EXERCISE 12.1

P&GE NO: 113

1. An isosceles right triangle has area 8 cm². The length of its hypotenuse is

- (A) $\sqrt{32}$ cm
- **(B)** $\sqrt{16}$ cm
- (C) $\sqrt{48}$ cm
- **(D)** $\sqrt{24}$ cm

Solution:

(A) $\sqrt{32}$ cm

Explanation:

Let height of triangle = h

As the triangle is isosceles,

Let base = height = h

According to the question,

Area of triangle = 8cm^2

$$\Rightarrow \frac{1}{2} \times \text{Base} \times \text{Height} = 8$$

$$\Rightarrow \frac{1}{2} \times h \times h = 8$$

$$\Rightarrow$$
 h² = 16

$$\Rightarrow$$
 h = 4cm

Base = Height = 4cm

Since the triangle is right angled,

 $Hypotenuse^2 = Base^2 + Height^2$

$$\Rightarrow$$
 Hypotenuse² = $4^2 + 4^2$

$$\Rightarrow$$
 Hypotenuse² = 32

$$\Rightarrow$$
 Hypotenuse = $\sqrt{32}$

Hence, Options A is the correct answer.

2. The perimeter of an equilateral triangle is 60 m. The area is

- (A) $10\sqrt{3} \text{ m}^2$
- (B) $15\sqrt{3} \text{ m}^2$
- (C) $20\sqrt{3} \text{ m}^2$
- (D) $100\sqrt{3} \text{ m}^2$

Solution:

(D) $100\sqrt{3} \text{ m}^2$

Explanation:

Area of an equilateral triangle of side $a = \sqrt{3/4} a^2$

According to the question,

Perimeter of triangle = 60m

$$\Rightarrow$$
 a + a + a = 60

$$\Rightarrow$$
 3a = 60

$$\Rightarrow$$
 a = 20m

⇒ a = 20m
Area of the triangle =
$$(\sqrt{3}/4)$$
 a²
= $(\sqrt{3}/4)$ (20)²
= $(\sqrt{3}/4)$ (400)
= $100\sqrt{3}$

Hence, Options D is the correct answer.

3. The sides of a triangle are 56 cm, 60 cm and 52 cm long. Then the area of the triangle is

- (A) 1322 cm^2
- (B) 1311 cm²
- (C) 1344 cm²
- (D) 1392 cm²

Solution:

(C) 1344 cm²

Explanation:

According to the question,

Sides of a triangle,

$$a = 56, b = 60, c = 52$$

$$s = (a + b + c)/2$$

$$\Rightarrow$$
 s = $(56 + 60 + 52)/2$

$$= 168/2 = 84.$$

Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{84(84-56)(84-60)(84-52)}$ = $\sqrt{84\times28\times24\times32}$

 $= 1344 \text{cm}^2$

Hence, Options C is the correct answer.

4. The area of an equilateral triangle with side $2\sqrt{3}$ cm is

- (A) 5.196 cm²
- (B) 0.866 cm²
- (C) 3.496 cm^2
- (D) 1.732 cm^2

Solution:

(A) 5.196 cm²

Explanation:

Area of an equilateral triangle of side $a = \sqrt{3}/4 a^2$

According to the question,

$$a = 2\sqrt{3}$$

Area of triangle =
$$(\sqrt{3}/4)$$
 a²
= $(\sqrt{3}/4)$ $(2\sqrt{3})^2$
= $(\sqrt{3}/4)(12)$
= $3\sqrt{3}$
= 5.196

Hence, Options A is the correct answer.

EXERCISE 12.2

PAGE NO: 115

Write True or False and justify your answer:

1. The area of a triangle with base 4 cm and height 6 cm is 24 cm².

Solution:

False

Justification:

Area of triangle = $\frac{1}{2} \times \text{Base} \times \text{Altitude}$ = $\frac{1}{2} \times 4 \times 6$ = 12cm^2

Hence, the statement "the area of a triangle with base 4 cm and height 6 cm is 24 cm²" is False.

2. The area of \triangle ABC is 8 cm² in which AB = AC = 4 cm and \angle A = 90°. Solution:

True

Justification:

Area of triangle = $\frac{1}{2} \times \text{Base} \times \text{Altitude}$ = $\frac{1}{2} \times 4 \times 4$ = 8cm^2

Hence, the statement is "area of $\triangle ABC$ is 8 cm^2 in which AB = AC = 4 cm and $\angle A = 90^{\circ\circ}$ is True.

3. The area of the isosceles triangle is $5/4 \sqrt{11} \text{cm}^2$, if the perimeter is 11 cm and the base is 5 cm. Solution:

True

Justification:

According to the question,

Perimeter = 11cm

And base, a = 5

As the triangle is isosceles, b = c

Perimeter = 11

 \Rightarrow a + b + c = 11

 \Rightarrow 5 + b + b = 11

 \Rightarrow 5 + 2b = 11

 \Rightarrow 2b = 6

 \Rightarrow b = 3

So, we have,

a = 5, b = 3, c = 3

s = (a + b + c)/2

 \Rightarrow s = (5 + 3 + 3)/2 = 11/2

Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{\frac{11}{2} \left(\frac{11}{2} - 5\right) \left(\frac{11}{2} - 3\right) \left(\frac{11}{2} - 3\right)}$$

$$= \sqrt{\frac{11}{2} \left(\frac{1}{2}\right) \left(\frac{5}{2}\right) \left(\frac{5}{2}\right)}$$

 \Rightarrow Area of triangle = $(5\sqrt{11})/4$ cm²

Hence, the statement "The area of the isosceles triangle is $5/4 \sqrt{11 \text{cm}^2}$, if the perimeter is 11 cm and the base is 5 cm" is True.

4. The area of the equilateral triangle is $20\sqrt{3}$ cm² whose each side is 8 cm. Solution:

False

Justification:

Area of an equilateral triangle of side $a = \sqrt{3/4} a^2$

According to the question,

Area of a triangle = $20\sqrt{3}$ cm²

$$\Rightarrow \sqrt{3}/4 \text{ a}^2 = 20\sqrt{3}$$

$$\Rightarrow$$
 a² = 20×4

$$\Rightarrow$$
 a² = 80

$$\Rightarrow$$
 a = $4\sqrt{5}$ cm

Hence, the statement "the area of the equilateral triangle is $20\sqrt{3}$ cm² whose each side is 8 cm" is False.

EXERCISE 12.3

PAGE NO: 117

1 Find the cost of laying grass in a triangular field of sides 50 m, 65 m and 65 m at the rate of Rs 7 per m^2 .

Solution:

According to the question, Sides of the triangular field are 50 m, 65 m and 65 m. Cost of laying grass in a triangular field = Rs 7 per m^2 Let a = 50, b = 65, c = 65s = (a + b + c)/2=(50+65+65)/2 \Rightarrow s = 180/2= 90.Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{90(90-50)(90-65)(90-65)}$ $= \sqrt{90 \times 40 \times 25 \times 25}$ $= 1500 \text{m}^2$ Cost of laying grass = Area of triangle \times Cost per m² $= 1500 \times 7$ = Rs.10500

2 The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 13 m, 14 m and 15 m. The advertisements yield an earning of Rs 2000 per m^2 a year. A company hired one of its walls for 6 months. How much rent did it pay? Solution:

According to the question,

The sides of the triangle are 13 m, 14 m and 15 m

Let a = 13, b = 14, c = 15
s = (a + b + c)/2

$$\Rightarrow$$
 s = (13 + 14 + 15)/2
= 42/2
= 21.
Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$
= $\sqrt{21(21-13)(21-14)(21-15)}$
= $\sqrt{21} \times 8 \times 7 \times 6$
= 84m²

Cost of advertisements for a year = Area of triangle \times Cost per m²

$$= 84 \times 2000$$

= Rs. 168000

Since the board is rented for only 6 months:

Cost of advertisements for 6 months = $(6/12) \times 168000$

= Rs. 84000

3 From a point in the interior of an equilateral triangle, perpendiculars are drawn on the three sides. The lengths of the perpendiculars are 14 cm, 10 cm and 6 cm. Find the area of the triangle.

Solution:

According to the question,

The lengths of the perpendiculars are 14 cm, 10 cm and 6 cm.

We know that,

Area of an equilateral triangle of side $a = \sqrt{3/4} a^2$

We divide the triangle into three triangles,

Area of triangle =
$$(1/2 \times a \times 14) + (1/2 \times a \times 10) + (1/2 \times a \times 6)$$

 $\sqrt{3}/4 \ a^2 = \frac{1}{2} \times a \times (14 + 10 + 6)$
 $\sqrt{3}/4 \ a^2 = \frac{1}{2} \times a \times 30$
 $a = 60/\sqrt{3}$
 $= 20\sqrt{3}$
Area of the triangle = $\sqrt{3}/4 \ a^2$
 $= \sqrt{3}/4 \ (20\sqrt{3})^2$

 $= 300\sqrt{3} \text{ cm}^2$

4 The perimeter of an isosceles triangle is 32 cm. The ratio of the equal side to its base is 3 : 2. Find the area of the triangle.

Solution:

According to the question,

Perimeter of the isosceles triangle = 32 cm

It is also given that,

Ratio of equal side to base = 3:2

Let the equal side = 3x

So, base = 2x

Perimeter of the triangle = 32

$$\Rightarrow$$
 3x + 3x + 2x = 32

$$\Rightarrow 8x = 32$$

$$\Rightarrow$$
 x = 4.

Equal side =
$$3x = 3 \times 4 = 12$$

Base =
$$2x = 2 \times 4 = 8$$

The sides of the triangle = 12cm, 12cm and 8cm.

Let
$$a = 12$$
, $b = 12$, $c = 8$
 $s = (a + b + c)/2$
 $\Rightarrow s = (12 + 12 + 8)/2$
 $= 32/2$
 $= 16$.
Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$
 $= \sqrt{16(16-12)(16-12)(16-8)}$

 $= \sqrt{16(16-12)(16-12)(16-8)}$ $= \sqrt{16 \times 4 \times 4 \times 8}$ $= 32\sqrt{2} \text{ cm}^2$

5 Find the area of a parallelogram given in Fig. 12.2. Also find the length of the altitude from vertex A on the side DC.

Fig. 12.2

Solution:

We know that,

Area of parallelogram(ABCD) = Area(\triangle BCD) + Area(\triangle ABD)

For Area (\triangle BCD),

We have,

a = 12, b = 17, c = 25
s = (a + b + c)/2

$$\Rightarrow$$
 s = (12 + 17 + 25)/2 = 54/2 = 27.
Area of (\triangle BCD) = \sqrt{s} (s-a)(s-b)(s-c)
= $\sqrt{27}$ (27-12)(27-17)(27-25)
= $\sqrt{27}$ ×15×10×2
= 90 cm²

Since, ABCD is a parallelogram,

 $Area(\Delta BCD) = Area(\Delta ABD)$

Area of parallelogram(ABCD) = Area(
$$\triangle$$
BCD) + Area(\triangle ABD)
= 90 + 90
= 180 cm²

Let altitude from A be = x

Also, Area of parallelogram(ABCD) = CD
$$\times$$
 (Altitude from A)
 $\Rightarrow 180 = 12 \times x$

$$\Rightarrow$$
 x = 15 cm

EXERCISE 12.4

PAGE NO: 118

1. How much paper of each shade is needed to make a kite given in Fig. 12.4, in which ABCD is a square with diagonal 44 cm.

Solution:

According to the figure,

$$AC = BD = 44cm$$

$$AO = 44/2 = 22cm$$

$$BO = 44/2 = 22cm$$

From $\triangle AOB$,

$$AB^2 = AO^2 + BO^2$$

$$\Rightarrow AB^2 = 22^2 + 22^2$$

$$\Rightarrow$$
 AB² = 2 × 22²

$$\Rightarrow$$
 AB = $22\sqrt{2}$ cm

Area of square = $(Side)^2$

$$= (22\sqrt{2})^2 = 968 \text{ cm}^2$$
Area of each triangle (I, II, III, IV) = Area of square /4 = 968 /4 = 242 cm²

To find area of lower triangle,
Let $a = 28$, $b = 28$, $c = 14$

$$s = (a + b + c)/2$$

$$\Rightarrow s = (28 + 28 + 14)/2 = 70/2 = 35.$$
Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$
= $\sqrt{35(35-28)(35-28)(35-14)}$
= $\sqrt{35\times7\times7\times21}$
= $49\sqrt{15} = 189.77\text{cm}^2$

Therefore,
We get,
Area of Red = Area of IV = 242 cm²

Area of Yellow = Area of I + Area of II = $242 + 242$
= 484 cm^2

Area of Green = Area of III + Area of lower triangle = $242 + 189.77$
= 431.77 cm^2

2. The perimeter of a triangle is 50 cm. One side of a triangle is 4 cm longer than the smaller side and the third side is 6 cm less than twice the smaller side. Find the area of the triangle. Solution:

```
Let the smaller side be = x cm
Then, larger side = (x + 4) cm
And, third side = (2x-6) cm
Given that.
Perimeter = 50 \text{ cm}
\Rightarrow x + (x + 4) + (2x-6) = 50
\Rightarrow 4x-2 = 50
\Rightarrow 4x = 52
\Rightarrow x = 13
Therefore, smaller side = 13cm
Larger side = x + 4 = 13 + 4 = 17cm
Third side = 2x-6 = 2 \times 13 - 6 = 26-6 = 20cm
To find area of triangle,
Let a = 13, b = 17, c = 20
s = (a + b + c)/2
\Rightarrow s = (13 + 17 + 20)/2 = 50/2 = 25.
Area of triangle = \sqrt{s(s-a)(s-b)(s-c)}
        =\sqrt{25(25-13)(25-17)(25-20)}
        =\sqrt{25}\times12\times8\times5
```

 $=20\sqrt{30} \text{ cm}^2$

3. The area of a trapezium is 475 cm² and the height is 19 cm. Find the lengths of its two parallel sides if one side is 4 cm greater than the other. Solution:

Let the given trapezium be PQRS, given in the figure.

According to the question,

PQ = 19cm

Let RQ = x cm

Then,

PS = (x + 4)cm

Construction:

Draw a perpendicular from R on PS which will also be parallel to PQ.

Now,

We get,

PQRT is a rectangle,

Area of rectangle $PQRT = PQ \times QR$

$$\Rightarrow$$
 Area(PQRT) = 19×x = 19x

Now.

$$PS = PT + TS$$

Since
$$PT = QR = x cm$$

$$(x+4) = x + TS$$

$$\Rightarrow$$
 TS = 4cm

Area of triangle RST = $\frac{1}{2} \times RT \times ST$

Since
$$RT = PQ = 19cm$$

$$\Rightarrow Area(\Delta RST) = \frac{1}{2} \times 19 \times 4$$
$$= 38cm^2$$

$$Area(PQRS) = Area(PQRT) + Area(\Delta RST)$$

$$\Rightarrow$$
 475 = 19x + 38

$$\Rightarrow 19x = 475 - 38$$

$$\Rightarrow$$
 19x = 437

$$\Rightarrow$$
 x = 23 cm

$$(x + 4) = 23 + 4 = 27$$
cm

Therefore, lengths of parallel sides is 23cm and 27cm.

4. A rectangular plot is given for constructing a house, having a measurement of 40 m long and 15 m in the front. According to the laws, a minimum of 3 m, wide space should be left in the front and back each and 2 m wide space on each of other sides. Find the largest area where house can be constructed.

Solution:

Let the given rectangle be rectangle PQRS,

According to the question,

PQ = 40m and QR = 15m

As 3m is left in both front and back,

$$AB = PQ - 3 - 3$$

$$\Rightarrow$$
 AB = 40 -6

$$\Rightarrow$$
 AB = 34m

Also,

Given that 2m has to be left at both the sides,

$$BC = QR -2 - 2$$

$$\Rightarrow$$
 BC = 15 -4

$$\Rightarrow$$
 BC = 11m

Now, Area left for house construction is area of ABCD.

Hence,

Area(ABCD) =
$$AB \times CD$$

= 34×11
= 374 m^2