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o Additional facts related to the topics covered to facilitate
curiosity driven learning

« To ensure understanding, problems/illustrations are given at every stage

Examp le pr oblems before advancing to next level

= EI o Visual representation of concepts with illustrations
& ] o Videos, animations, and tutorials

ICT o To harness the digital skills to class room learning and experimenting
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Concept Map o Schematic outline of salient learning of the unit
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Sequential understanding of the stationary charges, moving charges, electric
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Back Wrapper: NIKOLA TESLA a Serbian-American Engineer
(10 July 1856 - 7 January 1943)

Nikola Tesla made breakthroughs in the production, transmission and application of electric power. He
invented the first alternating current (AC) motor and developed AC generation and transmission technology.
In 1884, he was hired by Edison (discoverer of DC dynamos) later on Tesla became his competitor in this field.

Tesla conducted a range of experiments with mechanical oscillators/generators, electrical discharge
tubes, and early X - ray imaging. Tesla in 1890 itself conducted research for wireless lighting and worldwide
wireless electric power distribution in his high - voltage, high-frequency power experiments in New York.
Unfortunately Tesla could not put his ideas in practical use due to lack of funds.
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ELECTROSTATICS

Electricity is really just organized lightning

@/ LEARNING OBJECTIVES
[

— George Carlin

In this unit, student is exposed to

« Historical background of electricity and magnetism
o The role of electrostatic force in day - to-day life
» Coulomb’s law and superposition principle

+ The concept of electric field

« Calculation of electric field for various charge configurations
o Electrostatic potential and electrostatic potential energy

o Electric dipole and dipole moment

o Electric field and electrostatic potential for a dipole

Electric flux
+ Gauss law and its various applications

o Electrostatic properties of conductors and dielectrics

» Polarisation

« Capacitors in series and parallel combinations

o Effect of a dielectric in a capacitor

« Distribution of charges in conductors, corona discharge

» Working of a Van de Graaff generator

INTRODUCTION

Electromagnetism is one of the most
important branches of physics. The
technological developments of the modern
21" century are primarily due to our
understanding of electromagnetism. The
forces we experience in everyday life are
electromagnetic in nature except gravity.

‘ ‘ UNIT-1(XII-Physics_Vol-1).indd 1

D

®

In standard XI, we studied about the
gravitational force, tension, friction, normal
force etc. Newton treated them to be
independent of each other with each force
being a separate natural force. But what is the
origin of all these forces? It is now understood
that except gravity, all forces which we
experience in every day life (tension in the
string, normal force from the surface, friction
etc.) arise from electromagnetic forces within

the atoms. Some examples are

04-03-2019 10:24:32‘ ‘



(i) When an object is pushed, the atoms in
our hand interact with the atoms in the
object and this interaction is basically
electromagnetic in nature.

(i) When we stand on Earth's surface, the
gravitational force on usacts downwards
and the normal force acts upward to
counter balance the gravitational force.
What is the origin of this normal force?

It arises due to the electromagnetic
interaction of atoms on the surface of
the Earth with the atoms present in
the feet of the person. Though, we are
attracted by the gravitational force of the
Earth, we stand on Earth only because
of electromagnetic force of atoms.

(iii) When an object is moved on a surface,
static friction resists the motion of the
object. This static friction arises due to
electromagnetic interaction between
the atoms present in the object and
atoms on the surface. Kinetic friction
also has similar origin.

From these examples, it is clear that
understanding electromagnetism
is very essential to understand the
universe in a holistic manner. The
basic principles of electromagnetism
are dealt in XII physics volume 1.
This unit deals with the behaviour and other
related phenomena of charges at rest. This
branch of electricity which deals with

stationary charges is called Electrostatics.

m Historical background
of electric charges

Two millenniums ago, Greeks noticed
that amber (a solid, translucent material
formed from the resin of a fossilized tree)

G

‘ ‘ UNIT-1(XII-Physics_Vol-1).indd 2

after rubbing with animal fur attracted
small pieces of leaves and dust. The amber
possessing this property is said to be
‘charged. It was initially thought that amber
has this special property. Later people found
that not only amber but even a glass rod
rubbed with silk cloth, attracts pieces of
papers. So glass rod also becomes ‘charged’
when rubbed with a suitable material.
Consider a charged rubber rod hanging from
a thread as shown in Figure 1.1. Suppose
another charged rubber rod is brought near
the first rubber rod; the rods repel each
other. Now if we bring a charged glass rod
close to the charged rubber rod, they attract
each other. At the same time, if a charged
glass rod is brought near another charged
glass rod, both the rods repel each other.

From these observations, the following

inferences are made

(i) The charging of rubber rod and that of
glass rod are different from one another.

(ii) The charged rubber rod repels another
charged rubber rod, which implies
that ‘like charges repel each other. We
can also arrive at the same inference
by observing that a charged glass rod
repels another charged glass rod.

(iii) The charged amber rod attracts the
charged glass rod, implying that the
charge in the glass rod is not the same
kind of charge present in the rubber.
Thus unlike charges attract each other.

Therefore, two kinds of charges exist
in the universe. In the 18" century, Benjamin
Franklin called one type of charge as
positive (+) and another type of charge as
negative (-). Based on Franklin’s convention,
rubber and amber rods are negatively
charged while the glass rod is positively
charged. If the net charge is zero in the
object, it is said to be electrically neutral.

UNIT 1 ELECTROSTATICS
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A negatively charged rubber
rod is attracted to a positively
charged glass rod

(a)

A negatively charged rubber
rod is repelled by another
negatively charged

rubber rod

Rubber

Rubber

==z

| Figure 1.1 (a) Unlike charges attract each other (b) Like charges repel each other

Following the pioneering work of
J. J. Thomson and E. Rutherford, in the late
19% century and in the beginning of 20"
century, we now understand that the atom
is electrically neutral and is made up of
the negatively charged electrons, positively
charged protons, and neutrons which have
zero charge. The material objects made
up of atoms are neutral in general. When
an object is rubbed with another object
(for example rubber with silk cloth), some
amount of charge is transferred from
one object to another due to the friction
between them and the object is then
said to be electrically charged. Charging
the objects through rubbing is called
triboelectric charging.

m Basic properties of

charges

(i) Electric charge

Most objects in the universe are made up
of atoms, which in turn are made up of
protons, neutrons and electrons. These
particles have mass, an inherent property
of particles. Similarly, the electric charge

UNIT 1 ELECTROSTATICS
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is another intrinsic and fundamental
property of particles. The nature of charges
is understood through various experiments
performed in the 19" and 20™ century. The
SI unit of charge is coulomb.

(ii) Conservation of charges

Benjamin Franklin argued that when one
objectis rubbed with another object, charges
get transferred from one to the other. Before
rubbing, both objects are electrically neutral
and rubbing simply transfers the charges
from one object to the other. (For example,
when a glass rod is rubbed against silk
cloth, some negative charge are transferred
from glass to silk. As a result, the glass
rod is positively charged and silk cloth
becomes negatively charged). From these
observations, he concluded that charges are
neither created or nor destroyed but can
only be transferred from one object to other.
This is called conservation of total charges
and is one of the fundamental conservation
laws in physics. It is stated more generally in
the following way.

‘The total electric charge in the universe
is constant and charge can neither be
created nor be destroyed. In any physical

)
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process, the net change in charge will
always be zero.

(iii) Quantisation of charges

What is the smallest amount of charge that
can be found in nature? Experiments show
that the charge on an electron is —e and the
charge on the proton is +e. Here, e denotes
the fundamental unit of charge. The charge g
on any object is equal to an integral multiple
of this fundamental unit of charge e.

q = ne (1.1)

Here n is any integer (0, %1, #2, %3,
4. ). This is called quantisation of
electric charge.

Robert Millikan in his famous experiment
found that the value of e = 1.6 X 10°C. The
charge of an electron is —1.6 X 10" C and
the charge of the proton is +1.6 X 10"°C.
When a glass rod is rubbed with silk cloth,
the number of charges transferred is usually
very large, typically of the order of 10". So
the charge quantisation is not appreciable
at the macroscopic level. Hence the charges
are treated to be continuous (not discrete).
But at the microscopic level, quantisation of
charge plays a vital role.

EXAMPLE 1.1

Calculate the number of electrons in one
coulomb of negative charge.

Solution

According to the quantisation of charge
q=ne

Here q = 1C. So the number of electrons in
1 coulomb of charge is

g IC

= W =6.25x10"electrons
e .OX

@

‘ ‘ UNIT-1(XII-Physics_Vol-1).indd 4

COULOMB’S LAW

In the year 1786, Coulomb deduced the
expression for the force between two
stationary point charges in vacuum or free
space. Consider two point charges q, and q,
atrestin vacuum, and separated by a distance
of r, as shown in Figure 1.2. According to
Coulomb, the force on the point charge q,
exerted by another point charge q, is

1321 =k q}lfzb ?12 (1.2)

where 7, is the unit vector directed
from charge q, to charge q, and k is the

proportionality constant.

Figure 1.2 Coulomb force between two
point charges

Important aspects of Coulomb’s law

(i) Coulomb'slawstatesthattheelectrostatic
force is directly proportional to the
productofthe magnitude of the two point
charges and is inversely proportional to
the square of the distance between the
two point charges.

(ii) The force on the charge q, exerted by
the charge q, always lies along the line
joining the two charges. 7, is the unit

UNIT 1 ELECTROSTATICS
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vector pointing from charge q, to q, .It
is shown in the Figure 1.2. Likewise, the
force on the charge q, exerted by q, is
along —7,, (i.e., in the direction opposite
to 7,).

. 1 . .
(iii) In SI units, k =—— and its value is
4me

9X10° N m* C*.Heree is the permittivity
of free space or vacuum and the value

1
ofe, =——=28.85x10""C’N 'm .
4k

(iv) The magnitude of the electrostatic
force between two charges each of one
coulomb and separated by a distance of
1 m is calculated as follows:

9x10” x1x1 .
|F|==—5——=9x10"N. This is a huge

12
quantity, almost equivalent to the weight
of one million ton. We never come across
1 coulomb of charge in practice. Most of
the electrical phenomena in day-to-day life
involve electrical charges of the order of uC
(micro coulomb) or nC (nano coulomb).

(v) In SI units, Coulomb’s law in vacuum

— 1 .
takes the form FZl:_Mr

4me. 2
a medium of permittivity e, the force

In

between two point charges is given by
T 1 94

F — 112
o 4me 1’

between two point charges in a medium

other than vacuum is always less than
that in vacuum. We define the relative

7,. Since e>¢, the force

permittivity for a given medium as

g = si For vacuum or air, ¢ = 1 and
for all other media g> 1.

(vi) Coulombs law has same structure
as Newtons law of gravitation. Both
are inversely proportional to the
square of the distance between the
particles. The electrostatic force is

directly proportional to the product

UNIT 1 ELECTROSTATICS
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of the magnitude of two point charges
and gravitational force is directly
proportional to the product of two
masses. But there are some important
differences between these two laws.

e The gravitational force between two
masses is always attractive but Coulomb
force between two charges can be
attractive or repulsive, depending on
the nature of charges.

e The value of the gravitational constant
G = 6.626 x 10" N m?kg?. The value
of the constant k in Coulomb law is
k =9 x 10° N m* C? Since k is much
more greater than G, the electrostatic
force is always greater in magnitude
than gravitational force for smaller size
objects.

e The gravitational force between two
masses is independent of the medium.
For example, if 1 kg of two masses
are kept in air or inside water, the
gravitational force between two masses
remains the same. But the electrostatic
force between the two charges depends
on nature of the medium in which the
two charges are kept at rest.

e The gravitational force between two
point masses is the same whether two
masses are at rest or in motion. If the
charges are in motion, yet another
force (Lorentz force) comes into play in
addition to coulomb force.

(vii) The force on a charge q, exerted by a
point charge q, is given by

2 r21

Ez — Z 1 14,

ne, r
Here 7, is the unit vector from charge
q,toq,.

But 7, =—71,,

)
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- 1 N 1 N
K, = qlqz(_ 12)2_ qlqz(ru)

> _ s

ane 1 ' 4me. 1’

(OI') FIZ = —I:’:Zl
Therefore, the electrostatic force obeys
Newton’s third law.

(viii) The expression for Coulomb force
is true only for point charges. But
the point charge is an ideal concept.
However we can apply Coulomb’s law
for two charged objects whose sizes are
very much smaller than the distance
between them. In fact, Coulomb
discovered his law by considering the
charged spheres in the torsion balance
as point charges. The distance between
the two charged spheres is much greater
than the radii of the spheres.

EXAMPLE 1.2

Consider two point charges q, and q, at
rest as shown in the figure.

y

ql qzx

Im '

They are separated by a distance of 1m.
Calculate the force experienced by the two
charges for the following cases:

(@) q,=+2uCandq,=+3uC
(b) q,=+2uCandq,=-3uC

() q,=+2uCandq,=-3uCkeptin water

(e, = 80)
¢

‘ ‘ UNIT-1(XII-Physics_Vol-1).indd 6

Solution
y
Case (a)
%
Fiz Fy
O——x
q, q,

(@ q=+2uC,q,=+3uC,andr = Im.
Both are positive charges. so the force will
be repulsive

Force experienced by the charge q, due to
q, is given by

- 1 g9, -~
FZI:R 11,22 12

Here 7,, is the unit vector from q, to q,.
Since q, is located on the right of q,, we
have

7, =i, so that

1
4me,

- 9x10°x2x107°x3x10°° ~
E = i

21 2
1

=9x%10°

=54%x10°Ni

UNIT 1 ELECTROSTATICS
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According to Newtonss third law, the force
experienced by the charge q, due to q, is
Fo__F

12 21

So that E, = —54x10°N7 .

The directions of F,andE, are shown in
the above figure in case (a)

(b) q,=+2uC, q,=-3pC, and r = Im.
They are unlike charges. So the force will
be attractive.

Force experienced by the charge q, due to
q, is given by

- 9x10°x(2x10°)x(=3x10°°) _

E = r
21 12
12

= —54x10°Ni (Using 7,,=1)

The charge q, will experience an attractive
force towards q, which is in the negative x
direction.

According to Newton’s third law, the force
experienced by the charge q, due to q, is

sothat E,=54x10"°Ni

The directions of F,andF, are shown in
the figure (case (b)).

(c) If these two charges are kept inside
the water, then the force experienced by q,
due to q,

- 1 q4, ~
w
E " ime ;zzr“

since e=¢ ¢,
r o

Ryl

— 1

2 127
,

B 1 494,

we have =
ime e r

om

UNIT 1 ELECTROSTATICS
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Therefore,

- 54x107°N . -
E) = —Ti =—0.675x10°Ni

: Note that the strength of the
force between the two charges
in water is reduced by 80 times

compared to the force between the same
two charges in vacuum.

When common salt (NaCl) is taken in
water, the electrostatic force between Na
and Cl ions is reduced due to the high
relative permittivity of water (¢ = 80).
This is the reason water acts as a good
solvent.

EXAMPLE 1.3

Two small-sized identical equally charged
spheres, each having mass 1 mg are hanging
in equilibrium as shown in the figure. The
length of each string is 10 cm and the
angle 0 is 7° with the vertical. Calculate the
magnitude of the charge in each sphere.

(Take g =10 ms™)

Solution

If the two spheres are neutral, the angle
between them will be 0° when hanged

D
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vertically. Since they are positively
charged spheres, there will be a repulsive
force between them and they will be at
equilibrium with each other at an angle
of 7° with the vertical. At equilibrium,
each charge experiences zero net force in
each direction. We can draw a free body
diagram for one of the charged spheres and
apply Newton’s second law for both vertical
and horizontal directions.

The free body diagram is shown below.

In the x-direction, the acceleration of the
charged sphere is zero.

Using Newton’s second law(I:;w = mZi),we
have

Tsin®i —Fj =0
T'sin0=F, (1)

Here T is the tension acting on the charge
due to the string and F_is the electrostatic
force between the two charges.

In the y-direction also, the net acceleration
experienced by the charge is zero.

Tcos®j —mgj =0
Therefore, TcosO=mg (2)

By dividing equation (1) by equation (2),

C

‘ ‘ UNIT-1(XII-Physics_Vol-1).indd 8

tanf= k (3)
mg
Since they are equally charged, the
magnitude of the electrostatic force is

2
E :kq—2 where k=
r 4me,
Here r = 2a = 2Lsin0. By substituting these
values in equation (3),

2

q

tan0=k——
mg(stinO)

(4)

Rearranging the equation (4) to get q

/ tan®
q=2Lsin® mgkan

10° x10xtan7°
9%10°

q=89x10°C=89nC

EXAMPLE 1.4

Calculate the electrostatic force and
gravitational force between the proton and
the electron in a hydrogen atom. They are

:2><0.1><sin7°><\/

separated by a distance of 5.3 X 10" m.
The magnitude of charges on the electron
and proton are 1.6 X 10" C. Mass of the
electron is m_= 9.1 X 10" kg and mass of
protonism = 1.6 X 10" kg.

Solution

The proton and the electron attract each
other. The magnitude of the electrostatic
force between these two particles is given by

9 —19\?
. :E:9><10 ><(1.6><10 )

e 2

r (5.3><10*“)2

 9%2.56
28.09

x107=8.2 X 108N

UNIT 1 ELECTROSTATICS
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The gravitational force between the
proton and the electron is attractive.
The magnitude of the gravitational force
between these particles is

Gm,m,

G 2
r

_ 6.67x10 "' x9.1x10 M x1.6x10"”

(53x107™
11
:97— 10—47 34X1047N
28.09
F 82x10°
The ratio of the two forces—= = %
E, 3.4x10

=241 X 10¥
Note that F ~10”F,

The electrostatic force between a proton
and an electron is enormously greater than
the gravitational force between them. Thus
the gravitational force is negligible when
compared with the electrostatic force in
many situations such as for small size
objects and in the atomic domain. This is
the reason why a charged comb attracts an
uncharged piece of paper with greater force

even though the piece of
paper is attracted downward
by the Earth. This is shown
in Figure 1.3

between a comb and pieces of papers

‘ Figure 1.3 Electrostatic attraction
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m Superposition principle
Coulomb’s law explains the interaction
between two point charges. If there are
more than two charges, the force on one
charge due to all the other charges needs
to be calculated. Coulomb’s law alone does
not give the answer. The superposition
principle explains the interaction between
multiple charges.

According to this superposition principle,
the total force acting on a given charge is
equal to the vector sum of forces exerted
on it by all the other charges.

Consider a system of n charges, namely q,,
q, q, ----q,- The force on q, exerted by the
charge q,

T 449, »
Ez =k 2
"

Here r,, is the unit vector from g, to q, along
the line joining the two charges and r,, is the
distance between the charges q, and q,. The
electrostatic force between two charges is
not affected by the presence of other charges
in the neighbourhood.

The force on q, exerted by the charge q, is

T 9.49; -
Ea =k 2 T3
1

By continuing this, the total force acting
on the charge q, due to all other charges is
given by
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Without the superposition
principle, Coulomb’s law will
be incomplete when applied

to more than two charges. Both the
superposition principle and Coulombs
law form fundamental principles
of electrostatics and explain all the
phenomena in electrostatics. But they
are not derivable from each other.

EXAMPLE 1.5

Consider four equal charges q,,q, q,and q,
= q = +1uC located at four different points
on a circle of radius 1m, as shown in the
tigure. Calculate the total force acting on
the charge q, due to all the other charges.

Y

The charges q,and q, are equi-distant from
q,- As a result the strengths (magnitude)
of the forces F, and F, are the same
even though their directions are different.
Therefore the vectors representing these
two forces are drawn with equal lengths.
But the charge q, is located farther

compared to q, and q,. Since the strength
of the electrostatic force decreases as
Solution distance increases, the strength of the force
E, is lesser than that of forces F, and F,.
Hence the vector representing the force F,
is drawn with smaller length compared to
that for forces F, and F, .

According to the superposition principle,
the total electrostatic force on charge q
is the vector sum of the forces due to the
other charges,
From thefigure, 7, = V2 m=r, andr, =2m
ﬁlm = Ez +ﬁ13 +E4
The magnitudes of the forces are given by

The following diagram shows the direction P kg’ 9x10°x107"
of each force on the charge q,. B 4
GO UNIT 1 ELECTROSTATICS
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kq’ 9x10” 10"
Fy=—%=h="""F"
1 2

=4.5X 10> N

From the figure, the angle 6 = 45°. In terms
of the components, we have

E,=F,cos®i —F,sin@;

[N 1 .
=4.5%X107° X—i —4.5X107° x—j
2

N7 N7

E,=F,i=225x10"Ni

3

E,=F, cos0i +F, sin@j

— 45%107 x—=7 44.5x10°° xij
V2 V2

Then the total force on q, is,

E = <F12 cosBi —F,sin6 ] )—l—FBf
—I—(F14 cos0i +F,sin0j )
E" = <F12 cosO+F, +F, cos6 )f

~

-I—(—F12 sin@+F, sine)]

Since F, = F ,, the j® component is zero.

Hence we have
E" =(F,cos0+F, +F,cosb)i

substituting the values in the above
equation,

— [ﬂ 2254+ ﬂ]f = (4,5\/5 + 2.25)?

V2 V2

E" =8.61x10°Ni

The resultant force is along the positive x
axis.
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ELECTRIC FIELD AND
ELECTRIC FIELD LINES

m Electric Field

The interaction between two charges is
determined by Coulomb’s law. How does the

interaction itself occur? Consider a point
charge kept at a point in space. If another
point charge is placed at some distance from
the first point charge, it experiences either
an attractive force or repulsive force. This
is called ‘action at a distance. But how does
the second charge know about existence of
the first charge which is located at some
distance away from it? To answer this
question, Michael Faraday introduced the
concept of field.

According to Faraday, every charge in the
universe creates an electric field in the
surrounding space, and if another charge
is brought into its field, it will interact
with the electric field at that point and will
experience a force. It may be recalled that
the interaction of two masses is similarly
explained using the concept of gravitational
field (Refer unit 6, volume 2, XI physics).
Both the electric and gravitational forces are
non-contact forces, hence the field concept
is required to explain action at a distance.

Consider a source point charge q located at
a point in space. Another point charge q_
(test charge) is placed at some point P which
is at a distance r from the charge q. The
electrostatic force experienced by the charge
q, due to q is given by Coulomb’s law.

F:kqgo? - @? where k=——

r ame, r 4me,

D
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The charge q creates an electric field in the
surrounding space. The electric field at the
point P at a distance r from the point charge
q is the force experienced by a unit charge
and is given by
p=f Mo L d; 1y
q, r ame, r

Here 7 is the unit vector pointing from q to
the point of interest P. The electric field is a
vector quantity and its SI unit is Newton per
Coulomb (NC1).

Important aspects of Electric field

(i) If the charge g is positive then the electric
field points away from the source charge
and if g is negative, the electric field
points towards the source charge g. This
is shown in the Figure 1.4.

For a positive
source charge,

the electric
field at P points / >
radially outward P E
from q.

R
o
g
o
“\“
R
R
X
q

d X

For a negative
source charge,
the electric

field at P points
radially inward ﬁ *p
toward q. /

q

.
g
\“‘
\“‘
\“
g =

Figure 1.4 Electric field of positive and
negative charges

(ii) Ifthe electric field at a point P is £,then
the force experienced by the test charge
q, placed at the point P is

(2
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Feg,F (1.5)

This is Coulomb’s law in terms of electric
field. This is shown in Figure 1.5

If q is positive,
the force on E
the test charge
= -
qo is directed ZV F=49,E
away from q. P

5
\‘\“
s
\““
s
q
@/ "~

If g is negative ,
the force on
the test ch:
e test charge q,

qo is directed >
toward q. E P
-~ =
" F=9E
_q o
o™

Figure 1.5 Coulomb’s law in terms of
electric field

(iii) The equation (1.4) implies that the
electric field is independent of the test
charge q_and it depends only on the
source charge q.

(iv) Since the electric field is a vector
quantity, at every point in space,
this field has unique direction and
magnitude as shown in Figures 1.6(a)
and (b). From equation (1.4), we can
infer that as distance increases, the
electric field decreases in magnitude.
Note that in Figures 1.6 (a) and (b)
the length of the electric field vector is
shown for three different points. The
strength or magnitude of the electric
field at point P is stronger than at the
points Q and R because the point P is
closer to the source charge.

UNIT 1 ELECTROSTATICS
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(a) q
%
R Forq
- -
E, | 2
\ o - EP
0t
P
b g

(vii) There are two kinds of the electric field:

uniform (constant) electric field and
non-uniform electric field. Uniform
electric field will have the same direction
and constant magnitude at all points in
space. Non-uniform electric field will
have different directions or different
magnitudes or both at different points
in space. The electric field created by a
point charge is basically a non uniform
electric field. This non-uniformity
arises, both in direction and magnitude,
with the direction being radially
outward (or inward) and the magnitude
changes as distance increases. These are
shown in Figure 1.7.

Figure 1.6 (a) Electric field due to
positive charge (b) Electric field due to
negative charge

(v) In the definition of electric field, it is

assumed that the test charge g, is taken
sufficiently small, so that bringing this
test charge will not move the source
charge. In other words, the test charge
is made sufficiently small such that it
will not modity the electric field of the
source charge.

(vi) The expression (1.4) is valid only for

point charges. For continuous and finite
size charge distributions, integration
techniques must be used These will
be explained later in the same section.
However, this expression can be used
as an approximation for a finite-sized
charge if the test point is very far away
from the finite sized source charge.
Note that we similarly treat the Earth
as a point mass when we calculate
the gravitational field of the Sun on
the Earth (refer unit 6, volume 2, XI
physics).

UNIT 1 ELECTROSTATICS
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> > > —_— —>> >
> > > > >»> >
> > > > >
> > > > >»> >
> > > 3> > >
> > >» — —3» >
Uniform Flectric field Non uniform electric
field

<«
a A
\ ~ 7
Non uniform Non uniform electric
electric field field

Figure 1.7 Uniform and non-uniform
electric field

Calculate the electric field at points P, Q
for the following two cases, as shown in the

D

tigure.
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(a) A positive point charge +1 uC is
placed at the origin

(b) A negative point charge -2 uC is
placed at the origin

y

Q

4m

Ce 2mP

+1p E *
P
y
6m (O 2m

Solution

Case (a)
The magnitude of the electric field at point
Pis
p o L g _9x10°x1x10°
" o4me, 1 4
=2.25%x10°NC™"
Since the source charge is positive, the

electric field points away from the charge. So
the electric field at the point P is given by

E, =225x10°NC i

For the point Q
=1 9x10”x1x10°°
[E,| =" =0.56x10'NC"!
16
Hence E,=0.56x10"]

(14
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Case (b)
The magnitude of the electric field at point

\E ‘_kq_ 1 g 9x10°x2x10"°
oy 4me, r’ 4

=45 X 10° N C*!
Since the source charge is negative, the

electric field points towards the charge. So
the electric field at the point P is given by

E, =—45x10’i NC'

~9x10"x2x10°°
o= 36

For the point Q, ‘E
=0.5x 10°N C"!
E,=056x10’I NC"

At the point Q the electric field is directed
along the positive x-axis.

YA =
EQ
Q
4m
2m
>
P
y
E,
Q 6m Vs 2m
—o— > -
Q —2HC\>( P E) X
P
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m Electric field due to the
system of point charges

Suppose a number of point charges are
distributed in space. To find the electric
tield at some point P due to this collection
of point charges, superposition principle is
used. The electric field at an arbitrary point
due to a collection of point charges is simply
equal to the vector sum of the electric fields
created by the individual point charges. This
is called superposition of electric fields.

Consider a collection of point charges
Q1>Gy>Gseeveneene g, located at various points in
space. The total electric field at some point
P due to all these n charges is given by

o —E +E+E +...+E (1.6)
. 1 4. D 9=
Ik e TR e R
tot 47[80 {rﬁ) 1P rZZP 2P 7/'32P 3P
qn"
“s+ninw
(1.7)
Here 7,,,7,,,7,pweeeneene r, are the distance of the

the charges ¢,,4,,q;. .. g, from the point
P respectively. Alsor,

> are the

TpsTypeenerecns T
corresponding unit vectors directed from

Q>G5 Gzeeeeeeeees q,toP.
Equation (1.7) can be re-written as,

n

. 1
Etot o Z

4me, o

4z, J (1.8)
Tp

For example in Figure 1.8, the resultant
electric field due to three point charges
4,-9,-9, at point P is shown.

Note that the relative lengths of the electric
tield vectors for the charges depend

on relative distances of the charges to the
point P.
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-
q 3P

3 P E)
——F / * 2P

q, 2 @/’ 1P -
ql E3P

e S

Eto? E1P+ E2P+E3P

Figure 1.8 Superposition of Electric field

EXAMPLE 1.7

Consider the charge configuration asshown
in the figure. Calculate the electric field at
point A. If an electron is placed at points
A, what is the acceleration experienced by
this electron? (mass of the electron = 9.1
X 107! kg and charge of electron = —1.6 x
10" C)

y
q2=+1},lcﬂ A
2mm
2mm
b X
q] :+1l,lC

Solution

By using superposition principle, the net

electric field at point A is

EA - Lq_zlA + L;
ane 1,

where 7, and r,, are the distances of point

A from the two charges respectively.

- 9x10°x1Ix107°, ~, 9x10°x1x10°°, .
E, = ( (7)

(2><10‘3)2 : (2x10° )Z
S
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=225x10" j+2.25x10°7 =2.25x10°(i + j )

The magnitude of electric field

E,|= \/(2.25><109 | +(225%10°)
=2.25x2x10° NC""

The direction of E, 1is given by
E, 225x10°(i +j) (i+])

—4 = = » which
E,|  225x42x10° J2 whe
is the unit vector along OA as shown in the
tigure.

E,
Yy q
/
q] =+1 HC’\ A
N4
2mm a
2mm | .
O q1 =+1 H.C

The acceleration experienced by an
electron placed at point A is

L
A m B m
(-16x1077)x(2.25%10°)(7 +7)
- 9.1x10"

=-3.95x10" (i +j)N

The electron is accelerated in a direction
exactly opposite to E, .

FEE] Electric field due

to continuous charge
distribution

The electric charge is quantized
microscopically. The expressions (1.2),
(1.3), (1.4) are applicable to only point
charges. While dealing with the electric field
due to a charged sphere or a charged wire

i
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etc., it is very difficult to look at individual
charges in these charged bodies. Therefore,
it is assumed that charge is distributed
continuously on the charged bodies and the
discrete nature of charges is not considered
here. The electric field due to such
continuous charge distributions is found by
invoking the method of calculus.

Consider the following charged object
of irregular shape as shown in Figure
1.9. The entire charged object is divided
into a large number of charge elements
Aq,,Aq,,Aq,.....Aq, and each charge element
Aq is taken as a point charge.

Y
AEZ/X—)

— AE

AE, °%

Figure 1.9 Continuous charge
distributions

The electric field at a point P due to a
charged object is approximately given by the
sum of the fields at P due to all such charge
elements.

(1.9)

UNIT 1 ELECTROSTATICS
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Here Ag, is the i charge element, r,, is
the distance of the point P from the i charge
element and 7, is the unit vector from i
charge element to the point P.

However the equation (1.9) is only
an approximation. To incorporate the
continuous distribution of charge, we take
the limit Aq— 0(=dgq). In this limit, the
summation in the equation (1.9) becomes
an integration and takes the following form

B=— d—?? (1.10)
ane, J r

Here r is the distance of the point P from
the infinitesimal charge dgq and 7 is the
unit vector from dgq to point P. Even though
the electric field for a continuous charge
distribution is difficult to evaluate, the force
experienced by some test charge q in this
electric field is still given by F = gE .
(a) If the charge Q is uniformly distributed
along the wire of length L, then linear
charge density (charge per unit length)

is A= % Its unit is coulomb per meter
(Cm™).
The charge present in the infinitesimal

length dl is dq = Adl. This is shown in
Figure 1.10 (a).

dv
dg=Adl

(a) (b) (©)

Figure 1.10 Line, surface and volume
charge distribution

The electric field due to the line of total
charge Q is given by

UNIT 1 ELECTROSTATICS
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- 1 Adl~ A dl~
E=— —r=—1[5r
4me, r ane, v r

(b) If the charge Q is uniformly distributed
on a surface of area A, then surface
charge density (charge per unit area)

is o= % . Its unit is coulomb per square
meter (C m?).

The charge present in the infinitesimal
area dA is dq = 0dA. This is shown in
the figure 1.10 (b).

The electric field due to a of total charge
Q is given by

E=

1 Gda: 1 da.
f 3 T — (0) _27'

4Te, r 4me, r

This is shown in Figure 1.10(b).

(c) If the charge Q is uniformly distributed
in a volume V, then volume charge
density (charge per unit volume) is

given by p= % Its unit is coulomb per

cubic meter (C m?).

The charge present in the infinitesimal
volume element dV is dq = pdV. This is
shown in Figure 1.10(c).

The electric field due to a volume of
total charge Q is given by

= 1 pdVA 1 dVA
E= r = r.
4me. f r’ 4me. pf r’

EXAMPLE 1.8

A block of mass m and positive charge
q is placed on an insulated frictionless
inclined plane as shown in the figure. A

uniform electric field E is applied parallel
to the inclined surface such that the block
is at rest. Calculate the magnitude of the
electric field E.

5
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Solution

Note: A similar problem is solved in XI*

Physics volume I, unit 3 section 3.3.2.

There are three forces that acts on the mass m:

(i) The downward gravitational force
exerted by the Earth (mg)

(ii) The normal force exerted by the
inclined surface (N)

(iii) The Coulomb force given by uniform
electric field (qE)

The free body diagram for the mass m is
drawn below.

Forces acting on the mass m

qE
N

m,q

mg

Free body diagram

i
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A convenient inertial coordinate system
is located in the inclined surface as shown
in the figure. The mass m has zero net
acceleration both in x and y-direction.

Along x-direction, applying Newton’s
second law, we have

mgsin®i —qEi =0

mgsin@—qE =0
in0

g mgsin
q

Note that the magnitude of the electric
tield is directly proportional to the mass m
and inversely proportional to the charge q.

or,

It implies that, if the mass is increased by
keeping the charge constant, then a strong
electric field is required to stop the object
from sliding. If the charge is increased by
keeping the mass constant, then a weak
electric field is sufficient to stop the mass
from sliding down the plane.

The electric field also can be expressed
in terms of height and the length of the
inclined surface of the plane.

_mgh
qL

FERY Electric field lines

Electric field vectors are visualized by the
concept of electric field lines. They form a
set of continuous lines which are the visual
representation of the electric field in some

E

region of space. The following rules are

followed while drawing electric field lines

for charges.

e The electric field lines start from a
positive charge and end at negative
charges or at infinity. For a positive

UNIT 1 ELECTROSTATICS
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point charge the electric field lines point
radially outward and for a negative
point charge, the electric field lines
point radially inward. These are shown
in Figure 1.11 (a) and (b).

the field lines are directed

For a positive point charge,
radially outward.

(a)

For a negative point charge,
the field lines are directed

radially inward.

S

(b)

Figure 1.11 Electric field lines for
isolated positive and negative charges

Note that for an isolated positive point
charge the electric field line starts from
the charge and ends only at infinity. For an
isolated negative point charge the electric
field lines start at infinity and end at the
negative charge.
e The electric field vector at a point in
space is tangential to the electric field

UNIT 1 ELECTROSTATICS
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line at that point. This is shown in
Figure 1.12

| Figure 1.12 Electric field at a point P

e The electric field lines are denser (more
closer) in a region where the electric
field has larger magnitude and less
dense in a region where the electric field
is of smaller magnitude. In other words,
the number of lines passing through a
given surface area perpendicular to the
lines is proportional to the magnitude
of the electric field in that region. This
is shown in Figurel.13

|

= INNS

/

‘ Figure 1.13 Electric field has larger

magnitude at surface A than B

Figure 1.13 shows electric field lines from
a positive point charge. The magnitude of
the electric field for a point charge decreases

9
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= 1
as the distance increases[‘E‘oc—z]. So the
r

electric field has greater magnitude at the

surface A than at B. Therefore, the number

of lines crossing the surface A is greater than

the number of lines crossing the surface B.

Note that at surface B the electric field lines

are farther apart compared to the electric

field lines at the surface A.

e No two electric field lines intersect each
other. If two lines cross at a point, then
there will be two different electric field
vectors at the same point, as shown in
Figure 1.14.

—

p

——> = Electric field
~—~ = Electric field lines

Figure 1.14 Two electric field lines never
intersect each other

As a consequence, if some charge is placed
in the intersection point, then it has
to move in two different directions
at the same time, which is physically
impossible. Hence, electric field lines
do not intersect.

e The number of electric field lines that
emanate from the positive charge or
end at a negative charge is directly
proportional to the magnitude of the
charges.

For example in the Figure 1.15, the electric

field lines are drawn for charges +q and

-2q. Note that the number of field lines

emanating from +q is 8 and the number

of field lines ending at -2q is 16. Since the
magnitude of the second charge is twice that

(a

‘ ‘ UNIT-1(XIl-Physics_Vol-1).indd 20

Electric field lines

Nt S

Y

(a)
Electric field lines

(b)

Figure 1.15 Electric field lines and
magnitude of the charge

of the first charge, the number of field lines
drawn for -2q is twice in number than that
for charge +q.

EXAMPLE 1.9

The following pictures depict electric field
lines for various charge configurations.

NN

(a)

UNIT 1 ELECTROSTATICS
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(i) Infigure (a) identify the signs of two

a

9>

(ii) In figure (b), calculate the ratio of
two positive charges and identify the
strength of the electric field at three
points A, B, and C

charges and find the ratio

(iii) Figure (c) represents the electric field
lines for three charges. If q, = -20 nC,
then calculate the values of q,and q,

Solution

(i)  The electric field lines start at q, and
end at q,. In figure (a), q,is positive
and q, is negative. The number
of lines starting from q,is 18 and
number of the lines ending at q, is
6. So q, has greater magnitude. The

QN _6 1y implies
9, 3

N 18
that |q2| = 3|q1|

ratio of

2

(ii) In figure (b), the number of field
lines emanating from both positive

UNIT 1 ELECTROSTATICS
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charges are equal (N=18). So the
charges are equal. At point A,
the electric field lines are denser
compared to the lines at point B. So
the electric field at point A is greater
in magnitude compared to the field
at point B. Further, no electric field
line passes through C, which implies
that the resultant electric field at C
due to these two charges is zero.

(iii) In the figure (c), the electric field
lines start at q, and q, and end at q,.
This implies that q and g, are positive
charges. The ratio of the number

8

16

1

4 _ %=
q2 q2
implying that q,and q,are half of the
magnitude of q,. So q, = q, = +10 nC.

of field lines is %

ELECTRIC DIPOLE AND
ITS PROPERTIES

m Electric dipole

Two equal and opposite charges separated
by a small distance constitute an electric
dipole. In many molecules, the centers of

positive and negative charge do not coincide.
Such molecules behave as permanent
dipoles. Examples: CO, water, ammonia,
HCl etc.

Consider two equal and opposite point
charges (+q, -q) that are separated by a
distance 2a as shown in Figure 1.16(a).

The electric dipole moment is defined as
p= qr. —qr..

Here 7, is the position vector of +q from
the origin and 7 is the position vector of -q
from the origin. Then, from Figure 1.16 (a),

D
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y
2
—>
_9 a a e_x
- +q

Figure 1.16 (a) Electric dipole (b)
Electric field lines for the electric dipole

p=qai —qa(—i)=2qai  (1.11)

The electric dipole moment vector lies along
the line joining two charges and is directed
from -q to +q. The SI unit of dipole moment is
coulomb meter (Cm). The electric field lines for

an electric dipole are shown in Figure 1.16 (b).

e For simplicity, the two charges are
placed on the x-axis. Even if the two
charges are placed on y or z-axies,
dipole moment will point from -q to
+q. The magnitude of the electric dipole
moment is equal to the product of the
magnitude of one of the charges and the
distance between them, |p|=2qa

e Though the electric dipole moment

for two equal and opposite charges is
defined, it is very general. It is possible
to define and calculate the electric
dipole moment for a single charge, two
positive charges, two negative charges
and also for more than two charges.
For a collection of n point charges, the
electric dipole moment is defined as
follows:

(2
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F=> a7 (1L12)

where 7 is the position vector of charge g,
from the origin.

EXAMPLE 1.10

Calculate the electric dipole moment for
the following charge configurations.

y y
o212 o x — o2 ox
+q +q +q +q
(a) (b)
y y
(L -2q +q

a -2q a

(09" (d)

Solution

Case (a) The position vector for the +q on
the positive x-axis is ai and position vector
for the +q charge the negative x axis is —ai .
So the dipole moment is,

p=(+a)(ai )+ (+q)(—ai ) =0

Case (b) In this case one charge is placed
at the origin, so its position vector is zero.
Hence only the second charge +q with
position vector ai contributes to the dipole
moment, which is p = gai .

From both cases (a) and (b), we can infer
that in general the electric dipole moment
depends on the choice of the origin
and charge configuration. But for one
special case, the electric dipole moment
is independent of the origin. If the total

UNIT 1 ELECTROSTATICS
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charge is zero, then the electric dipole
moment will be the same irrespective of
the choice of the origin. It is because of this
reason that the electric dipole moment of
an electric dipole (total charge is zero) is
always directed from —q to +q, independent
of the choice of the origin.

Case (c) p=(—2q)aj +q(2a)(—] )= —4qaj.
Note that in this case p is directed from
-2q to +q.

Case (d) p=—2qa(—i)+qaj +qa(—j)
=2qa i

The water molecule (H,0) has this charge
configuration. The water molecule has
three atoms (two H atom and one O
atom). The centers of positive (H) and
negative (O) charges of a water molecule
lie at different points, hence it possess
permanent dipole moment. The O-H bond
length is 0.958 X 10" m due to which the
electric dipole moment of water molecule
has the magnitude p = 6.1 x 10*° Cm. The
electric dipole moment p is directed from
center of negative charge to the center of
positive charge, as shown in the figure.

6 Center of
A / positive charge
v°+

Center of
negative
charge
0.958A
© ™
0,
-2q O> 104

©+q
H
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m Electric field due to a

dipole

Case (i) Electric field due to an electric
dipole at points on the axial line

Consider an electric dipole placed on the
x-axis as shown in Figure 1.17. A point C is
located at a distance of r from the midpoint
O of the dipole along the axial line.

Axial line .
E E,
<—-o >
C

= O»

. © 'f@i«
20w

>

r

Figure 1.17 Electric field of the dipole
along the axial line

The electric field at a point C due to +q is
. 1
E JE—

7 4TC£0 (r_a)z

along BC

Since the electric dipole moment vector p
is from —-q to +q and is directed along BC,
the above equation is rewritten as

- :L q N
E, 4me, (r—a)zp (1.13)

where p is the electric dipole moment unit
vector from —q to +q.
The electric field at a point C due to —q is

- __L q A
= 4me, (r+a)2 P (1.14)

Since +q is located closer to the point C than
-q, E, is stronger than E . Therefore, the

length of the E, vector is drawn larger than
that of E_ vector.

The total electric field at point C is calculated
using the superposition principle of the
electric field.

E'tot:EwL_‘_E*
_ 1 q 5— 1 g =
47]:80 (r_a)z 4TC£0 (r_|_

A
5

04-03-2019 10:25:17‘ ‘



tot 2 2
e \(r—a) (r+a)] ] s
= 1 4ra ~ (1.16)
tot — 41'580 q (r2 . )2 P .

Note that the total electric field is along E+,
since +¢ is closer to C than —q.
The direction of E,, is shown in Figure 1.18.

=1

tot

Qe
Oe

= Op
f0w

r

Figure 1.18 Total electric field of the
dipole on the axial line

If the point C is very far away from the
dipole then (r >> a). Under this limit the

2
term (rz—az) ~r*. Substituting this into

equation (1.16), we get

If the point C is chosen on the left side of
the dipole, the total electric field is still in
the direction of p. We infer this result by
examining the electric field lines of the
dipole shown in Figure 1.16(b).

Case (ii) Electric field due to an electric
dipole at a point on the equatorial plane

Consider a point C at a distance r from the
midpoint O of the dipole on the equatorial
plane as shown in Figure 1.19.

Since the point C is equi-distant from +q
and -q, the magnitude of the electric fields
of +q and —q are the same. The direction of
E, is along BC and the direction of E is
along CA. E . and E are resolved into two
components; one component parallel to the
dipole axis and the other perpendicular to
it. The perpendicular components ‘E +‘sine
and ‘Ef‘sine are oppositely directed and
cancel each other. The magnitude of the
total electric field at point C is the sum of
the parallel components of E, and E and

B __1 @] p (r>>a) its direction is along —p as shown in the
ame, \ 7 Figure 1.19.
since 2aqp = p j ) o
1 9% E,h = —‘E+‘cosep —‘E_‘coseﬁ (1.18)
L =—02P (r>>a) (1.17)
ane, r
—> Equatorial plane
A
B bisinﬂ
L. +
E cos0 0§
A/\ 39 B pe e(r\B ﬁ_ cos§ O
o a < O a é
-q +q
E— E sinf
Y -

| Figure 1.19 Electric field due to a dipole at a point on the equatorial plane

(24
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The magnitudes E . and E are the same and
are given by

El=lf|=_1 4
Bl ey

By substituting equation (1.19) into equation
(1.18), we get

since p=2qap (1.20)
At very large distances (r>>a), the equation

(1.20) becomes
B =——"1 2P r>>a)  (1.21)
4Te_ r
(i) From equations (1.17) and (1.21), it is

Important inferences
inferred that for very large distances,

the magnitude of the electric field at
points on the dipole axis is twice the
magnitude of the electric field at points
on the equatorial plane. The direction of
the electric field at points on the dipole
axis is directed along the direction of
dipole moment vector p but at points
on the equatorial plane it is directed
opposite to the dipole moment vector,
that is along —p.

(i) At very large distances, the electric
tield due to a dipole varies as is Note
that for a point charge, the' electric
field varies as —. This implies that the
electric field due toa dipole at very large
distances goes to zero faster than the

UNIT 1 ELECTROSTATICS
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electric field due to a point charge. The
reason for this behavior is that at very
large distance, the two charges appear
to be close to each other and neutralize
each other.

(iii) The equations (1.17) and (1.21) are
valid only at very large distances
(r>>a). Suppose the distance
2a approaches zero and q approaches
infinity such that the product of
2aq = p is finite, then the dipole is
called a point dipole. For such point
dipoles, equations (1.17) and (1.21)
are exact and hold true for any r.

m Torque experienced

by an electric dipole in the
uniform electric field

Consider an electric dipole of dipole
moment p placed in a uniform electric field
E whose field lines are equally spaced and
point in the same direction. The charge +q
will experience a force qE in the direction
of the field and charge —q will experience
a force -qE in a direction opposite to the
field. Since the external field E is uniform,
the total force acting on the dipole is zero.
These two forces acting at different points
will constitute a couple and the dipole
experience a torque as shown in Figure 1.20.
This torque tends to rotate the dipole. (Note
that electric field lines of a uniform field
are equally spaced and point in the same
direction).

The total torque on the dipole about the
point O

T=0Ax(—qE)+0BxqE  (1.22)

Using right-hand corkscrew rule (Refer
XI, volume 1, unit 2), it is found that total

5
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L

Y

+4@° >

Y

Y

2a sinf

Y

Y

q L‘T};‘—@d O
» A _q

Torque is into the paper ®

Figure 1.20 Torque on dipole

torque is perpendicular to the plane of the
paper and is directed into it.
The magnitude of the total torque

T= ‘52“(—q§)‘sin6 + ‘51§Hq1§‘sin9
T=gE-2asin6 (1.23)

where 0 is the angle made by p with E.
Since p = 2aq, the torque is written in terms

of the vector product as
T=pxE (1.24)

The magnitude of this torque is T= pEsin®
and is maximum when 6 =90".

This torque tends to rotate the dipole and
align it with the electric field E. Once p
is aligned with E, the total torque on the
dipole becomes zero.

If the electric field is not uniform, then the
force experienced by +q is different from

Microwave oven works on the principle of torque

@L acting on an electric dipole. The food we consume

- has water molecules which are permanent electric
dipoles. Oven produces microwaves that are

oscillating electromagnetic fields and produce torque on the
water molecules. Due to this torque on each water molecule,
the molecules rotate very fast and produce thermal energy.

Thus, heat generated is used to heat the food.

€
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that experienced by —q. In addition to the
torque, there will be net force acting on the
dipole. This is shown in Figure 1.21.

Non uniform E’ q ﬁ

+q

Net torque, Net force

Figure 1.21 The dipole in a non-uniform
electric field

EXAMPLE 1.11

A sample of HCI gas is placed in a uniform
electric field of magnitude 3 X 10* N C™.
The dipole moment of each HCI molecule
is 3.4 X 107 Cm. Calculate the maximum
torque experienced by each HCl molecule.

Solution

The maximum torque experienced by the
dipole is when it is aligned perpendicular
to the applied field.

T, = pEsin90° =3.4x10 " x3x10"Nm
T,..=102x107°Nm
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ELECTROSTATIC
POTENTIAL AND
POTENTIAL ENERGY

Introduction

In mechanics, potential energy is defined
for conservative forces. Since gravitational
force is a conservative force, its gravitational
potential energy is defined in XI standard
physics (Unit 6). Since Coulomb force
is an inverse-square-law force, its also a
conservative force like gravitational force.
Therefore, we can define potential energy
for charge configurations.

m Electrostatic Potential
energy and Electrostatic
potential

Consider a positive charge q kept fixed
at the origin which produces an electric
field E around it. A positive test charge q'
is brought from point R to point P against
the repulsive force between q and q’ as
shown in Figure 1.22. Work must be done to
overcome this repulsion. This work done is
stored as potential energy.

q

Figure 1.22 Work done is equal to
potential energy

The test charge q’ is brought from R to P
with constant velocity which means that
external force used to bring the test charge
q’ from R to P must be equal and opposite

UNIT 1 ELECTROSTATICS
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to the coulomb force (Fw — _F ) The

coloumb

work done is

W:fﬁm.d; (1.25)
Since coulomb force is conservative,
work done is independent of the path and
it depends only on the initial and final
positions of the test charge. If potential
energy associated with q" at P is U, and that
atRis U, then difference in potential energy
is defined as the work done to bring a test
charge q' from point R to P and is given as
U,-U,=W=AU

P

AU= | E_-dF (1.26)
/
Since Fext = _F‘coloumb = _q,E (127)

wefeeifine

The potential energy difference per unit
charge is given by

_ :—]E-d? (1.29)

The above equation (1.29) is independent

; —

q
electric potential difference between P and
Rand is denotedas V, -V, = AV.
In otherwords, the electric potential
difference is defined as the work done by an

A P
of q'. The quantity AU _ f £.47 is called
R

external force to bring unit positive charge
from point R to point P.

P

v, -V, :AV:f—E-dF (1.30)

R
»
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The electric potential energy difference
can be written as AU = q" AV. Physically
potential difference between two points
is a meaningful quantity. The value of
the potential itself at one point is not
meaningful. Therefore the point R is taken
at infinity and its potential is considered
as zero (V_=0).

Then the electric potential at a point P is
equal to the work done by an external force
tobringaunit positive chargewith constant
velocity from infinity to the point P in
the region of the external electric field E.
Mathematically this is written as

P
v, :—fEdF (1.31)

Important points

1. Electric potential at point P depends
only on the electric field which is due
to the source charge q and not on the
test charge q'. Unit positive charge is
brought from infinity to the point P
with constant velocity because external
agency should not impart any kinetic
energy to the test charge.

2. From equation (1.29), the unit of
electric potential is Joule per coulomb.
The practical unit is volt (V) named
after Alessandro Volta (1745-1827)
who invented the electrical battery. The
potential difference between two points
is expressed in terms of voltage.

m Electric potential due

to a point charge

Consider a positive charge q kept fixed at
the origin. Let P be a point at distance r from
the charge q. This is shown in Figure 1.23.

€
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q

Figure 1.23 Electrostatic potential at a
point P

The electric potential at the point P is

liv ](—E)-d? = —]E-df (1.32)

Electric field due to positive point charge q
is

= 1 ~
E:—%r
ame, r
-1 rqg. _
V:—f%rdr
4me, v 1

The infinitesimal displacement vector,
d7¥ =drr and using 7. 7=1, we have

1 ~ g~ 1
V=—— %r-drr =—— | 5d
ane J r ame Y r
After the integration,
1 1] 1
Ve——gl-—=l = 1
4Te, rj., A4me r

Hence the electric potential due to a point
charge q at a distance r is

y=—L4 (1.33)
4ane, r
Important points

(i) If the source charge q is positive, V > 0.
If q is negative, then V is negative and

equal to V = _la
ame, r
(ii) The description of motion of objects
using the concept of potential or
potential energy is simpler than that

using the concept of field.
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(iii) From expression (1.33), it is clear that

the potential due to positive charge
decreases as the distance increases,
but for a negative charge the potential
increases as the distance is increased. At
infinity (r = co) electrostatic potential
is zero (V =0).

In the case of gravitational force,
mass moves from a point of higher
gravitational potential to a point of
lower gravitational potential. Similarly
a positive charge moves from a point
of higher electrostatic potential to
lower electrostatic potential. However
a negative charge moves from lower
electrostatic ~ potential to  higher
electrostatic potential. This comparison
is shown in Figure 1.24.

(iv) The electric potential at a point P due

to a collection of charges q,,q,q,.....q,
is equal to sum of the electric potentials
due to individual charges.

Higher gravitational

potential
l Lower gravitational

potential

Mass moves from higher
gravitational potentail to lower
gravitational potentail

v, > V, > V, V, < V, <V,
@ o © °
+q P+ Q R -q P Q +4" R
(a) Positive charge +q moves from (c) Positive charge +q " moves from
higher electric potential to higher electric potential to
lower electric potential lower electric potential
Ve 2 Uy 2 Vg V, < V, <V,
O——<—o0 © ©
+q P Q 9 R -q P 49 Q R

(b) negative charge -q ‘moves from lower (d) negative charge -q " moves from lower
electric potential to higher electric potential electric potential to higher electric potential

Figure 1.24 Motion of charges in terms
of electric potential
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y X K, ke,

to

" n 8
L R . (1.34)
r, 4me, Z’:l r,
where 19 U5 RPN r are the distances
of q, q, q, --... q, respectively from P

(Figure 1.25).

q;

Figure 1.25 Electrostatic potential due to
collection of charges

EXAMPLE 1.12

(a) Calculate the electric potential at
points P and Q as shown in the figure
below.

(b) Suppose the charge +9uC is replaced
by -9uC find the electrostatic
potentials at points P and Q

6m Q

10m P
+9uC

(c) Calculate the work done to bring a
test charge +2uC from infinity to the
point P. Assume the charge +9uC
is held fixed at origin and +2uC is
brought from infinity to P.

5
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(a)

P

Vo

(b)

(c)

V_

Solution

Electric potential at point P is given by

1 10° 10°°
i:9>< 0" x9x10 — 8.1x10°V

4me 10

Electric potential at point Q is given by

1 g  9x10°x9x10°°

=1 =5.06x10°V
4re, 1,

3 16

Note that the electric potential at point Q
is less than the electric potential at point
P. If we put a positive charge at P, it moves
from P to Q. However if we place a negative
charge at P it will move towards the charge
+9uC.

The potential difference between the points
P and Q is given by

AV =V, -V, =+43.04x10’V

Suppose we replace the charge +9 uC
by -9uC, then the corresponding
potentials at the points P and Q are,

V, =—8.1x10’V, V, =—5.06x10°V

Note that in this case electric potential at
the point Q is higher than at point P.

The potential difference or voltage between
the points P and Q is given by

AV =V, -V, =-3.04x10°V

The electric potential V at a point
P due to some charge is defined as
the work done by an external force
to bring a unit positive charge from
infinity to P. So to bring the g amount
of charge from infinity to the point P,
work done is given as follows.

W=qV

W, =2x10°x5.06x10°] =10.12x10""J.

€
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EXAMPLE 1.13

Consider a point charge +q placed at
the origin and another point charge -2q
placed at a distance of 9 m from the charge
+q. Determine the point between the two
charges at which electric potential is zero.

Solution

According to the superposition principle,
the total electric potential at a point is
equal to the sum of the potentials due to
each charge at that point.

Consider the point at which the total
potential zero is located at a distance x
from the charge +q as shown in the figure.

| Sm |
| [

exﬁ 9x o

+q -2q

The total electric potential at P is zero.

_lla 29 |_,
' 4me | x (9—x)
o q__29
which gives X (9—7)
o l__2
X B (9—x)
Hence, x=3m

m Electrostatic potential
at a point due to an electric

dipole

Consider two equal and opposite charges
separated by a small distance 2a as shown
in Figure 1.26. The point P is located at a
distance r from the midpoint of the dipole.
Let 0 be the angle between the line OP and
dipole axis AB.
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| Figure 1.26 Potential due to electric dipole

Let r be the distance of point P from +q and
r, be the distance of point P from —q.

Potential at P due to charge +q = )
4ame, 1,
Potential at P due to charge -q= __la
4me, 1,
Total potential at the point P,
Ve —glt—1 (135)
ame, |\, 1,

Suppose if the point P is far away from the
dipole, such that r>>a, then equation (1.35)
can be expressed in terms of r.

By the cosine law for triangle BOP,

r’=r’+a’ —2racos0

2 2
r] =r
r r

2
2
1+a—2——ac059]

Since the point P is very far from dipole,
2

a .
then r>>a. As a result the term —is very
r

small and can be neglected. Therefore

cos0
r

r’ :r2[1—2a

1
(or) n= r[l—z—acose]2
r
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1
1 1 2 2
—= —[1——acose]

n r r

. a ) .
Since — << 1, we can use binomial theorem
r

and retain the terms up to first order

l:1[1+3cos9] (1.36)
7’1 r r

Similarly applying the cosine law for triangle
AOP,

r; =r’+a’ —2racos(180—6)

since cos (180 — 9) = —cos0 we get

r, =r’+a’+2racos6

2
Neglecting the term a_2 (because r>>a)
r

2oy [1+ Zacose]
r

1
[ 2acose]2
r,=r|1+

2
r

Using Binomial theorem, we get

lzl[l—acose] (1.37)
7’2 r r

Substituting equation (1.37) and (1.36) in
equation (1.35),

1 1 1
Vo . _[H_acose]__[l_acosﬂ]]
4me. |\ r r r r
vo_4 l[1+acose_1+acose]]
4me |r r r
V:L@cose
4me r

"9
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But the electric dipole moment p = 2qa and
we get,

1
V=
47e,

2
r

pcose]

Now we can write p cos® = p-7, where 7 is
the unit vector from the point O to point P.
Hence the electric potential at a point P due
to an electric dipole is given by

v L P27 (s (138)
4me. r

Equation (1.38) is valid for distances very
large compared to the size of the dipole.
But for a point dipole, the equation (1.38) is
valid for any distance.

S

Special cases

Case (i) If the point P lies on the axial line
of the dipole on the side of +q, then 0 = 0.
Then the electric potential becomes

y=_L P (1.39)
4me r

Case (ii) If the point P lies on the axial line
of the dipole on the side of —q, then 6 = 180°,
then

1 p
V=—-—= 1.40
4Te, r’ ( )

Case (iii) If the point P lies on the equatorial
line of the dipole, then 6 = 90°. Hence

V=0 (1.41)

Important points

(i) The potential due to an electric dipole
falls as — and the potential due to a
single porint charge falls as L Thus the
potential due to the dipolerfalls faster
than that due to a monopole (point
charge). As the distance increases from
electric dipole, the effects of positive

and negative charges nullify each other.

(
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(ii) The potential due to a point charge is
spherically symmetric since it depends
only on the distance r. But the potential
due to a dipole is not spherically
symmetric because the potential
depends on the angle between p and
position vector 7 of the point.
However the dipole potential is axially
symmetric. If the position vector 7
is rotated about p by keeping 0 fixed,
then all points on the cone at the same
distance r will have the same potential
as shown in Figure 1.27. In this figure,
all the points located on the blue curve
will have the same potential.

- axial
line
-q 6 ‘ f
: e 6 ........ )
A g

Figure 1.27 Dipole potential is axially
symmetric

m Equi-potential Surface

Consider a point charge q located at some
point in space and an imaginary sphere of
radius r is chosen by keeping the charge q
at its center (Figure 1.28(a)). The electric
potential at all points on the surface of the
given sphere is the same. Such a surface is
called an equipotential surface.

An equipotential surface is a surface on
which all the points are at the same potential.
For a point charge the equipotential surfaces
are concentric spherical surfaces as shown
in Figure 1.28(b). Each spherical surface is
an equipotential surface but the value of the

UNIT 1 ELECTROSTATICS
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All points in the surface of sphere
are at same potential

(b)

point Charge

Figure 1.28 Equipotential surface of

® [T [ [

potential is different for different spherical
surfaces.

For a uniform electric field, the equipotential
surfaces form a set of planes normal to
the electric field E. This is shown in the
Figure 1.29.

Properties of equipotential surfaces

(i) The work done to move a charge q
between any two points A and B,
W =q (V, - V,). If the points A and
B lie on the same equipotential surface,
work done is zero because V, = V.

(ii) The electric field is normal to an
equipotential surface. If it is not normal,
then there is a component of the field
parallel to the surface. Then work must
be done to move a charge between
two points on the same surface. This
is a contradiction. Therefore the
electric field must always be normal to
equipotential surface. @

Relation between
electric field and potential

Consider a positive charge g kept fixed
at the origin. To move a unit positive charge
by a small distance dx in the electric field E,

/» Equipotential surfaces \

e

— > —

— 1y —
>»
— > —

1YY Y=

=

Figure 1.29 Equipotential surface for uniform electric field
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the work done is given by dW = —E dx. The
minus sign implies that work is done against
the electric field. This work done is equal to
electric potential difference. Therefore,

dW =4dV.
(or) dV=-Edx (1.42)
Hence E = i (1.43)
dx

The electric field is the negative gradient of
the electric potential. In general,

Fo_|9V,; 0V, OVp (1.44)
I8 [8x1+8y]+8kk]

EXAMPLE 1.14

The following figure represents the electric
potential as a function of x - coordinate.
Plot the corresponding electric field as a
function of x.

V(volts)

30

25

20

i \
o/ \

5

0 2 3 4 5 x(cm)

Solution

In the given problem, since the potential

depends only on x, we can use E = —Z—V?
X

\% \%
(the other two terms a—anda— are zero)

oy 0z
(3
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From 0 to 1 cm, the slope is constant and

SO Z—V:25chl. So E=-25Vem™'i
x

From 1 to 4 cm, the potential is constant,

V =25 V. It implies that Z—V:O. So E=0
X

From 4 to 5 cm, the slope ‘Z_V:_25ch“.

X

So E= +25ch711¢,

The plot of electric field for the various
points along the x axis is given below.

E(Vem™)

37.5

25
12.5

01 27 3 4 53 |x(cm)
-12.5

-25

=37.5

m Electrostatic potential
energy for collection of point

charges

The electric potential at a point at a distance r
from point charge g, is given by
yo lg
4me_ r
This potential V is the work done to bring
a unit positive charge from infinity to the
point. Now if the charge g, is brought from
infinity to that point at a distance r from q,,
the work done is the product of g, and the
electric potential at that point. Thus we have

W=q,V

UNIT 1 ELECTROSTATICS
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This work done is stored as the electrostatic
potential energy U of a system of charges
q, and q, separated by a distance r. Thus we
have

U=gqV=—3% (1.45)
4ne. r

The electrostatic potential energy depends
only on the distance between the two point
charges. In fact, the expression (1.45) is
derived by assuming that g, is fixed and
g, is brought from infinity. The equation
(1.45) holds true when g, is fixed and g, is
brought from infinity or both g, and g, are
simultaneously brought from infinity to a
distance r between them.

Three charges are arranged in the following
configuration as shown in Figure 1.30.

Figure 1.30 Electrostatic potential
energy for Collection of point charges

To calculate the total electrostatic potential
energy, we use the following procedure. We
bring all the charges one by one and arrange
them according to the configuration as
shown in Figure 1.30.

(i) Bringinga charge q, from infinity to the
point A requires no work, because there
are no other charges already present in
the vicinity of charge q,.

(ii) To bring the second charge q, to the
point B, work must be done against the

UNIT 1 ELECTROSTATICS
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electric field created by the charge q,.
So the work done on the charge g, is
W=gq, V , Here V  is the electrostatic
potential due to the charge g, at point B.

v=—L 9% (1.46)

4me, T,
Note that the expression is same
when g, is brought first and then g, later.

(iii) Similarly to bring the charge q, to the
point C, work has to be done against the
total electric field due to both charges
g, and g,. So the work done to bring
the charge g, is = g, (V. + V, ). Here
V.. is the electrostatic potential due
to charge g, at point C and V,_ is the
electrostatic potential due to charge g,

at point C.

The electrostatic potential is

1
4me,

19; | 9.9

rl 3 r23

U= (1.47)

(iv) Adding equations (1.46) and (1.47), the
total electrostatic potential energy for
the system of three charges q, q, and

q,is

1
4TE

19, | 995 | 9.9

r12 r13 r23

U= (1.48)

Note that this stored potential energy U
is equal to the total external work done to
assemble the three charges at the given
locations. The expression (1.48) is same if
the charges are brought to their positions
in any other order. Since the Coulomb force
is a conservative force, the electrostatic
potential energy is independent of the
manner in which the configuration of
charges is arrived at.

9
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EXAMPLE 1.15

Four charges are arranged at the corners
of the square PQRS of side a as shown
in the figure.(a) Find the work required
to assemble these charges in the given
configuration. (b) Suppose a charge q’
is brought to the center of the square,
by keeping the four charges fixed at the
corners, how much extra work is required
for this?

+q a -q
(& O
P Q
a g a
pt
S R
© ©
_q a +q
Solution

(@) The work done to arrange the
charges in the corners of the square
is independent of the way they are
arranged. We can follow any order.

(i) First, the charge +q is brought
to the corner P. This requires no
work since no charge is already
present, WP =0

(ii) Work required to bring the

charge —-q to the corner Q = (-q)
X potential at a point Q due to

+q located at a point P.

1 q 1 q
W = —gQX—--"=——-——
? 1 4TE a 4TE a

(iii) Work required to bring the
charge +q to the corner R= q x
potential at the point R due to
charges at the point P and Q.

€
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1| g9, 4
W, =gx L4 —=
e | a \/Ea]
2
_Lgf 1
4Te_ a \/5

(iv) Work required to bring the
fourth charge —q at the position
S = q X potential at the point S
due the all the three charges at
the point P, Q and R

W= —gx—[4 Q_L]

4me \a a 2a
__Lgl, 1
1 N )

(b) Work required to bring the charge
q’ to the center of the square = q" x
potential at the center point O due
to all the four charges in the four
corners

The potential created by the two +¢ charges
are canceled by the potential created by the
-q charges which are located in the opposite
corners. Therefore the net electric potential
at the center O due to all the charges in the
corners is zero.

Hence no work is required to bring any
charge to the point O. Physically this
implies that if any charge g’ when brought
close to O, then it moves to the point O
without any external force.

Electrostatic potential
energy of a dipole in a
uniform electric field

Consider a dipole placed in the uniform
electric field E as shown in the Figure 1.31.
A dipole experiences a torque when kept
in an uniform electric field E. This torque
rotates the dipole to align it with the
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Figure 1.31 The dipole in a uniform
electric field

direction of the electric field. To rotate the
dipole (at constant angular velocity) from
its initial angle 6’ to another angle 6 against
the torque exerted by the electric field, an
equal and opposite external torque must be
applied on the dipole.

The work done by the external torque
to rotate the dipole from angle 8’ to 0 at
constant angular velocity is

w= [1,,do (1.49)

Since 7, is equal and opposite to T, = p X E,
we have

T =[t:| =[P > (1.50)

Substituting equation (1.50) in equation
(1.49), we get
0
W= f pEsin®de
e/

W= pE(cosG’ — cose)

This work done is equal to the potential
energy difference between the angular
positions 6 and 0.

U(8)—U(0')= AU = —pEcosB + pEcos6’

If the initial angle is 8 =90° and is taken as
reference point, then U(O' ) = pEcos90° =0,

UNIT 1 ELECTROSTATICS
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The potential energy stored in the system of
dipole kept in the uniform electric field is
given by

U=—pEcosd=—p-E (1.51)

In addition to p and E, the potential energy
also depends on the orientation 6 of the
electric dipole with respect to the external
electric field.

The potential energy is maximum when the
dipole is aligned anti-parallel (6 = m) to the
external electric field and minimum when
the dipole is aligned parallel (6 = 0) to the
external electric field.

EXAMPLE 1.16

A water molecule has an electric dipole
moment of 6.3 X 10 Cm. A sample
contains 10** water molecules, with all the
dipole moments aligned parallel to the
external electric field of magnitude 3 x 10°
N C*. How much work is required to rotate
all the water molecules from 6 = 0° to 90°?

Solution

When the water molecules are aligned in
the direction of the electric field, it has
minimum potential energy. The work
done to rotate the dipole from 6 = 0° to 90°
is equal to the potential energy difference
between these two configurations.

W =AU =U(90")-U(0)

From the equation (1.51), we write
U = — pE cos0, Next we calculate the work
done to rotate one water molecule from
0 = 0° to 90°.

For one water molecule

W = —pEcos90° 4 pEcos0’ = pE

»
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W =6.3%x10""x3x10°=18.9x10 ]

For 10%* water molecules, the total work
done is

W =18.9x10 *x10” =18.9x107°J

tot

GAUSS LAW AND ITS
APPLICATIONS

m Electric Flux

The number of electric field lines crossing
a given area kept normal to the electric
tield lines is called electric flux. It is usually
denoted by the Greek letter ®, and its unit
is Nm? C. Electric flux is a scalar quantity
and it can be positive or negative. For a
simpler understanding of electric flux, the
following Figure 1.32 is useful.

a///////{' —

Figure 1.32 Electric flux

The electric field of a point charge is
drawn in this figure. Consider two small
rectangular area elements placed normal to
the field at regions A and B. Even though

G

‘ ‘ UNIT-1(XII-Physics_Vol-1).indd 38

these elements have the same area, the
number of electric field lines crossing
the element in region A is more than that
crossing the element in region B. Therfore
the electric flux in region A is more than
that in region B. The electric field strength
for a point charge decreases as the distance
increases, then for a point charge electric
flux also decreases as the distance increases.
The above discussion gives a qualitative idea
of electric flux. However a precise definition
of electric flux is needed.

Electric flux for uniform Electric field

Consider a uniform electric field in a region
of space. Let us choose an area A normal to
the electric field lines as shown in Figure
1.33 (a). The electric flux for this case is

@, = EA (1.52)

Suppose the same area A is kept parallel to
the uniform electric field, then no electric
field lines pierce through the area A , as
shown in Figure 1.33(b). The electric flux
for this case is zero.

®, =0 (1.53)

If the area is inclined at an angle 6 with the
tield, then the component of the electric
field perpendicular to the area alone
contributes to the electric flux. The electric
field component parallel to the surface area
will not contribute to the electric flux. This
is shown in Figure 1.33 (c). For this case, the
electric flux

@, = (E cosf) A (1.54)

Further, 0 is also the angle between the
electric field and the direction normal to the
area. Hence in general, for uniform electric
field, the electric flux is defined as
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(a)Electric flux = EA

(b)Electric flux =0

(c)Electric flux = (E cos0)A

| Figure 1.33 The electric flux for Uniform electric field

®, =E-A=EAcos@ (1.55)

Here, note that A is the area vector A=An,
Its magnitude is simply the area A and
the direction is along the unit vector 7
perpendicular to the area as shown in Figure
1.33. Usingthisdefinition for flux, ®, = E-A,
equations (1.53) and (1.54) can be obtained
as special cases.

In Figure 1.33 (a),0=0°s0o @, = E-A=EA

In Figure 1.33 (b), 6 =90°so @, —E-A=0

EXAMPLE 1.17

Calculate the electric flux through the
rectangle of sides 5 cm and 10 cm kept in
the region of a uniform electric field 100
NC. The angle 6 is 60°. Suppose 6 becomes
zero, what is the electric flux?

Area A

X
\
\ b

\ =%
\

\
\

\—
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Solution

The electric flux

®, = E-A=FEAcos® =100x5x10x10"" x cos60°
= @, =025N.m’C™"

For 6 = 0%

®, =E-A=EA=100x5x10x10"* =0.5N.m’C""

Electric flux in a non uniform electric field
and an arbitrarily shaped area
Suppose the electric field is not uniform

and the area A is not flat (Figure 1.34),
then the entire area is divided into n small

area segments AA,AA,AA,...... AA, such

n

that each area element is almost flat and

the electric field over each area element is
considered to be uniform.
The electric flux for the entire area A is

approximately written as
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Figure 1.34 Electric flux for non-
uniform electric Field

By taking the limit A4, — 0 (for all i) the
summation in equation (1.56) becomes
integration. The total electric flux for the
entire area is given by

®, = [E-dA (1.57)

From Equation (1.57), it is clear that the
electric flux for a given surface depends on
both the electric field pattern on the surface
area and orientation of the surface with
respect to the electric field.

m Electric flux for closed

surfaces

In the previous section, the electric flux for
any arbitrary curved surface is discussed.
Suppose a closed surface is present in the
region of the non-uniform electric field as
shown in Figure 1.35 (a).

The total electric flux over this closed
surface is written as

®, = $ E-dA (1.58)

Note the difference between equations (1.57)
and (1.58). The integration in equation

(
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(b)

Figure 1.35 Electric flux over a closed
surface

(1.58) is a closed surface integration and for
each areal element, the outward normal is
the direction of dA as shown in the Figure
1.35(b).

The total electric flux over a closed surface
can be negative, positive or zero. In the
Figure 1.35(b), it is shown that in one area
element, the angle between dA and E is less
than 90°, then the electric flux is positive
and in another areal element, the angle
between dA and E is greater than 90°, then
the electric flux is negative.

In general, the electric flux is negative if the
electric field lines enter the closed surface
and positive if the electric field lines leave
the closed surface.

m Gauss law

A positive point charge Q is surrounded by

an imaginary sphere of radius r as shown
in Figure 1.36. We can calculate the total
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electric flux through the closed surface of
the sphere using the equation (1.58).

D, zggl?dfl :LcﬁEdAcosG

The electric field of the point charge is
directed radially outward at all points on
the surface of the sphere. Therefore, the
direction of the area element dA is along
the electric field E and 6 =0°.

When the charge is at the center
of the sphere, the electric field is
everywhere normal to the surface
and constant in magnitude.

%
18
Spherical
gaussian N
surface % dA

Figure 1.36 Total electric flux of point
charge

O, = fﬁEdA since cos0’ =1 (1.59)

E is uniform on the surface of the sphere,

d’E:EggdA (1.60)
P > 1 Q
Substituting for 95 dA=4nr’ and E=———
. . 4ame, r
in equation 1.60, we get
1 Q 2 1
O =——x4nr’ =4n——
Fo4me, 4me. g
o,=% (1.61)
80
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The equation (1.61) is called as Gauss’s law.
The remarkable point about this result is
that the equation (1.61) is equally true for
any arbitrary shaped surface which encloses
the charge Q and as shown in the Figure
1.37. It is seen that the total electric flux is
the same for closed surfaces AL A, and A,as
shown in the Figure 1.37.

The net electric flux is the
same through all surfaces.

Figure 1.37 Gauss law for arbitrarily
shaped surface

Gausss law states that if a charge Q is
enclosed by an arbitrary closed surface,
then the total electric flux ® through the
closed surface is

Qencl

80

(1.62)

®, = E-dA=

Here Q, , denotes the charges inside the
closed surface.

Discussion of Gauss law

(i) The total electric flux through the
closed surface depends only on the

D
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(ii)

charges enclosed by the surface and
the charges present outside the surface
will not contribute to the flux and the
shape of the closed surface which can
be chosen arbitrarily.

The total electric flux is independent
of the location of the charges inside the
closed surface.

(iii) To arrive at equation (1.62), we have

chosen a spherical surface. This
imaginary surface is called a Gaussian
surface. The shape of the Gaussian
surface to be chosen depends on the
type of charge configuration and the
kind of symmetry existing in that
charge configuration. The electric field
is spherically symmetric for a point
charge, therefore spherical Gaussian
surface is chosen. Cylindrical and
planar Gaussian surfaces can be
chosen for other kinds of charge
configurations.

(iv) In the LHS of equation (1.62), the

(v)

electric field E is due to charges present
inside and outside the Gaussian surface
but the charge Q_ , denotes the charges
which lie only inside the Gaussian
surface.

The Gaussian surface cannot pass
through any discrete charge but it
can pass through continuous charge
distributions. It is because, very close to
the discrete charges, the electric field is
not well defined.

(vi) Gauss law is another form of Coulomb’s

(v

law and it is also applicable to the
charges in motion. Because of this
reason, Gauss law is treated as much
more general law than Coulomb’s law.
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(i)

(i)

(ii)

(a)

o +5q 'qu

o -2q

(b)

In figure (a), calculate the electric flux
through the closed areas A and A..

(ii) In figure (b), calculate the electric
flux through the cube
Solution

In figure (a), the area A encloses the

charge Q. So electric flux through
Q

this closed surface A is —. But the
€

closed surface A, contains no charges

inside, so electric flux through A is

zero.

In figure (b), the net charge inside

the cube is 3q and the total electric
39

flux in the cube is therefore ®, = =—=.
€

Note that the charge -10 q lies outside
the cube and it will not contribute

the total flux through the surface of
the cube.
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m Applications of Gauss law

Electric field due to any arbitrary charge
configuration can be calculated using
Coulomb’s law or Gauss law. If the charge
configuration possesses some kind of
symmetry, then Gauss law is a very efficient
way to calculate the electric field. It is
illustrated in the following cases.

(i) Electric field due to an infinitely long
charged wire

Consider an infinitely long straight wire
having uniform linear charge density A.
Let P be a point located at a perpendicular
distance r from the wire (Figure 1.38(a)).

The electric field at the point P can be
found using Gauss law. We choose two
small charge elements A, and A, on the wire
which are at equal distances from the point
P. The resultant electric field due to these
two charge elements points radially away

that the charged wire possesses a cylindrical
symmetry.

Let us choose a cylindrical Gaussian surface
of radius r and length L as shown in the
Figure 1.39.

The total electric flux in this closed surface
is calculated as follows.

®, = $ E-dA
= f E-dA+ fE-thLf E-dA (1.63)
e e o

It is seen from Figure (1.39) that for the
curved surface, E is parallel to 4 and
E-dA=EdA. For the top and bottom
surfaces, £ is perpendicular to 4 and
E-di=0

Substituting these values in the equation
(1.63) and applying Gauss law to the
cylindrical surface, we have

from the charged wire and the magnitude ®, — f FEdA — Q... (1.64)
of electric field is same at all points on the oy g,
circle of radius r. This is shown in the Figure e
1.38(b). From this property, we can infer
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Figure 1.38 Electric field due to infinite long charged wire
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| Figure 1.39 Cylindrical Gaussian surface

Since the magnitude of the electric field for
the entire curved surface is constant, E is
taken out of the integration and Q,, is given
by Q,,=AL.

E f A= (1.65)

Curved 8°
surface

Here @, = f dA = total area of the curved

Curved
surface

surface = 2nrL. Substituting this in equation
(1.65), we get

E-2nrL = E
80
E= LA (1.66)
2TE 1
- 1 A
In vector form E=—=7 (1.67)
2me v

The electric field due to the infinite charged

. 1 1
wire depends on — rather than = for a
r r

point charge.

(u
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Equation (1.67) indicates that the electric
tield is always along the perpendicular
direction (7 ) to wire. In fact, if A > 0 then
E points perpendicular outward (7)
from the wire and if A < 0, then E points
perpendicular inward (—7).

The equation (1.67) is true only for an
infinitely long charged wire. For a charged
wire of finite length, the electric field need
not be radial at all points. However, equation
(1.67) for such a wire is taken approximately
true around the mid-point of the wire and
far away from the both ends of the wire

(ii) Electric field due to charged infinite
plane sheet

Consider an infinite plane sheet of charges
with uniform surface charge density o. Let P
be a point at a distance of r from the sheet as
shown in the Figure 1.40.

Gaussian

A

i surface
ST —
> > T dTA
E dAf I ( o A FE
~<{ M- E >
P + g - = >
+ o i
+ + e
+

:

Figure 1.40 Electric field due to charged
infinite planar sheet

Since the plane is infinitely large, the electric
field should be same at all points equidistant
from the plane and radially directed at
all points. A cylindrical shaped Gaussian
surface of length 2r and area A of the flat
surfaces is chosen such that the infinite
plane sheet passes perpendicularly through
the middle part of the Gaussian surface.
Applying Gauss law for this cylindrical
surface,
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®, = E-dA

— [ E-dA+ [B-dA+ [E-dA =
Curved P P’ €,
surface M

The electric field is perpendicular to the area
element at all points on the curved surface
and is parallel to the surface areas at P and
P’ (Figure 1.40). Then,

_ _ Qs
D, [EdA+[EdA : (1.69)
Since the magnitude of the electric field
at these two equal surfaces is uniform, E
is taken out of the integration and Q,, is
given by Q,,, =0CA, we get

encl

A
ZEIdA:Z—

0
The total area of surface either at P or P’

[dA:A

Hence 2EA = % or E= S

€

‘
+
Q

In vector form, E = ziﬁ (1.71)
€,

Here n is the outward unit vector normal
to the plane. Note that the electric field
due to an infinite plane sheet of charge
depends on the surface charge density and
is independent of the distance r.

The electric field will be the same at any
point farther away from the charged plane.
Equation (1.71) implies that if o > 0 the
electric field at any point P is outward
perpendicular 7 to the plane and if 0 < 0 the
electric field points inward perpendicularly
(—n) to the plane.

For a finite charged plane sheet, equation
(1.71) is approximately true only in the
middle region of the plane and at points far
away from both ends.

(iii) Electric field due to two parallel
charged infinite sheets

Consider two infinitely large charged plane

sheets with equal and opposite charge

densities +o0 and -0 which are placed parallel

to each other as shown in the Figure 1.41.

N —

+ +

+ ___

+ + +
+ - - - - +
< ° > +++ Pl.ﬁ_‘_ < o >

P; +++ E) N P,

+ _— —_— -

e e -

+ —_— -

+ & ‘

+ —__

+ +

V /

Figure 1.41 Electric field due to two parallel charged sheets
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The electric field between the plates and
outside the plates is found using Gauss law.
The magnitude of the electric field due to

an infinite charged plane sheet is 2i and it
points perpendicularly outward if 55 0 and
points inward if o < 0.

At the points P, and P, the electric field
due to both plates are equal in magnitude
and opposite in direction (Figure 1.41). As
a result, electric field at a point outside the
plates is zero. But inside the plate, electric
tields are in same direction i.e., towards the
right, the total electric field at a point P,

(0 (0 (0
= — = — 1.72
inside 280 280 80 ( )

The direction of the electric field inside the
plates is directed from positively charged
plate to negatively charged plate and is
uniform everywhere inside the plate.

For points outside the sphere,
a large, spherical gaussian
surface is drawn concentric
with the sphere.

(iv) Electric field due to a uniformly
charged spherical shell

Consider a uniformly charged spherical
shell of radius R and total charge Q as shown
in Figure 1.42. The electric field at points
outside and inside the sphere is found using
Gauss law.

Case (a) At a point outside the shell (r > R)
Let us choose a point P outside the shell
at a distance r from the center as shown
in Figure 1.42 (a). The charge is uniformly
distributed on the surface of the sphere
(spherical symmetry). Hence the electric
tield must point radially outward if Q > 0 and
point radially inward if Q < 0. So we choose
a spherical Gaussian surface of radius r is
chosen and the total charge enclosed by this
Gaussian surface is Q. Applying Gauss law

¢ Edi=2 (1.73)
Gaussian 8°
surface

For points inside the sphere,
a spherical gaussian surface
smaller than the sphere is
drawn.

Gaussian
sphere

Gaussian
(a) sphere

(b)

| Figure 1.42 The electric field due to a charged spherical shell

(i
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The electric field E and dA point in the
same direction (outward normal) at all
the points on the Gaussian surface. The
magnitude of E is also the same at all points
due to the spherical symmetry of the charge
distribution.

Hence E f dA:g (1.74)
80

Gaussian
surface

But 9§ dA = total area of Gaussian surface

Gaussian
surface

= 4nr’. Substituting this value in equation (1.74)

Eam =2
g,

1

E-4nr’ = Q (or) E= _QZ
€, 4me_ r
= 1 Q.
In vector form e e )
4me_ r

The electric field is radially outward if Q > 0
and radially inward if Q < 0. From equation
(1.75), we infer that the electric field at a
point outside the shell will be same as if the
entire charge Q is concentrated at the center
of the spherical shell. (A similar result is
observed in gravitation, for gravitational
force due to a spherical shell with mass M)

Case (b): At a point on the surface of the
spherical shell (r = R)

The electrical field at points on the spherical
shell (r = R) is given by

Q .
5 r
4me R

E= (1.76)
Case (c) At a point inside the spherical
shell (r < R)

Consider a point P inside the shell at a
distance r from the center. A Gaussian
sphere of radius r is constructed as shown in
the Figure 1.42 (b). Applying Gauss law
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Gaussian
surface

Ean =2 (1.77)
.

Since Gaussian surface encloses no charge,
So Q = 0. The equation (1.77) becomes

E=0 (r<R) (1.78)

The electric field due to the uniformly
charged spherical shell is zero at all points
inside the shell.

A graph is plotted between the electric
tield and radial distance. This is shown in
Figure 1.43.

J

r

Figure 1.43 Electric field versus distance
for a spherical shell of radius R

- Gauss law is a powerful
technique whenever a given
charge configuration possesses

spherical, cylindrical or planer symmetry,

then the electric field due to such a charge
configuration can be easily found. If there

is no such symmetry, the direct method

(Coulomb’s law and calculus) can be used.
For example, it is difficult to use Gauss law
to find the electric field for a dipole since
it has no spherical, cylindrical or planar

symmetry.
?
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ELECTROSTATICS OF
CONDUCTORS AND
DIELECTRICS

S—

W& B Conductors at
electrostatic equilibrium

An electrical conductor has a large number
of mobile charges which are free to move in
the material. In a metallic conductor, these
mobile charges are free electrons which are
not bound to any atom and therefore are
free to move on the surface of the conductor.
When there is no external electric field, the
free electrons are in continuous random
motion in all directions. As a result, there
is no net motion of electrons along any
particular direction which implies that the
conductor is in electrostatic equilibrium.
Thus at electrostatic equilibrium, there is no
net current in the conductor. A conductor at
electrostatic equilibrium has the following
properties.

(i) The electric field is zero everywhere

inside the conductor. This is true
regardless of whether the conductor is
solid or hollow.
This is an experimental fact. Suppose
the electric field is not zero inside the
metal, then there will be a force on
the mobile charge carriers due to this
electric field. As a result, there will be
a net motion of the mobile charges,
which contradicts the conductors being
in electrostatic equilibrium. Thus the
electric field is zero everywhere inside
the conductor. We can also understand
this fact by applying an external uniform
electric field on the conductor. This is
shown in Figure 1.44.

(i
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| Figure 1.44 Electric field of conductors

(ii)

Before applying the external electric
field, the free electrons in the conductor
are uniformly distributed in the
conductor. When an electric field is
applied, the free electrons accelerate
to the left causing the left plate to be
negatively charged and the right plate
to be positively charged as shown in
Figure 1.44.

Dueto this realignment of free electrons,
there will be an internal electric field
created inside the conductor which
increases until it nullifies the external
electric field. Once the external electric
field is nullified the conductor is said
to be in electrostatic equilibrium. The
time taken by a conductor to reach
electrostatic equilibrium is in the order
of 10'%, which can be taken as almost
instantaneous.

There is no net charge inside the
conductors. The charges must reside
only on the surface of the conductors.
We can prove this property using Gauss
law. Consider an arbitrarily shaped
conductor as shown in Figure 1.45.

A Gaussian surface is drawn inside the
conductor such that it is very close to
the surface of the conductor. Since the
electric field is zero everywhere inside
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Gaussian
surface

Figure 1.45 No net charge inside the
conductor

the conductor, the net electric flux is
also zero over this Gaussian surface.
From Gauss’s law, this implies that there
is no net charge inside the conductor.
Even if some charge is introduced inside
the conductor, it immediately reaches
the surface of the conductor.

(iii) Theelectricfield outside the conductor

is perpendicular to the surface of the

. )
conductor and has a magnitude of —
€

where o is the surface charge densit;'
at that point.

If the electric field has components
parallel to the surface of the conductor,
then free electrons on the surface
of the conductor would experience
acceleration (Figure 1.46(a)). This means
that the conductor is not in equilibrium.
Therefore at electrostatic equilibrium,
the electric field must be perpendicular
to the surface of the conductor. This is
shown in Figure 1.46 (b).
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(—Conductor |

Conductor

Y

Figure 1.46 (a) Electric field is along the
surface (b)Electric field is perpendicular
to the surface of the conductor

We now prove that the electric field has

: G . . ,
magnitude — just outside the conductor’s
€

surface. Co;lsider a small cylindrical
. . . ®
Gaussian surface, as shown in the Figure
1.47. One half of this cylinder is embedded
inside the conductor.

The flux through the
gaussian surface is EA.

%
I8

Y

Figure 1.47 The electric field on the
surface of the conductor

>
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Since electric field is normal to the surface
of the conductor, the curved part of the
cylinder has zero electric flux. Also inside
the conductor, the electric field is zero.
Hence the bottom flat part of the Gaussian
surface has no electric flux.
Therefore the top flat surface alone
contributes to the electric flux. The electric
tield is parallel to the area vector and the
total charge inside the surface is cA. By
applying Gaus’s law,

pa=24

€,
In vector form, E= 82?1 (1.79)

Here 7 represents the unit vector outward

normal to the surface of the conductor.

Suppose 0 < 0, then electric field points

inward perpendicular to the surface.

(iv) The electrostatic potential has the
same value on the surface and inside
of the conductor.

We know that the conductor has no
parallel electric component on the
surface which means that charges can
be moved on the surface without doing
any work. This is possible only if the
electrostatic potential is constant at all
points on the surface and there is no
potential difference between any two
points on the surface.

Since the electric field is zero inside the
conductor, the potential is the same as
the surface of the conductor. Thus at
electrostatic equilibrium, the conductor
is always at equipotential.

Electrostatic shielding

Using Gauss law, we proved that the electric
field inside the charged spherical shell is zero,
Further, we showed that the electric field

G
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inside both hollow and solid conductors is
zero. It is a very interesting property which
has an important consequence.

Consider a cavity inside the conductor as
shown in Figure 1.48 (a). Whatever the
charges at the surfaces and whatever the
electrical disturbances outside, the electric
tield inside the cavity is zero. A sensitive
electrical instrument which is to be protected
from external electrical disturbance is kept
inside this cavity. This is called electrostatic
shielding.

Faraday cage is an instrument used to
demonstrate this effect. It is made up of metal
bars configured as shown in Figurel.48 (b).
If an artificial lightning jolt is created
outside, the person inside is not affected.

. Electric field line

IENFY M

/
\\\H//

7o .
/

Figure 1.48 (a) Electric field inside the
cavity (b) Faraday cage
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During lightning accompanied by a
thunderstorm, it is always safer to sit inside a
bus than in open ground or under a tree. The
metal body of the bus provides electrostatic
shielding, since the electric field inside is
zero. During lightning, the charges flow
through the body of the conductor to the
ground with no effect on the person inside
that bus.

Electrostatic induction

In section 1.1, we have learnt that an
object can be charged by rubbing using an
appropriate material. Whenever a charged
rod is touched by another conductor,
charges start to flow from charged rod to
the conductor. Is it possible to charge a
conductor without any contact? The answer
is yes. This type of charging without actual
contact is called electrostatic induction.

(i) Consider an uncharged (neutral)
conductingsphereatrestonaninsulating
stand. Suppose a negatively charged rod
is brought near the conductor without
touching it, as shown in Figure 1.49(a).

(o) (d)

Figure 1.49 Various steps in electrostatic
induction
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The negative charge of the rod repels the
electrons in the conductor to the opposite
side. As a result, positive charges are induced
near the region of the charged rod while
negative charges on the farther side.
Before introducing the charged rod, the free
electrons were distributed uniformly on the
surface of the conductor and the net charge
is zero. Once the charged rod is brought near
the conductor, the distribution is no longer
uniform with more electrons located on the
farther side of the rod and positive charges
are located closer to the rod. But the total
charge is zero.

(ii) Nowthe conductingsphereisconnected
to the ground through a conducting
wire. This is called grounding. Since the
ground can always receive any amount
of electrons, grounding removes the
electron from the conducting sphere.
Note that positive charges will not flow
to the ground because they are attracted
by the negative charges of the rod
(Figure 1.49(b)).

(iii) When the grounding wire is removed
from the conductor, the positive charges
remain near the charged rod (Figure
1.49(¢))

(iv) Now the charged rod is taken away from
the conductor. As soon as the charged
rod is removed, the positive charge gets
distributed uniformly on the surface of
the conductor (Figure 1.49 (d)). By this
process, the neutral conducting sphere
becomes positively charged.

For an arbitrary shaped conductor, the

intermediate steps and conclusion are the

same except the final step. The distribution
of positive charges is not uniform for
arbitrarily-shaped conductors. Why is it not
uniform? The reason for it is discussed in

9
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EXAMPLE 1.19

A small ball of conducting material having
a charge +q and mass m is thrown upward
at an angle 0 to horizontal surface with
an initial speed v as shown in the figure.
There exists an uniform electric field E
downward along with the gravitational
field g. Calculate the range, maximum
height and time of flight in the motion of
this charged ball. Neglect the effect of air
and treat the ball as a point mass.

E
y
o 1] el
‘\
v, .
. h Q
e max {\
< > X
@ R
Solution

If the conductor has no net charge, then
its motion is the same as usual projectile
motion of a mass m which we studied in
Kinematics (unit 2, vol-1 XI physics).
Here, in this problem, in addition to
downward gravitational force, the charge
also will experience a downward uniform
electrostatic force.

The acceleration of the charged ball due to

gravity = —8J
The acceleration of the charged ball due to
uniform electric field = —ﬂf

m

The total acceleration of charged ball in
_ E|-
downward direction a = —[ g+ q_] j

m
€
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It is important here to note that the
acceleration depends on the mass of the
object. Galileos conclusion that all objects
fall at the same rate towards the Earth is
true only in a uniform gravitational field.
When a uniform electric field is included,
the acceleration of a charged object depends
on both mass and charge.

E
But still the acceleration a= g+q— is
m

constant throughout the motion. Hence
we use kinematic equations to calculate the
range, maximum height and time of flight.
qE
m
in the usual expressions of range, maximum

In fact we can simply replace g by ¢+

height and time of flight of a projectile.

Without | With the
charge charge +q
Time of flight T 2v,sin6 2v,sinB ®
iz
m
Maximum height V2 sin’0 V2 sin? 0
h N o
max E
2¢ 2[ g+ ]
m
Range R v’ sin20 v’ sin20
E
-~ i
m

Note that the time of flight, maximum
height, range are all inversely proportional
to the acceleration of the object. Since

> g for charge +q, the quantities T,

E
=
m

hmax, and R will decrease when compared to
the motion of an object of mass m and zero
net charge. Suppose the charge is —q, then

E
=
m

<&, and the quantities T, h__ and
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R will increase. Interestingly the trajectory
is still parabolic as shown in the figure.

E

®+ " Q<»L

Dielectrics or

insulators

A dielectric is a non-conducting material
and has no free electrons. The electrons in
a dielectric are bound within the atoms.
Ebonite, glass and mica are some examples
of dielectrics. When an external electric field
is applied, the electrons are not free to move
anywhere but they are realigned in a specific
way. A dielectric is made up of either polar
molecules or non-polar molecules.

Non-polar molecules

A non-polar molecule is one in which
centers of positive and negative charges
coincide. As a result, it has no permanent
dipole moment. Examples of non-polar
molecules are hydrogen (H,), oxygen (O,),
and carbon dioxide (CO,) etc.

When an external electric field is applied,
the centers of positive and negative charges
are separated by a small distance which
induces dipole moment in the direction of
the external electric field. Then the dielectric
is said to be polarized by an external electric
tield. This is shown in Figure 1.50.
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Center of negative charge
coincides with center of
positive charge

9
_Ey

® O

——

P
(a) (b)

Figure 1.50 (a) Non polar molecules
without external field (b) With the
external field

Polar molecules

In polar molecules, the centers of the positive
and negative charges are separated even
in the absence of an external electric field.
They have a permanent dipole moment.
Due to thermal motion, the direction of
each dipole moment is oriented randomly
(Figure 1.51(a)). Hence the net dipole
moment is zero in the absence of an external
electric field. Examples of polar molecules
are H O, N,O, HCI, NH..

When an external electric field is applied,
the dipoles inside the polar molecule tend
to align in the direction of the electric field.
Hence a net dipole moment is induced in it.
Then the dielectric is said to be polarized by
an external electric field (Figure 1.51(b)).

Polar molecules are When an external
randomly oriented in electric field is applied,
the absence of an the molecules partially

external electric field. align with the field.

E

‘ext

L D> > a» ap
N IPAN SdaCd
= >
(@) Ee )

Figure 1.51 (a) Randomly oriented polar
molecules (b) Align with the external
electric field

9
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Polarisation

In the presence of an external electric
field, the dipole moment is induced in
the dielectric material. Polarisation P is
defined as the total dipole moment per
unit volume of the dielectric. For most
dielectrics (linear isotropic), the Polarisation
is directly proportional to the strength of
the external electric field. This is written as

P=y.E, (1.80)

where 7y, is a constant called the electric
susceptibility which is a characteristic of
each dielectric.

Induced Electric field
inside the dielectric

When an external electric field is applied on
a conductor, the charges are aligned in such
a way that an internal electric field is created
which cancels the external electric field.
But in the case of a dielectric, which has
no free electrons, the external electric field
only realigns the charges so that an internal

Polar molecules are
randomly oriented in
the absence of an
external electric field.

> @
L D

< f 2o
S & >

(a)

electric field is produced. The magnitude of
the internal electric field is smaller than that
of external electric field. Therefore the net
electric field inside the dielectric is not zero
but is parallel to an external electric field
with magnitude less than that of the external
electric field. For example, let us consider a
rectangular dielectric slab placed between
two oppositely charged plates (capacitor) as
shown in the Figure 1.52(b).

The uniform electric field between the plates
acts as an external electric field E,, which
polarizes the dielectric placed between
plates. The positive charges are induced on
one side surface and negative charges are
induced on the other side of surface.

But inside the dielectric, the net charge is
zero even in a small volume. So the dielectric
in the external field is equivalent to two
oppositely charged sheets with the surface
charge densities +o, and -o,. These charges
are called bound charges. They are not free
to move like free electrons in conductors.
This is shown in the Figure 1.52(b).

When an external
electric field is applied,
the molecules partially

align with the field.
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| Figure 1.52 Induced electric field lines inside the dielectric
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For example, the charged balloon after
rubbing sticks onto a wall. The reason is that
the negatively charged balloon is brought near
the wall, it polarizes opposite charges on the
surface of the wall, which attracts the balloon.
This is shown in Figure 1.53.

(a) (b)

Figure 1.53 (a) Balloon sticks to the wall
(b) Polarisation of wall due to the electric
field created by the balloon

Dielectric strength

When the external electric field applied to
a dielectric is very large, it tears the atoms
apart so that the bound charges become
free charges. Then the dielectric starts to
conduct electricity. This is called dielectric
breakdown. The maximum electric field
the dielectric can withstand before it
breakdowns is called dielectric strength.
For example, the dielectric strength of air
is 3 X 10°V m™. If the applied electric field
increases beyond this, a spark is produced
in the air. The dielectric strengths of some
dielectrics are given in the Table 1.1.

Table 1.1 Dielectric strength

Substance  Dielectric strength (Vm™)

Mica 100 X 10°
Teflon 60 X 10°
Paper 16 X 10°
Alr 3 X 10°
Pyrex glass 14 X 10°
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CAPACITORS AND
CAPACITANCE

m Capacitors

Capacitor is a device used to store electric
chargeand electrical energy. It consists of two
conducting objects (usually plates or sheets)
separated by some distance. Capacitors are

widely used in many electronic circuits and
have applications in many areas of science
and technology.

A simple capacitor consists of two parallel
metal plates separated by a small distance as
shown in Figure 1.54 (a).

+Q

(22T EA] Hﬁ.

(a) (b) (c)

Figure 1.54 (a) Parallel plate capacitor
(b) Capacitor connected with a battery
(c) Symbolic representation of capacitor.

When a capacitor is connected to a battery
of potential difference V, the electrons are
transferred from one plate to the other
plate by battery so that one plate becomes
negatively charged with a charge of -Q and
the other plate positively charged with
+Q. The potential difference between the
plates is equivalent to the battery’s terminal
voltage. This is shown in Figure 1.54(b). If
the battery voltage is increased, the amount
of charges stored in the plates also increase.
In general, the charge stored in the capacitor

9
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is proportional to the potential difference
between the plates.

QxV

sothat Q=CV

where the C is the proportionality constant
called capacitance. The capacitance C
of a capacitor is defined as the ratio of
the magnitude of charge on either of the
conductor plates to the potential difference
existing between the conductors.

_Q
= (1.81)

The SI unit of capacitance is coulomb per volt
or farad (F) in honor of Michael Faraday.
Farad is a very large unit of capacitance. In
practice, capacitors are available in the range
of microfarad (1pF = 10° F) to picofarad
(1pf = 10"*F). A capacitor is represented by
the symbol A} or 4t . Note that the
total charge stored in the capacitor is zero
(Q - Q=0). When we say the capacitor stores
charges, it means the amount of charge that
can be stored in any one of the plates.
Nowadays there are capacitors available
in various shapes (cylindrical, disk) and
types (tantalum, ceramic and electrolytic),
as shown in Figure 1.55. These capacitors
are extensively used in various kinds of
electronic circuits.

| Figure 1.55 Various types of capacitors

s
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Capacitance of a parallel plate capacitor

Consider a capacitor with two parallel
plates each of cross-sectional area A and
separated by a distance d as shown in
Figure 1.56.

QU

Area—

+++++++ A+ O

tTJ\LV YYYYYYYYYYYYYYYYYYY

Figure 1.56 Capacitance of a parallel
plate capacitor

The electric field between two infinite
parallel plates is uniform and is given by

c : .
E = — where 0 is the surface charge density
3

on the plates [G=Q]. If the separation
distance d is very much smaller than the
size of the plate (d> << A), then the above
result is used even for finite-sized parallel
plate capacitor.

The electric field between the plates is

Q

E=—
Ag,

(1.82)
Since the electric field is uniform, the

electric potential between the plates having
separation d is given by

UNIT 1 ELECTROSTATICS
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g Qd
V=Ed= A, (1.83)

Therefore the capacitance of the capacitor is
given by

C =

Qd
Ag,

(1.84)

While deriving an expression

for capacitance of the parallel

plate capacitor, the expression
of the electric field for infinite plates
is used. But for finite sized plates, the
electric field is not strictly uniform
between the plates. At both edges, the
electric field is bent outwards as shown
in the Figure.
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Fringing field

This is called “fringing field”. However
nder the condition (d? << A), this effect
can be ignored.

From equation (1.84), it is evident that
capacitance is directly proportional to
the area of cross section and is inversely
proportional to the distance between the
plates. This can be understood from the
following.
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(i) If the area of cross-section of the
capacitor plates is increased, more
charges can be distributed for the same
potential difference. As a result, the
capacitance is increased.

(ii) If the distance d between the two plates
is reduced, the potential difference
between the plates (V = Ed) decreases
with E constant. As a result, voltage
difference between the terminals of the
battery increases which in turn leads
to an additional flow of charge to the
plates from the battery, till the voltage
on the capacitor equals to the battery’s
terminal voltage. Suppose the distance
is increased, the capacitor voltage
increases and becomes greater than the
battery voltage. Then, the charges flow
from capacitor plates to battery till both
voltages becomes equal.

EXAMPLE 1.20

A parallel plate capacitor has square plates
of side 5 cm and separated by a distance of
1 mm. (a) Calculate the capacitance of this
capacitor. (b) If a 10 V battery is connected
to the capacitor, what is the charge stored
in any one of the plates? (The value of
g, =8.85x 10" Nm* C?)

Solution

(a) The capacitance of the capacitor is

g, A 8.85x10 *x25x107"
o d 1x107°
=221.2x10 "F
C=22.12x10""?F =22.12pF

C

(b) The charge stored in any one of the
plates is Q = CV, Then

Q=122.12x10""?x10=221.2x10 *C=221.2pC

)
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Sometimes we notice that the ceiling fan
does not start rotating as soon as it is
switched on. But when we rotate the blades,
it starts to rotate as usual. Why it is so? We
know that to rotate any object, there must
be a torque applied on the object. For the
ceiling fan, the initial torque is given by the
capacitor widely known as a condenser.
If the condenser is faulty, it will not give
sufficient initial torque to rotate the blades
when the fan is switched on.

m Energy stored in the

capacitor

Capacitor not only stores the charge but
also it stores energy. When a battery is
connected to the capacitor, electrons of total
charge -Q are transferred from one plate to
the other plate. To transfer the charge, work
is done by the battery. This work done is
stored as electrostatic potential energy in
the capacitor.

To transfer an infinitesimal charge dQ for
a potential difference V, the work done is

given by
dw =V dQ (1.85)
where v = £
C _ 1
The total work done to charge a capacitor is
Q 2
Q Q
L[ C < 2C ( )

€
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This work done is stored as electrostatic
potential energy (U,) in the capacitor.

_Q2 1oy (.Q=cv) (187)
f2C 2 . '
where Q = CV is used. This stored energy is
thus directly proportional to the capacitance
of the capacitor and the square of the voltage
between the plates of the capacitor. But
where is this energy stored in the capacitor?
To understand this question, the equation
(1.87) is rewritten as follows using the

results C = €A and V=Ed

€,A

](Ed)2 Lo (adE (g9

where Ad = volume of the space between

the capacitor plates. The energy stored per
unit volume of space is defined as energy

density u, =

we get

From equation (1.88),
Volume

u = Le g2 (1.89)
2

From equation (1.89), we infer that the
energy is stored in the electric field existing
between the plates of the capacitor. Once the
capacitor is allowed to discharge, the energy
is retrieved.

Itis important to note that the energy density
depends only on the electric field and not on
the size of the plates of the capacitor. In fact,
expression (1.89) is true for the electric field
due to any type of charge configuration.

m Applications of

capacitors

Capacitors are used in various electronics
circuits. A few of the applications.

UNIT 1 ELECTROSTATICS
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| Figure 1.57 (a) Flash capacitor in camera (b) Heart defibrillator

(a) Most people are now familiar with
the digital camera. The flash which
comes from the camera when we
take photographs is due to the energy
released from the capacitor, called a
flash capacitor (Figure 1.57 (a))

(b) During cardiac arrest, a device called
heart defibrillator is used to give a
sudden surge of a large amount of
electrical energy to the patient’s chest to
retrieve the normal heart function. This
defibrillator uses a capacitor of 175 uF
charged to a high voltage of around
2000 V. This is shown in Figure 1.57(b).

(c) Capacitors are used in the ignition
system of automobile engines to
eliminate sparking

(d) Capacitors are used to reduce power
fluctuations in power supplies and
to increase the efficiency of power
transmission.

However, capacitors have disadvantage
as well. Even after the battery or power
supply is removed, the capacitor stores
charges and energy for some time. For
example if the TV is switched off, it is
always advisable to not touch the back
side of the TV panel.
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FEXY Effect of dielectrics in

capacitors

In earlier discussions, we assumed that
the space between the parallel plates of a
capacitor is either empty or filled with air.
Suppose dielectrics like mica, glass or paper
are introduced between the plates, then the
capacitance of the capacitor is altered. The
dielectric can be inserted into the plates in
two different ways. (i) when the capacitor is
disconnected from the battery. (ii) when the
capacitor is connected to the battery.

(i) when the capacitor is disconnected
from the battery

Consider a capacitor with two parallel
plates each of cross-sectional area A and are
separated by a distance d. The capacitor is
charged by a battery of voltage V  and the
charge stored is Q. The capacitance of the
capacitor without the dielectric is

c,==2 (1.90)

The battery is then disconnected from
the capacitor and the dielectric is inserted
between the plates. This is shown in

Figure 1.58.
9
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Figure 1.58 (a) Capacitor is charged with
a battery (b) Dielectric is inserted after
the battery is disconnected

The introduction of dielectric between
the plates will decrease the electric field.
Experimentally it is found that the modified
electric field is given by

(1.91)

Here E_ is the electric field inside the
capacitors when there is no dielectric and e_
is the relative permeability of the dielectric
or simply known as the dielectric constant.
Since €_> 1, the electric field E < E .

As a result, the electrostatic potential
difference between the plates (V = Ed) is also
reduced. But at the same time, the charge
Q, will remain constant once the battery is
disconnected.

Hence the new potential difference is

/8
V=Ed=

Lyt (1.92)
€, €

We know that capacitance is inversely
proportional to the potential difference.
Therefore as V decreases, C increases.

Thus new capacitance in the presence of a
dielectric is

@
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C:&:er%:erco (1.93)
\% V,

Since ¢ > 1, we have C > C . Thus insertion

of the dielectric constant € increases the

capacitance.

Using equation (1.84),

c= &84 _ed (1.94)
i d

where ¢ = ¢ ¢_is the permittivity of the
dielectric medium.

The energy stored in the capacitor before
the insertion of a dielectric is given by

1Q
— X0 1.9
U, 2C, (1.95)

After the dielectric is inserted, the charge
Q, remains constant but the capacitance is
increased. As a result, the stored energy is
decreased.

2 2
volQ_1Q U (g
2C 2&C, ¢

Sincee >1weget U<U . Thereisadecrease
in energy because,when the dielectric is
inserted, the capacitor spends some energy
in pulling the dielectric inside.

(ii) When the battery remains connected
to the capacitor

Let us now consider what happens when
the battery of voltage V remains connected
to the capacitor when the dielectric is
inserted into the capacitor. This is shown in
Figurel.59.

The potential difference V,  across the
plates remains constant. But it is found
experimentally (first shown by Faraday) that
when dielectric is inserted, the charge stored
in the capacitor is increased by a factor €.
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Figure 1.59 (a) Capacitor is charged
through a battery (b) Dielectric is
inserted when the battery is connected.

Q=¢Q, (1.97)

d

Due to this increased charge, the capacitance
is also increased. The new capacitance is

C:gzs,&:gco (1.98)
Voo VY

However the reason for the increase in

H

capacitance in this case when the battery
remains connected is different from the case
when the battery is disconnected before
introducing the dielectric.

Now, C,= £
d
gl O % (1.99)

The energy stored in the capacitor before
the insertion of a dielectric is given by

. :%covj (1.100)

Note that here we have not used the

1Q;

expression U, =——"Dbecause here, both

i

H

charge and capacitance are changed, whereas
in equation (1.100), V_ remains constant.
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After the dielectric is inserted, the
capacitance is increased; hence the stored
energy is also increased.

U:%CVOZ :%ercovj =¢U, (1.101)

Since ¢ > 1 we have U > U .

It may be noted here that since voltage
between the capacitor V, is constant, the
electric field between the plates also remains
constant.

The energy density is given by

u:%SEj (1.102)

where € is the permittivity of the given
dielectric material.

The results of the above discussions are
summarised in the following Table 1.2

~ Computer keyboard keys are
@ ~ constructed using capacitors
v with a dielectric as shown in

the tigure.

Key

Movable plate
Insulator
(dielectric)

Fixed plate

When the key is pressed, the separation
between the plates decreases leading to
an increase in the capacitance. This in
turn triggers the electronic circuits in
the computer to identify which key is

pressed.
D
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Table 1.2

S. No Dielectric Charge Voltage Electric field Capacitance Energy
’ is inserted Q E C U
When the batter
1 Lo Y Constant decreases Decreases Increases Decreases
is disconnected
When the batter
2 Y Increases Constant Constant Increases Increases

is connected

EXAMPLE 1.21

A parallel plate capacitor filled with mica
having ¢ =5 is connected to a 10 V battery.
The area of the parallel plate is 6 m*and
separation distance is 6 mm. (a) Find the
capacitance and stored charge.

(b) After the capacitor is fully charged, the
battery is disconnected and the dielectric is
removed carefully.

Calculate the new values of capacitance,
stored energy and charge.

Solution
(a) The capacitance of the capacitor in

the presence of dielectric is

_ggA  5x885x10 X6
d 6x10°°
=44.25%x10°F = 44.25nF

C

The stored charge is

Q=CV =44.25x10"x10
=442.5x107°C = 442.5nC

The stored energy is

1 1
U= 5CV2 = 5><44.25C><10’9 %100

=221x10"°] =2.21p]

(b) After the removal of the dielectric, since
the battery is already disconnected the
total charge will not change. But the
potential difference between the plates

(e
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increases. As a result, the capacitance is
decreased.

New capacitance is

C 44.25x10°°
CO =
€ 5

r

=8.85x10"°F = 8.85nF
The stored charge remains same and
442.5 nC. Hence newly stored energy is
. Q Qe _eU
2C,  2C
=5x221 ] =11.05 ]
The increased energy is

AU =11.05u1J —2.21uJ = 8.84uJ

When the dielectric is removed, it
experiences an inward pulling force due
to the plates. To remove the dielectric,
an external agency has to do work on the
dielectric which is stored as additional
energy. This is the source for the extra
energy 8.84 pJ.

m Capacitor in series and

parallel

(i) Capacitor in series

Consider three capacitors of capacitance
C,,C, and C, connected in series with a
battery of voltage V as shown in the Figure
1.60 (a).

As soon as the battery is connected to the
capacitors in series, the electrons of charge

UNIT 1 ELECTROSTATICS
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C, C, C,
+ - + - + -
+ — + —
+ - + -
+ - + - + -
=~ -« > <« >

V1 VZ V3

+
\Y

(a)

(b)

| Figure 1.60 (a) Capacitors connected in series (b) Equivalence capacitors C,

-Q are transferred from negative terminal
to the right plate of C, which pushes the
electrons of same amount -Q from left
plate of C; to the right plate of C, due to
electrostatic induction. Similarly, the left
plate of C, pushes the charges of -Q to the
right plate of C, which induces the positive
charge +Q on the left plate of C . At the same
time, electrons of charge —-Q are transferred
from left plate of C, to positive terminal of
the battery.

By these processes, each capacitor stores the
same amount of charge Q. The capacitances
of the capacitors are in general different, so
that the voltage across each capacitor is also
different and are denoted as V, V,and V,
respectively.

The total voltage across each capacitor must
be equal to the voltage of the battery.

V=V +V +V, (1.103)
Since, Q = CV, we have V:g+g+g
Cl C2 C3

1 1 1
Q=+ —+— 1104
QC1 cc ( )
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If three capacitors in series are considered
to form an equivalent single capacitor C,
shown in Figure 1.60(b), then we have

Q

V =—. Substituting this expression into
N

equation (1.104), we get

1 1 1
g=Q —+—+—=
CS Cl CZ C3
r_r. .t (1.105)
CS Cl C2 C3

Thus, the inverse of the equivalent
capacitance C, of three capacitors connected
in series is equal to the sum of the inverses
of each capacitance. This equivalent
capacitance C, is always less than the
smallest individual capacitance in the series.

(ii) Capacitance in parallel

Consider three capacitors of capacitance
C,, C,and C, connected in parallel with
a battery of voltage V as shown in
Figure 1.61 (a).

9
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(a)

(b)

Figure 1.61 (a) capacitors in parallel (b) equivalent capacitance with the same total charge

Since corresponding sides of the capacitors
are connected to the same positive and
negative terminals of the battery, the
voltage across each capacitor is equal to the
battery’s voltage. Since capacitance of the
capacitors is different, the charge stored
in each capacitor is not the same. Let the
charge stored in the three capacitors be Q,,
Q, and Q, respectively. According to the law
of conservation of total charge, the sum of
these three charges is equal to the charge Q
transferred by the battery,

Q=Q,+Q, +Q, (1.106)
(o |

Now, since Q=CV, we have

Q=CV+CV+CV (1.107)

If these three capacitors are considered
to form a single capacitance C, which
stores the total charge Q as shown in the
Figure 1.61(b), then we can write Q = C,V.
Substituting this in equation (1.107), we get

CV=CV+CV+ C3V
C,=C+C,+C, (1.108)

Thus, the equivalent capacitance of
capacitors connected in parallel is equal
to the sum of the individual capacitances.

(ot
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The equivalent capacitance C, in a parallel
connection is always greater than the
largest individual capacitance. In a parallel
connection, it is equivalent as area of each
capacitance adds to give more effective area
such that total capacitance increases.

EXAMPLE 1.22

Find the equivalent capacitance between P
and Q for the configuration shown below

in the figure (a).

b

(d

Solution

The capacitors 1 pF and  3puF are
connected in parallel and 6pF and 2 pF
are also separately connected in parallel.
So these parallel combinations reduced
to equivalent single capacitances in their
respective positions, as shown in the

tigure (b).
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C,y = 1uF + 3uF = 4yF
C,, = OUF + 2uF = 8uF

From the figure (b), we infer that the two
4 uF capacitors are connected in series and
the two 8 uF capacitors are connected in
series. By using formula for the series, we
can reduce to their equivalent capacitances
as shown in figure (c).

1 1 1
— = 4o== = C,_ =2F
c, 4 4 !
and
1 1 1 1
C 8 8 4 “ H

From the figure (c), we infer that 2pF
and 4pF are connected in parallel. So the
equivalent capacitance is given in the
tigure (d).

C,y = 2uF + 4uF = 6pF

Thus the combination of capacitances
in figure (a) can be replaced by a single
capacitance 6 pF

DISTRIBUTION

OF CHARGES IN A
CONDUCTOR AND ACTION
AT POINTS

m Distribution of charges
in a conductor

Consider two conducting spheres A and B of
radii r, and r, respectively connected to each
other by a thin conducting wire as shown in
the Figure 1.62. The distance between the
spheres is much greater than the radii of
either spheres.
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Thin conducting wire

Figure 1.62 Two conductors are
connected through conducting wire

If a charge Q is introduced into any one of the
spheres, this charge Q is redistributed into
both the spheres such that the electrostatic
potential is same in both the spheres. They
are now uniformly charged and attain
electrostatic equilibrium. Let q, be the charge
residing on the surface of sphere A and q, is
the charge residing on the surface of sphere
B such that Q = q, + q,. The charges are
distributed only on the surface and there is
no net charge inside the conductor.

The electrostatic potential at the surface of
the sphere A is given by

1 g
W, == 1.110
4 4ane, ( )

The electrostatic potential at the surface of
the sphere B is given by

1 g
V,=—=2 1.111
' 4ame, r, ( )

The surface of the conductor is an
equipotential. Since the spheres are
connected by the conducting wire, the
surfaces of both the spheres together form
an equipotential surface. This implies that

V, =V,
or 4_% (1.112)
hon

Let us take the charge density on the surface
of sphere A is o, and charge density on the
surface of sphere B is 0,. This implies that q,

= 4T[I‘120'1 and
5
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q, = 4mr’o,. Substituting these values into
equation (1.112), we get

or =0r, (1.113)

from which we conclude that

or = constant (1.114)

Thus the surface charge density o is inversely
proportional to the radius of the sphere. For
a smaller radius, the charge density will be
larger and vice versa.

EXAMPLE 1.23

Two conducting spheres of radius r,
=8 cm and r, = 2 cm are separated by a
distance much larger than 8 cm and are
connected by a thin conducting wire as
shown in the figure. A total charge of Q =
+100 nC is placed on one of the spheres.
After a fraction of a second, the charge Q
is redistributed and both the spheres attain
electrostatic equilibrium.

Thin conducting wire

(a) Calculate the charge and surface
charge density on each sphere.

(b) Calculate the potential at the surface
of each sphere.

Solution
(a) The electrostatic potential 01} the
surface ofthesphere Ais V, = .
4me, 1,

The electrostatic potentialtl on the surface
of the sphere A is V, = L. -1

4ane, 7,
C
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Since V, = V. We have

.
—1]612
]

2

i:q_zi 4, =
r

1 rZ

But from the conservation of total charge, Q
=q, +q,, we get q, = Q — q,. By substituting
this in the above equation,

Q -4, = [i]qz
£

h

so that q,=Q

nt

Therefore,
L (2
q2:100><10 X E =20nC

and q,=Q-q,=80nC
The electric charge density for sphere A is

The electric charge density for sphere B is
9
o, =
P 4mr
Therefore,

80x10"°
0,=————=0.99%10"°Cm*
4x64x%x10

and

20x10°°
0, =——————=39x10"°Cm™*
4t x4 x10

Note that the surface charge density is

greater on the smaller sphere compared to

the larger sphere (0, = 40,) which confirms
r

c
the result —+ =2,

G, 1

2
The potential on both spheres is the same.
So we can calculate the potential on any

one of the spheres.

1 10° 10°
v, — &:9><0><80_2<0 — 9KV
4me 1, 8x10
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Action at points or
Corona discharge

Consider a charged conductor of irregular
shape as shown in Figure 1.63 (a).

(b)

Figure 1.63 Action at a points or corona
discharge

We know that smaller the radius of
curvature, the larger is the charge density.
The end of the conductor which has larger
curvature (smaller radius) has a large charge
accumulation as shown in Figure 1.63 (b).
As a result, the electric field near this edge
is very high and it ionizes the surrounding
air. The positive ions are repelled at the
sharp edge and negative ions are attracted
towards the sharper edge. This reduces
the total charge of the conductor near the
sharp edge. This is called action at points or
corona discharge.
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m Lightning arrester or

lightning conductor

This is a device used to protect tall buildings
from lightning strikes. It works on the
principle of action at points or corona
discharge.

This device consists of a long thick copper
rod passing from top of the building to the
ground. The upper end of the rod has a
sharp spike or a sharp needle as shown in
Figure 1.64 (a) and (b).

7

Figure 1.64 (a) Schematic diagram of
a lightning arrestor. (b) A house with a
lightning arrestor

The lower end of the rod is connected to the
copper plate which is buried deep into the
ground. When a negatively charged cloud
is passing above the building, it induces

)
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a positive charge on the spike. Since the
induced charge density on thin sharp spike
is large, it results in a corona discharge. This
positive charge ionizes the surrounding air
which in turn neutralizes the negative charge
in the cloud. The negative charge pushed to
the spikes passes through the copper rod and
is safely diverted to the Earth. The lightning
arrester does not stop the lightning; rather
it diverts the lightning to the ground safely.

m Van de Graaff

Generator

In the year 1929, Robert Van de Graaff
designed a machine which produces a large
amount of electrostatic potential difference,
up to several million volts (107 V). This Van
de Graff generator works on the principle of
electrostatic induction and action at points.

A large hollow spherical conductor is fixed
on the insulating stand as shown in Figure
1.65. A pulley B is mounted at the center
of the hollow sphere and another pulley C
is fixed at the bottom. A belt made up of
insulating materials like silk or rubber runs
over both pulleys. The pulley C is driven
continuously by the electric motor. Two
comb shaped metallic conductors E and D
are fixed near the pulleys.

The comb D is maintained at a positive
potential of 10* V by a power supply. The
upper comb E is connected to the inner side
of the hollow metal sphere.

Due to the high electric field near comb
D, air between the belt and comb D gets
ionized. The positive charges are pushed
towards the belt and negative charges
are attracted towards the comb D. The
positive charges stick to the belt and move
up. When the positive charges reach the

C

‘ ‘ UNIT-1(XII-Physics_Vol-1).indd 68

Corona
Aluminum discharge
roller
Rubber belt

Plastic
roller

Corona
discharge

+
+ +
+ +
i
T Rubber belt
L.
L
L
L.
L
+ D
= ®+ Insulating
—‘7‘ —A || stand

| Figure 1.65 Van de Graaff generator

comb E, a large amount of negative and
positive charges are induced on either side
of comb E due to electrostatic induction.
As a result, the positive charges are pushed
away from the comb E and they reach the
outer surface of the sphere. Since the sphere
is a conductor, the positive charges are
distributed uniformly on the outer surface
of the hollow sphere. At the same time, the
negative charges nullify the positive charges
in the belt due to corona discharge before it
passes over the pulley.

When the belt descends, it has almost no
net charge. At the bottom, it again gains
a large positive charge. The belt goes up
and delivers the positive charges to the

UNIT 1 ELECTROSTATICS
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outer surface of the sphere. This process
continues until the outer surface produces
the potential difference of the order of 107
which is the limiting value. We cannot store
charges beyond this limit since the extra
charge starts leaking to the surroundings
due to ionization of air. The leakage of
charges can be reduced by enclosing the
machine in a gas filled steel chamber at very
high pressure.

The high voltage produced in this Van de
Graaff generator is used to accelerate positive
ions (protons and deuterons) for nuclear
disintegrations and other applications.

EXAMPLE 1.24

Dielectric strength of air is 3 x 10° V m™.
Suppose the radius of a hollow sphere in
the Van de Graff generator is R = 0.5 m,
calculate the maximum potential difference

created by this Van de Graaff generator.
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The electric field on the surface of the
sphere(by Gauss law) is given by

1 Q

E=—-—
4me_ R

The potential on the surface of the hollow
metallic sphere is given by

=1 2_pp

B 4me. R B

with V. =E R

max

\%4 .
Here E__=3x10°—. So the maximum
m

potential difference created is given by

V. =3X10°X0.5

=1.5x 10°V (or) 1.5 million volt

5
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____IEEEN ®

Like charges repel and unlike charges attract

The total charge in the universe is conserved

Charge is quantized. Total charge in an object q = ne where n = 0,1,2,3... and e is
electron charge.

1 94
4me, 1’
For continuous charge distributions, integration methods can be used.

Coulomb’s law in vector form: F = 7 (7 is unit vector along joining q,, q,)

Electrostatic force obeys the superposition principle.

. . . = 1 o
Electric field at a distance r from a point charge: E = 4—%r
me, r

Electric field lines starts at a positive charge and end at a negative charge or at infinity
. .1 . C 11 = 1 (2p
Electric field due to electric dipole at points on the axial line: E,, = . —f]
me | r

. .1 . TN - 1
Electric field due to electric dipole at points on the equatorial line: E,, = e
TE,

Electrostatic potential at a distance r from the point charge: V = 4—Q
me, r
. . .1 1 p-r
Electrostatic potential due to an electric dipole: V = e P :
me, r

The electrostatic potential is the same at all points on an equipotential surface.

The relation between electric field and electrostatic potential:

Electrostatic potential energy for system of charges is equal to the work done to
arrange the charges in the given configuration.

Electrostatic potential energy stored in a dipole system in a uniform electric field:
U=-p-E

The total electric flux through a closed surface : @, = 2 where Q is the net charge
enclosed by the surface &
Electric field due to a charged infinite wire : E = ZL&?

mE, r

Electric field due to a charged infinite plane : E = % (n is normal to the plane)
80

Q .
2

Electric field inside a charged spherical shell is zero. For points outside: E = pr—
e r

J/

€
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= Electric field inside a conductor is zero. The electric field at the surface of the
: : c
conductor is normal to the surface and has magnitude E=—.
€,
= The surface of the conductor has the same potential, at all points on the surface.

= Conductor can be charged using the process of induction.

= A dielectric or insulator has no free electrons. When an electric field is applied, the
dielectric is polarised.

= Capacitance is given by C = % .
: . €A
= Capacitance of a parallel plate capacitor: C = 7

. . . 1
= Electrostatic energy stored in a capacitor: U = ECVZ

= The equivalent capacitance for parallel combination is equal to the sum of individual
capacitance of capacitors.

= For a series combination: The inverse of equivalent capacitance is equal to sum of
inverse of individual capacitances of capacitors.

= The distribution of charges in the conductors depends on the shape of conductor.
For sharper edge, the surface charge density is greater. This principle is used in the

@ lightning arrestor ®
= To create a large potential difference, a Van de Graaff generator is used.
|\ J/
UNIT 1 ELECTROSTATICS 7D
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I Multiple choice questions

1. Two identical point charges of
magnitude —q are fixed as shown in the
figure below. A third charge +qis placed
midway between the two charges at
the point P. Suppose this charge +q is
displaced a small distance from the
point P in the directions indicated
by the arrows, in which direction(s)
will +q be stable with respect to the

displacement?
I
- W
C:J) A PI A, +®q
BZ
® (@) A and A, (b) B, and B,
(¢) both directions (d) No stable

2. Which charge configuration produces

1 25

(a) E (b) H
11

(c)5 (d) %

4. An electric dipole is placed at an
alignment angle of 30° with an electric
field of 2 X 10° N C. It experiences a
torque equal to 8 N m. The charge on
the dipole if the dipole length is 1 cm is

(a) 4 mC (b) 8 mC
(c) 5mC (d) 7 mC

5. Four Gaussian surfaces are given below
with charges inside each Gaussian

surface. Rank the electric flux through
each Gaussian surface in increasing

order.

a uniform electric field?
(a) point Charge
(b) infinite uniform line charge

(c) uniformly charged infinite plane

(d) uniformly charged spherical shell

4
i
the following electric field line pattern?

3. What is the ratio of the charges || for

UNIT 1 ELECTROSTATICS
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(@) D<C<B<A
(b)) A<B=C<D
(c)C<A=B<D
(dD>C>B>A

6. The total electric flux for the following
closed surface which is kept inside
water

D
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(74

80g q
o4 b) L
(@) €, ®) 40¢
1 4 1
(©) 80¢._ (d) 160¢

Two identical conducting balls having
positive charges q, and q, are separated
by a center to center distance r. If they
are made to touch each other and then
separated to the same distance, the
force between them will be

(NSEP 04-05)

(a) less than before
(b) same as before
(c) more than before
(d) zero

Rank the electrostatic potential
energies for the given system of charges
in increasing order.

Q -0 o -Q Q20 Q. ,
@0 0—©0 e—=© ®e—©O

(@) (b) © 6)
(a) 1=4<2<3 (b)2=4<3<1
(c)2=3<1<4 (d)3<1<2<4

An electric field E=10xi exists in
a certain region of space. Then the

‘ ‘ UNIT-1(XII-Physics_Vol-1).indd 74

10.

11.

12.

H .  EEEm

potential difference V = V-V, where
V_is the potential at the origin and V,
is the potential at x =2 m is:

(a)107] (b) -20]
(c) +20] (d) -10]

A thin conducting spherical shell
of radius R has a charge Q which is
uniformly distributed on its surface.
The correct plot for electrostatic
potential due to this spherical shell is

N

VA

<R —> r <R —>

Y
-

(a) (b)

Y
=

O H
<« R—>

(c) (d)

Two points A and B are maintained at
a potential of 7 V and -4 V respectively.
The work done in moving 50 electrons
from A to B is

(2) 8.80 X 107 ]
(b) -8.80 X 107 ]
(c) 4.40 X 107
(d) 5.80 X 10"7]

If voltage applied on a capacitor is
increased from V to 2V, choose the
correct conclusion.

(a) Q remains the same, C is doubled
(b) Q is doubled, C doubled

(c) C remains same, Q doubled

(d) Both Q and C remain same

UNIT 1 ELECTROSTATICS

04-03-2019 10:26:54‘ ‘



H .  EEEm

e L AEEE ®

13. A parallel plate capacitor stores a Answers
charge Q at a voltage V. Suppose the 1)b 2) ¢ 3)d 4)b 5)a
area of the parallel plate capacitor and b . . Nb  10)b
the distance between the plates are each ) )¢ )a ) )
doubled then which is the quantity that 1)a 12)c  13)d  14)b 15a

will change?

(a) Capacitance II Short Answer Questions

(b) Charge 1. What is meant by quantisation of
(c) Voltage charges?
(d) Energy density 2. Write down Coulomb’s law in vector

14. Three capacitors are connected in
triangle as shown in the figure. The

form and mention what each term
represents.

equivalent capacitance between the 3. What are the differences between
points A and C is Coulomb force and gravitational
force?
2ub 4. Write a short note on superposition
£ Qs I I principle.
Define ‘Electric field’
\//// o What is mean by ‘Electric field lines’?
@ 1uF \ The electric field lines never intersect. @
Justity.
Y Define ‘Electric dipole’
¢ What is the general definition of
(a) 14F (b) 2 uF electric dipole moment?

. 10. Define ‘electrostatic potential”
(c) 3 uF (d) ZMF 11. What is an equipotential surface?

12. What are the properties of an

15. Two metallic spheres of radii 1 cm and
equipotential surface?

3 cm are given charges of -1 x 10> C
and 5 x 102 C respectively. If these are 13. Give the relation between electric field

connected by a conducting wire, the and electric potential.

final charge on the bigger sphere is 14. Define ‘electrostatic potential energy.

(AIIPMT -2012) 15. Define ‘electric flux’

(a) 3 X102 C 16. What is meant by electrostatic energy
(b)4 X 102C density?

(c) 1 X102C 17. Write a short note on ‘electrostatic
(d)2 X 102C shielding’

18. What is Polarisation?

UNIT 1 ELECTROSTATICS 79
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19.
20.
21.

What is dielectric strength?
Define ‘capacitance’. Give its unit.

What is corona discharge?

III Long Answer questions

1.

10.

11.
12.

13.

€

Discuss the basic properties of electric
charges.

Explain in detail Coulomb’s law and its
various aspects.

Define ‘Electric field’ and discuss its
various aspects.

How do we determine the electric
field due to a continuous charge
distribution? Explain.

Calculate the electric field due to a
dipole on its axial line and equatorial
plane.

Derive an expression for the torque
experienced by a dipole due to a
uniform electric field.

Derive an expression for electrostatic
potential due to a point charge.

Derive an expression for electrostatic
potential due to an electric dipole.

Obtain an expression for potential
energy due to a collection of three
point charges which are separated by
finite distances.

Derive an expression for electrostatic
potential energy of the dipole in a
uniform electric field.

Obtain Gauss law from Coulomb’s law.

Obtain the expression for electric field
due to an infinitely long charged wire.

Obtain the expression for electric field
due to an charged infinite plane sheet.

‘ ‘ UNIT-1(XII-Physics_Vol-1).indd 76

14.

15.

16.

17.

18.

19.

20.

21.

Do

23.

H .  EEEm

Obtain the expression for electric field
due to an uniformly charged spherical

shell.

Discuss the various properties of
conductors in electrostatic equilibrium.

Explain the process of electrostatic
induction.

Explain dielectrics in detail and how
an electric field is induced inside a
dielectric.

Obtain the expression for capacitance
for a parallel plate capacitor.

Obtain the expression for energy stored
in the parallel plate capacitor.

Explain in detail the effect of a dielectric
placed in a parallel plate capacitor.

Derive the expression for resultant
capacitance, when

connected in series and in parallel.

capacitors are

Explain in detail how charges are
distributed in a conductor, and
the principle behind the lightning
conductor.

Explain in detail the construction and
working of a Van de Graaff generator.

Exercises

1.

When two objects are rubbed with
each other, approximately a charge of
50 nC can be produced in each object.
Calculate the number of electrons that
must be transferred to produce this
charge.

Ans: 31.25 X 10" electrons
The total number of electrons in the
human body is typically in the order of
10%. Suppose, due to some reason, you
and your friend lost 1% of this number

UNIT 1 ELECTROSTATICS
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of electrons. Calculate the electrostatic
force between you and your friend
separated at a distance of Im. Compare
this with your weight. Assume mass
of each person is 60 kg and use point
charge approximation.

Ans:F =9 X 10 N, W =588 N

3. Five identical charges Q are placed

equidistant on a semicircle as shown

in the figure. Another point charge q is

kept at the center of the circle of radius

R. Calculate the electrostatic force
experienced by the charge q.

y
PeYe
QO
R
QO q0 S
0.
........... O Q

Ans: F = ﬁgoi—?(lJr\/E)N?

4. Suppose a charge +q on Earth’s surface
and another +q charge is placed on
the surface of the Moon. (a) Calculate
the value of q required to balance the
gravitational attraction between Earth
and Moon (b) Suppose the distance
between the Moon and Earth is halved,
would the charge q change?

(Take m, = 5.9 X 10** kg, m,, =7.9 X 10 kg)
Ans: (a) q = 4564 X 10" C,
(b) no change

5. Draw the free body diagram for the
following charges as shown in the
figure (a), (b) and (c¢).

UNIT 1 ELECTROSTATICS
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: ]
(a) (b) (©)
Ans
T N T
(L._) QE l—) qE
i mg "
(a) (b)

(©)

6. Consider an electron travelling with a
speed v_and entering into a uniform
electric field E which is perpendicular
to ¥, as shown in the Figure.
Ignoring gravity, obtain the electron’s
acceleration, velocity and position as

functions of time.

|
! E
@_,T .......................
e ......................... P
FFFFrFFsrsre] ™
Ans :
_ eE ~ _ ~ eE ~ _ -2
a=——J1v=vi——IL,r=viti ———17]
m i : m

7. A closed triangular box is kept in an
electric field of magnitude E = 2 X 10°
N C' as shown in the figure.

?
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separated by a gap of around 0.6 mm
gap as shown in the figure.

Calculate the electric flux through

the (a) vertical rectangular surface

(b) slanted surface and (c) entire surface. «
Ans: (a) 15 Nm? C! (b) 15 Nm? C! (¢) zero
8. The electrostatic potential is given as
a function of x in figure (a) and (b).
Calculate the corresponding electric
fields in regions A, B, C and D. Plot the
electric field as a function of x for the

To create the spark, an electric field of
magnitude 3 X 10° Vm™ is required.
(a) What potential difference must be
applied to produce the spark? (b) If
the gap is increased, does the potential

fi b).

gure (b) difference increase, decrease or
) v remains the same? (c) find the potential

. difference if the gap is 1 mm.
s NS JAA
® 1 \ 10 Ans: (a) 1800V, (b) increases (c) 3000 V ®
4 D 0 T 2 4 7 z x(cm)
\ -10
? 20 \l/ 10. A point charge of +10puC is placed
0702 04 06 xm  ° at a distance of 20 cm from another
(@) ®)

identical point charge of +10uC. A

int ch f -2 i fi
Ans: (a) E_= 15 Vm"! (region A), E_ = -10 point charge o uC is moved from

Vm'! (region C)
E, =0 (region B), E, = 30 Vm

point a to b as shown in the figure.
Calculate the change in potential
energy of the system? Interpret your

region D
(reg ) result.
v
30
20 b —2|,lC
10
0 x(em) 5cm
-10
-20 5cm 15 cm
0 10uC = @10uC
a
(b)

9. A spark plug in a bike or a car is used Ans: AU = -3.246 ], negative sign implies
to ignite the air-fuel mixture in the that to move the charge -2uC no external
engine. It consists of two electrodes work is required. System spends its stored

GS UNIT 1 ELECTROSTATICS
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energy to move the charge from point a to

point b.

11. Calculate the resultant capacitances for
each of the following combinations of
capacitors.

\,C, C, UG,
% X5
A
(d) (e)

Ans: (a) 2C. (b) C. (d)3C.
(d) across PQ: 3

C,C,C, +C,C,C, +C,C,C,+CC,C,

(C,+C,)(C,+C,)

across RS:

C,C,C, +C,C,C, +C,C,C,+CC,C,

(G +GC,)(C +C,)
(e) across PQ: 2 C

12. An electron and a proton are allowed
to fall through the separation between
the plates of a parallel plate capacitor of
voltage 5 V and separation distance h =
1 mm as shown in the figure.

UNIT 1 ELECTROSTATICS

(a) Calculate the time of flight for both
electron and proton (b) Suppose if a
neutron is allowed to fall, what is the
time of flight? (c) Among the three,
which one will reach the bottom first?
(Take m = 1.6 x10%* kg, m =9.1x107
kgand g=10ms?)

Ans:

2hm,

e 1.5ns (ignoring the gravity),
e

(@)¢, =

2h : : .
= qu ~ 63ns (ignoring the gravity)
e

(b) ¢, :\/ZzM.lms
b4

(c) electron will reach first

13. Duringathunder storm, the movement
of water molecules within the clouds
creates friction, partially causing the
bottom part of the clouds to become

negatively charged. This implies
that the bottom of the cloud and the
ground act as a parallel plate capacitor.
If the electric field between the cloud
and ground exceeds the dielectric
breakdown of the air (3 X 10° Vm™ ),
lightning will occur.
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(a) If the bottom part of the cloud is 1000 Ans:
m above the ground, determine the Q,=24uC, Q,=18pC,
electric potential difference that exists Q.=6 uC, Q,=24pC
between the cloud and ground. V =3V, vV, =3V,
(b) In a typical lightning phenomenon, V =3V, vV, =3V,
around 25C of electrons are transferred U =36y, U, =27y],
from cloud to ground. How much U =9y, U,=36y]
electrostatic ~ potential energy is 15. Capacitors P and Q have identical cross
transferred to the ground? sectional areas A and separation d. The
Ans: () V=3 X10°V,(b) U=75x%x10°] space between the capacitors is filled
14. For the given capacitor configuration with a dielectric of dielectric constant
(a) Find the charges on each capacitor e_as shown in the figure. Calculate the
(b) potential difference across them capacitance of capacitors P and Q.

(c) energy stored in each capacitor

6F |—D—4| I—D—4I
alo

‘ I—D_:
1 HE I :
8uF —— 2uF —— 8uF
a
| eA 2e Al ¢
I~ Ans: C,=——(1+¢ ), C, =—— L
+|9V F 2d( ) Co d [1+e,]

® ®
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ICT CORNER

Electrostatics

P

In this activity you will be able to learn Topic: Capacitor lab
about capacitor and the factors affecting

capacitance.

STEPS:

» Open the browser and type “phet.colorado.edu/en/simulation/legacy/capacitor-lab” in the
address bar. Go to the tab ‘Dielectric’

» Change the plate area, distance between the plate and dielectric. Identify what you would
maximize or minimize to make a capacitor with the greatest capacitance.

« Explore the relationships between charge, voltage, and stored energy for a capacitor. Design
a capacitor system to store the greatest energy.

« Charge the capacitor with 1.0 v using the battery. Disconnect the battery. Now insert a
dielectric between the plates. Discus how electric field changes in between the plates when
dielectric is introduced.

» What is the effect of introducing a dielectric between plates? (Change dielectric materials)

* Pictures are indicative only.

* If browser requires, allow Flash Player or Java Script to load the page. PSS S (e,

UNIT 1 ELECTROSTATICS SD

‘ ‘ UNIT-1(XII-Physics_Vol-1).indd 81 @ 04-03-2019 10:27:01 ‘ ‘



