variable	 y 	occurs	only	in	the	first	degree.

	 	 In	this	case,	the	solution	is	given	by	 xe Qe dy CPdy Pdy∫ = ∫ +∫ .

Example 10.22

 Solve	 dy
dx

y e x+ = −2 .

Solution
   Given	that		 dy

dx
y+ 2  =  e x− 		 ...	(1)

 This	is	a	linear	differential	equation.
	 Here	P = 2 ;			Q e x= − .

    Pdxò  =  2 2dx x=∫ .

	 	 	 Thus,		I.F.	=  e ePdx x∫ = 2 .

	 	 	 Hence	the	solution	of	(1)	is	 ye
Pdxò  =  Qe dx CPdx∫ +∫ .

								That	is,			 ye e e dx Cx x x2 2= +−∫ or  ye e Cx x2 = + or y e Cex x= +− −2 is	the	required	solution.

Example 10.23

 Solve	 y x x x x dx xdy1 02−( ) +  − =tan cos .

Solution

 The	given	equation	can	be	rewritten	as	 dy
dx

x x
x

y x x+
−( )

=
tan

cos
1

.

	 This	is	a	linear	differential	equation.	Here	P
x x

x
=

−( )tan 1
;			Q x x= cos .

 
Pdx

x x
x

dx x x x x
x x

=
−( )

= − − = − =∫∫
tan

log cos log log cos log
cos

1 1 .

	 	 	 Thus,		I.F.	=  e e
x x

Pdx x x∫ = =
log

cos

cos

1

1  

	 	 	 Hence	the	solution	is		 ye
Pdxò  =  Qe dx CPdx∫ +∫

	 	 	 i.e.,			 y
x x

1

cos
 =  x x

x x
dx Ccos

cos
( ) +∫

1
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 or  y
x x

1

cos
 =  x C+

 or y  =  x x Cx x2 cos cos+ is	the	required	solution.

Example 10.24

 Solve	:		 dy
dx

y x x x+ =2 3 2 2cot cosec .

Solution
 Given	that	the	equation	is	 dy

dx
y x x x+ =2 3 2 2cot cosec .

	 This	is	a	linear	differential	equation.		Here,	P x= 2cot ;			Q x x= 3 2 2cosec .

 
Pdx xdx x= =∫∫ 2 2cot log sin  =  log sin logsinx x2 2= .

	 Thus,		 I.F = ∫e Pdx
 =  e xxlogsin sin

2 2= .

	 Hence,	the	solution		is. ye
Pdxò  =  Qe dx CPdx∫ +∫ .

	 That	is, y xsin2  =  3 32 2 2 2 3x x xdx C x dx C x Ccosec ⋅ + = + = +∫ ∫sin .

	 Hence, y xsin2  =  x C3 + 	is	the	required		solution.

Example 10.25

 Solve 1 6 13 2 2+( ) + = +x dy
dx

x y x .

Solution
 Here,	to	make	the	coefficient	of	 dy

dx
	unity,	divide	both	sides	by	 1 3+( )x .

	 Then	the	equation	is	 dy
dx

x y
x

x
x

+
+

=
+
+

6

1

1

1

2

3

2

3
.

	 This	is	a	linear	differential	equation	in	y.

	 	 	 Here,		P  =  6

1

1

1

2

3

2

3

x
x
Q x

x+
=

+
+

;  

   Pdxò  =  6

1
2 1 1 1

2

3

3 3
2

3
2x

x
dx x x x

+
= + = + = +( )∫ log log log

	 	 Thus,		I.F.	 =  e e xPdx x∫ = = +( )+( )log 1 3
23

2

1

																Hence	the	solution	is	 ye
Pdxò  =  Qe dx CPdx∫ +∫ .

			That	is, y x x
x

x dx C x x dx C x x x1
1

1
1 1 1 13

2
2

3

3
2

2 3 2 3 5+( ) =
+
+

+( ) + = +( ) +( ) + = + + +∫ ∫ (( ) +∫ dx C
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 or y x x x x x C1
3 4 6

3
2

3 4 6

+( ) = + + + +

	 and	 y =
1

1 3 4 63 2

3 4 6

( )+
+ + + +









x

x x x x C 	is	the	required	solution.

Example 10.26

 Solve ye dx y xe dyy y= +( )3 2 .

Solution
 The	given	equation	can	be	written	as	 dx

dy y
x y e y− = −2 2 .

	 This	is	a	linear	differential	equation.	Here	P
y

= −
2

; Q y e y= −2 .

 
pdyò  =  − = − = =









∫

−2
2

12

2y
dy y y

y
log log log ,

	 Thus,		I.F.	=  e e
y

Pdy y∫ = =








log

1

2

2 1 .

	 Hence	the	solution	is	 xe
Pdyò  =  Qe dy CPdy∫ +∫  

	 That	is,	 x
y
1

2









  =  y e

y
dy C e dy C e Cy y y2

2

1− − −







 + = + = − +∫ ∫  

 or  x  =  − +−y e Cyy2 2 	is	the	required	solution.

EXERCISE 10.7
Solve	the	following	Linear	differential	equations:

 1. cos sinx dy
dx

y x+ =1 2. 1 12−( ) − =x dy
dx

xy

 3. dy
dx

y
x

x+ = sin  4. x dy
dx

xy x2 21 2 4+( ) + = +

 5. 2 10 03x y dy ydx−( ) + =  6. x x dy
dx

x x x y xsin cos sin sin+ +( ) =

 7. y e dx
dy

xx−( ) + − =
−sin 1

1 02  8. dy
dx

y
x x

x+
−( )

= −
1

1

 9. 1 02 3+ +( ) + +( ) =x xy dy
dx

y y  10. dy
dx

y
x x

x
x

+ =
log

sin

log

2

 11. x a dy
dx

y x a+( ) − = +( )2
4  12. dy

dx
x
x

x
x
y=

+
−

+
sin2

3

2

31

3

1

 13. x dy
dx

y x x+ = log  14. x dy
dx

y x x+ − =2 02 log

 15. dy
dx

y
x x

+ =
3 1

2
	,	given	that	 y = 2  when x =1
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10.8 Applications of First Order Ordinary Differential Equations
	 The	subject	of	differential	equations	has	vast	applications	in	solving	real	world	problems.	The	
solutions	of	the	differential	equations	are	used	to	predict	the	behaviors	of	the	system	at	a	future	time,	
or	 at	 an	 unknown	 location.	 In	 several	 problems,	 the	 rate	 at	which	 a	 quantity	 changes	 is	 a	 given	
function	of	the	quantity	and	/or	the	time.	The	objective	is	to	find	the	quantity	itself.	If	 x 	denotes	the	

amount	of	the	quantity	present	at	time t ,	then	the	instantaneous	rate	at	which	the	quantity	changes	at	

time t  is dx
dt
.	This	leads	to	a	differential	equation	of	the	form	 dx

dt
f x t= ( , ) .	In	this	section	we	shall	

consider	this	type	of	problems	only.	Further,	by	rate,	we	mean	the	instantaneous	rate	only.

10.8.1 Population growth
	 Now,	we	 consider	 the	growth	of	 a	 population	 (for	 example,	 human,	 an	 animal,	 or	 a	 bacteria	
colony)	as	a	function	of	time	 t .
	 Let	 x t( ) 	 be	 the	 size	 of	 the	 population	 at	 any	 time	 t .	Although	 x t( ) 	 is	 integer-valued,	 we	

approximate	 x t( ) 	as	a	differentiable	function	and	techniques	of	differential	equation	can	be	applied	

to	determine	 x t( ) .	Assume	 that	population	grows	at	 a	 rate	directly	proportional	 to	 the	amount	of	

population	present	at	that	time.	Then,	we	obtain

 
dx
dt

kx= ,	where	 k 	is	the	constant	of	proportionality	.	 …	(1)

	 Here	 k > 0 ,	since	the	population	always	increases.
	 The	solution	of	the	differential	equation	is	 x t Cekt( ) = ,	where	C 	is	a	constant	of	integration.	The	

values	of	C 	and	 k 	are	determined	with	the	help	of	initial	conditions.	Thus,	the	population	increases	

exponentially	with	time.	This	law	of	population	growth	is	called	Malthusian law.

Example 10.27
 The	growth	of	a	population	is	proportional	to	the	number	present.	If	the	population	of	a	colony	
doubles	in	50	years,	in	how	many	years	will	the	population	become	triple?
Solution
 Let x t( ) be	the	population	at	time	 t .	Then	 dx

dt
kx= .

	 By	separating	the	variables,	we	obtain		 dx
x

kdt= .

	 Integrating	on	both	sides,	we	get,	 log logx kt C= +    or   x Cekt= ,	where	C	 is	an	arbitrary	

constant.
	 Let	 x0 be	the	population	when	 t = 0 	and	obtain	C x= 0 .

	 Thus,	we	get	 x x ekt= 0 .

 Now x x= 2 0 ,	when	 t = 50 	and	thus,	 k =
1

50
2log .

	 Hence,	 x x
t

= 0
502 	is	the	population	at	any	time	t.
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	 Assume	that	the	population	is	tripled	in	 t1 	years.

	 That	is,	 x x= 3 0 ,	when	 t t= 1 .

	 Thus,	 t1 50
3

2
=











log

log
.Therefore,	the	population	is	tripled	in	50

3

2

log

log









 	years.

10.8.2. Radioactive decay
	 The	 nucleus	 of	 an	 atom	 consists	 of	 combinations	 of	 protons	 and	 neutrons.	 Many	 of	 these	
combinations	of	 protons	 and	neutrons	 are	unstable,	 that	 is	 the	 atoms	decay	or	 transmute	 into	 the	
atoms	of	another	substance.	Such	nuclei	are	said	to	be	radioactive.

	 It	is	assumed	that	the	rate	 d
dt
A 	at	which	the	nuclei	of	a	substance	decays	is	proportional	to	the	

amount A( )t 	of	the	substance	remaining	at	time	t.

	 Thus,	the	required	differential	equation	is	 d
dt
A A∝     or  d

dt
kA A= …(2),	where	k	is	the	constant	

of	proportionality.	Here	 k < 0 ,	since	decay	occurs.
Remarks
	 From	equations	(1)	and	(2),	we	see	that	the	differential	equations	are	the	same,	but	the	difference	
is	only	in	the	interpretations	of	the	symbols	and	the	constants	of	proportionality.	For	growth	as	we	
expect	in	(1),	 k > 0 	and	in	the	case	of	(2)	for	decay,	 k < 0 .
A single differential equation can serve as a mathematical model for many different phenomena.

Example 10.28
 A	 radioactive	 isotope	 has	 an	 initial	mass	 200mg ,	 which	 two	 years	 later	 is	 50mg .	 Find	 the	
expression	for	the	amount	of	the	isotope	remaining	at	any	time.	What	is	its	half-life?	(half-life	means	
the	time	taken	for	the	radioactivity	of	a	specified	isotope	to	fall	to	half	its	original	value).
Solution
 Let	 A  	 be	 the	mass	 of	 the	 isotope	 remaining	 after	 t 	 years,	 and	 let	 −k 	 be	 the	 constant	 of	

proportionality,	where	 k > 0 .	Then	the	rate	of	decomposition	is	modeled	by		 d
dt

kA A= − ,	where	the	

minus	sign	indicates	that	the	mass	is	decreasing.	It	is	a	separable	equation.	Separating	the	variables,	

we	get	 d kdtA
A

= −

	 Integrating	on	both	sides,	we	get	 log logA = − +kt C   or  A Ce kt= − .

	 Given	that	the	initial	mass	is	200mg.	That	is,	A = 200  when t = 0 		and	thus,	C = 200 .
	 Thus,	we	get	A = −200e kt .
	 Also,	A =150when t = 2 	and	therefore,	 k = 








1

2

4

3
log .

	 Hence,A( )
log

t e
t

=
− 








200 2

4

3 	is	the	mass	of	isotope	remaining	after	t years.
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	 The	half-life	 th 		is	the	time	corresponding	to	A =100mg .

	 Thus,	 th =

















2
1

2

3

4

log

log

.

10.8.3. Newton’s Law of cooling/warming
 Consider	pouring	a	150° 	cup	of	coffee	and	kept	it	on	the	table	in	an	80°C 	room.	

What	happens	to	the	temperature	of	the	coffee?	We	observe	that	the	cup	of	coffee	
will	cool	off	until	it	reaches	the	room	temperature.

 	Now	 consider	 taking	 a	 35° 	 glass	 of	 cold	 water	 from	 the	

refrigerator	and	kept	 it	on	the	table	 in	an	 80°C 	 room.	What	

happens	to	the	temperature	of	the	cold	water?	Similarly,	we	can	observe	the	water	
will	warm	up	until	it	reaches	room	temperature.
	 According	 to	Newton’s law of cooling or warming,	 the	 rate	 at	which	 the	
temperature	 of	 a	 body	 changes	 is	 proportional	 to	 the	 difference	 between	 the	
temperature	 of	 the	 body	 and	 the	 temperature	 of	 the	 surrounding	medium	 the	 so-called	 ambient 
temperature.	 If	 T t( ) 	 represents	 the	 temperature	 of	 a	 body	 at	 time	 t ,	 Tm 	 the	 temperature	 of	 the	

surrounding	medium,	and	 dT
dt

the	rate	at	which	the	temperature	of	the	body	changes,	then	Newton’s	

law	of	cooling(or	warming)	is	 dT
dt

T Tm∝ − or dT
dt

k T Tm= −( ) ,	where	k is	constant	of	proportionality.	

In	either	case,	cooling	or	warming,	if	Tm 	is	constant,	it	stands	to	reason	that	 k < 0 .

Example 10.29
 In	a	murder	investigation,	a	corpse	was	found	by	a	detective	at	exactly	8	p.m.	Being	alert,	the	
detective	also	measured	the	body	temperature	and	found	it	to	be	70oF.	Two	hours	later,	the	detective	
measured	the	body	temperature	again	and	found	it	to	be	60oF.	If	the	room	temperature	is	50oF,	and	
assuming	 that	 the	 body	 temperature	 of	 the	 person	 before	 death	was	 98.6oF,	 at	what	 time	 did	 the	
murder	occur?

 
log . . ; log . .2 43 0 88789 0 5 0 69315( ) = ( ) = − 

Solution

 Let	T 	be	the	temperature	of	the	body	at	any	time	 t 	and	with	time	0 	taken	to	be	8	p.m.

	 By	Newton’s	law	of	cooling,	 dT
dt

k T= −( )50 or dT
T

dt
−

=
50

.

	 Integrating	on	both	sides,	we	get	 log log50− = +T kt C    or   50− =T Cekt .

	 When	 t T= =0 70, ,	and	so		C = −20

	 When	 t T= =2 60, ,	we	have	− = −10 20 2ek .

	 Thus,	 k = 







1

2

1

2
log .
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	 Hence,	the	solution	is	50 20

1

2

1

2− = −








T e
t log

or     T
t

= + 





50 20

1

2

2

	 Now,	we	would	like	to	find	the	value	of	t,		for	which	T t( ) .= 98 6 ,	and	t =



































≈ −2

48 6

20

1

2

2 56

log
.

log

.

	 It	appears	that	the	person	was	murdered	at	about	5.30	p.m.

10.8.4  Mixture problems
	 Mixing	problems	occur	quite	frequently	in	chemical	industry.	Now	we	explain	

how	to	solve	the	basic	model	involving	a	single	tank.

	 A	substance	 S 	is	allowed	to	flow	into	a	certain	mixture	in	a	container	at	a	
constant	rate,	and	the	mixture	is	kept	uniform	by	stirring.	Further,	in	one	such	
situation,	 this	uniform	mixture	 simultaneously	flows	out	of	 the	 container	 at	
another	 rate.	 Now	 we	 seek	 to	 determine	 the	 quantity	 of	 the	 substance	 S  
present	in	the	mixture	at	time	 t .

	 Letting	 x 	to	denote	the	amount	of	 S 	present	at	time	 t 	and	the	derivative	 dx
dt
to	denote	the	rate	

of	change	of	x	with	respect	to	 t .	If	IN	denotes	the	rate	at	which	S	enters	the	mixture	and	OUT denotes	

the	rate	at	which	it	leaves,	then	we	have	the	equation	 dx
dt

= −IN OUT

Example 10.30
 A	tank	contains	1000	litres	of	water	in	which	100	grams	of	salt	is	dissolved.	Brine	(Brine is a 
high-concentration solution of salt (usually sodium chloride) in water)	runs	in	a	rate	of	10	litres	per	
minute,	and	each	litre	contains	5grams	of	dissolved	salt.	The	mixture	of	the	tank	is	kept	uniform	by	
stirring.	Brine	runs	out	at	10	litres	per	minute.	Find	the	amount	of	salt	at	any	time	 t .

Solution

 Let	 x t( ) denote	 the	 amount	 of	 salt	 in	 the	 tank	 at	 time	 t .	 Its	 rate	 of	 change	 is	

dx
dt

= −in flow rate out flow rate

	 Now,	5	grams	times	10	litres	gives	an	inflow	of	50	grams	of	salt.	Also,	the	out	flow	of	brine	is	10	
litres	per	minute.	This	is	10 1000 0 01/ .= of	the	total	brine	content	in	the	tank.	Hence,	the	outflow	of	
salt	is	0.01	times	 x t( ) ,	that	is	0 01. ( )x t .

	 Thus	the	differential	equation	for	the	model	is	 dx
dt

x x= − = − −( )50 0 01 0 01 5000. .

	 This	can	be	written	as	 dx
x

dt
−

= −
5000

0 01( . )

	 Integrating		both	sides,	we	obtain	 log . logx t C− = − +5000 0 01

input

output

Fig.	10.2
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 or x Ce t− = −5000 0 01. or x Ce t= + −5000 0 01.

	 Initially,		when t x= =0 100, ,	so	100 5000= +C .Thus,	C = −4900 .

	 Hence,	the	amount	of	the	salt	in	the	tank	at	time	t is x e t= − −5000 4900 0 01. .

EXERCISE 10.8
 1. The	rate	of	increase	in	the	number	of	bacteria	in	a	certain	bacteria	culture	is	proportional	to	

the	number	present.	Given	that	the	number	triples	in	5	hours,	find	how	many	bacteria	will	be	
present	after	10	hours?	

 2.	 Find	the	population	of	a	city	at	any	time	t,	given	that	the	rate	of	increase	of	population	is	
proportional	to	the	population	at	that	instant	and	that	in	a	period	of	40	years	the	population	
increased	from	3,00,000	to	4,00,000.	

 3. The	equation	of		electromotive	force	for	an	electric	circuit	containing	resistance	and	self-

inductance	is	E Ri L di
dt

= + 	,	where	E	is	the	electromotive	force	is	given	to	the	circuit,	R the 

resistance	and	L,	the	coefficient	of	induction.	Find	the	current	i at time t when E	=	0.
 4.	 The	engine	of	a	motor	boat	moving	at	10	m s/ 	is	shut	off.	Given	that	the	retardation	at	any	

subsequent	time	(after	shutting	off	the	engine)	equal	to	the	velocity	at	that	time.	Find	the	
velocity	after	2	seconds	of	switching	off	the	engine.

 5.	 Suppose	a	person	deposits	10,000	 Indian	 rupees	 in	a	bank	account	at	 the	 rate	of	5%	per	
annum	compounded	continuously.	How	much	money	will	be	in	his	bank	account	18	months	
later?	

 6. Assume	that	the	rate	at	which	radioactive	nuclei	decay	is	proportional	to		the	number	of	such	
nuclei	that	are	present	in	a	given	sample.	In	a	certain	sample	10%	of	the	original	number	of	
radioactive	nuclei	have	undergone	disintegration	in	a	period	of	100	years.		What	percentage	
of	the	original	radioactive	nuclei	will	remain	after	1000	years?	

 7.	 Water	at	temperature	100C 	cools	in	10	minutes	to	 80C in	a	room	temperature	of	 25C .	
Find	

	 	 	 (i)	The	temperature	of	water	after	20	minutes
	 	 	 (ii)	The	time	when	the	temperature	is	40C

    log . ; log .e e
11

15
0 3101 5 1 6094= − =





 8. At	10.00	A.M.	 a	woman	 took	 a	 cup	of	 hot	 instant	 coffee	 from	her	microwave	oven	 and	
placed					it	on	a	nearby	Kitchen	counter	to	cool.		At	this	instant	the	temperature	of	the	coffee	
was 180F , 		and	10	minutes	later	it	was	160F .	Assume	that	constant	temperature	of	the	
kitchen	was	70F .

	 	 	 (i)	What	was	the	temperature	of	the	coffee	at	10.15A.M.?
	 	 	 (ii)	The	woman	likes	to	drink	coffee	when	its	temperature	is	between	130F and	140F .	

between	what	times	should	she	have	drunk	the	coffee?
 9. A	pot	of	boiling	water	at	100C 	is	removed	from	a	stove	at	time	 t = 0 	and	left	to	cool	in	the	

kitchen.	After	5	minutes,	the	water	temperature	has	decreased	to	80C ,	and	another	5	minutes	

later	it	has	dropped	to	65C .	Determine	the	temperature	of	the	kitchen.
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 10. A	tank	initially	contains	50	litres	of	pure	water.	Starting	at	time	 t = 0  a	brine	containing	with	
2	grams	of	dissolved	salt	per	litre	flows	into	the	tank	at	the	rate	of	3	litres	per	minute.	The	
mixture	is	kept	uniform	by	stirring	and	the	well-stirred	mixture	simultaneously	flows	out	of	
the	tank	at	the	same	rate.	Find	the	amount	of	salt	present	in	the	tank	at	any	time		 t > 0 .

EXERCISE 10.9

Choose the correct or the most suitable answer from the given four alternatives :

 1. The	order	and	degree	of	the	differential	equation	 d y
dx

dy
dx

x
2

2

1 3

1 4 0+ 





 + =

/

/   

are	respectively
	 	 (1)	 2 3, 	 (2)			3 3, 	 (3)			 2 6, 	 (4)		 2 4,

 2. The	differential	equation	representing	the	family	of	curves	 y x B= +A cos( ), 	where	A	and	B	
are	parameters,	is

  (1)		 d y
dx

y
2

2
0− = 	 (2)		 d y

dx
y

2

2
0+ =

 
(3)			 d y

dx

2

2
0=

 
(4)			 d x

dy

2

2
0=

 3. The	order	and	degree	of	the	differential	equation	 sin cosx dx dy x dx dy+( ) = −( )  is

  (1)			1 2, 	 (2)				 2 2,  (3)			1 1, 	 (4)			 2 1,

 4. The	order	of	the	differential	equation	of	all	circles	with	centre	at		 h k,( ) 	and	radius	‘a’	is
  (1)			2	 (2)			3	 (3)			4	 (4)			1
 5.	 The	differential	equation	of	the	family	of	curves	 y e ex x= + −A B , 	where	A	and	B	are	arbitrary	

constants	is

  (1)		 d y
dx

y
2

2
0+ = 	 (2)			 d y

dx
y

2

2
0− = 	 (3)			 dy

dx
y+ = 0 	 (4)			 dy

dx
y− = 0

 6. The	general	solution	of	the	differential	equation	 dy
dx

y
x

=  is

  (1)		 xy k= 	 (2)		 y k x= log 	 (3)	 y kx= 	 (4)				 log y kx=

 7. The	solution	of	the	differential	equation	2 3x dy
dx

y− = 	represents

  (1)		straight	lines	 (2)			circles	 (3)		parabola	 (4)			ellipse

 8.	 The	solution	of	 dy
dx

p x y+ =( ) 0   is

	 	 (1)				 y ce pdx
= ∫ 	 (2)				 y ce pdx

= ∫− 	 (3)			 x ce pdy
= ∫− 	 (4)			 x ce pdy

= ∫

 9. The	integrating	factor	of	the	differential	equation		 dy
dx

y y
+ =

+1
λ

  is

  (1)			 x
eλ

	 (2)				 e
x

λ

	 (3)			λex 	 (4)			 ex
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 10. The	integrating	factor	of	the	differential	equation		 dy
dx

P x y Q x+ =( ) ( )   is x ,	then	P x( )

  (1)		x	 (2)			 x2

2
	 (3)				 1

x
	 (4)			 1

2x

 11. The	degree	of	the	differential	equation	 y x dy
dx

dy
dx

dy
dx

( ) ....= + +
⋅






 +

⋅ ⋅






 +1

1

1 2

1

1 2 3

2 3

  is

  (1)			2	 (2)						3	 (3)			1	 (4)				4

 12. If p	and	q	are	the	order	and	degree	of	the	differential	equation	 y dy
dx

x d y
dx

xy x+








 + =3

2

2
cos ,			

when
	 	 (1)	 p q< 	 (2)	 p q= 	 (3)	 p q> 	 	 (4)	p	exists	and	q	does	not	exist

 13. The	solution	of	the	differential	equation		 dy
dx x

+
−

=
1

1
0

2
  is

  (1)			 y x c+ =−sin 1 	 (2)			 x y+ =−sin 1 0 	 (3)		 y x C2 12+ =−sin 	(4)		 x y2 12 0+ =−sin

 14. The	solution	of	the	differential	equation	 dy
dx

xy= 2  is

  (1)		 y Cex=
2

	 (2)			 y x C= +2 2 	 (3)			 y Ce Cx= +− 2

	 (4)			 y x C= +2

 15. The	general	solution	of	the	differential	equation		 log
dy
dx

x y





 = +   is

  (1)			 e e Cx y+ = 	 (2)			 e e Cx y+ =− 	 (3)		 e e Cx y− + = 	 (4)		 e e Cx y− −+ =

 16. The	solution	of	 dy
dx

y x= −2   is

  (1)				 2 2x y C+ = 	 (2)				 2 2x y C− = 	 (3)			
1

2

1

2x y C− = 	 (4)			 x y C+ =

 17. The	solution	of	the	differential	equation			 dy
dx

y
x

y
x
y
x

= +

















φ

φ '
  is

  (1)					 x y
x

kφ 





 = 	 (2)			φ y

x
kx






 = 	 (3)				 y y

x
kφ 






 = 	 (4)			φ y

x
ky






 =

 18. If sin x 	is	the	integrating	factor	of	the	linear	differential	equation		 dy
dx

Py Q+ = ,	then	P is 

  (1)			 logsin x 	 (2)		 cos x 	 (3)			 tan x 	 (4)			 cot x

 19. The	number	of	arbitrary	constants	in	the	general	solutions	of	order	n 	and	n +1are	respectively
	 	 (1)			 n n−1, 	 (2)			 n n, +1 	 (3)			 n n+ +1 2, 	 (4)			 n n+1,

 20. The	number	of	arbitrary	constants	in	the	particular	solution	of	a	differential	equation	of	third	
order	is

	 	 (1)				3	 (2)			2	 (3)			1	 (4)			0
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 21.	 Integrating	factor	of	the	differential	equation		 dy
dx

x y
x

=
+ +
+

1
1

 is

	 	 (1)					 1
1x +
	 (2)				 x +1	 (3)			 1

1x +
	 (4)			 x +1

 22. The	population	P	in	any	year	t	is	such	that	the	rate	of	increase	in	the	population	is	proportional	
to	the	population.	Then

	 	 (1)			P Cekt= 	 (2)			P Ce kt= − 	 (3)			P Ckt= 	 (4)			P C=

 23. P	 is	 the	amount	of	certain	 substance	 left	 in	after	 time	 t.	 If	 the	 rate	of	evaporation	of	 the	
substance	is	proportional	to	the	amount	remaining,	then	

	 	 (1)			 P Cekt= 	 (2)			P Ce kt= − 	 (3)			P Ckt= 	 (4)			Pt C=

 24.	 If	the	solution	of	the	differential	equation	 dy
dx

ax
y f

=
+
+

3

2
	represents	a	circle,	then	the	value	of	

a is
	 	 (1)			2	 (2)				−2 	 (3)					1	 (4)			−1

 25.	 The	slope	at	any	point	of	a	curve	y = f (x)	is	given	by	
dy
dx

x=	3x2	and	it	passes	through	(-1,1).	
Then	the	equation	of	the	curve	is

	 	 (1)	 y = x3	+	2	 (2)	 y	=	3x2	+	4	 (3)	 y	=	3x3	+	4	 (4)	 y = x3	+	5

SUMMARY
	 1.	 A	differential	equation	is	any	equation	which	contains	at	least	one	derivative	of	an	unknown	

function,	either	ordinary	derivative	or	partial	derivative.
	 2.	 The	 order	 of	 a	 differential	 equation	 is	 the	 highest	 derivative	 present	 in	 the	 differential	

equation.
	 3.	 If	a	differential	equation	is	expressible	in	a	polynomial	form,	then	the	integral	power	of	the	

highest	order	derivative	appears	is	called	the	degree	of	the	differential	equation
	 4.	 If	a	differential	equation	is	not	expressible	to	polynomial	equation	form	having	the	highest	order	

derivative	as	the	leading	term	then	that	the	degree	of	the	differential	equation	is	not	defined.
	 5.	 If	a	differential	equation	contains	only	ordinary	derivatives	of	one	or	more	functions	with	respect	

to	a	single	independent	variable,	it	is	said	to	be	an	ordinary	differential	equation	(ODE).	
	 6.	 An	 equation	 involving	 only	 partial	 derivatives	 of	 one	 or	more	 functions	 of	 two	or	more	

independent	variables	is	called	a	partial	differential	equation	(PDE).
	 7.	 The	result	of	eliminating	one	arbitrary	constant	yields	a	first	order	differential	equation	and	that	

of	eliminating	two	arbitrary	constants	leads	to	a	second	order	differential	equation	and	so	on.
	 8.	 A	solution	of	a	differential	equation	is	an	expression	for	the	dependent	variable	in	terms	of	

the	independent	variable(s)	which	satisfies	the	differential	equation.
	 9.	 The	 solution	which	 contains	 as	many	 arbitrary	 constants	 as	 the	 order	 of	 the	 differential	

equation	is	called	the	general solution
	 10.	 If	we	give	particular	values	to	the	arbitrary	constants	in	the	general	solution	of	differential	

equation,	the	resulting	solution	is	called	a	Particular	Solution.
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11. An	equation	of	the	form	 f x g y dx f x g y dy1 1 2 2 0( ) ( ) ( ) ( )+ = 	is	called	an	equation	with	variable	
separable	or	simply	a	separable	equation.

12. A	function	 f x y( , ) 	is	said	to	be	a	homogeneous	function	of	degree	 n 	in	the	variables	 x
and	 y 	if,	 f tx ty t f x yn( , ) ( , )= for some n ∈ 	for	all	suitably	restricted	 x y, 	and	 t .	 This	is	
known as Euler’s homogeneity.

13. If	 f x y( , ) 	is	a	homogeneous	function	of	degree	zero,	then	there	exists	a	function	 g 	such	that

f x y( , ) 	is	always	expressed	in	the	form	 g y
x






.

14. An	 ordinary	 differential	 equation	 is	 said	 to	 be	 	 in	 homogeneous	 form,	 if	 the	 differential

equation	is	written	as	 dy
dx

g y
x

= 




.

15. The	 differential	 equation	 M x y dx N x y dy( , ) ( , )+ = 0 	 [in	 differential	 form]	 is	 said	 to	 be
homogeneous if M 	and	N  are homogeneous functions of the same degree.

16. A	first order differential equation of the form  dy
dx

Py+  =  Q .
where P 	and	Q 	are	functions	of	 x 	only.	Here	no	product	of	 y 	and	its	derivative	 dy

dx
	occurs

and	the	dependent	variable	 y 	and	its	derivative	with	respect	to	independent	variable	 x 	occur
only	in	the	first	degree.

The	solution	of	the	given	differential	equation	(1)	is	given	by	 ye Pdx∫ = Qe dx CPdx∫ +∫ .

Here	 e Pdx∫ 	is	known	as	the	integrating	factor	(I.F.)

17. A	first	order	differential	equation	of	the	form	 dx
dy

Px Q+ = ,	where	P 	and	Q  are

functions	of	 y only.	Here	no	product	of	 x 	and	its	derivative	 dx
dy

	occurs	and	the	dependent

variable	 x 	and	its	derivative	with	respect	to	independent	variable	 y 	occur	only	in	the	first

degree.In	this	case,	the	solution	is	given	by	 xe Qe dy CPdy Pdy∫ = ∫ +∫ .

18. If	 x 	denotes	the	amount	of	the	quantity	present	at	time t ,	then	the	instantaneous	rate	at

which	the	quantity	changes	at	time	 t  is dx
dt
.

This	leads	to	a	differential	equation	of	the	form	 dx
dt

f x t= ( , ) .
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Probability theory is nothing but common sense reduced to calculation
       -Laplace

Chapter

11 Probability Distributions

Laplace
(1749-1827)

179

The history of random variables and how they evolved into mapping 
from sample space to real numbers was a subject of interest. The modern 
interpretation certainly occurred after the invention of sets and maps 
(1900), but as Eremenko says, random variables were used much earlier. 
Mathematicians felt the need to interpret random variables as maps. In 1812, 
Laplace published his book on Theory analytique des probabilities in which 
he laid down many fundamental results in statistics. The first half of this 
treatise was concerned with probability methods and problems and the second 
half with statistical applications.

Learning Objectives

 Upon completion of this chapter, students will be able to 

 • define a random variable, discrete and continuous random variables

 • define probability mass (density) function 

 • determine probability mass (density) function from cumulative distribution function

 • obtain cumulative distribution function from probability mass (density) function

 • calculate mean and variance for random variable

 • identify and apply Bernoulli and binomial distributions.

11.1 Introduction
 The concept of a sample space that completely describes the possible outcomes of a random 
experiment has been developed in volume 2 of I year higher secondary course.
 In this chapter, we learn about a function, called random variable defined on the sample space of 
a random experiment and its probability distribution. 

11.2 Random Variable
  The outcome from a random experiment is not always a simple thing to represent in notion.  In 
many random experiments that we have considered, the sample space S has been a description of 
possible outcomes. That is the outcome of an experiment, or the points in the sample space S , need 
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not be numbers. For example in the random experiment of tossing a coin, the outcomes are H (head) 
or T (tail). It is necessary to deal with numerical values, in some situation, for outcomes of random 
experiment. Therefore, we assign a number to each outcome of the experiment say 1to head and 0 to 
tail. Such an assignment of numerical values to the elements in S  is called a random variable. A 
random variable is a function. Thus, a random variable is: 

Definition 11.1 

 A random variable X  is a function defined on a sample space S  into the  real numbers  such 
that the inverse image of points or subset or interval of   is an event in S ,  for which probability 
is assigned.

 We use the capital letters of the alphabet, such as X, Y and Z  to represent the random variables and 
the small letters, such as x, y and z  to represent the possible values of the random variables.
 Suppose S = { }w w w1 2 3, , ,  is the sample space of a random experiment and   denotes the real line. 

Then the random variable X is a real valued function defined on S  and is denoted by X S: →  . If ω is a 
sample point in S , then X ( )ω is a real number.

 The range set is the collection of X ( )ω such that ��S .  

That is the range set denoted by Rx is Rx X S= ( ) ∈{ }w w/ .

 The following figure shows the mapping of some 
sample points ωi or events of the Sample space S  on 
the real line ℝ.
  For instance, if x is a possible value of X  for  
ω11, ω12, ω13,...ω1kω ω ω ω11 12 13 1, , , , k S∈  then ω ω ω ω11 12 13 1, , , k{ }ω11, ω12, ω13,...ω1k ω ω ω ω11 12 13 1, , , k{ } is 
called inverse image of x .
 That is X x k

− = { }1

11 12 13 1( ) , , ,ω ω ω ωω ω ω ω11 12 13 1, , , k{ }ω11, ω12, ω13,...ω1k ω ω ω ω11 12 13 1, , , k{ } is an event in S

 Illustration 11.1
 Suppose a coin is tossed once. The sample space consists of two sample points H  (head) and T
(tail). 
 That is S T H� � �,

 Let X S: →   be the number of heads

 Then X T� � � 0 , and   X H� � �1.
 Thus X  is a random variable that takes on the values 0 and 1. If X ( )ω denotes the number of 
heads, then

X ( )�
�
�

�
�
�
�

0

1

for  =Tail

for  = Head
 

Example 11.1
 Suppose two coins are tossed once. If X  denotes the number of tails, (i) write down the sample 
space (ii) find the inverse image of 1 (iii) the values of the random variable and number of elements 
in its inverse images.
Solution
 (i) The sample space S  �� ��� �H T H T, ,

iω rω

 i( )X ω ( )rX ω

S

X

Sample space

Real numbers line

x



ω ω ω ω11 12 13 1, , , k

Fig. 11.1
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  That is S TT TH HT HH�� �, , ,

 (ii) Let X S: →  be the number of tails

  Then X TT� �  =  2  (2 Tails)

  X TH� �  =  1  (1 Tail)

  X HT� �  =  1 (1 Tail)

  and    X HH� �  =  0  (0 Tails).

 Then X  is a random variable that takes on the values 0, 1 and 2. 
 Let X ( )ω denotes the number of tails, this gives

X
TT
HT TH
HH

( )

if

if ,

if

�
�
�
�

�
�
�
�

�

�
�

�
�

2

1

0

  The inverse images of 1 is TH HT,� � . That is X TH HT� � �� � � � �1 1 , .

 (iii) Number of elements in inverse images are shown in the table.

Values of the Random Variable 0 1 2 Total

Number of elements in inverse image 1 2 1 4

Example 11.2
 Suppose a pair of unbiased dice is rolled once. If X denotes the total score of two dice, write down 
(i) the sample space (ii) the values taken by the random variable X, (iii) the inverse image of 10, and 
(iv) the number of elements in inverse image of X.

Solution
 (i) The sample space 
  S = 1 2 3 4 5 6 1 2 3 4 5 6, , , , , , , , , ,� ��� � , 

  consists of 36 ordered pairs � �,� �  where α
and β  can take  any integer value between 1 
a n d 6 as shown.  X is assigned to each point
a b,( )  the sum of the numbers on the dice . 

  That is X � � � �,� � � � . 
  Therefore 
   X 1 1,� �  =  1 1 2� �

   X 1 2,� �  =  X 2 1 3,� � �
   X 1 3,� �  =  X X2 2 3 1 4, ,� � � � � �
   X 1 4,� �  =  X X X2 3 3 2 4 1 5, , ,� � � � � � � � �
   X 1 5,� �  =  X X X X2 4 3 3 4 2 5 1 6, , , ,� � � � � � � � � � � �
   X 1 6,� �  =  X X X X X2 5 3 4 4 3 5 2 6 1 7, , , , ,� � � � � � � � � � � � � � �

TTTH HTHH

Sample space

Real line
0 1 2

S

X



A mapping X (.) from S to 

Fig. 11.2

S �

� � � � � �
� �

� � � �
� �

� �
� �

1 1 1 2 1 5

2 1 2 4

1 3 1 6

2 2

1 4

2 3

, , , , , , , ,

, , , ,

, ,

, ,

,

, �� �
� � � �

� �
� � � �

� �
� �� �

� �

, , ,

, , , , , , ,

,

,

,,

,

, ,

,

2 5

3 1 3 4

2 6

3 53 2

4 1

3 3 3 6

4 22 4 5

5 1 5 4

4 3 4 6

5 2 5 5

4 4

5 3

� � � �
� � � �

� � � �
� � � �

� �
� �

, , , , , ,

, , , , , , ,

,

,

,

, , 55 6

6 56 1 6 4 6 66 2 6 3

,

,, , , , , , , ,, ,

� �
� �� � � � � �

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

� � � � ��

�
�
�
�
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   X 2 6,� �  =  X X X X3 5 4 4 5 3 6 2 8, , , ,� � � � � � � � � � � �
   X 3 6,� �  =  X X X4 5 5 4 6 3 9, , ,� � � � � � � � �
   X 4 6,� �  =  X X5 5 6 4 10, ,� � � � � �
   X 5 6,� �  =  6 5 11,� � �
   X 6 6,� �  =  12 .

  (ii) Then the random variable X  takes on the values 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.
  (iii) The inverse images of 10 is 4 6,� �� , 5 5,� � , 6 4,� �� .

  (iv) The number of inverse images are given below

Values of the random variable 2 3 4 5 6 7 8 9 10 11 12 Total
Number of elements in inverse image 1 2 3 4 5 6 5 4 3 2 1 36

Example 11.3
 An urn contains 2 white balls and 3 red balls.  A sample of 3 balls are chosen at random from the 
urn. If X  denotes the number of red balls chosen, find the values taken by the random variable X  
and its number of inverse images.
Solution
        Let us denote white and red balls asw w r r r1 2 1 2 3, , , , and .

 The sample space consists of 5
3

c = 10 different samples of size 3.

 That is S w w r w w r w w r w r r w r r w r r w r r w r r� 1 2 1 1 2 2 1 2 3 1 1 2 1 2 3 1 1 3 2 1 2 2 2 3, , , , , , , , ww rr r r r2 1 3 1 2 3,� � .

 The random variable X takes on the values 1, 2, and 3.

A mapping X (.) from S to real numbers
Fig. 11.3

Values of the Random Variable  X 1 2 3 Total

Number of elements in inverse images 3 6 1 10

Remark
 If X denotes the number of white balls, then X takes on the values 0,1, and 2 and the elements in 
inverse images are

X = 1 X = 1X = 1 X = 3X = 2 X = 2X = 2 X = 2 X = 2X = 2

S

1w 2w

1r
2w 3r

2r
2w

1r
2r1w

1r
2r

1w
2r

3r 1w 1r

3r
1r2w

3r
2w1w

2r
2w1w

3r 1r
2r3r

Real line

Sample space S

1 2 3
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Values of the Random Variable  X 0 1 2 Total

Number of elements in inverse images 1 6 3 10
Illustration 11.2
 A batch of 150 students is taken in 4 buses to an excursion. There are 38 students in the first bus, 
36 in second bus, 32 in the third bus, and the remaining students in the fourth bus. When the buses 
arrive at the destination, one of the 150 students is randomly chosen. 
 Suppose that X  denotes the number of students on the bus of that randomly chosen student. Then 
X  takes on the values 32, 36, 38, and 44.
Example 11. 4
 Two balls are chosen randomly from an urn containing 6 white and 4 black balls.      Suppose that 
we win ` 30 for each black ball selected and we lose ` 20 for each white ball selected. If X  denotes 
the winning amount, then find the values of X  and number of points in its inverse images.
Solution
 The possible events of selection are (i) both balls may be black, or (ii) one white and one black or 
(iii) both are white. Therefore X is a random variable that take the values,  
   X  (both are black balls) =  ` 2(30) =  ` 60
   X  (one black and one white ball) =  ` 30−  ` 20=  ` 10
   X  (both are white balls) =  ` 2(−  20)� �  ` 40
  Therefore X  takes on the values 60,10, and −  40.
 Note :  The inverse image of 40 is b b b b b b b b b b b b1 2 1 3 1 4 2 3 2 4 3 4, , , , , .� �

Values of the Random Variable  X 60 10 – 40 Total

Number of elements in inverse images 6 24 15 45

Illustration 11.3
 A coin is tossed until head occurs.  
 The sample space is S H TH TTH TTTH�� �, , , , .                    
 Suppose X denotes the number of times the coin is tossed until head occur.                     
 Then the random variable X  takes on the values 1 2 3, , ,

Illustration 11.4
 Suppose N  is the number of customers in the queue that arrive at a service desk during a time 
period, then the sample space should be the set of non-negative integers. That is  S ={ , , , , }0 1 2 3   
and  N  is a random variable that takes on the values  0 1 2 3, , , ,  

Illustration 11.5
 If an experiment consists in observing the lifetime of an electrical bulb, then a sample space would 
be the life time of electrical bulb. Therefore the sample space is  S � �[ , )0 . Suppose X  denotes the 
lifetime of the bulb, then X  is a random variable that takes on the values in 0,�� � . 

Illustration 11.6
 Let D  be a disk of radius r . Suppose a point is chosen at random in D . Let X  denote the 
distance of the point from the centre. Then the sample space S D=  and X  is the random variable that 
takes any number from 0  to r . That is X r S� �� ��� � �0, , for .

(6
0)(4

2) (6
1)(4

1) (6
2)(4

0) (10
2)
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EXERCISE 11.1
 1. Suppose X is the number of tails occurred when three fair coins are tossed once simultaneously. 

Find the values of the random variable X and number of points in its inverse images.
 2. In a pack of 52 playing cards, two cards are drawn at random simultaneously. If the number of 

black cards drawn is a random variable, find the values of the random variable and number of 
points in its inverse images.

 3. An urn contains 5 mangoes and 4 apples. Three fruits are taken at random. If the number of 
apples taken is a random variable, then find the values of the random variable and number of 
points in its inverse images.

 4. Two balls are chosen randomly from an urn containing 6 red and 8 black balls. Suppose that 
we win ` 15 for each red ball selected and we lose ` 10 for each black ball selected. X denotes 
the winning amount, then find the values of X  and number of points in its inverse images. 

 5. A six sided die is marked ‘2’ on one face, ‘3’ on two of its faces, and ‘4’ on remaining three 
faces. The die is thrown twice. If X  denotes the total score in two throws, find the values of 
the random variable and number of points in its inverse images.

11.3 Types of Random Variable
 In this chapter we shall restrict our study to two types of random variables, one is a random 
variable assuming at most a countable number of values and another is a random variable assuming 
the values continuously. That is
 (i) Discrete Random variable (for counting the quantity)
 (ii) Continuous Random variable (for measuring the quantity)

11.3.1 Discrete random variables
 In this section we discuss 
 (i)  Discrete random variables
 (ii) Probability mass function 
 (iii) Cumulative distribution function. 
 (iv) Obtaining cumulative distribution function from probability mass function.
 (v) Obtaining probability mass function from cumulative distribution function.
 If the range set of the random variables is discrete set of numbers then the inverse image of 
random variable is either finite or countably infinite. Such a random variable is called discrete random 
variable. A random variable defined on a discrete sample space is discrete. 

Definition 11.2 (Discrete Random Variable)

 A random variable X  is defined on a sample space S  into the real numbers   is called 

discrete random variable if the range of X  is countable, that is, it can assume only a finite or 

countably infinite number of values, where every value in the set S has positive probability with 

total one.

Remark
 It is also possible to define a discrete random variable on continuous sample space. For instance,

 (i) for a continuous sample space S = [ , ]0 1 , the random variable defined by X S( ) ,� �� �10 for all 

is a discrete random variable.
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 (ii) for a continuous sample space S = [ , ]0 20 , the random variable defined by 

X ( )
[ , )

[ , ]
�

�
�

�
�
�

�
�
�

1 0 10

2 10 20

 for 

 for 
  is a discrete random variable.

11.3.2 Probability Mass Function
 The probability that a discrete random variable X takes on a particular value x, that isP X x( )= , 
is frequently denoted by f x( ) or p x( )  . The function f x( ) is typically called the probability mass 
function, although some authors also refer to it as the probability function or the frequency function.  
In this chapter, when the random variable is discrete, the common terminology the probability mass 
function is used and its common abbreviation is pmf.

Definition 11.3 (Probability mass function)

 If X is a discrete random variable with discrete values x x x xn1 2 3, , , ,    then the function 

denoted by f (.) or p(.)   and defined by 

                                f x P X x k nk k( ) ( ), , , , ,= = =for 1 2 3 

is called the probability mass function of  X

Theorem 11.1 (Without proof)
 The function f x( ) is a probability mass function if and only if it satisfies the following 
properties for the set of real values x1, x2, x3, ... xn ....
 (i) f xk( )³ 0  for k n=1 2 3, , , ,   and  (ii) f xk

k

( )=∑ 1

Note: 
 (i) The set of probabilities f x P X x k nk k( ) ( ), , , , ,� � �� �1 2 3  is also known  as 

probability distribution of discrete random variable
 (ii) Since the random variable is a function, it can be presented 
  (a)  in tabular form        (b)  in graphical form and         (c) in an expression form 
Example 11.5
 Two fair coins are tossed simultaneously (equivalent to a fair coin is tossed twice). Find the 
probability mass function for number of heads occurred.
Solution
        The sample space S  =  H T H T, ,� ��� �  

   That is S  =  TT TH HT HH, , ,� �  

 Let X  be the random variable denoting the number of heads. 

 Therefore       
   X TT� �  =  0 , X TH� �  =  1,

   X HT� �  =  1, and  X HH� �  =  2 .
 Then the random variable X takes on the values 0, 1 and 2

Values of the Random Variable 0 1 2 Total
Number of elements in inverse images 1 2 1 4
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 The probabilities are given by 

    f ( )0  =  P X( )= =0
1

4
,

   f ( )1  =  P X( )= =1
1

2
 

   and  f ( )2  =  P X( )= =2
1

4
 

 The function f x( ) satisfies the conditions

 (i) f x( ) ≥ 0 ,  for  x = 0 1 2, ,

 (ii) f x f x f f f
x

x

x
( ) ( ) ( ) ( ) ( )� � � �

�

�

�� 0 1 2
0

2

 

   =  1
4

1

2

1

4
1� � �  

 Therefore f x( ) is a probability mass function. 

The probability mass function is given by

x 0 1 2

f x( )
1

4

1

2

1

4

(or)

Example 11.6
 A pair of fair dice is rolled once. Find the probability 
mass function to get the number of fours.
Solution
 Let X  be a random variable whose values x are the 
number of fours.
 The sample space S  is given in the table.

 It can also be written as

 S i j� � �( , ) , where i =1 2 3 6, , ,  and j =1 2 3 6, , ,  

 Therefore X  takes on the values of 0, 1, and 2. 

 We observe that
 (i) X = 0,  if ( , )i j  for i j≠ ≠4 4, ,

 (ii)  X =1,  if 1,4 , 2,4 , 3,4 , 5,4 , 6,4� � � � � � � � � � � � � � � � � � �, , , , , , , , , ,4 1 4 2 4 3 4 5 4 6��  

 (iii) X = 2,  if 4 4,� � ,
 Therefore,

Values of the Random Variable  X 0 1 2 Total

Number of elements in inverse images 25 10 1 36

1 2

1

Probability mass function of  f(x)

f(x)

x

1-
4

1-
2

3-
4

1-
4

1-
2

0

Fig. 11.4

f x

x

x

x

( ) �

�

�

�

�

�

�
�
�

�

�
�
�

1

4
0

1

2
1

1

4
2

for

for

for

)( ) ( ) ( ) ( ) ( ( )
)( ) ( ) ( ) ( ) ( ( )
)( ) ( ) ( ) ( ) ( (
)

1, 1 , 1, 2 , 1, 3 , 1, 4 , 1, 5 , 1, 6

( ) ( ) ( ) ( ) ( (
)

)( ) ( ) ( ) ( ) ( (
)

)( ) ( ) ( ) ( ) ( (
)
)

2, 1 , 2, 2 , 2, 3 , 2, 4 , 2, 5 , 2, 6

3, 1 , 3, 2 , 3, 3 , 3, 4 , 3, 5 , 3, 6

4, 1 , 4, 2 , 4, 3 , 4, 4 , 4, 5 , 4, 6

5, 1 , 5, 2 , 5, 3 , 5, 4 , 5, 5 , 5, 6

6, 1 , 6, 2 , 6, 3 , 6, 4 , 6, 5 , 6, 6

=S { {( )4, 4
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 The probabilities are

   f ( )0  =  P X( )= =0
25

36
,

   f ( )1  =  P X( )= =1
10

36
 

   and  f ( )2  =  P X( )= =2
1

36
 

 Clearly the function f x( )  satisfies the conditions

 (i) f x( ) ,≥ 0  for x = 0 1 2, ,  and 

 (ii) f x f x f f f
x

x

x
( ) ( ) ( ) ( ) ( )� � � � �

�

�

�� 0 1 2 1
0

2

 

  =  1

4

1

2

1

4
1� � �  

The probability mass function is presented as

x 0 1 2

f x( )
25

36

10

36

1

36

(or) f x

x

x

x

( ) �

�

�

�

�

�

�
�
�

�

�
�
�

25

36
0

10

36
1

1

36
2

for 

for 

for 

11.3.3 Cumulative Distribution Function or Distribution Function
 There are many situations to compute the probability that the observed value of a random variable 
X  will be less than or equal to some real number x . Writing F x P X x( ) � �� � for every real number 
x , we call F x( ) , the cumulative distribution function or distribution function of the random variable 

X  and its common abbreviation is cdf .

Definition 11.4: (cumulative distribution function) 

 The cumulative distribution function F x( )  of a discrete random variable X , taking the 

values x x x1 2 3, , , such that x x x1 2 3< < < with probability mass function f xi� �  is 

                          F x P X x f x xi
x xi

( ) ,= ≤( ) = ( ) ∈
≤

∑ 

 The distribution function of a discrete random variable is known as Discrete Distribution Function.  
Although, the probability mass function f x( )  is defined only for a set of discrete values x x x1 2 3, , , ,  
the cumulative distribution function F x( )  is defined for all real values of x∈ .   

 We can compute the cumulative distribution function using the probability mass function

 F x P X x f x P X xi
x x

i
x xi i

( ) � �� � � � � � �� �
� �
� �

1 2

1

Probability mass function of  f(x)

f(x)

x

y

0

1-
36

25-
36

10-
36

Fig. 11.5
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 If X takes only a finite number of values x x x xn1 2 3, , , , where x x x xn1 2 3< < < <, ,  then the 
cumulative distribution function is given by

F x

x x
f x x x x
f x f x x x x
f x f x

( )

,

( ),

( ) ( ),

( ) ( )
�

�� � �
� �

� � �
� �

0 1

1 1 2

1 2 2 3

1 2 ff x x x x

f x f x f x x xn n

( ),

( ) ( ) ( ) ,

3 3 4

1 2

� �

� � � � � �

�

�

�
�
��

�

�
�
�
�

� �
…

 For a discrete random variable X, the cumulative distribution function satisfies the following 
properties.

 (i) 0 1≤ ≤F x( ) ,  for all x∈ .

 (ii) F x( )  is real valued non-decreasing function x y F x F y� �� �, ( ) ( ) .then

 (iii) F x( )  is right continuous function lim .
x a

F x F a
� �

� � � � �� �
 (iv) lim

x
F x F

���
� � � ��� � � 0 .

 (v) lim
x

F x F
���

� � � ��� � �1 .

 (vi) P x X x F x F x1 2 2 1� �� � � � � � � � .

 (vii) P X x P X x F x�� � � � �� � � � � �1 1 .

 (viii) P X x F x F xk k k=( ) = − −( ) ( ) .

Note
 Some authors use left continuity in the definition of a cumulative distribution functionF x( ) , 
instead of right continuity.

11.3.4 Cumulative Distribution Function from Probability Mass function
 Both the probability mass function and the cumulative distribution function of a discrete random 
variable X contain all the probabilistic information of X. The probability distribution of X is determined 
by either of them. In fact, the distribution  function F of a discrete random variable X can be expressed 
in terms of the probability mass function f(x) of X  and vice versa.

Example 11.7
 If the probability mass function f x( ) of a random variable X is 

x 1 2 3 4

f x( )
1

12

5

12

5

12

1

12

 find (i) its cumulative distribution function, hence find (ii)P X( )≤ 3  and, (iii)P X( )≥ 2

Solution
 (i) By definition the cumulative distribution function for discrete random variable is 

F x P X x P X xi
x xi

( ) ( ) ( )� � � �
�
�
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 P X( )<1  =  0  for �� � �X 1.

 F ( )1  =  P X P X x P X x P X P Xi
x xi

( ) ( ) ( ) ( ) ( )� � � � � � � � � � � �
� ��
� �1 1 1 0

1

12

1

12

1

 .

 F ( )2  =  P X P X x P X P X P X( ) ( ) ( ) ( ) ( )� � � � � � � � �
��
�2 1 1 2

2

.

  =  0 1

12

5

12

1

2
� � � .

 F ( )3  =  P X P X x P X P X P X P X( ) ( ) ( ) ( ) ( ) ( )� � � � � � � � � � �
��
�3 1 1 2 3

3

.

  =  0 1

12

5

12

5

12

11

12
� � � � .

 F ( )4  =  P X P X x P X P X P X P X P X�� � � � � � � � � � � � � �
��
�4 1 1 2 3 4

4

( ) ( ) ( ) ( ) ( ) ( ) .

  =  0 1

12

5

12

5

12

1

12
1� � � � � .

 Therefore the cumulative distribution function is

Fig. 11.6
 (ii) P X F( ) ( )� � �3 3

11

12
.

 (iii) P X P X P X F( ) ( ) ( ) ( )� � � � � � � � � � � �2 1 2 1 1 1 1 1
1

12

11

12
.

Example 11.8
 A six sided die is marked ‘1’ on one face, ‘2’ on two of its faces, 
and ‘3’ on remaining three faces. The die is rolled twice. If X  denotes 
the total score in two throws.

 (i) Find the probability mass function.    

 (ii) Find the cumulative distribution function.

 (iii) Find P X( )3 6� �   (iv) FindP X( )≥ 4 .

O
1 2 3 4

x

yF(x)

Cumulative distribution function

1

12

1

2

11

12

1

1

12

1

2

11

12

1

F(x)

 0, 1

1
, 1   2

12

12

1

2

11
,

,

3   4

1 4

x

x

x

 x

�

�

���

�

�
�
� � ��

, 2            3x� ��

�
��
�
�
� � ������
�

���

F(x) =

13

3

1

2

3

32 3

Fig. 11.7
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Solution: 
 Since X denotes the total score in two throws, it takes on the values 2, 3, 4, 5, and 6. 
 From the Sample space S, we have

Values of the  
Random Variable 2 3 4 5 6 Total

Number of elements  
in inverse images 1 4 10 12 9 36

 P X( )= 2  =  1

36
, P X( )= 3  =  4

36
 

 P X( )= 4  =  10

36
, P X( )= 5  =  12

36
, and

 P X( )= 6   =  9

36
.

 (i) Probability mass function is

x  2 3 4 5 6

f x( )  
1

36
 4

36
 10

36
 12

36
 9

36
 

 (ii) Cumulative distribution function
  By definition of the cumulative 

distribution function for discrete random 
variable we have

 F x( )  =  P X x P X xi
x xi

( ) ( )� � �
�
� ,

 P X x( )<  =  0   for   �� � �X 2 .

 F ( )2  =  P X P X x P X P X( ) ( ) ( ) ( )� � � � � � � � � �
��
�2 2 2 0

1

36

1

36

2

 .

 F ( )3  =  P X P X x P X P X P X( ) ( ) ( ) ( ) ( )� � � � � � � � � � � � �
��
�3 2 2 3 0

1

36

4

36

5

36

3

.

 F ( )4  =  P X P X x P X P X P X P X�� � � � � � � � � � � �
��
�4 2 2 3 4

4

( ) ( ) ( ) ( ) ( )

  =  0
1

36

4

36

10

36

15

36
� � � �  .

 F(5) =  P X P X x P X P X P X P X P X( ) ( ) ( ) ( ) ( ) ( ) ( )� � � � � � � � � � � � �
��
�5 2 2 3 4 5

5

  =  0 1

36

4

36

10

36

12

36

27

36
� � � � �  .

1 2 3 4 5 6

Probability mass function

O

y

x

f (x)

1

36

4

36

10

36

12

36

9

36

1

36

10

36

5

36

Fig. 11.8

Sample space S 
   II
I  1 2 2 3 3 3

1 2 3 3 4 4 4
2 3 4 4 5 5 5
2 3 4 4 5 5 5
3 4 5 5 6 6 6
3 4 5 5 6 6 6
3 4 5 5 6 6 6
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 F ( )6  =  P X P X x( ) ( )� � �
��
�6

6

  =  P X P X P X P X P X P X( ) ( ) ( ) ( ) ( ) ( )� � � � � � � � � � �2 2 3 4 5 6

  =  0 1

36

4

36

10

36

12

36

9

36
1� � � � � � .

 
Therefore the cumulative distribution function is 

 

0 2

1

36
2 3

5

36
3 4

15

36
4 5

27

36
5 6

1

for

for

for

for

for

f

−∞ < <

≤ <

≤ <

≤ <

≤ <

x

x

x

x

x

oor 6 ≤ < ∞


















 x

 (iii) P X( )3 6� �  =  P X x P X P X P Xi
x

( ) ( ) ( ) ( )� � � � � � �
�
� 3 4 5

3

5

 

    =  4

36

10

36

12

36

26

36
� � �  .

 (iv) P X( )≥ 4  =  P X xi
x

( )�
�

�

�
4

 

   =  P X P X P X( ) ( ) ( )� � � � �4 5 6

   =  10

36

12

36

9

36

31

36
� � �  .

11.3.5 Probability Mass Function from Cumulative Distribution Function 
 For a discrete random variable X, the cumulative distribution function F  has jumps at each of 

the xi , and is constant between successive x si ′ . The height of the jump at xi  is f xi( ) ; in this way the 

probability at xi can be retrieved from F .

y

Fig. 11.9
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 Suppose X  is a discrete random variable taking the values x x x1 2 3, , ,  such that x x x1 2 3< <,   

and F xi( ) is the distribution function. Then the probability mass function f xi( ) is given by

f x F x F xi i i( ) ( ) ( )� � �1 ,   i =1 2 3, , ,

Note

 The jump of a function F x( )  at x a=  is F a F a( ) ( )+ −− .  Since F  is non-decreasing and 

continuous to the right, the jump of a cumulative distribution function F  is P X x F x F x( ) ( ) ( )� � � � .

Here the jump (because of discontinuity) acts as a probability. That is, the set of discontinuities of a 
cumulative distribution function is at most countable!

Example 11.9
 Find the probability mass function f x( ) of the discrete random variable X  whose cumulative 
distribution function F x( )  is given by

F x

x
x
x
x
x

( )

.

.

.

�

�� � � �
� � � �
� � �

� �
� � �

�

�

�
��

�

�
�
�

0 2

0 25 2 1

0 60 1 0

0 90 0 1

1 1

 Also find  (i) P X( )< 0  and  (ii) P X( )� �1 . 

Solution

     Since X is a discrete random variable, from the given data, X takes on the values 

    − −2 1 0 1, , , and .

     For discrete random variable X, by definition, we have f x( ) =P X x( )=

     Therefore left hand limit of F(x) at x � �2  is F ( )− −2

  f ( )−2  =  P X F F( ) ( ) . .( )� � � � � � � �� �2 2 0 25 0 0 252 .
 Similarly for other jump points, we have

  f ( )−1  =  P X F F( ) ( ) ( ) . . .� � � � � � � � �1 1 2 0 60 0 25 0 35 .

  f ( )0  =  P X F F( ) ( ) ( ) . . .� � � � � � �0 0 1 0 90 0 60 0 30 ,

  f ( )1  =  P X F F( ) ( ) ( ) . .� � � � � �1 1 0 1 0 90 0 10 .

       Therefore the probability mass function is

x −2 −1 0 1

f x( ) 0 25. 0 35. 0 30. 0 10.

 The distribution function F x( )  has jumps at x �� �2 1 0, , ,  and 1. The jumps are respectively 

0 25 0 35 0 30. , . , . , and 0 1.  is shown in the figure given below. 

 These jumps determine the probability mass function 
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Fig. 11.10

 (i)  P X( )< 0  =  P X x P X P X( ) ( ) ( ) . . .� � � � � � � � � �
��

�

�
1

2 1 0 25 0 35 0 60 .

 (ii)  P X( )� �1  =  P X x P X P X P X( ) ( ) ( ) ( ) . . . .= = = − + = + = = + + =
−
∑

1

1

1 0 1 0 35 0 30 0 10 0 75  

Example 11.10
     A random variable X  has the following probability mass function. 

x 1 2 3 4 5 6
f x( ) k 2k 6k 5k 6k 10k  

 Find (i) P X( )2 6< <     (ii) P X( )2 5� �     (iii)  P X( )£ 4    (iv) P X( )3 <

Solution
 Since the given function is a probability mass function, the total probability is one. That is    

f x
x

( ) �� 1 .

 From the given data    k k k k k k� � � � � �2 6 5 6 10 1

   
30 1

1

30
k k� � �   

 Therefore the probability mass function is

x 1 2 3 4 5 6

f(x)
1

30

2

30

6

30

5

30

6

30

10

30

 (i)  P X( )2 6< <   =  f f f( ) ( ) ( )3 4 5
6

30

5

30

6

30

17

30
� � � � � � .

 (ii)  P X( )2 5� �  =  f f f2 3 4
2

30

6

30

5

30

13

30
� � � � � � � � � � � � .

 (iii)  P X( )≤ 4  =  f f f f( )1 2 3 4
1

30

2

30

6

30

5

30

14

30
� � � � � � � � � � � � � � .

 (iv)  P X( )3 <  =  f f f( ) ( ) ( )4 5 6
5

30

6

30

10

30

21

30
� � � � � � .

2� 1� O 1 2

1

0.25

0.60

0.90

0

0.25

0.35

0.30

0.10

x

y yF(x)

2� 1� O 1 2

1

0.50

0.25
0.35

0.30

0.10

x

f (x)

1

0.50

Distribution function        

and jumps at each of ix
F(x)

Probability mass function f (x)

Jumps
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EXERCISE 11.2
 1. Three fair coins are tossed simultaneously. Find the probability mass function for number of 

heads occurred.
 2. A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three 

faces. The die is thrown twice. If X denotes the total score in two throws, find
   (i) the probability mass function (ii) the cumulative distribution function
   (iii) P X( )4 10≤ <    (iv) P X( )≥ 6

 3. Find the probability mass function and cumulative distribution function of number of girl 
child in families with 4 children, assuming equal probabilities for boys and girls.

 4. Suppose a discrete random variable can only take the values 0, 1, and 2. 
  The probability mass function is defined by

                             f x
x
k

x
( )

, , ,
�

�
�

�
�
�

��

2 1
0 1 2

0

for

otherwise

  Find (i) the value of k (ii) cumulative distribution function (iii) P X( )≥ 1 .

 5. The cumulative distribution function of a discrete random variable is given by

  F x

x
x
x
x
x
x

( )

.

.

.

.

�

�� � � �
� � �

� �
� �
� �
� � �

�

�

0 1

0 15 1 0

0 35 0 1

0 60 1 2

0 85 2 3

1 3

��
�
�

�

�
�
�

         Find (i) the probability mass function ( ) ( ) ( ) ( )ii P X iii P X� �1 2and .

 6. A random variable X has the following probability mass function. 

x  1 2 3 4 5

f x( ) k 2 2 2k 3 2k 2k 3k

Find  (i) the value of k    (ii) P X( )2 5� �        (iii) P X( )3 <  

 7. The cumulative distribution function of a discrete random variable is given by

                                   F x

x

x

x

x

x

( ) =

− ∞ < <

≤ <

≤ <

≤ <

≤ <

0 0

1

2
0 1

3

5
1 2

4

5
2 3

9

10
3 4

1

for

for

for

for

for

foor 4≤ < ∞


















 x

  Find   (i) the probability mass function    (ii) P X( )< 3   and  (iii) P X( )≥ 2 .
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11.4 Continuous Distributions
     In this section we learn

  (i) Continuous random variable

 (ii) Probability density function

 (iii) Distribution function (Cumulative distribution function).

 (iv) To determine distribution function from probability density function.

 (v) To determine probability density function from distribution function. 

    Sometimes a measurement such as current in a copper wire or length of lifetime of an electric 
bulb, can assume any value in an interval of real numbers. Then any precision in the measurement is 
possible. The random variable that represents this measurement is said to be a continuous random 
variable. The range of the random variable includes all values in an interval of real numbers; that is, 
the range can be thought of as a continuum of real numbers

11.4.1 The definition of continuous random variable

Definition 11.5 (Continuous Random Variable)

 Let S  be a sample space and let a random variable X S R: →  that takes on any value in a set 
I of ℝ . Then X  is called a continuous random variable if  P X x�� � � 0 for every x  in I

11.4.2 Probability density function

Definition 11.6: (Probability density function) 

 A non-negative real valued function f x( )  is said to be a probability 

density function if, for each possible outcome x, x a b�� �,  of a continuous 
random variable X having the property

P a X b f x dx
a

b

( ) ( )� � � �

Theorem 11.2 (Without proof)
 A function f (.)  is a probability density function for some continuous random variable X  if 

and only if it satisfies the following properties.

 (i) f x( ) ≥ 0 , for every x   and  (ii) f x dx( ) �
��

�

� 1  .

Note
 It follows from the above definition, if X  is a continuous random variable,

 P a X b f x dx
a

b

( ) ( ) ,� � � � which means that P X a f x dx
a

a

( ) ( )� � �� 0

 That is probability when X  takes on any one particular value is zero. 

Fig. 11.11

( )P a X b≤ ≤

a b x

( )f x
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11.4.3 Distribution function (Cumulative distribution function)
Definition 11.7 : (Cumulative Distribution Function)
 The  distribution function or cumulative distribution function F x( )  of a continuous random 
variable X with probability density f(x) is 

F x P X x f u du u
x

( ) ( ) ,= ≤( ) = − ∞ < < ∞
−∞
∫ .

Remark
 (1) In the discrete case, f a P X a� � � �� �  is the probability that X takes the value a.

  In the continuous case, f x� � at x a=  is not the probability that X takes the value a,          
that is f a� � � �� �P X a .  If X is continuous type,  P X a�� � � 0  for a∈ .

 (2) When the random variable is continuous, the summation used in discrete is replaced by 
integration.

 (3) For continuous random variable    
  P a X b P a X b P a X b P a X b( ) ( ) ( ) ( )� � � � � � � � � � �
 (4) The distribution function of a continuous random variable is known as Continuous Distribution 

Function.
    
11.4.3.1  Properties of distribution function
 For a continuous random variable X, the cumulative distribution function satisfies the following 
properties.
 (i) 0 1£ £F x( ) .
 (ii) F x( )  is a real valued non-decreasing. That is, if x y< , then F x F y( ) ( )£ .

 (iii) F x( )  is continuous everywhere. 

 (iv) lim ( )
x

F x F
���

� ��� � � 0  and lim ( )
x
F x F

��
� ��� � �1.

 (v) P X x P X x F x�� � � � �� � � � � �1 1 .

 (vi) P a X b F b F a( ) ( ) ( )� � � � .

Example 11.11
 Find the constant C  such that the function  f x

Cx x
( ) �

� ��
�
�

2 1 4

0 Otherwise

 is a density function, and compute  (i) P X( . . )1 5 3 5< <     (ii) P X( )£ 2     (iii) P X( )3 < .
Solution
 Since the given function is a probability density function, 

f x dx( ) �
��

�

� 1.

 That is      f x dx f x dx f x dx( ) ( ) ( )� � �� ��
�

�� 1

4

4

1

1.

 From the given information,              
1 2 3 4

21
( )

21
f x x=

x

f (x)

Area = 1

probability mass function f (x)

Fig. 11.12
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  0 0 12

1

4

4

1

dx Cx dx dx� � �� ��
�

��

.

 
0

3
0 1

64 1

3
1 21 1

1

21

3

1

4

�
�

�
�

�

�
� � � �

��
��

�
��
� � � � �C x C C C, .

 Therefore the probability density function is 

 

f x
x x

( ) �
� ��

�
�

��

1

21
1 4

0

2

Otherwise

 Since f x( ) is continuous, the probability that X is equal to any particular value is zero. Therefore 

when the random variable is continuous, either or both of the signs < by ≤  and > by ≥  can be 

interchanged. Thus 

 (i) P X P X P X P X( . . ) ( . . ) ( . . ) ( . . )1 5 3 5 1 5 3 5 1 5 3 5 1 5 3 5� � � � � � � � � � �  

  Therefore

   P X( . . )1 5 3 5< <  =  f x dx x dx( )
.

.

.

.

1 5

3 5

2

1 5

3 5
1

21� ��

    =  1

21 3

1

21

3 5 1 5

3

3 3 3

x�

�
�

�

�
� �

� � � � ��

�
�
�

�

�
�
�

. .

    =  79

126
.

 (ii) P X f x dx f x dx f x dx( ) ( ) ( ) ( )� � � �
�� ��
� � �2

2 1

1

2

  

  Therefore

   P X f x dx f x dx f x dx( ) ( ) ( ) ( )� � � �
�� ��
� � �2

2 1

1

2

 = + =




∫0

1

21

1

21 3

2

1

2 3

1

2

x dx x

    =  1

21

2 1

3

7

63

3 3��

�
�

�

�
� � .

 (iii)   P X f x dx f x dx f x dx( ) ( ) ( ) ( )3
3 43

4

� � � �
� �

� ��  

    =  1

21
0

1

21 3

2

3

4 3

3

4

x dx x
� �

�

�
�

�

�
�� .

    =  1

21

4 3

3

37

63

3 3��

�
�

�

�
� �

21
( )

21
f x x=

x

f (x)

Area  
79

126
=

1.5 3.5O

(1.5 3.5) =P x< <
3.5

1.5

( )f x dx∫

Fig. 11.13

Fig. 11.14

1 2 3 4

21
( )

21
f x x=

x

f (x)

Area = 
7

63

2

1

( )f x dx= ∫( 2)P x ≤

O

1 2 3 4

21
( )

21
f x x�

x

f (x)

Area =
37

63

4

3

(3 ) ( )P x f x dx� � �

O

Fig. 11.15
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11.4.4 Distribution function from Probability density function
 Both the probability density function and the cumulative distribution function (or distribution 
function) of a continuous random variable X  contain all the probabilistic information of X . The 

probability distribution of X  is determined by either of them. Let us learn the method to determine 

the distribution function F  of a continuous random variable X  from the probability density function 

f x� �  of X  and vice versa.

Example 11.12
 If X  is the random variable with probability density 

function f x� � given by, 

f x
x x
x x� � �
� � �

� � � �
�

�
�

�
�

1 1 2

3 2 3

0

,

,

otherwise

find (i) the distribution function F x� �  

 (ii) P X( . . )1 5 2 5≤ ≤

Solution

 (i) By definition F x P X x f u du
x

( ) ( ) ( )= ≤ =
−∞
∫  

  When x <1 F x( )  =  P X x du
x

( )≤ = =
−∞
∫ 0 0 .

  When 1 2� �x   F x( )  =  P X x du u du
x

( )≤ = + −( )
−∞
∫ ∫0 1

1

1

    =  0
1

2

1

2

2

1

2

+
−( )











=
−( )u x

x

 

  When 2 3� �x   F x( )  =  P X x du u du u du
x

( )≤ = + −( ) + −( )
−∞
∫ ∫ ∫0 1 3

1

1

2

2

    =  0
1

2

3

2

2 2

1

2

2

+
−( )











+ −
−( )











u u
x

 

    =  
1 0

2

1 3

2
1

3

2

2 2 2− +
− −( ) = −

−( )x x
 

  When x ≥ 3 , F x( )  =  P X x du u du u du du
x

( )≤ = + −( ) + −( ) +
−∞
∫ ∫ ∫ ∫0 1 3 0

1

1

2

2

3

3

    =  0 1 3 0

1

1

2

2

3

3

du u du u du du
x

−∞
∫ ∫ ∫ ∫+ −( ) + −( ) +

1
x − 3

x− +

O 1 2 3

0.25

0.50

0.75

1.00

x

( )f x

probability density function

Fig. 11.16
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    =  0
1

2

3

2
0

2 2

1

2

2

3

+
−( )











+ −
−( )











+
u u

    =  1
2

1

2
1� � .

  These give  F x

x

x
x

x
x

x

( )

,

,

,

=

− ∞ < <

−( ) ≤ <

−
−( ) ≤ <

≤ < ∞















0 1

1

2
1 2

1
3

2
2 3

1 3

2

2
 

 (ii)  P X( . . )1 5 2 5≤ ≤  =  F F( . ) ( . )2 5 1 5−  

    =  1
3 2 5

2

1 5 1

2

2 2

�
�� ��

�
�
�

�

�
�
�
�

�� ��

�
�
�

�

�
�
�

. .
 

    =  1 75 0 25

2
0 75

. .
.

− =  

or

   P X( . . )1 5 2 5≤ ≤   = f x dx x dx x dx� � � �� � � � �� � �� � �
1 5

2 5

1 5

2

2

2 5

1 3 0 75
.

.

.

.

.   

Check: (i) Whether F x( )  is continuous everywhere.

 (ii) From the above figure 11.16, triangle area = =
1

2
1bh .

11.4.5 Probability density function from Probability distribution function.
 Let us learn the method to determine the probability density function f x( )  from the distribution 

function F x( )  of a continuous random variable X .

 Suppose F x( )  is the distribution function of a continuous random variable X . Then the 

probability density function f x� � is given by 

                       f x dF x
dx

F x( )
( )

( )� � � , whenever derivative exists.

Example 11.13

 If X is the random variable with distribution functionF x( ) given by, 

                  F x
x

x x
x

( )

,

,

,

�
�
� �
�

�

�
�

�
�

0 0

0 1

1 1

  then find (i) the probability density function f x( )    (ii) P X( . . )0 2 0 7£ £ .

O 1 2 3

0.25

0.50

0.75

1.00

x

( )F  x

 Distribution function

( )F  x

Fig. 11.17
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Solution
 (i) Differentiating F x( ) with respect to x at continuity points of f x( ) , we get

f x F x
x
x

x
� � � � �

�
� �
�

�

�
�

�
�

( )

,

,

,

0 0

1 0 1

0 1

 

  The pdf f x( )  is not continuous at x = 0 , or at x =1 . We can define f ( )0  and f ( )1  in any 
manner. Choosing f ( )0 1= , and f ( )1 0= .

  Therefore the probability density function f x( )  is

f x
x

� � �
� ��

�
�

1 0 1

0

,

, otherwise

 (ii)  P X( . . )0 2 0 7≤ ≤  =  F F( . ) ( . )0 7 0 2−

    =  0 7 0 2 0 5. . .� �  

or

   P X( . . )0 2 0 7≤ ≤  =  f x dx dx� � � �� �
0 2

0 7

0 2

0 7

1 0 5
.

.

.

.

.  

Remark

 By definition, P X x F x f u du
x

( ) ( ) ( )≤ = =
−∞
∫ . Probability P a X b� �� �  can be obtained by 

using either F x( )  or f x( ) .

Note
 We may also define the above probability density function as

 f x
x� � �

�
�

�
� �1 0 1

0

,

, otherwise
 or f x

x� � �
�
�

�
� �1 0 1

0

,

, otherwise
  or f x

x� � �
�
�

�
� �1 0 1

0

,

, otherwise
 

Example 11.14

 The probability density function of  random variable X is given by f x
k x

( ) �
� ��

�
�

1 5

0 otherwise
   

 Find   (i) Distribution function    (ii) P X( )< 3    (iii) P X( )2 4< <     (iv) P X( )3 ≤

Solution

         Since f x( ) is a probability density function, f x( ) ≥ 0  and f x dx( )
��

�

� �1

 That is                 0 0 1

1

1

5

5

dx k dx dx
��

�

� � �� � �

                              0 0 1
1

5� � � � � �k x 4 1k � � k =
1

4

 Therefore the probability density function is

   

f x
x

( )
,

,

=
≤ ≤






1

4
1 5

0 otherwise
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 (i) Distribution function

  The distribution function F x( )  =  P X x f u du
x

( ) ( )≤ =
−∞
∫ .

  When x <1, F x( )  =  f u du du
x x

( )
−∞ −∞
∫ ∫= =0 0 .

  When 1 5� �x   F x( )  =  f u du du du x
x x

( )
−∞ −∞
∫ ∫ ∫= + = −( )0

1

4

1

4
1

1

1

.

  When  x ≥ 5   F x( )  =  f u du du du du
x x

( )
−∞ −∞
∫ ∫ ∫∫= + + =0

1

4
0 1

1

51

5

.

  Thus F x( )  =  F x

x
x x

x

( )

,

,

, .

�

�
�

� �

�

�

�
��

�
�
�

0 1

1

4
1 5

1 5

 

 (ii)  P X( )< 3  =  P X F( ) ( )≤ = = − =3 3
3 1

4

1

2
  (Since F x( )  is continuous).

 (iii)  P X( )2 4< <  =  P X F F( ) ( ) ( )2 4 4 2
3

4

1

4

1

2
� � � � � � � .

 (iv)  P X( )3 ≤  =  P X P X( ) ( )≥ = − < = − =3 1 3 1
1

2

1

2
.

Example 11.15
 Let X  be a random variable denoting the life time of an electrical equipment having probability 

density function 

f x
k e x

x

x

( )
.

�
�
�

�
�
�

�2 0

0 0

for 

for  

 Find (i) the value of k        (ii) Distribution function (iii) P X( )< 2     

  (iv) calculate the probability that X  is at least for four unit of time (v) P X( )= 3 .

Solution

 (i) Since f x( )  is a probability density function, f x( ) ≥ 0  and f x dx( )
��

�

� �1  

  That is 0

0

2

0

dx k e dxx

��

�
�

� ��  =  1

   0
2

2

0

�
�

�

�
�

�

�
�

� �

k e x

 =  1
2

1 2
0

�
�
�

�

�
�

�

�
� � � �

��

k e e k  

  Therefore the probability density function is 

   f x( )  =  
2 0

0 0

2e x
x

x� �
�

�
�
�

for 

for  
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 (ii) Distribution function

  By definition the distribution function F x( ) = P X x f u du
x

( ) ( )≤ =
−∞
∫  

  When x £ 0  F x( )  =  f u du du
x x

( )
−∞ −∞
∫ ∫= =0 0  

  When x > 0   F x( )  =  f u du du e du e e
x

u
x u x

x( )
−∞ −∞

−
−

−∫ ∫ ∫= + =
−







= −0 2 2
2

1

0

2

0

2

0

2  

  This gives F x( )  =  
0 0

1 02

, for

for

x
e xx

�

� �

�
�
�

�
 .

 (iii) P X P X F e e( ) ( ) ( )� � � � � � � �� � �2 2 2 1 12 2 4   (since F x( )  is continuous)

 (iv) The probability that X  is at least equal to four unit of time is
  P X P X F e e( ) ( ) ( ) ( )� � � � � � � � � �� � �4 1 4 1 4 1 1 2 4 8  

 (v) In the continuous case, f x� � at x a=  is not the probability that X  takes the value a , that is

f x� � at x a=  is not equal to P X a�� �.  If X  is continuous type,  P X a�� � � 0  for 

a∈ .Therefore P x( )= =3 0 .

EXERCISE11.3

 1. The probability density function of X is given by f x
k x e x

x

x

( ) �
�
�

�
�
�

�2 0

0 0

for 

for  
. 

  Find the value of k .

 2. The probability density function of X  is f x
x x
x x( ) �

� �
� � �

�

�
�

�
�

0 1

2 1 2

0 otherwise

 .

  Find (i) P X0 2 0 6. .� �� �          (ii) P X1 2 1 8. .� �� �          (iii) P X0 5 1 5. .� �� �  

 3. Suppose the amount of milk sold daily at a milk booth is distributed with a minimum of 200 
litres and a maximum of 600 litres with probability density function

  f x
k x

( ) �
� ��

�
�

200 600

0 otherwise
 

  Find (i) the value of k    (ii)  the distribution function

   (iii) the probability that daily sales will fall between 300 litres and 500 litres?

 4. The probability density function of X  is given by f x k x
x

e
x

( ) � �
�

�
�
�

��

�
3 0

0 0

for 

for  

 

  Find (i) the value of k    (ii)  the distribution function  (iii) P X( )< 3  

   (iv) P X( )5£      (v) P X( )≤ 4 .
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 5. If X  is the random variable with probability density function f x( )  given by,

f x
x x
x x� � �
� � � �

� � � �
�

�
�

�
�

1 1 0

1 0 1

0

,

,

otherwise

  then find (i) the distribution function F x( )      (ii) P X( . . )− ≤ ≤0 5 0 5  

 6. If  X  is the random variable with distribution function F x( )  given by, 

F x

x

x x x

x

( )

,

,

�

�

�� � � �

�

�

�
��

�
�
�

0 0

1

2
0 1

1 1

2

  then find (i) the probability density function f x( )     (ii) P X( . . )0 3 0 6£ £  

11.5 Mathematical Expectation
 One of the important characteristics of a random variable is its expectation. Synonyms for 
expectation are expected value, mean, and first moment.

 The definition of mathematical expectation is driven by conventional idea of numerical average.
 The numerical average of n numbers, say a a a an1 2 3, , , ,  is

a a a a
n

n1 2 3+ + + +  .

 The average is used to summarize or characterize the entire collection of n  numbers 

1 2 3, , , , na a a a , with single value.

Illustration 11.7
 Consider ten numbers 6, 2, 5, 5, 2, 6, 2, 4, 1, 5− .

                    The average is 6 2 5 5 2 6 2 4 1 5

10
3

� � � � � � � � �
� .

 If ten numbers 6, 2, 5, 5, 2, 6, 2, , 1, 5− 4  are considered as the values of a random variable X the 

probability mass function is given by

        x – 4 1 2 5 6

( )P X x=
1

10
1

10
3

10
3

10
2

10

 The above calculation for average can also be rewritten as

 � � � � � � � � � � �4
1

10
1

1

10
2

3

10
5

3

10
6

2

10
3 .
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 This illustration suggests that the mean or expected value of any random variable may be obtained 
by the sum of the product of each value of the random variable by its corresponding probability.
 So average � �  (value of x ) ×  (probability)

 This is true if the random variable is discrete. In the case of continuous random variable, the 
mathematical expectation is essentially the same with summations being replaced by integrals.
 Two quantities are often used to summarize a probability distribution of a random variable X . In 
terms of statistics one is central tendency and the other is dispersion or variability of the probability 
distribution. The mean is a measure of the centre tendency of the probability distribution, and the 
variance is a measure of the dispersion, or variability in the distribution. But these two measures do 
not uniquely identify a probability distribution. That is, two different distributions can have the same 
mean and variance. Still, these measures are simple, and useful in the study of the probability 
distribution of X .

11.5.1 Mean

Definition 11.8 : (Mean) 

 Suppose X  is a random variable with probability mass (or) density function f x� � . The 
expected value or mean or mathematical expectation of X , denoted byE X( ) or μ is 

                                   E X

x f x X

x f x dx X

x
( )

( )

( )

�

�

�
��

�
�
�

�

�
��

�

if is discrete

if is continuous

 The expected value is in general not a typical value that the random variable can take on. It is 
often helpful to interpret the expected value of a random variable as the long-run average value of the 
variable over many independent repetitions of an experiment.

Theorem 11.3 (Without proof)
 Suppose X  is a random variable with probability mass (or) density function f x� � . The 
expected value of the function g X� � , a new  random variable is

                                   E g X

g x f x g x

g x f x dx g x

x
( ( ))

( ) ( ) ( )

( ) ( ) ( )

=

∑ if is discrete

if is continuuous
−∞

∞

∫










 If  g X xk( ) = the above theorem yield the expected value called the k-th moment about the origin 
of the random variable X.
 Therefore the k-th moment about the origin of the random variable X is 

 

E X

x f x X

x f x dx X
k

k

x

k
( )

( )

( )

�

�

�
��
�

�
��

�

if is discrete

if is continuous
��
�
�
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Note
 When k = 0 , by definition,

                       E

f x X

f x dx X

x
( )

( )

( )

1

1

1

=

=

=








∑

∫
−∞

∞

if is discrete

if is continuous


11.5.2 Variance
 Variance is a statistical measure that tells us how measured data vary from the average value 
of the set of data. Mathematically, variance is the mean of the squares of the deviations from the 
arithmetic mean of a data set. The terms variability, spread, and dispersion are synonyms, and refer to 
how spread out a distribution is.

Definition 11.9: (Variance) 

 The variance of a random variable X denoted by Var or or ( ) or ( ) ( )X V X xσ σ2 2  is   
                                              V X E X E X E X( ) ( ( )) ( )� � � �2 2�

 Square root of variance is called standard deviation. That is standard deviation� � V X( ) . The 

variance and standard deviation of a random variable are always non negative.

11.5.3 Properties of Mathematical expectation and variance

 (i) E aX b aE X b( ) ( )� � � , where a  and b   are constants

Proof

 Let X be a discrete random variable

   E aX b( )+  =  ax b f xi
i

i�� �
�

�

�
1

( )   (by definition)

    =  ax f x bf xi i i
i

( ) ( )�� �
�

�

�
1

    =  a x f x b f xi
i

i i
i�

�

�

�

� ��
1 1

( ) ( )

    =  aE X b( ) � � �1    f xi
i

( ) ��

�
�

�

�
�

�

�

� 1
1

 

   E aX b( )+  =  aE X b( ) + .

 Similarly, when X  is a continuous random variable, we can prove it, by replacing summation by 

integration.

Corollary 1:    E aX( )  = aE X( )     ( when b = 0 )         
Corollary 2:     E b( )  = b                (when a = 0 )      
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 (ii)  Var X E X E X( ) ( ) ( )� �2 2  

Proof
  We know E x( )  =  μ 

   Var X( )  =  E X( )� � 2

    =  E X X( )2 22� �� �

    =  E X E X( )2 22� � � �� �   (Since μ is a constant)

    =  E X E X( ) ( )2 2 2 22� � � ��� � �

   Var X( )  =  E X E X( ) ( )2 2� � �  

 An alternative formula to compute variance of a random variable X  is
   σ 2  =  Var ( ) ( ) ( )X E X E X� � � �2 2  

 (iii)  Var(aX +b) a Var X= 2 ( )  where a  and b  are constants

Proof
   Var aX b( )+  =  E aX b E aX b( ) ( )� � �� �2

    =  E aX b aE X b� � �� �( ) )
2

    =  E aX aE X�� �( )
2  

    =  E a X E X2
2

�� �� �( )

    =  a E X E X2 2�� �( ) .

 Hence Var aX b( )+  =  a Var X2 ( )  

Corollary 3:     V aX( )  = a V X2 ( )       (when b = 0 )        
Corollary 4:       V b( )  = 0                 (when a = 0 )

 Variance gives information about the deviation of the values of the random variable about the 
mean μ. A smaller  σ 2  implies that the random values are more clustered about the mean, similarly, 
a bigger σ 2 implies that the random values are more scattered from the mean.

Fig. 11.18

( )f x
( )f x

µ µ

Deviation from mean Deviation from mean

xx

 Different variance with same mean

Smaller VarianceBigger variance
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 The above figure shows the pdfs of two continuous random variables whose curves are  
bell-shaped with same mean but different variances.

Example 11.16
 Suppose that f x( ) given below represents a probability mass function,

x 1 2 3 4 5 6

f x( ) c2 2 2c 3 2c 4 2c c 2c

 Find (i) the value of c (ii) Mean and variance.
Solution
 (i) Since f x( )  is a probability mass function, f x( ) ≥ 0  for all x , and f x

x
( ) �� 1 .

   Thus,   f x
x

( )å  =  1

   c c c c c c2 2 2 22 3 4 2+ + + + +  =  0

   c  =  1
5

 or − 1

2
.

  Since f x( ) ≥ 0  for all x , the possible value of c  is 1

5
.

  Hence, the probability mass function is

x 1 2 3 4 5 6

f x( )
1

25

2

25

3

25

4

25

1

5

2

5

 (ii) To find mean and variance, let us use the following table

                           
x f x( ) x f x( ) x f x2 ( )

1
1

25

1

25

1

25

2
2

25

4

25

8

25

3 3

25

9

25

27

25

4 4

25

16

25

64

25

5 1

5

5
5

25

5

6 2

5

12

5

72

5

f x( )� �1 x f x( )� �
115

25
x f x2 ( )å = 585

25
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  Mean :     E X( )  =  x f x( ) .� � �
115

25
4 6   

  Variance : V X( )  =  E X E X x f x x f x( ) ( ) ( ) ( )2 2 2 2

� � � � � � �� �

    =   585

25

115

25

2

��
�
�

�
�
� �= 23.40 21.16 = 2.24

  Therefore the mean and variance are 4.6 and 2.24 respectively.

Example 11.17
 Two balls are chosen randomly from an urn containing 8 white and 4 black balls.      Suppose 
that we win Rs 20 for each black ball selected and we lose Rs10 for each white ball selected. Find the 
expected winning amount and variance.
Solution
 Let X  denote the winning amount. The possible events of selection are (i) both balls are black, 
or (ii) one white and one black or (iii) both are white. Therefore X is a random variable that can be 
defined as 
   X  (both are black balls) =  ` 2 20( ) =  ` 40

   X (one black and one white ball) =  ` 20−  ` 10 =  `10

   X  (both are white balls) =  ` ( )� � �20  ` 20

 Therefore X  takes on the values 40 10,  and −20  

   Total number of balls  n  =  12  

   Total number of ways of selecting 2 balls =  
12

2

12 11

1 2
66

�

�
�

�

�
� �

�
�

�

   Number of ways of selecting 2 black balls =  
4

2
6

�

�
�
�

�
� �

 Number of ways of selecting one black ball and one white ball =  
8

1

4

1
32

�

�
�
�

�
�
�

�
�
�

�
� �

 Number of ways of selecting 2 white balls =  
8

2
28

�

�
�
�

�
� �  

Values of Random  Variable X  40 10 −20  Total

Number of elements in inverse images 6 32 28 66

 Probability mass function is

X 40 10 −20 Total

f x� �
6
66

32

66

28

66
1
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Mean :

   E X( )  =  x f x( )� � ��
�
�

�
�
� � ��

�
�

�
�
� � �� � ��

�
�

�
�
� �40

6

66
10

32

66
20

28

66
0  

  That is expected winning amount is 0 .

Variance :

   E X( )2  =  x f x2 2 2 2
40

6

66
10

32

66
20

28

66

400
( )� � ��

�
�

�
�
� � ��

�
�

�
�
� � �� � ��

�
�

�
�
� �

00

11

   E X( )� �2  =  0 02 =

   This gives  V X( )  =  E X E X( ) ( )2 2 4000

11
0

4000

11
� � � � � �  

   Therefore  E X( )  =  0  and V x( ) =
4000

11
.

Example 11.18
 Find the mean and variance of a random variable X , whose probability density function is              

f x
e xx

( ) �
��

�
�

�� � for

otherwise

0

0

Solution
 Observe that the given distribution is continuous 
Mean :

 By definition  μ =  E X x f x dx( ) ( )�
��

�

�

  =  0
0

0

� �� �e dx x e dxx x�

��

�
�

� � � � �� �  

  =  0
0

� � ��
�

�� �x e dxx  

  =  0
1
2

� �
�
�

�
�
��

�
 (using Gamma integral for positive integer n , x e dx nn x

n
�

�

�

�� �

� 1

0

)
  =   1

λ
 

Variance :

   By definition,  E X( )2  =  x f x dx2 ( )
��

�

�

    =  0

0

2

0

� �� �e dx x e dxx x�

��

�
�

� � � � �� �  

    =  0 2

0

� � ��
�

�� �x e dxx  

    =  0
2 2
3 2

� �
�
�

�
�
� ��

� �
  (using Gamma integral for positive integer)

(We can also use integration 
by parts or Bernoulli’s 
formula)

(We can also use integration 
by parts or Bernoulli’s 
formula)
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 Therefore Var X( )  =  E X E X( ) ( )2 2−

    =  2 1 1
2

2

2� � �
��
�
�

�
�
� �

  Hence the mean and variance are respectively 1
λ

 and 1
2λ

.

EXERCISE 11.4
 1. For the random variable X with the given probability mass function as below, find the mean 

and variance.

   (i) f x
x

x
� � �

�

�

�

�
��

�
�
�

1

10
2 5

1

5
0 1 3 4

,

, , ,

 (ii) f x x x� � � �
��

�
�

4

6
1 2 3, ,

   (iii) f x
x x( ) =

− < <<



2 1 1 2

0

( )

otherwise
  (iv) f x

e x
x

( ) = >






−1

2
0

0

2 for 

otherwise

 2. Two balls are drawn in succession without replacement from an urn containing four red balls 
and three black balls. Let X be the possible outcomes drawing red balls. Find the probability 
mass function and mean for X.

 3. If μ and σ 2  are the mean and variance of the discrete random variable X , and E X( )� �3 10  
and E X( )� �3 1162 , find μ and σ 2 .

 4. Four fair coins are tossed once. Find the probability mass function, mean and variance for 
number of heads occurred.

 5. A commuter train arrives punctually at a station every half hour. Each morning, a student 
leaves his house to the train station. Let X  denote the amount of time, in minutes, that the 
student waits for the train from the time he reaches the train station. It is known that the pdf of 
X  is

f x
x

( ) �
� ��

�
�

��

1

30
0 30

0 elsewhere

 

  Obtain and interpret the expected value of the random variable X .
 6. The time to failure in thousands of hours of an electronic equipment used in a manufactured 

computer has the density function

f x
e xx

( ) �
��

�
�

�3 0

0

3

elsewhere
 .

  Find the expected life of this electronic equipment. 
 7. The probability density function of the random variable X  is given by

f x
x e x

x

x

( ) �
�
�

�
�
�

�16 0

0 0

4 for 

for  
 

  find the mean and variance of  X .
 8. A lottery with 600 tickets gives one prize of `200, four prizes of `100, and six prizes of  

` 50. If the ticket costs is ` 2, find the expected winning amount of a ticket.
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11.6 Theoretical Distributions: Some Special Discrete Distributions
 In the previous section we have dealt with various general probability distributions with mean 
and variance. We shall now learn some discrete probability distributions of special importance.

 In this section we learn the following discrete distributions.
 (i) The One point distribution (ii) The Two point distribution
 (iii) The Bernoulli distribution (iv) The Binomial distribution.

11.6.1 The One point distribution
 The random variable X  has a one point distribution if there exists a point x0  such that,   the 
probability mass function f x( )  is defined as f x P X x( ) ( )= = =0 1 .

 That is the probability mass is concentrated at one point.
 The cumulative distribution function is  

F x
x x

x x
( ) �

�� � �
� � �

�
�
�

0

1

0

0

                        

Mean :
   E X( )  =  x f x x x

x
( ) � � �� 0 01  

Variance :
   V X( )  =  E X E X x f x x x x

x
( ) ( ) ( )2 2 2

0

2

0

2

0

2 0� � � � � � � � � ��  

  Therefore the mean and the variance are respectively x0  and 0 .

11.6.2 The Two point distribution
 (a) Unsymmetrical Case: The random variable X  has a two point distribution if there exists two 

values x x1 2and , such that 

 f x
p x x
p x x

( ) �
�

� �
�
�
�

for

for

1

21
        where 0 1< <p .

 The cumulative distribution function is 

F x
x x

p x x x
x x

( ) =
<
≤ <
≥








0

1

1

1 2

2

if

if 

if

Mean :
   E X( )  =  x f x x p x p px qx

x
( ) ( )� � � � � � �� 1 2 1 21  where q p� �1 .

Variance :
   V X( )  =  E X E X x f x px qx

x
( ) ( ) ( )2 2 2

1 2

2
� � � � � �� ��

    =  x p x q px qx pq x x1

2

2

2

1 2

2

2 1

2�� � � �� � � �� �  

 The mean and the variance are respectively px qx1 2+  and pq x x2 1

2�� �  
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 (b) Symmetrical Case: 

  When p q= =
1

2
, the two point distribution become 

      f x
x x

x x
( ) �

�

�

�

�
��

�
�
�

1

2

1

2

1

2

for

for

        where 0 1< <p . and the cumulative distribution function is

  F x

x x

x x x

x x

( ) �

�

� �

�

�

�
��

�
�
�

0

1

2

1

1

1 2

2

if

if 

if

  The mean and variance respectively are x x1 2

2

+  and 
x x2 1

2

4

�� � .

11.6.3 The Bernoulli distribution
 Independent trials having constant probability of success p were first studied 
by the Swiss mathematician Jacques Bernoulli (1654–1705). In his book The Art 
of Conjecturing, published by his nephew Nicholas eight years after his death 
in 1713, Bernoulli showed that if the number of such trials were large, then the 
proportion of them that were successes would be close to p with a probability  
near 1.
 In probability theory, the Bernoulli distribution, named after Swiss 
mathematician Jacob Bernoulli is the discrete probability distribution of 
a random variable. A Bernoulli experiment is a random experiment, where the outcomes is classified 
in one of two mutually exclusive and exhaustive ways, say success or failure (example: heads or tails, 
defective item or good item, life or death or many other possible pairs). A sequence of Bernoulli trails 
occurs when a Bernoulli experiment is performed several independent times so that the probability of 
success remains the same from trial to trial. Any nontrivial experiment can be dichotomized to yield 
Bernoulli model.

Definition 11.10: ( Bernoulli’s distribution)

 Let X  be a random variable associated with a Bernoulli trial by defining it as  
 X  (success) = 1  and X (failure) = 0,  such that 

                            f x
p x
q p x

p( ) �
�

� � �
�
�
�

� �
1

1 0
0 1where       

    X is called a Bernoulli random variable and f x( )  is called the Bernoulli distribution.

 Or equivalently
 If a random variable X  is following a Bernoulli’s distribution, with probability p  of success can 

be denoted as X Ber p ( ) , where p is called the parameter, then the probability mass function of X  

is
                                    f x p p xx x( ) ( ) , ,� � ��1 0 11

Jacob Bernoulli
(1654 - 1705)
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 The cumulative distribution of Bernoulli’s distribution is

F x
x

q p x
x

( ) =
<

= − ≤ <
≥







0 0

1 0 1

1 1

if

if

if

Mean :
   E X( )  =  x f x p p p

x
( ) ( )� � � � � �� 1 0 1 ,

 
Note that, since X takes only the values 0 and 1, its expected value p is “never seen”.

Variance :
   V X( )  =  E X E X x f x p

x
( ) ( ) ( )2 2 2 2� � � � ��  

    =  1 0 12 2 2p q p p p pq�� � � � � �( )    where q p� �1  

 
X is a Bernoulli’s random variable following with parameter p,  the mean μ and  variance σ 2  

of Bernoulli distribution are 
                             � � p        and      � 2 � pq

 When p q= =
1

2
, the Bernoulli’s distribution become  

  

f x
x

x
( ) �

�

�

�

�
��

�
�
�

1

2
0

1

2
1

for

for

        where 0 1< <p .   and the cumulative distribution is

 F x

x

x

x

( ) =

<

≤ <

≥










0 0

1

2
0 1

1 1

if

if 

if

 The mean and variance are respectively are 1

2
 and 1

4

11.6.4 The Binomial Distribution
 The Binomial Distribution is an important distribution which applies in some cases for repeated 
independent trials where there are only two possible outcomes: heads or tails, success or failure, 
defective item or good item, or many other such possible pairs. The probability of each outcome can 
be calculated using the multiplication rule, perhaps with a tree diagram. 
 Suppose a coin is tossed once. Let X denote the number of heads. Then X Ber p ( ),  because we 
get either head X �� �1  or tail X �� �0 with probability p  or 1− p.

 Suppose a coin is tossed n times. Let X denote the number of heads. Then X takes on the values  
0, 1, 2, …, n.The probability for getting x number of heads is given by

 
P X x

n
x
p px n x( ) ( )� �

�

�
�
�

�
� � �1 ,  x = 0, 1, 2, ..., n.
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 X x= , corresponds to the combination of x heads in n tosses, that is 
n
x
�

�
�
�

�
�  ways of heads and 

remaining n x−  tails. Hence, the probability for each of those outcomes is equal to p px n x( ) .1− −  

Binomial theorem is suitable to apply when n  is small number less than 30.

Definition 11.11: Binomial random variable  
     A discrete random variable X is called  binomial random variable, if  X  is the number of 

successes in n -repeated trials such that 
   (i)    The n- repeated trials are independent and n is finite
   (ii)   Each trial results only two possible outcomes, labelled as ‘success’ or ‘failure’

        (iii)  The probability of a success in each trial, denoted as p, remains constant.

Definition 11.12 : Binomial distribution  

 The binomial random variable X, equals the number of successes with probability p for a 
success and q p� �1  for a failure  in n-independent trials,  has a binomial distribution denoted 
by X B n p ( , ).   The probability mass function of X is                                                               

                                    f x
n
x
p p x nx n x( ) ( ) , , , ,..., .�

�

�
�
�

�
� � ��1 0 1 2

 The name of the distribution is obtained from the binomial expansion. For constants a and b, the 
binomial expansion is

a b
n
x
a bn

x

n
x n x�� � �

�

�
�
�

�
�

�

��
0

 Let p denote the probability of success on a single trial. Then, by using the binomial expansion 
with a p b p� � �and 1 , we see that the sum of the probabilities for a binomial random variable is 1. 
Since each trial in the experiment is classified into two outcomes, {success, failure}, the distribution 
is called a “bi’’-nomial.

 If X   is a binomial random variable with parameters p nand ,  the mean μ and variance σ 2 of 
binomial distribution are 
                                    � � np   and  � 2 1� �np p( )

 The expected value is in general not a typical value that the random variable can take on. It is 
often helpful to interpret the expected value of a random variable as the long-run average value of the 
variable over many independent repetitions of an experiment. The shape of a binomial 
distribution is symmetrical when p = 0 5. or when n  is large.

 When p q= =
1

2
, the binomial distribution become

 f x
n
x

x n
x n x

( ) , , , ,..., .�
�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�
1

2

1

2
0 1 2  
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 That is

             f x
n
x

x n
n

( ) , , , ,..., .�
�

�
�
�

�
�
�
�
�

�
�
� �

1

2
0 1 2

 The mean and variance are respectively are n
2

 and n
4

Example 11.19
 Find the binomial distribution function for each of the following.
 (i) Five fair coins are tossed once and X denotes the number of heads. 
 (ii) A fair die is rolled 10 times and X denotes the number of times 4 appeared.      
Solution
 (i) Given that five fair coins are tossed once. Since the coins are fair coins the probability of 

getting an head in a single coin is p =
1

2
and q p� � �1

1

2

 Let X denote the number of heads that appear in five coins. X is binomial random variable that 

takes on the values 0, 1,2,3,4 and 5, with n p= =5
1

2
and .That is X B 5

1

2
, .

�
�
�

�
�
�

 Therefore the binomial distribution is

   f x( )  =  
n
x
p p x nx n x�

�
�
�

�
� � ��( ) , , , ,...,1 0 1 2  

 becomes

    f x( )  =  
5 1

2

1

2
0 1 2 5

x
x

x n x�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�

, , , ,..., .

 That is f x( )  =  
5 1

2
0 1 2

x
x n

n�

�
�
�

�
�
�
�
�

�
�
� �, , , ,...,  

 (ii) A fair die is rolled ten times and X denotes the number of times 4 appeared. X  is binomial 

random variable that takes on the values 0 1 2 3 10, , , , , with n =10  and p =
1

6
. That is 

X B 10
1

6
, .

�
�
�

�
�
�

  Probability of getting a four in a die is p =
1

6
 and q p� � �1

5

6
.

  Therefore the binomial distribution is

   f x( )  =  
10 1

6

5

6
0 1 2 10

10

x
x

x x�

�
�

�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�

, , , ,..., .

Example 11.20
 A multiple choice examination has ten questions, each question has four distractors with exactly 
one correct answer. Suppose a student answers by guessing and if X  denotes the number of correct 
answers, find (i) binomial distribution (ii) probability that the student will get seven correct answers 
(iii) the probability of getting at least one correct answer.
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Solution
 (i) Since X  denotes the number of success, X  can take the values 0 1 2 10, , ,...,

  The probability for success is p =
1

4
 and for failure q p� � �1

3

4
, and n =10 .

  Therefore X  follows a binomial distribution denoted by X B 10
1

4
,

�
�
�

�
�
� .

  This gives, f x( )  =  
10 1

4

3

4
0 1 2 10

10

x
x

x x�

�
�

�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�

, , , ,...,  

 (ii) Probability for seven correct answers is 

   P X( )= 7  =  f ( )7
10

7

1

4

3

4
120

3

4

7 10 7 3

10
�
�

�
�

�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�

�
�

�

�
�

�

 

  Probability that the student will get seven correct answers is 120
3

4

3

10

�

�
�

�

�
� .

 (iii) Probability for at least one correct answer is
   P X( )≥1  =  1 1 1 0� � � � �P X P X( ) ( )

    =  1
10

0

1

4

3

4

0 10

�
�

�
�

�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �  1 3

4

10

��
�
�

�
�
� .

  Probability that the student will get for at least one correct answer is 1 3

4

10

��
�
�

�
�
� .

Example 11.21
  The mean and variance of a binomial variate X  are respectively 2 and 1.5. Find
  (i)  P X( )= 0      (ii)  P X( )=1       (iii) P X( )≥1  
Solution
 To find the probabilities, the values of the parameters n and p must be known.
 Given that
   Mean =  np = 2  and variance = =npq 1 5.  

   This gives  npq
np

 =  1 5

2

3

4

.
=

   q  =  3
4

 and p q� � � � �1 1
3

4

1

4

   np  =  2 , gives n
p

= =
2

8 . Therefore X B 8
1

4
,

�
�
�

�
�
�  .

 Therefore probability distribution is

   P X x( )=  =  f x
x

x
x x

( ) , . ,...�
�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�
8 1

4

3

4
0 1 2 8

8

 

 (i)  P X( )= 0  =  f ( )0
8

0

1

4

3

4

3

4

0 8 0 8

�
�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� � �

�
�

�
�
�

�
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 (ii)  P X( )=1  =  f ( )1
8

1

1

4

3

4
2

3

4

1 8 1 7

�
�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� � �

�
�

�
�
�

�

 (iii)  P X( )≥1  =  1 1 1 0 1
3

4

8

� � � � � � ��
�
�

�
�
�P X P X( ) ( )  

Example 11.22
 On the average, 20% of the products manufactured by ABC Company are found to be defective. 
If we select 6 of these products at random and X  denote the number of defective products find  the 
probability that (i) two products are defective (ii) at most one product is defective (iii) at least two 
products are defective.
Solution
 Given that n = 6
 Probability for selecting a defective product is 20

100
 , that is p =

1

5
.

 Since X  denotes the number defective products, X  can take on the values 0 1 2 6, , ,...,

 The probability for defective (success) is p =
1

5
and for failure q p� � �1

4

5
, and n = 6

 Therefore X  follows a binomial distribution denoted by X B 6
1

5
, .

�
�
�

�
�
�

 This gives f x( )  =  
6 1

5

4

5
0 1 2 6

6

x
x

x x�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�

, , , ,..., .

 (i) Probability for two defective products is

   P X( )= 2  = f ( )2
6

2

1

5

4

5
15

4

5

2 6 2 4

6
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�

�
�

�

�
�

�

 

 (ii) Probability for at most one defective products is
   P X( )≤ 1  =  P X P X( ) ( )� � �0 1

    =  
6

0

1

5

4

5

6

1

1

5

4

5

0 6 0 1 6 1�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
� �

�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�

� �

    =  4

5
6

4

5
2

4

5

6 5

6

5

�
�
�

�
�
� � � ��

�
�

�

�
� � �

�
�

�
�
�

   Probability for at most one defective products is 2
4

5

5

�
�
�

�
�
� .

 (iii) Probability for at least two defective products is

   P X( )≥ 2  =  1 2 1 1 1 2
4

5

5

� � � � � � � �
�
�

�
�
�P X P X( ) ( )

  Probability for at least two defective products is 1 2
4

5

5

� �
�
�

�
�
� .
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EXERCISE 11.5
 1. Compute P X k( )= for the binomial distribution, B n p( , )  where

  (i) n p k= = =6
1

3
3, ,  (ii) n p k= = =10

1

5
4, ,  (iii) n p k= = =9

1

2
7, ,

 2. The probability that Mr.Q hits a target at any trial is 1

4
. Suppose he tries at the target  

10 times. Find the probability that he hits the target (i) exactly 4 times  (ii) at least one time.
 3. Using binomial distribution find the mean and variance of X  for the following experiments
   (i) A fair coin is tossed 100 times, and X  denote the number of heads.
   (ii) A fair die is tossed 240 times, and X  denote the number of times that four appeared.

 4. The probability that a certain kind of component will survive a electrical test is 3

4
.  Find the 

probability that exactly 3 of the 5 components tested survive.
 5. A retailer purchases a certain kind of electronic device from a manufacturer.
  The manufacturer indicates that the defective rate of the device is5% .
  The inspector of the retailer randomly picks 10 items from a shipment. What is the probability 

that there will be (i) at least one defective item (ii) exactly two defective items.
 6. If the probability that a fluorescent light has a useful life of at least 600 hours is 0.9, find the 

probabilities that among 12 such lights
   (i) exactly 10 will have a useful life of at least 600 hours;
   (ii) at least 11 will have a useful life of at least 600 hours;
   (iii) at least 2 will not have a useful life of at least 600 hours.
 7. The mean and standard deviation of a binomial variate X  are respectively 6 and 2.
  Find (i) the probability mass function (ii)  P X( )= 3  (iii) P X( )≥ 2 .

 8. If X B n p ( , )  such that 4 4 2P X P x( ) ( )= = =  and n = 6 . Find the distribution, mean and 

standard deviation.
 9. In a binomial distribution consisting of 5 independent trials, the probability of 1 and 2 successes 

are 0.4096 and 0.2048 respectively. Find the mean and variance of the distribution.

EXERCISE 11.6

Choose the Correct or the most suitable answer from the given four alternatives : 
 1. Let X be random variable with probability density function

f x x
x

x
( ) =

≥

<







2
1

0 1

3

  Which of the following statement is correct
  (1)   both mean and variance exist (2) mean exists but variance does not exist
  (3)   both mean and variance do not exist (4) variance exists but Mean does not exist.

Chapter 11 Probability Distributions-new.indd   218 7/25/2019   6:47:27 PM



Probability Distributions219

 2. A rod of length 2l is broken into two pieces at random. The probability density function of 
the shorter of the two pieces is 

  

f x l
x l

l x l
( ) =

< <

≤ <







1
0

0 2

  The mean and variance of the shorter of the two pieces are respectively

  (1) l l
2 3

2

,   (2) l l
2 6

2

,  (3) l l
,

2

12
 (4) l l

2 12

2

,

 3. Consider a game where the player tosses a six-sided fair die. If the face that comes   up is 6, the 
player wins  ̀  36, otherwise he loses ̀ k 2 , where k is the face that comes up { }1, 2, 3, 4, 5 .k =

  The expected amount to win at this game in ` is

  (1) 19

6
 (2) −19

6
 (3) 

3

2
 (4) − 3

2

 4. A pair of dice numbered 1, 2, 3, 4, 5, 6 of a six-sided die and 1, 2, 3, 4 of a four-sided die 
is    rolled and the sum is determined. Let the random variable X denote this sum. Then the 
number of elements in the inverse image of 7 is 

  (1) 1  (2) 2  (3) 3  (4) 4

 5. A random variable X has binomial distribution with n = 25 and p = 0.8 then standard deviation     
of X is

  (1) 6 (2) 4 (3) 3 (4) 2

 6. Let X represent the difference between the number of heads and the number of tails obtained

  when a coin is tossed n times. Then the possible values of X are
  (1) i+2n, i = 0,1,2...n  (2) 2i–n, i = 0,1,2...n (3) n–i, i = 0,1,2...n (4) 2i+2n, i = 0,1,2...n

 7. If the function f x a x b( ) = < <1

12
for ,  represents a probability density function of a 

continuous random variable X, then which of the following cannot be the value of  a and b?

  (1) 0 and 12 (2) 5 and 17 (3) 7 and 19  (4) 16 and 24

 8. Four buses carrying 160 students from the same school arrive at a football stadium. The buses 
carry, respectively, 42, 36, 34, and 48 students. One of the students is randomly selected. Let 
X denote the number of students that were on the bus carrying the randomly selected student. 
One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on 
that bus.

  Then E[X] and E[Y] respectively are
  (1) 50 40,  (2)  40 50,   (3) 40 75 40. ,  (4) 41 41,  

 9. Two coins are to be flipped. The first coin will land on heads with probability 0.6, the second    
with Probability 0.5. Assume that the results of the flips are independent, and let X equal the 
total number of heads that result. The value of  E[X] is

  (1) 0 11.  (2) 1 1.  (3)11 (4)1
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 10. On a multiple-choice exam with 3 possible destructives for each of the 5 questions, the 
probability that a student will get 4 or more correct answers just by guessing is

  (1) 11

243
  (2) 3

8
  (3) 1

243
  (4) 5

243

 11. If  P{X = 0} = 1 − P{X = 1}. If E[X] = 3Var(X), then P{X = 0}.

  (1) 2

3
  (2) 2

5
  (3) 1

5
  (4) 1

3
 12. If X is a binomial random variable with expected

  value 6 and variance 2.4, Then P{X = 5} is

  (1) 
10

5

3

5

2

5

6 4

















  (2) 
10

5

3

5

5











  

  (3) 
10

5

3

5

2

5

4 6

















  (4) 
10

5

3

5

2

5

5 5

















 

 13. The random variable X has the probability density function

f x
ax b x

( ) =
+ < <




0 1

0 otherwise

  and E X( ) = 7

12
, then a and b are respectively

  (1) 1 and 1

2
  (2) 1

2
 and 1  (3) 2 and 1  (4) 1 and 2

 14. Suppose that X takes on one of the values 0, 1, and 2. If for some constant k,

  P X i k P X i i P X=( ) = = −( ) = =( ) =1 1 2 0
1

7
 for and , . Then the value of k is

  (1) 1  (2) 2  (3) 3  (4) 4

 15. Which of the following is a discrete random variable?
  I. The number of cars crossing a particular signal in a day.
  II. The number of customers in a queue to buy train tickets at a moment. 
  III. The time taken to complete a telephone call. 
  (1) I and II (2) II only (3) III only (4) II and III

 16. If  f x
x x a

( ) =
≤ ≤




2 0

0 otherwise
    is a probability density function of a random variable, then  the 

value of a is

  (1) 1  (2) 2  (3) 3  (4) 4

 17. The probability function of a random variable is defined as:

x –2 –1 0 1 2

( )f x k 2k 3k 4k 5k

  Then E(X ) is equal to: 
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  (1) 
1

15
   (2) 

1

10
  (3) 1

3
 (4) 

2

3
 

 18. Let X have a Bernoulli distribution with mean 0.4, then the variance of (2X–3) is

  (1) 0.24   b)  0.48  (3) 0.6 (4) 0.96

 19. If in 6 trials, X is a binomial variate which follows the relation 9P(X=4) = P(X=2), then the 
probability of success is

  (1)0.125  (2) 0.25 (3) 0.375 (4) 0.75

 20. A computer salesperson knows from his past experience that he sells computers to one in 
every twenty customers who enter the showroom. What is the probability that he will sell a 
computer to exactly two of the next three customers? 

  (1) 57

203
 (2) 

57

202
 (3) 19

20

3

3
 (4) 

57

20

SUMMARY
• A random variable X is a function defined on a sample space S into the real numbers   such 

that the inverse image of points or subset or interval of   is an event in S, for which probability 
is assigned.

• A random variable X is defined on a sample space S into the real numbers   is called discrete 
random variable if the range of X is countable, that is, it can assume only a finite or countably 
infinite number of values, where every value in the set S has positive probability with total one.

• If X is a discrete random variable with discrete values x1, x2, x3,... xn..., then the function denoted 
by f(.) or p(.) and defined by f(xk) = P(X = xk) for k = 1,2,3,...n,... is called the probability mass 
function of X

• The function f(x) is a probability mass function if

 (i) f(xk) ≥ 0 for k = 1,2,3,...n,... and  (ii) f xk
k

( ) =∑ 1

 • The cumulative distribution function F(x) of a discrete random variable X, taking the values x1, 
x2, x3,... such that x1 < x2 < x3 < … with probability mass function f(xi)  is 

 F x P(X x f x xi
x xi

( ( ),) = ) =≤ ∈
≤

∑ 

• Suppose X is a discrete random variable taking the values x1, x2, x3,... such that x1 < x2 < x3,...  
and F(xi) is the distribution function. Then the probability mass function f(xi) is given by f(xi) = 
F(xi) – F(xi–1), i = 1,2,3, ...

• Let S be a sample space and let a random variable X : S → R that takes any value in a set I of  .  
Then X is called a continuous random variable if P(X = x) = 0 for every x in I

• A non-negative real valued function f(x) is said to be a probability density function if, for each 
possible outcome x, x ∈ [a,b] of a continuous random variable X having the property 

P a x b f x dx
a

b

( ) =≤ ≤ ∫ ( )
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• Suppose F(x) is the distribution function of a continuous random variable X. Then the probability 
density function f(x) is given by 

f x dF x
dx

F x( )
( )

( )= = ′ , whenever derivative exists.

• Suppose X is a random variable with probability distribution function f(x) The expected value 
or mean or mathematical expectation of X, denoted by E(x) or μ is 

E x

xf x X

xf x x X

x
( )

( )

( )d

=

 ∑

∫
−∞

∞

if  is discrete

if  is continuous







• The variance of the random variable X denoted by V(x) or σ2 (or σx
2) is 

V(x) = E(X – E(x))2 = E(X – μ)2

Properties of Mathematical expectation and variance

(i) E(aX + b) = aE(X) + b,  where a and b are constants

Corollary 1: E(aX) = aE(X)   ( when b = 0)         

Corollary 2: E(b) = b       (when a = 0)      

(ii) Var(x) = E(X)2 – E(X)2  

(iii)  Var(aX + b) = a2Var(X) where a and b are constants

Corollary 3:  V(aX ) = a2V(X)   (when b = 0)

Corollary 4:  V(b) = 0      (when a = 0)

• Let X be a random variable associated with a Bernoulli trial by defining it as X (success) = 1 and 
X (failure) = 0,  such that

f x
p x
q p x

p( ) =
=

= − =




1

1 0
where 0 <  < 1

• X is called a Bernoulli random variable and f(x) is called the Bernoulli distribution.

• X is a Bernoulli’s random variable following with parameter p,  the mean μ and variance σ2 of 
Bernoulli distribution are μ = p and σ2 = pq

• A discrete random variable X is called binomial random variable, if X is the number of successes 
in n-repeated trials such that 

 (i) The n- repeated trials are independent and n is finite

 (ii) Each trial results only two possible outcomes, labelled as ‘success’ or ‘failure’
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(iii) The probability of a success in each trial, denoted as p, remains constant

• The random binomial variable X, equals the number of successes with probability p for a success
and q = 1 – p for a failure in n-independent trials,  has a binomial distribution denoted by

X ~ B(n, p).  The probability mass function of X is f
n
x
p p x nx n x(x) ( ) , , , ,..., .=







− =−1 0 1 2

• If X is a binomial random variable with parameters p and n,  the mean μ and variance σ2 of
binomial distribution are μ = np and σ2 = np(1 – p).
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"Young man, in mathematics you don’t understand things. 
You just get used to them".

-John von Neumann

12.1 Introduction
	 Mathematics	 can	 be	 broadly	 classified	 into	 two	 categories:	 Continuous 
Mathematics −	 It	 is	based	upon	 the	 results	 concerning	 the	 set	of	 real	numbers	
which	is	uncountably infinite.	It	is	characterized	by	the	fact	that	between	any	two	
real	numbers,	there	is	always	a	set	of	uncountably	infinite	numbers.	For	example,	a	
function	in	continuous	mathematics	can	be	plotted	in	a	smooth	curve	without	break.																																			
 Discrete Mathematics −	It	involves	distinct	values	which	are	either	finite 
or countably infinite;	i.e.	between	any	two	points,	there	are	finite	or	countably	
infinite	number	of	points.	For	example,	if	we	have	a	finite	set	of	objects,	the	
function	can	be	defined	as	a	list	of	ordered	pairs	having	these	objects,	and	can	
be	presented	as	a	complete	list	of	those	pairs.

	 The	mathematicians	who	 lived	 in	 the	 latter	 part	 of	 the	19th and early in 
the 20th	centuries	developed	a	new	branch	of	mathematics	called	discrete mathematics consisting	of	
concepts		based	on	either	finite or countably infinite sets	like	the	set	of	natural	numbers.	These	sets	are	
called	discrete	sets	and	the	beauty	of	such	sets	is	that,	one	can	find	that	a	one-to-one	correspondence	
can	be	defined	from	these	sets	onto	the	set	of	natural	numbers.	So,	the	elements	of	a	discrete	set	can	be	
arranged	as	a	sequence.	This	special	feature	of	discrete	sets	cannot	be	found	in	any	uncountable	set	like	
the	set	of	real	numbers	where	the	elements	are	distributed	continuously	throughout	without	any	gap.	

	 Everyone	is	aware	of	the	fact	that	the	application	of	computers	is	playing	an	important	role	in	
every	walk	of	our	lives.	Consequently	the	computer science has	become	partially	a	science	of	clear	
understanding	and	concise	description	of	computable	discrete	sets.	Also	the	modern	programming	
languages	are	to	be	designed	in	such	a	way	that	they	are	suitable	for	descriptions	in	a	concise	manner.	
This	compels	the	computer	scientists	to	train	themselves	in	learning	to	formulate	algorithms	based	on	
the discrete sets. 

	 The	main	advantage	of	studying	discrete	mathematics	is	that	its	results	serve	as	very	good	tools	
for	 improving	 the	 reasoning	 and	 problems	 solving	 capabilities.	 Some	of	 the	 branches	 of	 discrete	
mathematics are combinatorics, mathematical logic, boolean algebra, graph theory, coding 
theory etc.	Some	of	the	topics	of	discrete	mathematics	namely	permutations, combinations, and 
mathematical induction were	already	discussed	 in	 the	previous	year.	 In	 the	present	chapter,	 two	
topics	namely	binary operations and mathematical logic of	discrete	mathematics	are	discussed.	

Chapter
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Symbols

∈  -	 belongs	to.
⋺ -	 such	that.
∀  -	 for	every.
⇒  -	 implies.
∃  -	 there	exists

 In	general,	the	word	‘operation’	refers	to	the	process	of	operating	upon	either	a	single	or	more	
number	of	elements	at	a	time.	For	instance,	finding	the	negative	of	an	element	in	  involves	a	single	
element	at	a	time.	So	it	is	called	an	unary operation. On	the	other	hand	the	process	of	finding	the	sum	
of	any	two	elements	in	  involves	two	elements	at	a	time. This	kind	of	operation	is	called	a	binary 
operation and	in	general	an	operation	involving	 n elements is called an n-ary operation, n∈ . In	
this	section	a	detailed	discussion	of	the	binary	operations	is	presented. 

Learning Objectives

	 Upon	completion	of	this	chapter,	students	will	be	able	to	
 • define	binary	operation	and	examine	various	properties	
 • define	binary	operation	on	Boolean	matrices	and	verify	various	properties
 • define	binary	operation	on	modular	classes	and	examine	various	properties	
 • identify	simple	and	compound	statements
 • define	logical	connectives	and	construct	truth	tables
 • identify	tautology,	contradiction,	and	contingency
 • establish	logical	equivalence	and	apply	duality	principle

12.2 Binary Operations
12.2.1  Definitions
	 The	basic	arithmetic	operations	on	  are addition (+ ), subtraction (- ),	multiplication (× ), and 
division (÷).	Eminent	mathematicians	of	the	latter	part	of	19thcentury	and	in	20thcentury	like	Abel,	Cayley,	
Cauchy,	and	others,	tried	to	generalize	the	properties	satisfied	by	these	usual	arithmetic	operations.	To	this	
end	they	developed	new	abstract	algebraic	structures	through	the	axiomatic approach.	This	new	branch	
of	algebra	dealing	with	these	abstract	algebraic	structures	is	known	as	abstract algebra. 
	 To	begin	with,	consider	a	simple	example	involving	the	basic	usual	arithmetic	operations	addition	
and	multiplication	of	any	two	natural	numbers.

m n+ ∈ ; m n× ∈ ,	∀ ∈ =m n, { , , ,...} 1 2 3

Each	of	the	above	two	operations	yields	the	following	observations:
	 (1)	 At	a	time	exactly	two	elements	of	 are	processed.
	 (2)	 The	resulting	element	(outcome)	is	also	an	element	of	 .
	 Any	 such	 operation	 defined	 on	 a	 nonempty	 set	 is	 called	 a	 binary operation or a binary 
composition on the set in	abstract	algebra.
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Definition 12.1
	 Any	operation	* defined	on	a	non-empty	set S is called a binary operation on S if	the	following	
conditions	are	satisfied:
	 (i)	 The	operation	*	must	be	defined	for	each	and	every	ordered	pair	 ( , )a b ∈ S S× .
	 (ii)	 It	assigns	a	unique element a b∗ of	 S to	every	ordered	pair	 ( , )a b ∈ S S× .

	 In	 other	words,	 any	 binary	 operation	* on S is	 a	 rule	 that	 assigns	 to	 each ordered pair of	
elements	of	S  a unique element	of	S .	Also	*	can	be	regarded	as	a	function (mapping) with	input	in	
the	Cartesian	product	 S S× and	the	output	in S . 

∗ × →: S S S   ;  ∗ = ∗ ∈( , )a b a b S ,	where	 a b* 	is	an	unique	element.

	 A	binary	operation	defined	by			∗ × →: S S S ;  ∗ = ∗ ∈( , )a b a b S demands	that	the	output	 a b∗

must	always	lie	the	given	set	S and	not	in	the	complement	of	it.	Then	we	say	that	‘∗ is closed on S ’	or		

‘ S  is closed with	respect	to	∗ ’.	This	property	is	known	as	the	closure property.

Definition 12.2

 Any	non-empty	 set	on	which	one	or	more	binary	operations	 are	defined	 is	
called an algebraic structure.
	 Another	 way	 of	 defining	 a	 binary	 operation	 ∗  on S  is	 as	 follows: 
∀ ∈ ∗a b S a b, , 	is	unique	and	a b S∗ ∈ .

Note
 It	follows	that	every	binary	operation	satisfies	the	closure	property.
Note
 The	operation∗ is	just	a	symbol	which	may	be		+ × −, , , 	÷	matrix	addition,	matrix	multiplication,	
etc.	depending	on	the	set	on	which	it	is	defined.
	 For	instance,	though	+  and ×  are binary on ,	- is not binary	operation	on . 
	 To	verify	this,	consider ( , )3 4 ∈ ×  .

∗ = − = − = − ∉( , ) ( , )a b 3 4 3 4 1 

.
 Hence - is not binary operation on  .	So	 	is	to	be	extended	to	  in order that - becomes 
binary	operation	on	 . 	Thus	  	 is	 closed	with	 respect	 to	 + × −, , and .	Thus	 ( , , , ) + × −  is an 
algebraic	structure.

Observations
	 The	binary	operation	depends	on	the	set	on	which	it	is	defined.
	 (a)	 The	operation	–	which	is	not binary operation on  	but	it	is	binary	on	 .   The set   is 

extended	to	include	negative	numbers.	We	call	the	included	set		 .
	 (b)	 The	 operation	 ÷	 on	   is not binary operation on  .	 	 For	 instance,	 for ( , )1 2 ∈ ×  ,	 

÷ 1 2
1

2
,  ( ) = ∉ . Hence  	has	to	be	extended	further	into	 .

	 (c)	 It	is	a	known	fact	that	the	division	by	 0 is not	defined	in	basic	arithmetic.	So	÷	is	binary	
operation	 on	 the	 set	  \{ }0 .	 Thus	 + × −, , are	 binary	 operation	 on	   and ÷  is binary 
operation	on \{ }0 .

	 Now	the	question	is	regarding	the	reasons	for	extending	further	  to  and	then	from to . 
Accordingly,	 a	 number	 system	 is	 needed	 where	 not	 only	 all	 the	 basic	 arithmetic	 operations	 
+ − ×, , , ÷	but	also	to	include	the	roots	of	the	equations	of	the	form	“ x2 2 0− = ”	and“ x2 1 0+ = ”. 

Fig.	12.1

a b

Sa b*
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So,	in	addition	to	the	existing	systems,	the	collection	of	irrational	numbers	and	imaginary	numbers	
(See	Chapter	3)	are	to	be	adjoined.	Consequently	  and then  are	obtained.	The	biggest	number	
system properly	includes	all	the	other	number	systems, ,  ,	and as	subsets.	

    

 \ 0{ }  \ 0{ }  \ 0{ }

+ Binary Binary Binary Binary Binary
Not  

Binary
Not  

Binary
Not  

Binary

-
Not 

Binary
Binary Binary Binary Binary

Not  
Binary

Not  
Binary

Not  
Binary

× Binary Binary Binary Binary Binary Binary Binary Binary

÷
Not 

Binary
Not 

Binary
Not 

Binary
Not	Binary

Not 
Binary

Binary Binary Binary

Table12.1
Example12.1 
	 Examine	the	binary	operation	(closure	property)	of	the	following	operations	on	the	respective	
sets	(if	it	is	not,	make	it	binary):		

  (i) a b a ab b a b∗ = + − ∀ ∈3 5 2; , 
 (ii) a b a

b
a b∗ =

−
−







 ∀ ∈

1

1
, , 

Solution

	 (i)	 Since	× 		is	binary	operation	on	  , ,a b a b ab∈ ⇒ × = ∈  and b b b× = ∈2

	 ...	(1)

  The	 fact	 that	 + 	 is	 binary	 operation	 on	  	 and	 (1)	 ⇒ 3ab ab ab ab= + + ∈( ) 
 and 

5 2 2 2 2 2 2b b b b b b= + + + + ∈( ) 

.    .... (2)

	 	 Also	 a∈  and 3ab∈ implies	 a ab+ ∈3 
.			 ...	(3)

	 	 (2),	 (3),	 the	 closure	 property	 of	 - on  yield a b a ab b∗ = + − ∈( )3 5 2

.	 Since	 a b�

belongs	to	 ,	*	is	a	binary	operation	on	 .
	 (ii)	 In	 this	 problem	 a b∗ is	 in	 the	 quotient	 form.	 Since	 the	 division	 by	 0 is	 undefined,	 the	

denominator b -1must	be	nonzero.
	 	 It	is	clear	that	b − =1 0  if	b =1.	As	1∈ ,	∗  is	not	a	binary	operation	on	the	whole	of	 . 

However	 it	can	be	found	 that	by	omitting	 1	from	  ,	 the	output	 a b∗ 	exists	 	 in	  \{ }1 . 
Hence ∗ is	a	binary	operation	on \{ }1 .

12.2.2 Some more properties of a binary operation
Commutative property
 Any	 binary	 operation	 ∗defined	 on	 a	 nonempty	 set	 S is	 said	 to	 satisfy	 the	 commutative	 
property,	if

a b b a a b S∗ = ∗ ∈∀ , .

Number 
System

Operation
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Associative property
 Any	binary	operation∗defined	on	a	nonempty	set	 S is	said	to	satisfy	the	associative	property,	if

a b c a b c a b c S∗ ∗ = ∗ ∗ ∈∀( ) ( ) , , .

Existence of identity property
 An	element	 e S∈ is said to be the Identity Element of	 S under	the	binary	operation∗ if	for	all	
a S∈ we	have	that	 a e a∗ = and e a a∗ = .

Existence of inverse property
 If	an	identity	element	 e exists	and	if	for	every	 a S∈ ,	there	exists	b in S such	that	 a b e∗ = and 
b a e∗ =  then b S∈ is said to be the Inverse Element of	 a .	In	such	instances,	we	write	b a= −1 .

Note
  a–1	is	an	element	of	S.	It	should	be	read	as	the	inverse	of	a and not as 1

a
.

Note
 (i)  The multiplicative identity is 1in  and	it	is	the	one	and	only	one	element	with	the	property

n n n n⋅ = ⋅ = ∀ ∈1 1 ,  . 
 (ii)  The multiplicative inverse of	any	element,	say	 2 in  is 1

2
and	no	other	nonzero	rational	

number x has	the	property	that	 2 2 1⋅ = ⋅ =x x .
Note
 Whenever	a	mathematical	statement	involves	‘for	every’	or	‘	for	all’	,	it	has	to	be	proved		for	every	
pair	or	three	elements.	It	is	not	easy	to	prove	for	every	pair	or	three	elements.	But	these	types	of	definitions	
may	be	used	to	prove	the	negation	of	the	statement.	That	is,	negation	of	“for	every”	or	“for	all”	is	“there	
exists	not”.	So,	produce	one	such	pair	or	three	elements	to	establish	the	negation	of	the	statement.	
	 The	questions	of	 existence	 and	uniqueness	 of	 identity	 and	 inverse	 are	 to	 be	 examined.	 	The	
following	theorems	prove	these	results	in	the	more	general	form.

Theorem 12.1: (Uniqueness of Identity) 
 In	an	algebraic	structure	the	identity	element	(if	exists)	must	be	unique.

Proof
 Let ( , )S ∗ be	an	algebraic	structure.	Assume	that	the	identity	element	of	 S exists	in	 S .
	 It	is	to	be	proved	that	the	identity	element	is	unique.	Suppose	that	 e1  and e2 be	any	two	identity	
elements	of	 S .
	 First	treat e1 as the identity and e2 as	an	arbitrary	element	of	 S .
	 Then	by	the	existence	of	identity	property,	 e e e e e2 1 1 2 2∗ = ∗ = .	 ...	(1)
	 Interchanging	the	role	of	 e1 and e2 ,	 e e e e e1 2 2 1 1∗ = ∗ = .    …(2)
	 From	(1)	and	(2),	 e e1 2= .	Hence	the	identity	element	is	unique	which	completes	the	proof.

Theorem 12.2 (Uniqueness of Inverse) 
 In	an	algebraic	structure	the	inverse	of	an	element	(if	exists)	must	be	unique.

Proof
 Let ( , )S ∗ be	an	algebraic	structure	and	a S∈ .	Assume	that	the	inverse	of	a 	exists	in	 S .		It	is	to	

be	proved	that	the	inverse	of	 a 	is	unique.	The	existence	of	inverse	in	 S ensures	the	existence	of	the	

identity element e in S .
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 Let a S∈ .	It	is	to	be	proved	that	the	inverse	 a (if	exists)	is	unique.	
	 Suppose	that a has	two	inverses,	say,	 a1 ,	 a2 .
	 Treating a1 as	an	inverse	of a gives	 a a a a e∗ = ∗ =1 1 	 …(1)
	 Next	treating	 a2 	as	the	inverse	of a gives	 a a a a e∗ = ∗ =2 2  …(2)

a a e a a a a a a e a a1 1 1 2 1 2 2 2= ∗ = ∗ ∗ = ∗ ∗ = ∗ =( ) ( ) 	(by	(1)	and	(2)).
	 So, a a1 2= .	Hence	the	inverse	of	 a is	unique	which	completes	the	proof.

Example 12.2
	 Verify	the	(i)	closure	property,	(ii)	commutative	property,	(iii)	associative	property	(iv)	existence	
of	identity	and	(v)	existence	of	inverse	for	the	arithmetic	operation	+ on  . 
Solution

 (i) m n+ ∈ ,∀ ∈m n,  . Hence+ is	a	binary	operation	on	 .
	 (ii)	 Alsom n n m m n+ = + ∀ ∈, , 

.	So	the	commutative	property	is	satisfied
 (iii) ∀ ∈ + + = + +m n p m n p m n p, , , ( ) ( )

.	Hence	the	associative	property	is	satisfied.
	 (iv)	 m e e m m e+ = + = ⇒ = 0. Thus ∃ ∈0 ⋺ ( ) ( )m m m+ = + =0 0 .	 Hence	 the	 existence	

of	identity	is	assured.
	 (v)	 m m m m m m m m+ = + = ⇒ = − ∀ ∈ ∃ − ∈' ' ' . ,0 Thus  

⋺
    m m m m+ − = − + =( ) ( ) 0 .	Hence,	the	existence	of	inverse	property	is	also	assured.	Thus	

we	see	that	the	usual	addition	+ on  satisfies	all	the	above	five	properties.
    Note that the additive identity is 0 and the additive inverse	of	any	integer	m is-m .
Example 12.3
	 Verify	the	(i)	closure	property,	(ii)	commutative	property,	(iii)	associative	property	(iv)	existence	
of	identity	and	(v)	existence	of	inverse	for	the	arithmetic	operation	-  on  .

Solution
 (i)	Though	- is not binary on ; it is binary on  .	To	check	the	validity	of	any	more	properties	

satisfied	by	–	on	 ,	it	is	better	to	check	them	for	some	particular	simple	values.	

 (ii)	Take	m = 4 ,	 n = 5  and  ( ) ( )m n− = − = −4 5 1and ( ) ( )n m− = − =5 4 1.     
    Hence ( ) ( )m n n m− ≠ − .	So	the	operation	- 	is	not	commutative	on	 .

	 (iii)	 In	 order	 to	 check	 the	 associative	 property,	 let	 us	 put	 m n= =4 5,  and p = 7  in both   

( )m n p- -  and  m n p- -( ) .

  
( ) ( ) ( )m n p− − = − − = − − =−4 5 7 1 7 8 	 …(1)

  
m n p− − = − − = + =( ) ( ) ( )4 5 7 4 2 6 .        …(2)

	 	 	From	(1)	and	(2),	it	follows	that	 m n p m n p( )- - -- ≠ ( ) .
	 	 	Hence	–	is	not	associative	on	 .
	 (iv)	 Identity	does	not	exist	(why?).
	 (v)	 Inverse	does	not	exist	(why?).
Example 12.4
	 Verify	 the	 (i)	 closure	 property,	 (ii)	 commutative	 property,	 (iii)	 associative	 property	 
(iv)	 existence	 of	 identity	 and	 (v)	 existence	 of	 inverse	 for	 the	 arithmetic	 operation	 +  on  
 e=	the	set	of	all	even	integers.
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Solution
	 	Consider	the	set	of	all	even integers 

 e k k= ∈{ } = − − −{ }2 6 4 2 0 2 4 6| ..., , , , , , , ,... .
	 Let	us	verify	the	properties	satisfied	by	+ on  e . 

 (i)	 The	sum	of	any	two	even	integers	is	also	an	even	integer.	
	 	 	Because x y x me, ∈ ⇒ = 2 and y n= 2 ,	m n, ∈ . 
	 	 	So	 x y m n m n e+ = + = +( ) ( )∈2 2 2 

. Hence + is	a	binary	operation	on e .
 (ii) ∀ ∈x y e,  , ( ) ( ) ( ) ( ) ( )x y m n n m n m y x+ = + = + = + = +2 2 2 2 . 
	 	 	So	+ has	commutative	property.	
	 (iii)	 Similarly	it	can	be	seen	that∀ ∈x y z e, ,  ,	 ( ) ( )x y z x y z+ + = + + . 
	 	 	Hence	the	associative	property	is	true.		 					

	 (iv)	 	Now	take	 x k= 2 ,	then	 2 2 2 0k e e k k e+ = + = ⇒ = .  
   Thus∀ ∈ ∃ ∈x e e , 0 ⋺ x x x+ = + =0 0 .   
	 	 	So,	0 is the identity element.

	 (v)	 	Taking	 x k= 2  and ′x 	 as	 its	 inverse,	 we	 have	 2 0 2 2k x x k x k+ = = + ⇒ = −' ' ' . i.e., 
x x' = − .

		 	 	Thus	∀ ∈ ∃ − ∈x xe e ,  ⋺ x x x x+ − = − + =( ) ( ) 0

   Hence -x is	the	inverse	of	 x eÎ .

Example 12.5

	 Verify	 the	 (i)	 closure	 property,	 (ii)	 commutative	 property,	 (iii)	 associative	 property	 
(iv)	 existence	 of	 identity	 and	 (v)	 existence	 of	 inverse	 for	 the	 arithmetic	 operation	 +  on  
 o =	the	set	of	all	odd	integers.
Solution
	 Consider	the	set	 o 	of	all	odd integers  

 o k k= + ∈{ } = − − −{ }2 1 5 3 1 1 3 5: ..., , , , , , ,... . + is 
not a binary operation on o 	because	when	 x m y n x y m n= + = + + = + +2 1 2 1 2 2, , ( ) 	is	even	for	
all m and n.	For	instance,	consider	the	two	odd	numbers	 3 7, ∈ o .	Their	sum	 3 7 10+ = is	an	even	
number.	In	general,	if	x,	y∈ 0 ,	then	 x y+( )∉ 0 .	Other	properties	need	not	be	checked	as	it	is	not	
a	binary	operation.
Example 12.6
	 Verify	 (i)	 closure	 property	 (ii)	 commutative	 property,	 and	 (iii)	 associative	 	 property	 of	 the	
following	operation	on	the	given	set.
  a b a a bb∗ = ∈( ) ∀; ,  (exponentiation	property)
Solution
	 (i)	 It	is	true	thata b a a bb∗ = ∈∈ ∀ ; , .		So	∗  is a binary operation on  . 
 (ii) a b ab∗ =  and b a ba∗ = .	Put,	 a = 2  and b = 3 . Then a b∗ = =2 83 	but	b a∗ = =3 92  
	 	 So	 a b∗ 	need	not	be	equal	tob a∗ . Hence ∗  does not have commutative property.
	 (iii)	 Next	consider	

 
a b c a b ac bc∗ ∗ = ∗ =( ) ( ) ( ) .	Take	 a b= =2 3, and c = 4 . 

  Then a b c∗ ∗ = ∗ ∗ = =( ) ( )2 3 4 2 23 814

	 	 But	 a b c a c a a ab b c bc bc∗ ∗ = ( )∗ = ( ) = = =( ) ( ) 212

  Hence a b c a b c∗ ∗( ) ≠ ∗( )∗ .	So	∗ does not have associative property on  .
  Note: This	binary	operation	has	no	identity	and	no	inverse.	(Justify).
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Example 12.7

	 Verify	 	 (i)	 closure	 property,	 (ii)	 commutative	 property,	 (iii)	 associative	 property,	 
(iv)	existence	of	identity,	and	(v)	existence	of	inverse	for	following	operation	on	the	given	set.	
 m n m n mn m n∗ = + − ∈; , 

 m n m n mn m n∗ = + − ∈; , 

Solution
 (i)	 	The	output	m n mn+ -  is	clearly	an	integer	and	hence∗  is a binary operation on  .

 (ii) m n m n mn n m nm n m∗ = + − = + − = ∗ , ∀ ∈m n,  .	So	∗  has commutative property.

	 (iii)	 Consider	 ( )m n p∗ ∗ = ( )m n m n p+ − ∗ = ( ) ( )m n mn p m n m n p+ − + − + −
     =  m n p mn m p n p m n p+ + − − − + 	 ...	(1)
	 	 	Similarly	m n p∗ ∗( ) = m n p n p∗ + −( )  = m n p n p m n p n p+ + − − + −( ) ( )

      =  m n p n p m n mp m n p+ + − − − +  ... (2)
	 	 	From	(1)	and	(2),	we	see	that	m n p m n p∗ ∗ = ∗ ∗( ) ( ) . Hence ∗   has associative property.

	 (iv)	 An	integer	 e 	is	to	be	found	such	that	
    m e e m m∗ = ∗ = , ∀ ∈m ⇒ + −m e m e = m

    ⇒ −e m( )1 = 0 ⇒ e  =  0 or m =1.	But	 m is	an	arbitrary	integer	and	hence	need	not	be	

equal	to	1.	So	the	only	possibility	is e = 0 .	Also	m∗0 = 0∗ =m m, ∀ ∈m  . Hence 0 is the 

identity element and hence the existence of identity	is	assured.

	 (v)	 An	element	 ′∈m  is	to	be	found	such	that	m m∗ ′ = ′∗ = =m m e 0, ∀ ∈m  .

    m m∗ ′ = 0 ⇒ + ′− ′m m m m = 0 ⇒ ′m = m
m -1

.	When	m=1, ′m 	is	not	defined.

	 	 		When	m m= ′2, m m= ′2,  is	an	integer.	But	except	m=2, ′m need	not	be	an	integer	for	all	values	of	
m. Hence inverse does not exist in  .

12.2.3 Some binary operations on Boolean Matrices 
Definition 12.3

 A	Boolean Matrix is	a	real	matrix	whose	entries	are	either	0 or 1. 

	 Note	 that	 the	boolean	entries	0	 and	1	can	be	defined	 in	 several	ways.	 In	 electrical	 switch	 to	
describe	“on	and	off”,	in	graph	theory,	the	“adjacency	matrix”	etc	,	the	boolean	entries	0	and	1	are	
used.	We	consider	the	same	type	of	Boolean	matrices	in	our	discussion.	
	 The	following	two	kinds	of	operations	on	the	collection	of	all	boolean	matrices	are	defined.	
 Let A aij=    and B bij=   	be	any	two	boolean	matrices	of	the	same type. Then their join∨ and 
meet∧ are	defined	as	follows:

Definition 12.4: Join of A and B

   A B∨  =  a b a b cij ij ij ij ij  ∨   = ∨  =  

   where	 cij  =  
1 1 1

0 0 0

,

,

if either or

if both and

a b
a b

ij ij

ij ij

= =
= =
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Definition 12.5: Meet of A and B

 A B∧ = a b a b cij ij ij ij ij  ∧   = ∧  =  where	 c
a b
a bij
ij ij

ij ij
=

= =
= =





1 1 1

0 0 0

,

, .

if both and

if either or

	 It	is	clear	that	 a b a b∨( ) = { }max , ; a b a b∧( ) = { }min , ,	 a b, ,∈{ }0 1 .

Example 12.8

 Let   A =










0 1

1 1
,	 B =











1 1

0 1
	 be	 any	 two	 boolean	matrices	 of	 the	 same	 type.	 Find	 A B∨  and 

A B∧  .
Solution

   Then A B∨  =  
0 1

1 1

1 1

0 1

0 1 1 1

1 0 1 1

1 1

1 1









 ∨









 =

∨ ∨
∨ ∨









 =











   A B∧  =  
0 1

1 1

1 1

0 1

0 1 1 1

1 0 1 1

0 1

0 1









 ∧









 =

∧ ∧
∧ ∧









 =











Properties satisfied by join and meet
 Let 𝔹 be	the	set	of	all	boolean	matrices	of	the	same	type.	We	only	state	the	properties	of	meet	
and	join.

Closure property
 A B, ∈𝔹 ,	 A B a b a bij ij ij ij∨ = ∨ = ∨ ∈[ ] [ ] [ ] 𝔹 .	(Because,	 a bij ij∨( )  is either 0 or	1	∀i j, . ∨  is a 
binary	operation	on	𝔹 .

Associative property
  A B C∨ ∨( )  = A B C A B C, , , A B C A B C, , ,  𝔹 . ∨  is	associative.

Existence of identity property
 ∀ ∈A 𝔹 ,	 ∃ the	 null	matrix	 0∈𝔹 ⋺ A A A∨ = ∨ =0 0 .	The	 identity	 element	 for	 ∨  is	 the	 null	
matrix.

Existence of inverse property
	 	For	any	matrix	 A∈𝔹 ,	it	is	impossible	to	find	a	matrix	
 B∈  𝔹 ⋺ A B B A∨ = ∨ = 0 .	So	the	inverse	does	not	exist.
	 Similarly,	 it	 can	 be	 verified	 that	 the	 operation	 meet	 ∧  satisfies	 (i)	 closure	 property   

(ii)	commutative	property	(iii)	associative	property	(iv)	the	matrix		U =










1 1
1 1

	exists	as	the	identity	in	

𝔹 	and	(v)	the	existence	of	inverse	is	not	assured.

12.2.4 Modular Arithmetic
	 Having	 discussed	 the	 properties	 of	 operations	 like	 basic	 usual	 arithmetic	 operations,	matrix	
addition	and	multiplication,	join	and	meet	of	boolean	matrices,	one	more	new	operation	called	the	
Modular Arithmetic is	discussed	 in	 this	section. The	modular	arithmetic	 refers	 to	 the	process	of	
dividing some	number a by	a	positive	integer	n 	(	>	1),	called	modulus,		and	then	equating	a  with	the	
remainderb modulo	n	and	it	is	written	as	a b n≡ (mod ) ,	read	as	‘a	is	congruent	to	b	modulo	 n ’.
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 Here a b≡ (mod n ) means a b n k− = ⋅ for	 some	 integer	 k  and b  is the least  
non-negative integer when	a 	is	divided	by	n.
	 For	 instance,25 4 7 20 2 3 1 3≡ − ≡ − ≡(mod ), (mod ) (mod ) and 15 0 5≡ (mod ) ,	 etc.	 Further	 the	
set	of	integers	when	divided	by	n , 	leaves	the	remainder	0 1 2 1, , , , n - .	In	the	case	of	 5 ,	

   [ ]0  =  
 , , , , , , , ,− − −{ }15 10 5 0 5 10 15

   [ ]1  =  … − − − …{ }, , , , , , ,14 9 4 1 6 11  

   [ ]2  =  { ], , , , , , ,… − − − …13 8 3 2 7 12  

   [ ]3  =   … − − − …{ }, , , , , , ,12 7 2 3 8 13

   [ ]4  =  … − − − …{ }, , , , , , , .11 6 1 4 9 14  

	 We	 write	 this	 as	
 5 0 1 2 3 4={ }[ ],[ ],[ ],[ ],[ ] .	 	 In	 each	 class,	 any	 two	 numbers	 are	 congruent	 

modulo	5.

Before 2007,	modular	arithmetic	is	used	in	10-digit	ISBN	(International	Standard	Book	Number) 
numbering	 system.	 For	 instance,	 the	 last	 digit	 is	 for	 parity	 check.	 It	 is	 from	 the	 set	
{ , , , , , , , , , , }0 1 2 3 4 5 6 7 8 9 X .		In	ISBN	number,	81-7808-755-3,	the	last	digit	3 is obtained as

					1*8+2*1+3*7+4*8+5*0+6*8+7*7+8*5+9*5=8+2+21+32+0+48+49+40+45=245≡ 3 11(mod ) .
	 Alternatively,	the	weighted	sum	is	calculated	in	the	reverse	manner
	 9*8+8*1+7*7+6*8+5*0+4*8+3*7+2*5+1*5=245	=	3	(mod	11).
	 In	both	ways,	we	get	the	same	check	number	3.	
After 2007,	13-digit	ISBN	numbering	has	been	followed.	The	first	12	digits	(from	left	to	right)	are	
multiplied	by	the	weights	3,1,3,1,….	starting	from	right	to	left.	Then	the	weighted	sum	is	calculated.	
The	 higher	multiple	 of	 10	 is	 taken.	Then	 the	 difference	 is	 calculated.	Then	 its	 additive	 inverse	
modulo	10	is	the	thirteenth	digit.
	 For	instance,	consider	the	ISBN	Number:	978-81-931995-6-5.Take	12	digits	from	left	to	right.

9 7 8 8 1 9 3 1 9 9 5 6
1 3 1 3 1 3 1 3 1 3 1 3
9 21 8 24 1 27 3 3 9 27 5 18

The	total	of	last	row	is	155.	The	nearest	(higher)	integer	in	multiples	of	10	is	160.	The	difference	
160-155=5.	The	additive	inverse	modulo	10	is	5	which	is	13-th	digit	in	the	ISBN	number.

	 Two	new	operations	namely	addition modulo n n( )+  and multiplication modulo n n( )×  are 
defined	on	the	set	 n of	all	non-negative	integers	less	than	n	under	modulo	arithmetic.

Definition 12.6

	 (i)	 The	addition	modulo	n is	defined	as	follows.
  Leta b n, ∈ . Then 
  a bn+ = the	remainder	of a b+ on	division	by	 n .
	 (ii)	 The	multiplication	modulo	n	is	defined	as	follows.	
  Let a b n, ∈ . Then 
  a bn× =the	remainder	of	 a b× 	on	division	by	 n
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Example 12.9 
	 Verify	 	 (i)	 closure	 property,	 (ii)	 commutative	 property,	 (iii)	 associative	 property,	 
(iv)	 existence	 of	 identity,	 and	 (v)	 existence	 of	 inverse	 for	 the	 operation	 +5

on  5 	 using	 table 
corresponding	to	addition	modulo	5.
Solution
 It	is	known	that 5 0 1 2 3 4={ }[ ], ], ], ], ] [  [  [  [ .	The	table	corresponding	to	addition	modulo	5	is	as	
follows:	We	take	reminders	{ , , , , }0 1 2 3 4 	to	represent	the	classes	{[ ],[ ],[ ],[ ],[ ]}0 1 2 3 4 .

+5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Table12.2
	 (i)	 Since	each	box	in	the	table	is	filled	by	exactly one element of	  5 ,	the	output	 a b+5  is 

unique	and	hence	+5  is a binary operation.

 (ii) The entries are symmetrically	 placed	 with	 respect	 to	 the	 main diagonal.	 So+5  has 
commutative property.

	 (iii)	 The	table	cannot	be	used	directly	for	the	verification	of	the	associative	property.	So	it	is	to	
be	verified	as	usual.	

	 							For	instance,	 2 3 4 0 4 45 5 5+ + = + =( )  (mod 5) 

       and 2 3 4 2 2 4 55 5 5+ +( ) = + = ( )mod . 

       Hence 2 3 4 2 3 45 5 5 5+( ) + = + +( ) . 

	 	 Proceeding	like	this	one	can	verify	this	for	all	possible	triples	and	ultimately	it	can	be	shown	
that +5 	is	associative.	

	 (iv)	 The	row	headed	by	0	and	the	column	headed	by	0	are	identical.	Hence	the	identity	element	
is 0.

	 (v)	 The	existence	of	inverse	is	guaranteed	provided	the	identity	0	exists	in	each	row	and	each	
column.	From	Table12.2,	 it	 is	clear	 that	 this	property	 is	 true	 in	 this	case.	The	method	of	
finding	the	inverse	of	any	one	of	the	elements	of	 5 ,	say	2	is	outlined	below.

	 	 First	find	the	position	of	the	identity	element	0	in	the	III	row	headed	by	2.	Move	horizontally	
along	the	III	row	and	after	reaching	0,	move	vertically	above	0	in	the	IV	column,	because	0	
is	in	the	III	row	and	IV	column.	The	element	reached	at	the	topmost	position	of	IV	column	
is	3.	This	element	3	is	nothing	but	the	inverse	of	2,	because,	2 3 0 55+ = (mod ) .	In	this	way,	
the	inverse	of	each	and	every	element	of		 5 	can	be	obtained.	Note	that	the	inverse	of	0	is	
0,that	of	1	is	4,		that	of	2	is	3,		that	of	3	is	2	,	and,	that	of		4	is	1.

Example 12.10
 Verify	 (i)	 closure	 property,	 (ii)	 commutative	 property,	 (iii)	 associative	 property,	 
(iv)	existence	of	identity,	and	(v)	existence	of	inverse	for	the	operation	×11 	on	a	subset	A ={ , , , , }1 3 4 5 9

of	the	set	of	remainders	{ , , , , , , , , , , }0 1 2 3 4 5 6 7 8 9 10 .
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Solution
 The	table	for	the	operation	 1́1 	is	as	follows.

×11 1 3 4 5 9
1 1 3 4 5 9
3 3 9 1 4 5
4 4 1 5 9 3
5 5 4 9 3 1
9 9 5 3 1 4

Table12.3
	 Following	the	same	kind	of	procedure	as	explained	in	the	previous	example,	a	brief	outline	of	the	
process	of	verification	of	the	properties	of		×11 	on	A	is	given	below.

	 (i)	 Since	each	box	has	an	unique	element	of	A,	×11  is a binary operation	on	A.

	 (ii)	 The	entries	are	symmetrical	about	the	main	diagonal.	Hence	×11  has commutative property.

							(iii)	 As	usual,	the	associative property	can	be	seen	to	be	true.

	 (iv)	 The	entries	of	both	the	row	and	column	headed	by	the	element	1	are	identical.	Hence	1	is	the	
identity element.

	 (v)	 Since	 the	 identity	 1	 exists	 in	 each	 row	and	 each	 column,	 the	existence of inverse	 property																						
is	assured	for	×11 .	The	inverse	of	1	is	1,	that	of	3	is	4,	that	of		4	is	3,	5	is	9	,	and,	that	of		9	is	5.

 EXERCISE 12.1
 1.	 Determine	whether	∗ is	a	binary	operation	on	the	sets	given	below.

   (i) a b a b∗ = . on   (ii) a b a b A∗ = ( ) = { }min , , , , ,on 1 2 3 4 5

   (iii) a b a b∗ =( )  is binary on .

 2. On  ,	define	⊗by m n m n m nn m⊗( ) = + ∀ ∈: ,  .	Is⊗binary on  ?

 3. Let ∗ 	be	defined	on by ( )a b a b ab∗ = + + − 7 .	Is	∗  binary on ?	If	so,	find	3 7

15
∗
−





 .

 4. Let A a b a b= + ∈{ : , }5  .	Check	whether	the	usual	multiplication	is	a	binary	operation	on

A .

 5.	 	 (i)	 Define	an	operation∗on  as	follows: a b a b a b∗ =
+






 ∈

2
; ,  .	Examine	the	closure,	

commutative,	and	associative	properties	satisfied	by	∗  on ℚ.

	 	 	 (ii)	 Define	an	operation∗on  as	follows:	a b a b a b∗ =
+






 ∈

2
; ,  .	Examine	the		existence	

of	identity	and	the	existence	of	inverse		for	the	operation	∗  on ℚ.
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 6.	 Fill	in	the	following	table	so	that	the	binary	operation	∗on A a b c={ , , } is	commutative.

∗ a b c

a b

b c b a

c a c

 7.	 Consider	the	binary	operation	∗ 	defined	on	the	set	 A a b c d={ , , , } 	by	the	following	table:

∗ a b c d

a a c b d

b d a b c

c c d a a

d d b a c

	 	 	Is	it	commutative	and	associative?

 8. Let A =
















1 0 1 0

0 1 0 1

1 0 0 1

, B =
















0 1 0 1

1 0 1 0

1 0 0 1

,	C =
















1 1 0 1

0 1 1 0

1 1 1 1

 be any three boolean matrices 

of	the	same	type.	Find	(i)	 A B∨  (ii) A B∧  (iii) A B C∨( )∧ 		(iv)	 A B C∧( )∨ .

 9.  (i) Let M
x x
x x

x R=








 ∈ −









: { }0  and let ∗ 	 be	 the	 matrix	 multiplication.	 Determine	

whetherM is	closed	under	∗ .		If	so,	examine	the	commutative	and	associative	properties	

satisfied	by	∗  on M .

   (ii) Let M
x x
x x

x R=








 ∈ −









: { }0  and let ∗ 	 be	 the	 matrix	 multiplication.	 Determine	

whetherM is	 closed	under	 ∗ .	 	 If	 so,	 examine	 the	existence	of	 identity,	 existence	of	

inverse	properties	for	the	operation	∗  on M .

 10.  (i) Let A be  \ 1{ } .	Define	 ∗  on A  by x y x y xy∗ = + − .	 Is	 ∗  binary on A ?	 If	 so,	

examine	the	commutative	and	associative	properties	satisfied	by	∗  on A .

   (ii) Let A be 
 \ 1{ } .	 Define	 ∗  on A  by x y x y xy∗ = + − .	 Is	 ∗  binary on A ? 

If	so,	examine	the	existence	of	identity,	existence	of	inverse	properties	for	the	operation
∗  on A .
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12.3 Mathematical Logic
	 George	 Boole	 was	 a	 self-taught	 English	 Mathematician,	 Philosopher	 and	
Logician.	His	 results	on	Boolean Algebra involving	 the	binary	numbers	play	an	
important	 role	 in	 various	 fields,	 particularly	more	 in	 computer	 applications.	 He	
introduced	the	idea	of	Symbolic	Logic	and	contributed	a	lot	of	results	to	the	fast	
development	of	Mathematical	Logic.	
	 The	reputed	Greek	philosopher	Aristotle	(384-322BC(BCE))	wrote	the	first	book	
on	logic.	The	famous	German	philosopher	and	mathematician	Gottfried	Leibnitz	of	
17thcentury	framed	the	idea	of	using	symbols	in	Logic.	Later	this	idea	was	realized	
by	George	Boole	and	Augustus	de	Morgan	in	19th century.	George	Boole	established	
the	fact	that	logic	is	very	much	related	to	mathematics	by	linking	logic,	symbols,	and	
algebra	together.	Mathematical	Logic	was	developed	in	the	late	19thand early 20thcenturies.	
	 In	1930	the	researchers	noticed	(Neumann’s	statement	in	his	death	bed:	0 and 1 are going to 
rule the world)	that	the	binary	numbers	0	and	1	could	be	used	to	analyze	electrical	circuits	and	thus	
used	 to	design	electronic	computers.	Today	digital	computers	and	electronic	circuits	are	designed	
to	 implement	 this	binary	arithmetic.	We	study	Mathematical	Logic	as	 the	 language	and	deductive	
system	of	Mathematics	and	Computer	Science.
	 Generally	Logic	is	the	study	of	valid	reasoning.	But	mathematical	logic	allows	us	to	represent	
knowledge	in	a	precise	mathematical	way	and	it	also	allows	us	to	make	valid	inferences	using	a	set	of	
precise	rules.	It	is	regarded	as	a	powerful	tool	for	computer	science	because	it	is	mainly	used	to	verify	
the	correctness	of	programs.

12.3.1 Statement and its truth value
	 The	 simplest	 part	 of	Mathematical	Logic	 is	 the	Propositional Logic and	 its	 building	blocks	
are	statements	or	propositions.	Mostly	communication	needs	the	use	of	language	through	which	we	
impart	our	ideas.	They	are	in	the	form	of	sentences.	
	 There	are	various	types	of	sentences	like
	 (1)	Declarative	(Assertive	type)

	 (2)	 Imperative	(A	command	or	a	request	type)

	 (3)	Exclamatory	(Emotions,	excitement	type)

	 (4)	 Interrogative	(Question	type)

	 (5)	Open	type

Definition 12.7
 Any	declarative sentence is called a statement or a proposition which	is	either	true or false 
but	not	both.
	 Any	 imperative sentence such	 as	 exclamatory,	 command	 and	 any	 interrogative sentence 
cannot	be	a	proposition.
 The truth value of	a	statement	refers	to	the	truth	or	the	falsity	of	that	particular	statement.	 	
The truth	value	of	a	true	statement	is	true and it is denoted by T or	1. The	truth	value	of	a	false	
statement is false and it is denoted by F or 0.
	 An	open sentence is	a	sentence	whose	truth	can	vary	according	to	some	conditions,	which	are	
not	 stated	 in	 the	sentence.	 	For	 instance,	 (i)	 x× =7 35 	 is	an	open	sentence	whose	 truth	value	
depends	on	value	of	 x .	That	is,	if	 x = 5 ,	it	is	true	and	if	x � 5,	it	is	false.	(ii)	He is a bad person. 
This	is	an	open	sentence.	Opinion	varies	from	individual	to	individual.

George	Boole	
(1815-1864)
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Example 12.11
	 Identify	the	valid	statements	from	the	following	sentences.
Solution:
	 (1)	Mount	Everest	is	the	highest	mountain	of	the	world.
 (2) 3 4 8+ = .
	 (3)	 7 5 10+ > .
	 (4)	Give	me	that	book.
 (5) ( )10 7− =x .
	 (6)	How	beautiful	this	flower	is!
	 (7)	Where	are	you	going?
	 (8)	Wish	you	all	success.
	 (9)	This	is	the	beginning	of	the	end.
	 The	truth	value	of	the	sentences	(1)	and	(3)	are T,	while	that	of	(2)	is	F. Hence they are statements. 

The	sentence	(5)	is	true	for	 x = 3 	and	false	for	x � 3	and	hence	it	may	be	true	or	false	but	not	
both.	So	it	is	also	a	statement.

	 The	sentences	(4),	(6),	(7),	(8)	are	not statements,	because	(4)	is	a	command,	(6)	is	an	exclamatory,	
(7)	is	a	question	while	(8)	is	a	sentence	expressing	one’s	wishes	and	(9)	is	a	paradox.

12.3.2 Compound Statements, Logical Connectives, and Truth Tables  

Definition 12.8: (Simple and Compound Statements) 

 Any	sentence	which	cannot	be	split	further	into	two	or	more	statements	is	called	an	atomic 
statement or a simple statement. If	 a	 statement	 is	 the	 combination	 of	 two	 or	 more	 simple	
statements,	then	it	is	called	a	compound statement or a molecular statement. Hence it is clear 
that	any	statement	can	be	either	a	simple	statement	or	a	compound	statement.

Example for simple statements
	 The	sentences	(1),	(2),	(3)	given	in	example	12.11	are	simple	statements.

Example for Compond statements
	 Consider	the	statement,		“1	is	not	a	prime	number	and	Ooty	is	in	Kerala”.	
Note	that	the	above	statement	is	actually	a	combination	of	the	following	two	simple	statements:
 p :	1	is	not	a	prime	number.

 q :	Ooty	is	in	Kerala.	
	 Hence	the	given	statement	is	not	a	simple	statement.	It	is	a	compound	statement.
	 From	the	above	discussions,	it	follows	that	any	simple	statement	takes	the	value	either	T or F . 
So	it	can	be	treated	as	a	variable	and	this	variable	is	known	as	statement variable or propositional 
variable.	The	propositional	variables	are	usually	denoted	by	p,	q,	 r ,	....	

Definition 12.9 : (Logical Connectives) 

 To	 connect	 two	 or	more	 simple	 sentences,	we	 use	 the	words	 or	 a	 group	 of	words	 such	 as	
“and”,	“or”,	“if-then”,	“if	and	only	if”,	and	“not”.	These	connecting	words	are	known	as	logical 
connectives.
	 In	 order	 to	 construct	 a	 compound	 statement	 from	 simple	 statements,	 some	 connectives	 are	
used. Some	basic	logical	connectives	are	negation (not), conjunction (and) and disjunction(or).
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Definition 12.10
 A	statement formula	is	an	expression	involving	one	or	more	statements	connected	by	some	
logical	connectives.	

Definition 12.11: (Truth Table) 
 A	table	showing	the	relationship	between	truth	values	of	simple	statements	and	the	truth	values	
of	compound	statements	formed	by	using	these	simple	statements	is	called	truth table. 

Definition12.12

 (i) Let p be	a	simple	statement.	Then	the	negation	of	 p 	is	a	statement	whose	truth	value	is	
opposite	to	that	of p .	It	is	denoted	by	¬p,	read	as	not p .The	truth	value	of	¬p is  T , if p
is F ,	otherwise	it	is	F .

 (ii) Let p and q be	any	two	simple	statements.	The	conjunction of	 p and q is obtained by 
connecting	 p and q by	the	word	and.	It	is	denoted	by	 p q∧ ,	read	as	‘ p 	conjunction	 q ’	
or	‘ p  hat q ’.	The	truth	value	of	 p q∧  is T ,	whenever	both	 p and q are T and it is F
otherwise.

 (iii) The disjunction	of	any	two	simple	statements	 p and q is	the	compound	statement	obtained	
by	connecting	 p and q by	the	word	‘or’.	It	is	denoted	by	 p q∨ ,	read	as	‘ p 	disjunction	q
’	or	‘ p cup	 q ’.The	truth	value	of	 p q∨ is F ,	whenever	both	 p and q are F and it is T
otherwise.

Logical Connectives and their Truth Tables
(1) Truth Table for NOT [¬] (Negation)

Truth Table for ¬ p
p ¬ p

T F
F T
Table	12.4

(2) Truth table for AND [∧∧ ] (Conjunction)
Truth Table for p qÙ

p q p q∧∧
T T T
T F F
F T F
F F F

Table	12.5
(3) The truth tables for OR [∨∨ ] (Disjunction)

Truth Table for p q∨∨

p q p q∨∨
T T T
T F T
F T T
F F F

Table	12.6
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Example 12.12
 Write	the	statements	in	words	corresponding	to	¬ p, p q∧ , p q∨ and q∨¬p, where	 p 	is	‘It	is	
cold’	and	 q is	‘It	is	raining.’	
Solution
	 (1)	¬p :	 It	is	not	cold.	
 (2) p q∧ 	 :	 It	is	cold	and	raining.
	 (3)	 p q∨ 	 :	 It	is	cold	or	raining.
 (4) q∨¬p	 :	 It	is	raining	or	it	is	not	cold
 Observe	that	the	statement	formula	  p	has	only	1	variable	 p and	its	truth	table	has	 2 21= ( )  
rows.	Each	of	the	statement	formulae	 p q∧  and p q∨ 	has	two	variables	 p and q .	The	truth	table	
corresponding	to	each	of	them	has	4= ( )22 	rows.	In	general,	it	follows	that	if	a	statement	formula	
involves	 n 	variables,	then	its	truth	table	will	contain	2n rows.

Example 12.13
	 How	many	rows	are	needed	for	following	statement	formulae?
  (i) p t p s∨¬ ∧ ∨¬( )  (ii) p q r s t v∧( )∨ ¬ ∨¬( )( ) ∧ ¬ ∧( )
Solution
 (i) p t p s∨¬( ) ∧ ∨¬( ) contains	3	variables	 p s, ,and	t .	Hence	the	corresponding	truth	table	will	

contain 2 83 = 	rows.	
 (ii) ( ) ( ) ( )p q r s t v∧ ∨ ¬ ∨¬ ∧ ¬ ∧( ) 	 contains	 6	 variables	 p q r s t, , , , ,	 and	 v . Hence the 

corresponding	truth	table	will	contain	2 646 = 	rows.

Conditional Statement

Definition 12.13
	 The	conditional	statement	of	any	two	statements	 p and q is	the	statement,	“If	 p ,	then	q ” and 
it is denoted by p q→ . Here p is called the hypothesis or antecedent and q is called the 
conclusion or consequence. p q→ is	false	only	if	 p is	true	and	 q is	false.	Otherwise	it	is	true.

Truth table for p q→ 

p q p q→→
T T T
T F F
F T T
F F T

Table	12.7
Example 12.14
 Consider	 p q→ :	If	today	is	Monday,	then	4	+	4	=	8.
	 Here	the	component	statements	p and q	are	given	by,	
 p:	Today	is	Monday;	q:	4	+	4	=	8.	
	 The	truth	value	of	 p q→  is T	because	the	conclusion	q is T. 
	 An	important	point	is	that	 p q→ 	should	not	be	treated	by	actually	considering	the	meanings	of	
p and q	in	English.	Also	it	is	not	necessary	that	 p should	be	related	to	q at all.
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Consequences
 From	the	conditional	statement	 p q→ ,	three	more	conditional	statements	are	derived.	They	are	
listed	below.
 (i) Converse statement q p→ .
 (ii) Inverse statement ¬ →¬p q .
 (iii) Contrapositive statement ¬ →¬q p .

Example 12.15
	 Write	 down	 the	 (i)	 conditional	 statement	 (ii)	 converse	 statement	 (iii)	 inverse	 statement,	 and	 
(iv)	contrapositive	statement		for	the	two	statements	 p and q given	below.

 p :	The	number	of	primes	is	infinite.   q:	Ooty	is	in	Kerala.

Solution
	 Then	the	four	types	of	conditional	statements	corresponding	to	 p  and q are	respectively	listed	
below.
 (i) p q→ :	(conditional	statement)	“If	the	number	of	primes	is	infinite	then Ooty	is	in	Kerala”.	

 (ii) q p→ 	:	(converse	statement)	“If Ooty	is	in	Kerala	then the	number	of	primes	is	infinite”	

 (iii) ¬ →¬p q 	(inverse	statement)	“If the	number	of	primes	is	not infinite	then Ooty is not in 

Kerala”.

	 (iv)	 ¬ →¬q p 	(contrapositive	statement)	“If Ooty is not in	Kerala	then the	number	of	primes	is	
not	infinite”.

Bi-conditional Statement

Definition 12.14
 The bi-conditional statement of	any	two	statements	 p  and q is	the	statement	“ p 	if	and	only	
if	 q ” and is denoted by p q↔ .	Its	truth	value	is	T ,	whenever	both	 p  and q have	the	same	truth	
values,	otherwise	it	is	false.

Truth table for p q«

p q p q«

T T T
T F F
F T F
F F T

Table	12.8

Exclusive OR (EOR)[∨∨ ]
Definition 12.15

 Let p  and q  be	any	two	statements.	Then	 p EOR q is	such	a	compound	statement	that	its	
truth	value	is	decided	by	either	 p  or q but	not both.	It	is	denoted	by	 p ⊽ q .	The	truth	value	of	 
p ⊽ q is T whenever	either	 p  or q is T, otherwise	it	is	F. The	truth	table	of	 p ⊽ q is	given	below.
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Truth Table for p p q∨∨(( )) q 

p q p p q∨∨(( )) q
T T F
T F T
F T T

F F F

Table	12.9
Example 12.16
	 Construct	the	truth	table	for	 p q p q∨( ) ∧ ∨¬( ) .

p q ¬ q r : p q∨∨(( )) s: p q∨∨¬¬(( )) r Ù s

T T F F T F

T F T T F F

F T F T F F

F F T F T F
Table	12.10

	 Also	the	above	result	can	be	proved	without	using	truth	tables.	This	proof	will	be	provided	after	
studying	the	logical	equivalence.	

12.3.3 Tautology, Contradiction, and Contingency

Definition 12.16

 A	statement	 is	 said	 to	be	a	 tautology if	 its	 truth	value	 is	always	 T irrespective	of	 the	 truth	
values	of	its	component	statements.	It	is	denoted	by	𝕋.

Definition 12.17

 A	statement	is	said	to	be	a	contradiction	if	its	truth	value	is	always	F irrespective	of	the	truth	
values	of	its	component	statements.	It	is	denoted	by	𝔽.

Definition 12.18

 A	statement	which	is	neither	a	tautology	nor	a	contradiction	is	called	contingency

Observations 

	 1.	For	 a	 tautology,	 all	 the	 entries	 in	 the	 column	corresponding	 to	 the	 statement	 formula	will	
contain T. 

	 2.	For	a	contradiction,	all	the	entries	in	the	column	corresponding	to	the	statement	formula	will	
contain F.        

	 3.	The	negation	of	a	tautology	is	a	contradiction	and	the	negation	of	a	contradiction	is	a	tautology.

 4. The	 disjunction	 of	 a	 statement	 with	 its	 negation	 is	 a	 tautology	 and	 the	 conjunction	 of	 a	
statement	with	its	negation	is	a	contradiction.	That	is	 p p∨¬  is a tautology and p p∧¬  is a 
contradiction. This	can	be	easily	seen	by	constructing	their	truth	tables	as	given	below.	
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Example for tautology

    p ¬p p p∨∨¬¬

T F T

F T T

Table	12.11

	 Since	the	last	column	of		 p p∨¬ contains	only	T,		 p p∨¬ is	a	tautology.

Example for contradiction

p ¬ p p∧∧ ¬p

T F F

F T F

Table	12.12
	 Since	the	last	column	contains	only	F,	 p p∧¬  is a contradiction.

Note
 All	 the	 entries	 in	 the	 last	 column	 of	 Table	 12.10	 are	 F and hence p q p q∨( ) ∧ ∨¬( ) is a 
contradiction.

Example for contingency

p q p q↔↔ ¬ q p q→→¬¬¬ q ¬ ¬¬ →→¬¬( )p q¬ q) ( )p q↔↔  ∧∧  ¬ ¬¬ →→¬¬( )p q¬ q)

T T T F F T T
T F F T T F F
F T F F T F F
F F T T T F F

Table	12.13
	 In	the	above	truth	table,	the	entries	in	the	last	column	are	a	combination	of	T and F.	The	given	
statement	is	neither	a	tautology	nor	a	contradiction.	It	is	a	contingency.

12.3.4  Duality

Definition 12.19

 The dual of	 a	 statement	 formula	 is	 obtained	 by	 replacing	 ∨  by ∧∧ ,	 ∧∧  by ∨ ,	 T by F  
F by  T . A	dual	is	obtained	by	replacing	𝕋 (tautology) by 𝔽 (contradiction),	and,	𝔽 by 𝕋. 

Remarks
	 (1)	 The	symbol	¬  is	not	changed	while	finding	the	dual.
	 (2)	 Dual	of	a	dual	is	the	statement	itself.
	 (3)	 The	special	statements	𝕋	(tautology)	and	𝔽	(contradiction)	are	duals	of	each	other.
 (4) T is	changed	to	F 	and	vice-versa.		
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Principle of Duality
 If	 a	 compound	 statement	 S1 contains only ¬ ,	 ∧ ,	 and	 ∨  and statement S2  arises	 from	 S1 by 
replacing	∧  by ∨ ,	and,	∨  by ∧  then S1 is	a	tautology	if	and	only	if	 S2 is a contradiction.
For example
	 (i)	The	dual	of	 ( ) ( )p q r s∨ ∧ ∧ ∨𝔽 is ( ) ( )p q r s∧ ∨ ∨ ∧𝕋.
	 (ii)	The	dual	of p ∧ [¬ q p q∨ ∧ ∨( )  ¬ r ] is p∨  [¬ q p q∧ ∨ ∧( ) ¬ r ].

12.3.5 Logical Equivalence

Definition 12.20
 Any	two	compound	statements	A and B are said to be logically equivalent or	simply	equivalent 
if	the	columns	corresponding	to	 A and B in	the	truth	table	have	identical truth values.	The	logical	
equivalence	of	the	statements	 A  and B is denoted by A B≡ or A B⇔ .

	 From	the	definition,	it	is	clear	that,	if	 A  and B are	logically	equivalent,	then	 A B↔ 	must	be	
a tautology.

Some Laws of Equivalence
1. Idempotent Laws
 (i) p p p∨ ≡  (ii) p p p∧ ≡ .
Proof

p p p p∨∨ p p∧∧

T T T T

F F F F

Table	12.14

	 In	 the	 above	 truth	 table	 	 for	 both	 p ,	 p p∨  and p p∧ 	 have	 the	 same	 truth	 values.	Hence	
p p p∨ ≡ and p p p∧ ≡ .

2. Commutative Laws
 (i) p q q p∨ ≡ ∨     (ii) p q q p∧ ≡ ∧ .

Proof (i)
p q p q∨∨ q p∨∨

T T T T
T F T T
F T T T
F F F F

Table	12.15
	 The	columns	corresponding	to	 p q∨  and q p∨  are identical. Hence p q q p∨ ≡ ∨ . 
	 Similarly	(ii)	 p q q p∧ ≡ ∧ 	can	be	proved.

3. Associative Laws
 (i) p q r p q r∨ ∨( ) ≡ ∨( )∨  (ii) p q r p q r∧ ∧( ) ≡ ∧( ) ∧ .
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Proof
	 The	truth	table	required	for	proving	the	associative	law	is	given	below.

p q r p q∨∨ q r∨∨ p q r∨∨(( )) ∨∨ p q r∨∨ ∨∨(( ))

T T T T T T T

T T F T T T T

T F T T T T T

T F F T F T T

F T T T T T T

F T F T T T T

F F T F T T T

F F F F F F F

Table	12.16
	 The	columns	corresponding	to	 p q r∨( )∨  and p q r∨ ∨( )  are identical.

 Hence p q r p q r∨ ∨( ) ≡ ∨( )∨ . 

	 Similarly,	(ii)	 p q r p q r∧ ∧( ) ≡ ∧( ) ∧ 	can	be	proved.

4. Distributive Laws
 (i) p q r p q p r∨ ∧ ≡ ∨ ∧ ∨( ) ( ) ( )  (ii) p q r p q p r∧ ∨ ≡ ∧ ∨ ∧( ) ( ) ( )

Proof (i)
p q r q r∧∧ p q r∨∨ ∧∧( ) p q∨∨ p r∨∨ ( ) ( )p q p r∨∨ ∧∧ ∨∨
T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

Table	12.17

	 The	 columns	 corresponding	 to	 p q r∨ ∧( )  and ( ) ( )p q p r∨ ∧ ∨  are identical. Hence
p q r p q p r∨ ∧ ≡ ∨ ∧ ∨( ) ( ) ( ) . 

	 Similarly	(ii) p q r p q p r∧ ∨ ≡ ∧ ∨ ∧( ) ( ) ( ) 	can	be	proved.

5. Identity Laws
 (i) p∨ 𝕋≡𝕋 and p∨ 𝔽≡ p  (ii) p ∧𝕋≡ p and p ∧ 𝔽≡𝔽

p 𝕋 𝔽 p∨∨𝕋 p∨∨𝔽
T T F T T

F T F T F

Table12.18
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	 (i)	The	entries	in	the	columns	corresponding	to	 p∨ 𝕋 and 𝕋 are identical and hence they are 
equivalent.		The	entries	in	the	columns	corresponding	to	 p∨ 𝔽 and p are identical and hence 
they	are	equivalent.

Dually	
 (ii) p ∧𝕋≡ p  and p ∧ 𝔽≡𝔽	can	be	proved.
6. Complement Laws
 (i) p p∨¬ ≡ 𝕋 and p p∧¬ ≡ 𝔽 (ii) ¬𝕋 ≡  𝔽 and ¬𝔽 ≡  𝕋
Proof

p ¬p 𝕋 ¬𝕋 𝔽 ¬𝔽 p p∨∨¬¬ p p∧∧¬¬

T F T F F T T F
F T T F F T T F

Table	12.19

	 (i)	 The	entries	in	the	columns	corresponding	to	 p p∨¬ and 𝕋 are identical and hence they are 
equivalent.		The	entries	in	the	columns	corresponding	to	 p p∧¬  and 𝔽 are identical and 
hence	they	are	equivalent.

	 (ii)	 The	entries	 in	 the	columns	corresponding	 to	¬𝕋 and 𝔽 are identical and hence they are 
equivalent.	The	entries	in	the	columns	corresponding	to	¬𝔽 and 𝕋 are identical and hence 
they	are	equivalent.

7. Involution Law or Double Negation Law

 ¬(¬ p) ≡  p
Proof

p ¬ p ¬(¬ p)

T F T

F T F

Table	12.20

	 The	entries	 in	 the	columns	corresponding	 to	 ¬ ¬( )p  and p  are identical and hence they are 
equivalent.		
8. de Morgan’s Laws

 (i) ¬ ∧( )p q º  ¬ ∨¬p q  (ii) ¬ ∨( ) ≡ ¬ ∧¬p q p q

Proof of (i)
p q ¬p ¬q p q∧∧ ¬¬ ∧∧(( ))p q ¬¬ ∨∨¬¬p q

T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T

Table	12.21
	 The	entries	in	the	columns	corresponding	to	¬ ∧( )p q  and ¬ ∨¬p q  are identical and hence they 
are	equivalent.	Therefore	¬ ∧( )p q  º  ¬ ∨¬p q .		Dually	(ii)	¬ ∨( ) ≡ ¬ ∧¬p q p q 	can	be	proved.
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9. Absorption Laws 
 (i) p p q p∨ ∧ ≡( )  (ii) p p q p∧ ∨ ≡( )

p q p q∧∧ p q∨∨ p p q∨∨ ∧∧(( )) p p q∧∧ ∨∨(( ))

T T T T T T

T F F T T T

F T F T F F

F F F F F F

Table	12.22

	 (i)	The	entries	in	the	columns	corresponding	to	 p p q∨ ∧( ) and p are identical and hence they 
are	equivalent.

	 (ii)	The	entries	in	the	columns	corresponding	to	 p p q∧ ∨( ) and p are identical and hence they 
are	equivalent.

Example 12.17
 Establish	the	equivalence	property: p q p q→ ≡¬ ∨
Solution

p q ¬p p → q ¬¬ ∨∨p q

T T F T T

T F F F F

F T T T T

F F T T T

Table	12.23

	 The	entries	in	the	columns	corresponding	to	 p q→  and ¬ ∨p q are identical and hence they are 
equivalent.

Example 12.18
	 Establish	the	equivalence	property	connecting	the	bi-conditional	with	conditional:
 p q p q q p↔ ≡ → ∧ →( ) ( )

Solution
p q p q→→ q p→→ p q↔↔ ( ) ( )p q q p→→ ∧∧ →→

T T T T T T

T F F T F F

F T T F F F

F F T T T T

Table	12.24

	 The	 entries	 in	 the	 columns	 corresponding	 to	 p q↔ and ( ) ( )p q q p→ ∧ → are identical and 
hence	they	are	equivalent.
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Example 12.19
 Using	the	equivalence	property,	show	that	 p q p q p q↔ ≡ ∧ ∨ ¬ ∧¬( ) ( ) .
Solution
 It	can	be	obtained	by	using	examples	12.15	and	12.16	that	
  p q↔  ≡  ( ) ( )¬ ∨ ∧ ¬ ∨p q q p 	 ...	(1)

   ≡  ( ) ( )¬ ∨ ∧ ∨¬p q p q 	(by	Commutative	Law)	 ...	(2)

   ≡  ( ( )) ( ( ))¬ ∧ ∨¬ ∨ ∧ ∨¬p p q q p q (by	Distributive	Law)

   ≡  ( ) ( ) ( ) ( )¬ ∧ ∨ ¬ ∧¬ ∨ ∧ ∨ ∧¬p p p q q p q q 	(by	Distributive	Law)

   ≡  𝔽∨ ¬ ∧¬ ∨ ∧ ∨( ) ( )p q q p 𝔽;	(by	Complement	Law)

   ≡  ( ) ( )¬ ∧¬ ∨ ∧p q q p ;	(by	Identity	Law)

   ≡  ( ) ( )p q p q∧ ∨ ¬ ∧¬ ;	(by	Commutative	Law)

	 Finally	(1)	becomes	 p q«  º  ( ) ( )p q p q∧ ∨ ¬ ∧¬ .

EXERCISE 12.2
 1. Let p 	:	Jupiter	is	a	planet		and	 q 	:	 India	 is	 an	 island	be	 any	 two	 simple	 statements.	Give	

verbal	sentence	describing	each	of	the	following	statements.

  (i) ¬p (ii) p q∧¬  (iii) ¬ ∨p q 	 (iv)	 p q→¬ 	 (v)	 p q↔  

 2.	 Write	each	of	the	following	sentences	in	symbolic	form	using	statement	variables	 p and q .

  (i)	19	is	not	a	prime	number	and	all	the	angles	of	a	triangle	are	equal.
	 	 (ii)	19	is	a	prime	number	or	all	the	angles	of	a	triangle	are	not	equal
	 	 (iii)	19	is	a	prime	number	and	all	the	angles	of	a	triangle	are	equal
	 	 (iv)	19	is	not	a	prime	number

 3.	 Determine	the	truth	value	of	each	of	the	following	statements

  (i)	If	6 2 5+ = ,	then	the	milk	is	white.
	 	 (ii)	China	is	in	Europe	or	 3 	is	an	integer
	 	 (iii)	It	is	not	true	that	5 5 9+ = 	or	Earth	is	a	planet
	 	 (iv)	11	is	a	prime	number	and	all	the	sides	of	a	rectangle	are	equal

 4.	 Which	one	of	the	following	sentences	is	a	proposition?

  (i) 4 7 12+ = 	 (ii)	What	are	you	doing?	 (iii)	3 81n n≤ ∈, 

	 	 (iv)	Peacock	is	our	national	bird	 (v)	How	tall	this	mountain	is!

 5.	 Write	the	converse,	inverse,	and	contrapositive	of	each	of	the	following	implication.

  (i)	If	 x  and y 	are	numbers	such	that	 x y= ,	then	 x y2 2=
	 	 (ii)	If	a	quadrilateral	is	a	square	then	it	is	a	rectangle

 6.	 Construct	the	truth	table	for	the	following	statements.

  (i) ¬ ∧¬p q  (ii) ¬ ∧¬( )p q  (iii) ( )p q q∨ ∨¬ 	 (iv)	 ( ) ( )¬ → ∧ ↔p r p q
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 7.	 Verify	whether	 the	 following	compound	propositions	are	 tautologies	or	contradictions	or	
contingency

  (i) ( ) ( )p q p q∧ ∧¬ ∨  (ii) ( )p q p q∨ ∧¬( )→
  (iii) ( ) ( )p q p q→ ↔ ¬ → 	 (iv)	 ( ) ( ) ( )p q q r p r→ ∧ →( )→ →

 8.	 Show	that	(i)	¬ ∧ ≡¬ ∨¬( )p q p q     (ii) ¬ → ≡ ∧¬( )p q p q .

 9.	 Prove	that		 q p p q→ ≡¬ →¬

 10.	 Show	that	 p q® and q p® are	not	equivalent

 11.	 Show	that	¬ ↔ ≡ ↔¬( )p q p q

 12.	 Check	whether	the	statement	 p q p® ®( ) 	is	a	tautology	or	a	contradiction	without	using	

the	truth	table.

 13.	 Using	truth	table	check	whether	the	statements¬ ∨ ∨ ¬ ∧( ) ( )p q p q  and ¬p are	logically	equivalent.

 14.	 Prove p q r p q r→ →( )≡ ∧ →( ) 	without using	truth	table.

 15.	 Prove	that	 p q r p q r→ ¬ ∨ ¬ ∨ ¬ ∨≡( ) ( ) using	truth	table.

EXERCISE 12.3

Choose the correct or the most suitable answer from the given four alternatives.

 1.	A	binary	operation	on	a	set	 S is	a	function	from
	 	(1)	 S S®  (2) S S S×( )→  (3)	 S S S→ ×( ) (4) S S S S×( )→ ×( )

 2.	Subtraction	is	not	a	binary	operation	in
	 	(1)	  (2)  	 (3)	  (4) 

 3.	Which	one	of	the	following	is	a	binary	operation	on	 ?
	 	(1)	Subtraction	 (2)	Multiplication	 (3)	Division	 (4)	All	the	above
 4.	In	the	set	  	of	real	numbers	‘* ’	 is	defined	as	follows.	Which	one	of	 the	following	is	not	a	

binary	operation	on ?
	 	(1)	 a b∗ =min ( )a b×  (2) a b∗ = 	max ( , )a b
	 	(3)	 a b a∗ =   (4) a b ab∗ =

 5.	The	operation	*defined	by	 a b ab
∗ =

7
	is	not	a	binary	operation	on

	 	(1)	+  (2)  	 (3)	  (4) 

 6.	In	the	set	 	define a b a b ab = + + .	For	what	value	of	y,	3 5 7 y( )= ?

	 	(1)	 y =
2

3
 (2) y=−2

3
	 (3)	 y=−3

2
 (4) y = 4

 7.	If	 a b a b∗ = +2 2 	on	the	real	numbers	then	*  is
	 	(1)	commutative	but	not	associative	 (2)	associative	but	not	commutative
	 	(3)	both	commutative	and	associative	 (4)	neither	commutative	nor	associative
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 8.		Which	one	of	the	following	statements	has	the	truth	valueT ?
	 	(1)	 sin x is	an	even	function.
	 	(2)	Every	square	matrix	is	non-singular
	 	(3)	The	product	of	complex	number	and	its	conjugate	is	purely	imaginary

  (4) 5 is	an	irrational	number

 9.		Which	one	of	the	following	statements	has	truth	valueF ?
	 	(1)	Chennai	is	in	India	or	 2 	is	an	integer

	 	(2)	Chennai	is	in	India	or	 2 	is	an	irrational	number

	 	(3)	Chennai	is	in	China	or	 2 	is	an	integer

	 	(4)	Chennai	is	in	China	or	 2 	is	an	irrational	number

 10.	If	a	compound	statement	involves	3	simple	statements,	 then	the	number	of	rows	in	the	truth	
table is

	 	(1)	9  (2) 8 	 (3)	 6  (4) 3

 11.	Which	one	is	the	inverse	of	the	statement	 ( ) ( )p q p q∨ → ∧ ?

	 	(1)	 ( ) ( )p q p q∧ → ∨  (2) ¬ ∨ → ∧( ) ( )p q p q

	 	(3)	 ( ) ( )¬ ∨¬ → ¬ ∧¬p q p q  (4) ( ) ( )¬ ∧¬ → ¬ ∨¬p q p q

 12.		Which	one	is	the	contrapositive	of	the	statement	 ( )p q r∨ → ?
	 	(1)	¬ → ¬ ∧¬r p q( )  (2) ¬ → ∨r p q( )

	 	(3)	 r p q→ ∧( )   (4) p q r→ ∨( )

 13.	The	truth	table	for ( )p q q∧ ∨¬ is	given	below

p q ( ) ( )p q ¬q∧ ∨

T T (a)

T F (b)

F T (c)

F F (d)

Which	one	of	the	following	is	true?
   (a) (b) (c) (d)

	 	(1)	 T T T T

  (2) T F  T T

	 	(3)	 T T F T

  (4) T F  F F

 14.	In	the	last	column	of	the	truth	table	for	¬ ∨¬( )p q 	the	number	of	final	outcomes	of	the	truth	
value	 ' 'F  are

	 	(1)	1	 (2)	2	 (3)	3	 (4)	4
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 15.	Which	one	of	the	following	is	incorrect?	For	any	two	propositions	 p and q ,	we	have
	 	(1)	¬ ¬ ∨ ≡¬ ∧¬( )p q p q  (2) ¬ ¬ ∧ ≡¬ ∨¬( )p q p q
	 	(3)	¬ ¬ ∨ ≡¬ ∨¬( )p q p q  (4) ¬ ¬ ¬ ≡( )p p

 16. 
p q p q p∧ →¬( )

T T (a)

T F (b)

F T (c)

F F (d)

	 	Which	one	of	the	following	is	correct	for	the	truth	value	of		 p q p∧( )→¬ ¬ p?

   (a) (b) (c) (d)

	 	(1)	 T T T T
  (2) F T T T
	 	(3)	 F F T T
  (4) T T T F
 17.	The	dual	of	¬ ¬ ∨ ∨ ∨ ∧¬( ) [ ( )]p q p p r  is

	 	(1)		¬ ¬ ∧ ∧ ∨ ∧¬( ) [ ( )]p q p p r  (2) ( ) [ ( )]p q p p r∧ ∧ ∧ ∨¬

	 	(3)		¬ ¬ ∧ ∧ ∧ ∧( ) [ ( )]p q p p r  (4) ¬ ¬ ∧ ∧ ∧ ∨¬( ) [ ( )]p q p p r

 18.		The	proposition	 p p q∧ ¬ ∨( )  is
	 	(1)	a	tautology	 	 (2)	a	contradiction
	 	(3)	logically	equivalent	to	 p qÙ 	 (4)	logically	equivalent	to	 p qÚ

 19.		Determine	the	truth	value	of	each	of	the	following	statements:
  (a) 4 2 5+ = and 6 3 9+ =  (b) 3 2 5+ =  and 6 1 7+ =
  (c) 4 5 9+ = and1 2 4+ =  (d) 3 2 5+ =  and 4 7 11+ =

   (a) (b) (c) (d)

	 	(1)	 F T F T

  (2) T F T F

	 	(3)	 T  T F F

  (4) F F T T

 20.	Which	one	of	the	following	is	not	true?
	 	(1)	Negation	of	a	negation	of	a	statement	is	the	statement	itself.
	 	(2)	If	the	last	column	of	the	truth	table	contains	only	T	then	it	is	a	tautology.
	 	(3)	If	the	last	column	of	its	truth	table	contains	only	F then it is a contradiction
	 	(4)	If	p and q are	any	two	statements	then	 p q« is	a	tautology.
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SUMMARY
	 (1)	 	A	binary operation* 	on	a	non-empty	set	 S 	is	a	rule,	which	associates	to	each	ordered	pair	

( , )a b 	of	elements	 a b,  in S 	an	unique	element	a b*  in S .
 (2) Commutative property: Any	binary	operation	*defined	on	a	nonempty	set	S is	said	to	satisfy	

the	commutative	property,	if a b b a a b S∗ = ∗ ∈∀, , .
	 (3)	 Associative property: Any	binary	operation*defined	on	a	nonempty	set	 S is	said	to	satisfy	

the	associative	property,	if a b c a b c a b c S∗ ∗ = ∗ ∗ ∈∀( ) ( ) , , , .
 (4) Existence of identity property:  An	element	e SÎ is said to be the Identity Element of	 S under	

the	binary	operation	* 	if	for	all	 a SÎ we	have	that	 a e a∗ = and e a a∗ = .
 (5) Existence of inverse property: If	an	identity	element	 e exists	and	if	for	every	 a SÎ ,	there	

exists	b  in S 	such	that	 a b e∗ = and b a e∗ =  then b SÎ said to be the Inverse Element of	 a . 
In	such	instance,	we	write	b a= −1 .

	 (6)	 Uniqueness of Identity:  In	 an	 algebraic	 structure	 the	 identity	 element	 (if	 exists)	must	 be	
unique.

 (7) Uniqueness of Inverse: In	an	algebraic	structure	the	inverse	of	an	element	(if	exists)	must	be	
unique.

	 (8)	 A	Boolean Matrix is	a	real	matrix	whose	entries	are	either	0 or 1.

	 (9)	 Modular arithmetic: Let n be	a	positive	integer	greater	than	1		called	the	modulus.	We	say	
that	two	integers	a and b	are	congruent	modulo	n	if	b − a	is	divisible	by	n.		In	other	words	
a b≡ (mod n) means a b n k− = ⋅ for	some	integer	 k and b  is the least non-negative integer 
reminder when	a 	is	divided	by	n. ( )0 1≤ ≤ −b n

	(10)	 Mathematical	logic	is	a	study	of	reasoning	through	mathematical	symbols.
	(11)	 Let p be	 a	 simple	 statement.	Then	 the	negation	 of	 p 	 is	 a	 statement	whose	 truth	 value	 is	

opposite	to	that	of p .	It	is	denoted	by p,	read	as not p .The	truth	value	of	 p  is T , if p is 
F ,	otherwise	it	is	F .

	(12)	 Let	 p  and q 	be	any	 two	simple	statements.	The	conjunction of	 p  and q  is obtained by 
connecting	 p  and q 	by	the	word	and.	It	is	denoted	by	 p q∧ ,	read	as	‘ p 		conjunction	 q ’	or	
‘ p  hat q ’.	The	truth	value	of	 p q∧  is T ,	whenever	both	 p  and q  are T  and it is F 	otherwise.

	(13)	 The	disjunction	of	any	two	simple	statements	 p and q is	the	compound	statement	obtained	by	
connecting	 p and q by	the	word	‘or’.	It	is	denoted	by	 p q∨ ,	read	as‘ p 	disjunction	 q ’	or	‘ p
cup	 q ’.The	truth	value	of	 p q∨  is F ,	whenever	both	 p and q are F and it is T otherwise.

	(14)	 The	conditional statement of	any	two	statements	 p  and q 	is	the	statement,	‘If	 p ,	then	 q ’	
and it is denoted by p q→ . The statement p q→ 	has	a	truth	value	F	when	q	has	the	truth	
value	F and p	has	the	truth	value	T;	otherwise	it	has	the	truth	value	T.

	(15)	 The	bi-conditional statement of	any	two	statements	 p  and q is	the	statement	‘ p 	if	and	only	
if	q ’	and	is	denoted	by	 p q↔  The statement p q↔ 	has	the	truth	value	T	whenever	both	p and 
q	have	identical	truth	values;	otherwise	has	the	truth	value	F.

	(16)	 A	statement	 is	said	 to	be	a	 tautology if	 its	 truth	value	 is	always	 T irrespective	of	 the	 truth	
values	of	its	component	statements.	It	is	denoted	by	𝕋.
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	(17) A	statement	is	said	to	be	a	contradiction	if	its	truth	value	is	always	F irrespective	of	the	truth
values	of	its	component	statements.	It	is	denoted	by	𝔽.

	(18) A	statement	which	is	neither	a	tautology	nor	a	contradiction	is	called	contingency.

(19) 	Any	two	compound	statements	A and B are said to be logically equivalent or	simply	equivalent
if	the	columns	corresponding	to	 A  and B 	in	the	truth	table	have	identical truth values. The
logical	equivalence	of	the	statements	 A  and B is denoted by A B≡  or A B⇔ .		Further	note	
that	if	 A  and B are	logically	equivalent,	then	 A B↔ 	must	be	a	tautology.

(20) Some laws of equivalence:
Idempotent Laws: (i) p p p∨ ≡ (ii) p p p∧ ≡ .

Commutative Laws: (i) p q q p∨ ≡ ∨   (ii) p q q p∧ ≡ ∧ .

Associative Laws: (i) p q r p q r∨ ∨( ) ≡ ∨( )∨ (ii) p q r p q r∧ ∧( ) ≡ ∧( ) ∧ .

Distributive Laws:   (i) p q r p q p r∨ ∧ ≡ ∨ ∧ ∨( ) ( ) ( )

(ii) p q r p q p r∧ ∨ ≡ ∧ ∨ ∧( ) ( ) ( )

Identity Laws:  (i) p∨ 𝕋 ≡𝕋 and p∨ 𝔽≡ p

(ii) p ∧𝕋≡ p and p ∧ 𝔽≡𝔽

Complement Laws : (i) p p∨¬ ≡𝕋 and p p∧¬ ≡ 𝔽

(ii) ¬ 𝕋 ≡  𝔽  and ¬ 𝔽≡  𝕋

  Involution Law or Double Negation Law: ¬(¬p) p

de Morgan’s Laws: (i) ¬ ∧ ≡ ¬ ∨¬( )p q p q  (ii) ¬ ∨ ≡ ¬ ∨¬( )p q p q

Absorption Laws:      (i) p p q p∨ ∧ ≡( )    (ii)  p p q p∧ ∨ ≡( )

ICT CORNER

 Scan the QR Code
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Mathematics Vol-2”		will	open.	In	the	left	side	of	work	book	there	are	
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Chapter 7
EXERCISE 7.1

 (1) (i) 21m/s (ii) 15 m/s and 27 m/s 

 (2) (2)(i) 5sec (ii) 128 ft/s (iii)160 ft/s

 (3) (i) 1,2 sec (ii) 34 m (iii) –6 m s/ 2 , 6 m / s2

 (4) 75 units  (5) 1

2
kg/m, 1

6
kg/m

 (6) 20π sq.cm/s (7) 2π km/s (8) 9

10π
m/min

 (9) (i) −8

3
 m/s (ii) 26 83. sq.m/sec (10) 70 km/hr.     

 EXERCISE 7.2
 (1) (i) 7  (ii) ∞   (2) 1 0,( )  

 (3) 0 3,( ) and 4 25, −( )  (4) 2 1, −( ) and −( )2 1,

 (5) (i) 2 2x y+ = ; x y− =2 1  (ii) 2 2x y− = − ; x y+ =2 4  

  (iii) x y− = 0 ; x y+ = π   (iv) 4 2 5x y+ =  ; 2 4 5x y− = −  

 (6)  12 15x y− = ;12 17x y− = −  (7) x y+ =2 7 ; x y+ = −2 1 

 (8) 2 7 14cos sint x t y( ) + ( ) = ; 7 2 45sin cos sin cost x t y t t( ) − ( ) =  (9) tan− ( )1 3

EXERCISE 7.3
 (1) (i) not continuous at x = 0  (ii) not continuous at x = π

2
  (iii) f f2 7( ) ≠ ( )

 (2) (i) 1

2
 (ii) − +2 2 2    (iii) 9

4
 

 (3) (i) not continuous at x = 0   (ii) not differentiable at x = −1

3
 

 (4) (i) ±1 (ii) 7  

 (6) 320 km    (8) No. Since ′ ( )f x cannot be 2 5. at any point in 0 2,( ) .

EXERCISE 7.4

 (1) (i) e x xx = + + +1
1 2

2



  (ii) sin x x x x x= − + − +
3 5 7

3 5 7


 

  (iii) cos x x x x= − + − +1
2 4 6

2 4 6



 

  (iv) log 1
2 3 4

2 3 4

−( ) = − + + + +




x x x x x



 

  (v) tan− ( ) = − + − +1
3 5 7

3 5 7
x x x x x



        (vi) cos2
2 3 4 5 6

1
2

2

2

4

2

6
x x x x= − + − +  

 (2) log x x x x x= −( ) − −( ) + −( ) − −( ) +1
1

2
1

1

3
1

1

4
1

2 3 4


 

 (3) 2

2
1

1

1 4

1

2 4

1

3 4

2 3

+ −



 − −



 − −



 +







x x xπ π π


 

 (4) f x x x( ) = − −( ) + −( )1 1
2

ANSWERS
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EXERCISE 7.5
 (1) 1

2
    (2) 2     (3) ∞     (4) 1    (5) 0    (6) 0  

 (7) −1    (8) 1   (9) e    (10) 1
e

    (11) 1
e

 

EXERCISE 7.6
 (1) (i) absolute maximum = −1 , absolute minimum = −26

  (ii) absolute maximum = 16 , absolute minimum = −1

  (iii) absolute maximum = 9 , absolute minimum = − 9

8

  (iv) absolute maximum = 3 3

2
, absolute minimum = 0

 (2) (i) strictly increasing on −∞ −( ), 2  and 1,∞( ) , strictly decreasing on −( )2 1,  

    local maximum = 20   local minimum = −7

  (ii) strictly decreasing on −∞( ),5 and 5,∞( ) . No local extremum.

  (iii) strictly increasing on −∞ ∞( ), . No local extremum.

  (iv) strictly decreasing on 0 1,( ) , strictly increasing on 1,∞( ) . local minimum = 1

3
 

  (v) strictly increasing on 0
4

,
π



 , 3

4

5

4

π π
,





 , and 7

4
2

π π,




 .

    strictly decreasing on π π
4

3

4
,





 and 5

4

7

4

π π
,





 . local maximum=11

2
at  x = π

4
 , 5

4

π .

    local minimum= 9

2
at x = 3

4

π , 7

4

π .

EXERCISE 7.7
 (1) (i) concave upwards on −∞( ), 2 and 4,∞( ) . Concave downwards on 2 4,( )
	 	 	 	Points	of	inflection	 2 16, −( ) and 4 0,( )  

  (ii) concave upwards on 3

4

7

4

π π
,





 . Concave downwards on 0

3

4
,

π



 and 7

4
2

π π,




  

	 	 	 	Points	of	inflection	 3

4
0

π
,





 and 7

4
0

π
,







  (iii) concave upwards on 0,∞( ) . Concave downward on −∞( ),0

	 	 	 		Points	of	inflection	 0 0,( )
 (2) (i)local minimum = −2  ; local maximum = 2   (ii)local minimum = − 1

e
  

  (iii)local minimum = 0  ; local maximum = 1
2e

 (3) strictly increasing on −∞ −( ), 1 and 1

2
,∞



 . strictly increasing on −



1

1

2
,  

  local maximum = 6  , local minimum = − 3

4

  concave upwards on −∞ −



,

1

4
; concave downwards on − ∞





1

4
, . 

	 	 point	of	inflection −





1

4

21

8
,  
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EXERCISE 7.8
 (1) 36    (2) 4 5    (3) 50    (4) 100 2m    (5) 9cm , 6cm    (6) 1200m

 (7) 20 2 , 20 2   (9) 2r , r
2

  (10) 6cm , 6cm ,3cm    (11) 32π , 0

EXERCISE 7.9
 (1) (i) x = −1, x = 1, y = 1  (ii) x = −1, y x= −1, (iii) y = −3, y = 3 

  (iv) y x= − −9 1 , x = −3   (v) y x= +1

3

8

3
, x = 2           

EXERCISE 7.10
1 2 3 4 5 6 7 8 9 10

(1) (2) (2) (2) (1) (2) (3) (4) (3) (4)
11 12 13 14 15 16 17 18 19 20
(3) (4) (3) (4) (2) (3) (3) (1) (4) (3)

Chapter 8
Exercise 8.1

 1. (i) 3.0074 2. (i) 24.73  (ii) 1.9688  (iii) 2.963

 3. (i) 7 4x −  (ii) 9 4

5

− x  (iii) x +1

4
  

 4. (i)0.0225π cm2,  (ii) 0.006 cm2 (iii) 0.6% 
 5. (i) Volume decreases by 80π  cm3   (ii) Surface area decreases by 16π  cm2  6. 1% 

Exercise 8.2

 1. (i)  2 1 2 8 7

3 4

2

2

( ) ( )

( )

− −
−
x x
x

dx (ii) 4
3

2

3 2
1

3

cos

( sin )

x

x
dx

+
 (iii) e x x x x dxx x2 5 7 2 22 5 1 2 1− + − − − −[( ) cos( ) sin( )]  

 2. (i) 0.7  (ii) 0.18 3. (i) ∆f = 2 125. , df = 2 0.  (ii) ∆f = 0 83. , df = 0 1.

 4. 3.0013029  5. (i) 6
π

 cm (ii) 40

π
%   6. 30π  mm3  7. 0 4. π  mm2   8. 8000

 9. (i)  3  words  (ii) 1 word  10. 5.25π , 4.76%  11. 60 cm3 , 61.2 cm3  

Exercise 8.3
 1. 1

8
  2. 1 4. cos( )1  

 Exercise 8.4
 1. (i) 27, −14    (ii) 11, −4    (iii) 2, 0, 4   (iv) e e2 22 1 1 8log , log( ) −( ) +( )  

 3. x y
x y

y x
y x

z
2 2

2

2 2

2

23
− − +, , 6yz 4. 

3 2 2 2

3 3 3

x y z

x y z

+ +( )
+ +( )  

 5. (i) e xy + 6 , 6y , xey , e xy + 6

  (ii) −
+( )
15

5 3
2x y

, −
+( )
25

5 3
2x y

, −
+( )

9

5 3
2x y

, −
+( )
15

5 3
2x y

    (iii) 3, 2 25 5− cos x , 0, 3

 10. (i)  72 84 0 04 0 05 0 05 20002 2x y xy x y+ + − − −. . .     (ii)  24, −48 , Keeping y constant and 
increasing x increases profit.
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Exercise 8.5
 1. 6 7 7x y− −   2. − + +( )x y20 16   3. 2

1

2
x y dx x y dy−( ) + +





 

 4. 5 2 3 6x y z− + −   5. y z dx x z dy y x dz+( ) + +( ) + +( )  

Exercise 8.6
 1. e e t t e t t tt t t2 3 124 3sin sin cos sin cos+ + +( ) , 1

 2. 1 1 2 1 62
2

3 2 2 2 2+( ) +( ) − +( ) + e t e t t e e t tt t t tcos sin sin sin cos  

 3. 4 2e t     4. − −[ ]−e t tt2 2 2sin cos    5.18 3 3 43e e s e s s ss s s− + −cos sin sin cos , 15

 6. 3

1
2

2

1e
e

e
+

+ −tan , e
e1 2+

 7. te t s t s s tst2 2 22sin cos( ) + ( )  , 
du
dt

se t s t s s tst= + ( ) + ( ) 
2

2 2 2sin cos  , e sin cos1 2 1( ) + ( )  , 

  e 2 1 1sin cos( ) + ( )   

 8. 3 3 2 33 3 2 2 2 2 2s e e s e e s e st t t t t( ), ( )+ − −− −    9. 2 1 2u v+( ) , 2 2u v−( ) , 3, −3

2
 

Exercise 8.7
 1. (i) not homogeneous (ii) Homogeneous, deg.3
  (iii) homogeneous, deg.0 (iv) not homogeneous 6. 5

Exercise 8.8
1 2 3 4 5 6 7 8

(2) (2) (2) (4) (3) (2) (4) (2)
9 10 11 12 13 14 15

(3) (1) (2) (3) (2) (4) (1)

Chapter 9
Exercise 9.1

 1. 0.6 2. 0.855 3. 0.375
Exercise 9.2

 1. (i) 13

2
   (ii) 25

3
  

Exercise 9.3

 1. (i) 1

4

5

3
log   (ii) p

8
  (iii) p

2
1-  (iv) e

π
2  (v) 8

21
  (vi) 1

2
 

 2. (i) 0  (ii) p  (iii) p-2

4
  (iv) 0 (v) 0 (vi) 13

10
 (vii) p

4
  (viii) π

8
2log  (ix) p p

2
2−( )  (x) p

8
 (xi) π2

2

Exercise 9.4
 1. 3

8

19

8

2- -e   2. 1

2 12

1

9

p
+







   3. 1

4
14+ −





e
π π  4. -p

4
 

Exercise 9.5
   1. (i) p

2 6
  (ii). p

2 30
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Exercise 9.6

 1. (i) 63

512
  (ii) 16

105
 (iii) 5

64

p   (iv) 8

45
 (v) p

24
  (vi) 64

35
  (vii) 1

24
  (viii) 1

60

Exercise 9.7
   1. (i) 5

36

!  (ii) 29  (2) 1

8
 

Exercise 9.8
 1. 7.5 2. 2 3. 16 4. 36 5. 2 2  6. log 2 7. 9

2
 8. yes, 16

3
 9. 4

3
 10. 4

3
4 3π +( )

Exercise 9.9

 1. 4

5

p   2. p
4

1 4−



−e   3. 8p   4. π
12

  5. 14

3

3πm   6. 1000

3

3πcm

1 2 3 4 5 6 7 8 9 10
(1) (3) (3) (1) (4) (3) (3) (1) (2) (1)
11 12 13 14 15 16 17 18 19 20
(4) (2) (2) (4) (2) (4) (3) (4) (2) (1)

Chapter 10
Exercise 10.1

 1. (i) 1,1   (ii) 3,2    (iii) 2, does not exist   (iv) 1, 2   (v) 1,4 

  (vi) 2,2   (vii) 2,6    (viii) 2, does not exist   (ix) 3,1   (x) 1, doest not exist

Exercise 10.2

 1. (i) 
dQ
dt

kQ=  (ii) dP
dt

kP P= −( )500000  (iii) 
dP
dt

kP
T

= 2  (iv) dx
dt

x= +2

25
400  2. dr

dt
k= −  

Exercise 10.3

 1. (i) 
d y
dx

2

2
0=    (ii) 

d x
dy

2

2
0=    2. r dy

dx
x dy
dx

y2

2 2

1+ 

















= −





  

 3. x xy dy
dx

y2 22 0+ − =   4. 2 03ay y′′ + ′ =   5. xy y′ − − =2 2 0  6.xy xyy yy′ + ′′ − ′ =2 0  

 7. 
d y
dx

y
2

2
64=   8. xy y x xy′′ + ′ + − − =2 2 02  

Exercise 10.4
 2. (i) m = −2    (ii) m = 2 3,    3. 2 482y x= +  

Exercise 10.5

 1. F F kV e
kt
M= −( )     2. k e v

gx
k2

2

21
2−







=

−
   3. y

x
x

= −
+

1
1  

 4. (i) sin sin− −= +1 1y x C  (ii) y x Ctan− =1  (iii) sin
y
x

a−





=1  (iv)e e x Cx y+ + =−
4

4
 

  (v)  e x Cy +( ) =1 sin  (vi) sin
x
y

enx c






= +  (vii) 3 25 32
3

2y x C= − −( ) +  (viii) sin logy e x Cx= +
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   (ix) sec siny x C= +2   (x) 1

2
x y x y x y x C+( ) + +( ) +( )  = +sin cos  

Exercise 10.6

 1. sin log
y
x

Cx





=   2. y e
x
y= C

3

33   3. e Cy
x
y = log   4. 3 22 3x y y C+ =  

 5. xy x y C2 2− =   6. C xe
y
x=





tan   7. y xe

y
x+ =3 3   8. x e0 3= ±  

Exercise 10.7
 1. y x C x= +sin cos  2. y

x
x

C x=
−

+ −( )
− −sin 1

2

2
1

2

1
1  3. y x x x C+( ) = +cos sin  

 4. y x
x x x x C2 2 21
2

4
1

2
4+( ) = + + + + +log  5. xy y C2 52= +  

 6. xy x x Csin cos+ =  7. ye e Cx
x

sin
sin

−
−

= +
1

12

2
 8. y x

x
x x x C1

1

2

3

+
−







= + +  

 9. xy y C+ =−tan 1  10. y x x Clog
cos+ =2

2
 11. 2 2

4 2y x a C x a= +( ) + +( )  

 12. y x x x C1
2

2

4

3+( ) = − +sin  13. 4 2 42 2yx x x x C= − +log   14. x y x x x C2
4 4

4 16
= − +log  

 15. 2 33 2x y x= +
Exercise 10.8

 1. After 10 hours the number of bacteria as 9 times the original number of bacteria.

 2. P
t

= 





300000
4

3

40

  3. i Ce
Rt
L=

−
 4. v

e
= 10

2
 5. P e= 10000 0 075.  

  6. 9
10

10

8  % of the radioactive element will remain after 1000 years.

 7. (i) 65 33. °C   (ii) 53.46 mts

 8. (i) T F151°  (ii) t = 22 523. . She drunk the coffee between 10.22 and 10.30 approximately.

 9. 11°   10. x e
t

= −






−

100 1
3

50  

Exercise 10.9
Q 1 2 3 4 5 6 7 8 9 10
A (1) (2) (3) (1) (2) (3) (3) (2) (2) (3)
Q 11 12 13 14 15 16 17 18 19 20
A (3) (3) (1) (1) (2) (3) (2) (4) (2) (4)
Q 21 22 23 24 25
A (1) (1) (2) (2) (1)

Chapter 11
EXERCISE 11.1

(1) Values of Random Variable 0 1 2 3 Total
Number of points in inverse image 1 3 3 1 8
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(2) Values of  Random Variable 0 1 2 Total
Number of points in  inverse image 650 26 650 1326

(3) Values of  Random Variable 0 1 2 3 Total
Number of points in inverse image 1 3 3 1 8

(4) Values of  Random Variable 0 15 30 Total
Number of points in  inverse image 1 2 1 4

(5) Values of Random Variable 4 5 6 7 8 Total
Number of points in inverse image 1 2 3 2 1 9 .

EXERCISE 11.2

 (1) f x
x

x
( )=

=

=











1

8
0 3

3

8
1 2

for 

for 

,

,

 

(2) (i) x 2 4 6 8 10 Total

f x( ) 1

25

4

25

8

25

8

25

4

25

1

 (2) (ii) F x

x

x

x

x

x

( ) =

<

≤

≤

≤

≤

0 2

1

25
2

5

25
4

13

25
6

21

25
8

1

for 

for 

for 

for 

for 

forr x ≤


















 10

    (iii) 4

5
   (iv) 24

25

 (3)  f x

x

x

x

( )

,

,=

=

=

=











1

4
1 3

1

16
0 4

3

8
2

for 

for 

for 

 , F x

x

x

x

x

x

( )=

<

≤

≤

≤

≤

0 0

1

16
0

5

16
1

11

16
2

15

16
3

1

for 

for 

for 

for 

for 

forr x≤









 4

 (4) (i)8    (ii)F x

x

x

x

x

( )=

<

≤

≤

≤











0 0

1

8
0

3

8
1

1 2

for 

for 

for 

for 

   (iii) 7

8

 (ii) P X <( )=1 0 35.  (iii) P X ≥( )=2 0 40.(5) (i) x -1 0 1 2 3

f x( ) 0.15 0.20 0.25 0.25 0.15
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 (6) (i) 1

6
 (ii) 17

36
 (iii) 5

36

(7) (a) x 0 1 2 3 4

f x( ) 1

2

1

10

1

5

1

10

1

10

 (b) 4

5
 (c) 2

5

EXERCISE 11.3
 (1) 4   

 (2) (i)0.16 (ii) 0.3 (iii) 0.75 

 (3) (i) 1

400
 (ii)F x

x
x x

x

( )=

<

− ≤ ≤

>











0 200

400

1

2
200 600

0 600

for 

for 

for 
  (iii) 1

2

 (4) (i) 1

3
   (ii) 1 3-

-
e

x

   (iii)1 1- -e    (iv) e e
x

- -
-

5

3 3    (v) 1
4

3-
-

e

 (5) (i)F x

x
x x x

x x x

x x

( )=

≤−

+ + − ≤ <

− + ≤ <

− ≤











0 1

2

1

2
1 0

2
0 1

1 1

2

2



 (ii) 0.75

 (6) (i) f x F x

x

x x

x

( ) ( )= ′ =

<

+( ) ≤ <

≤











0 0

1

2
2 1 0 1

0 1

 (ii) 0 099.

EXERCISE 11.4
 (1) (i) 2 3. , 2 81.   (ii)1 67. , 0 56.   (iii) 5

3
, 1

18
  (iv) 2,8

(2) 8

7

x 0 1 2 (3) 7 ,16

f x( ) 1

7

4

7

2

7

(4) 2 ,1 x 0 1 2 3 4
f x( ) 1

16

1

4

3

8

1

4

1

16

 (5) 15minutes  (6) 1

3
, 2

9
  (7) 1

2
, 1

8
  (8) Loss `.0 50.
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EXERCISE 11.5 

 (1) (i) 160

729
 (ii) 210

1

5

4

5

4 6










  (iii) 

9

7

1

2

1

2

7 2


















  (2) (i) 

10

4

1

4

3

4

4 6


















  (ii)1 3

4

10

10
-

 (3) (i) 25  (ii) 100

3
 (4) 270

1024
 (5) (i) 1 0 9510- .  (ii) 

10

2
0 05 0 952 8








( . ) ( . )

 (6) (i) 
12

10
0 9 0 110 2








( . ) ( . )  (ii) 2 1 0 9 11. ( . )  (iii) 1 2 1 0 9 11−


. ( . )

 (7) (i) 
18 1

3

2

3

18

x

x x




















−

 (ii)
18

3

1

3

2

3

3 15


















  (iii) 1 20

3

2

3

17

−





  (8) 2 , 4

3
 (9) 5

2
,54

EXERCISE 11.6
1 2 3 4 5 6 7 8 9 10

(2) (4) (2) (4) (4) (2) (4) (3) (2) (1)

11 12 13 14 15 16 17 18 19 20

(4) (4) (1) (2) (1) (1) (4) (4) (2) (1)

Chapter 12
Exercise 12.1

 1. (i) Yes, *  is binary on   (ii) Yes, *  is binary on A 

  (iii) No, *  is not binary on 

 2. No, Ä  is not binary on   3. -88

15

 4. Yes, usual multiplication is binary on A

 5. (i) The given operation *  is closure and commutative but not associative on  . 

  (ii) Identity does not exist and so inverse does not exist.

6. * a b c

a b c a

b c b a

c a a c

 7.  No. The given operation is not commutative and associative

 8.  (i) A B∨ =



















1 1 1 1

1 1 1 1

1 0 0 1

 (ii) A B∧ =



















0 0 0 0

0 0 0 0

1 0 0 1

  (iii) A B C∨( )∧ =



















1 1 0 1

0 1 1 0

1 0 0 1

 (iv) A B C∧( )∨ =



















1 1 0 1

0 1 1 0

1 1 1 1
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 10. (i) It is commutative and associative.
  (ii) Identity and Inverse is exist.

Exercise 12.2
 1. (i) ¬p : Jupiter is not a planet (ii) p q∧ ¬ : Jupiter is a planet and India is not an Island.

  (iii) ¬ ∨p q : Jupiter is not a planet or India is an Island. 

  (iv) p q→ ¬ : If Jupiter is a planet then India is not an Island.

  (v) p q↔  Jupiter is a planet if and only if India is an Island.

 2. (i) ¬ ∧p q    (ii) p q∨¬    (iii) p q∧  (iv) ¬p

 3. (i) p q®  is 𝕋   (ii) p qÚ  is 𝔽   (iii) ¬ ∨p q  is 𝕋   (iv) p qÙ  is 𝔽

 4. (i), (iii) and (iv) are propositions
 5. (i) Converse:  If x and y are numbers such that x y2 2=  then x y= .
    Inverse:  If x and y are numbers such that x y¹  then x y2 2¹ .
    Contra positive: If x and y are numbers such that x y2 2¹  then x y¹ . 
  (ii) Converse: If a quadrilateral is a rectangle then it is a square.
   Inverse: If a quadrilateral is not a square then it is not a rectangle.
   Contrapositive: If a quadrilateral is not a rectangle then it is not a square.

 6. (i) Truth table for ¬ ∧¬p q

p q ¬p ¬q ¬ ∧ ¬p q
T T F F F
T F F T F
F T T F F
F F T T T

  (ii) Truth table for ¬ ¬ ∧¬( )p q

p q ¬q p q∧ ¬ ¬ ¬ ∧ ¬( )p q

T T F F T
T F T T F
F T F F T
F F T F T

  (iii) Truth table for p q q∨( )∨¬

p q ¬q p q∨ p q q∨( )∨ ¬
T T F T T
T F T T T
F T F T T
F F T F T
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  (iv) Truth table for ¬ →( )∧ ↔( )p r p q

p q r ¬p ( )¬ →p r p q↔ ¬ →( ) ∧ ↔( )p r p q
T T T F T T T
T T F F T T T
T F T F T F F
T F F F T F F
F T T T T F F
F T F T F F F
F F T T T T T
F F F T F T F

 7. (i) Contradiction  (ii) Tautology  (iii) Contingency  (iv) Tautology

 12. p q p→ →( )  is a Tautology. 

 13. Yes. The statements are logically equivalent.

Exercise 12.3
Choose the appropriate answer from the given distractors.

Q 1 2 3 4 5 6 7 8 9 10

A (2) (3) (2) (4) (2) (2) (3) (4) (3) (2)

Q 11 12 13 14 15 16 17 18 19 20

A (4) (1) (3) (3) (3) (2) (4) (3) (1) (4)
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GLOSSARY
CHAPTER 7

Application of Differential Calculus

related rates சார்ந்த வீ்தங்கள்

mean value theorem இடை மதிப்புத் 
த்தற்றம்

indeterminate forms த்த்றப்்பெ்றா்த 
வடிவங்கள்

stationary points நிடைப் புள்ளி்கள்

critical points மாறுநிடைப் 
புள்ளி்கள்

monotonicity of 
functions ஓரியல்புச் சாரபு்கள்

absolute extremum மீப்்பெரு அறுதி

relative extremum இைஞசார்ந்த அறுதி

Concave குழிவு

Convex குவிவு

point of inflection வடைவு மாற்றப் புள்ளி

Symmetry சமச்சீரத் ்தனடம

CHAPTER 8
Differential and Partial Derivatives

Differential வட்கயீடு

Partial Derivatives பெகுதி வட்கக்்கழு

Harmonic சீரான

Homogeneous சமச்சீரான

Absolute error ்தனிப்பிடை

Relative error சார பிடை

Percentage error ச்தவிகி்த பிடை

CHAPTER 9
Applications of Integration

Definite integral வடரயறுத்்தத் 
்்தாட்க

Reduction formula குட்றப்பு சூத்திரம்

Gamma integral ்காமா ்்தாட்கயிைல்

Bounded region இடைப்பெடை பெகுதி

CHAPTER 10
Ordinary Differential Equations

order வரிடச

Linear தேரியல்

Degree பெடி

arbitrary constant ஏத்தனு்மாரு 
மாறிலி

dependent variable சார்ந்த மாறி

independent variable சாரா மாறி

integrating factor ்்தாட்கயீடடுக 
்காரணி

homogeneous 
function சமபெடித்்தான சாரபு
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CHAPTER 11
Probability Distributions

bernoulli random 
variable

்பெரதோலி 
சமவாய்ப்பு மாறி

binomial distribution ஈருறுப்பு பெரவல்
binomial random 
variable

ஈருறுப்பு சமவாய்ப்பு 
மாறி

continuous random 
variable

்்தாைரநிடை 
சமவாய்ப்பு மாறி

cumulative 
distribution function தசரப்புப் பெரவல் சாரபு

discrete random 
variable

்தனிநிடை 
சமவாய்ப்பு மாறி

mathematical 
expectation ்கணி்த எதிரபொரப்பு

probability density 
function

நி்கழ்த்கவு அைரத்திச் 
சாரபு

probability mass 
function

நி்கழ்த்கவு 
நிட்றச்(்சறிவு) சாரபு

random variable சமவாய்ப்பு மாறி

CHAPTER 12
Discrete Mathematics

Absorption law ஈரப்பு விதி

Algebraic structure இயற்கணி்த 
அடமப்பு

Biconditional 
statement

இரு நிபெ்ந்தடனக 
கூறறு

Binary Operation ஈருறுப்பு ்சயலி

Boolean Algebra பூலியன 
இயற்கணி்தம்

Boolean Matrix பூலியன அணி
Coding theory குறியீடடுக த்காடபொடு

Compound statement கூடடுக கூறறு

Conditional statement நிபெ்ந்தடனக கூறறு
Conjunction இடையல்
Contradiction முரணபொடு

Contra positive தேரமாறு

Disjunction பிரிப்பிடையல்

Duality இருடம இயல்பு (அ) 
இரடடைத் ்தனடம

Hypothesis ்கருதுத்காள்

Involution law உடசுைறசி விதி

Logical connectives ்தரக்க இடைப்பு்கள்

Logical equivalent
்தரக்க 
சமானமானடவ

Negation மறுப்பு

Paradox முரணபெடு ் மய்டம

Simple statement ்தனிககூறறு

Tautology ்மய்டம

Truth table ்மய் அடைவடை
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