MARKING SCHEME- CHEMISTRY (043)

SAMPLE PAPER (CLASS - XII)

Q.N	Value Points	Mar
0.		ks
1.	T1 < T2 < T3	1
2.	XeF ₂	1
3.	It strengthens the bond between CO and the metal.	1
4.	The oxidation state of P in PCI_5 is +5 it cannot increase its oxidation state beyond +5 but it can decrease from +5 to +3.	1
5.	lodobenzene	1
6.	Schottky defect	1
	It is shown by ionic substances in which the cation and anion are of almost similar sizes. / ionic substances having high coordination number.	1
7.	The plot is nearly a straight line and can be extrapolated to zero concentration(i.e.	1
	from the intercept) to find the value of $\lambda_m^{0} = 150.0 \text{ S cm}^2 \text{ mol}^{-1}$	
	150.2-	
	149.8	
	E 149.0-	
	5 148.6- 9 Turne	
	¥ 148.2- 147.8-	
	147.4	
	147.0 0 .005 .010 .015 .020 .025 .030 .035	
	c ^{1/2} /(mo//L) ^{1/2}	
	$\left[\Lambda_{\rm m}^{\rm c} = \Lambda_{\rm m}^{\rm 0} - A\sqrt{c}\right]$	1/
	Δν	/2
	$A = -slope = \frac{-y}{\Delta x}$	
	150.0 – 147.0	1/2
	$=\frac{10000}{0.034}$	
	$= 88.23 \text{ S cm}^2 \text{ mol}^{-1}$	
8.	r = 125 pm, a = ?	
	for fcc structure $r = \frac{a}{1}$	1/
	1000000000000000000000000000000000000	1/2 1/2
	a = 125 x 2 x 1.414	12
	= 353.5 pm	1⁄2 +

		1⁄2
9. (i)		1
(ii)		1
	OR	
(i)	3 Cl ₂ + 6 NaOH \rightarrow 5 NaCl + NaClO ₃ + 3 H ₂ O	1
(ii)	2 Fe ₃₊ + SO ₂ + 2 H ₂ O \rightarrow 2 Fe ²⁺ + SO ₄ ²⁻ + 4 H ⁺ (¹ / ₂ mark to be deducted for an unbalanced chemical equation)	1
10.	KCI is an electrolyte, it undergoes dissociation $\Delta T_f = i K_f m$ $i = \frac{\Delta T_f}{K_f m}$	1⁄2
	$\Delta T_f = 0 - (-0.24) = 0.24^{\ 0}$ Molar mass of KCl = 39 + 35.5 = 74.5 u substituting the values	
	$i = \frac{0.24 \times 74.5 \times 100}{1.86 \times 0.5 \times 1000}$ i = 1.92	1⁄2
	α is the degree of dissociation $i = 1 + \alpha$ $\alpha = 1.92 - 1 = 0.92$	1⁄2
	Percentage dissociation = 92 %	1⁄2
11.		
(i) (ii)	Hydraulic washing: Principle involved: differences in gravities of the ore and the gangue particles e.g.oxide ores (haematite), native ores Au, Ag (any one example) Zone refining:	1 ½
	Principle involved: the impurities are more soluble in the melt than in the solid	1
	e.g. germanium, silicon, boron, gallium and indium (any one example)	1/2
12.		

(i)	A warm solution is obtained on mixing the two liquids A and B indicate that the	1/2
	process of mixing is exothermic. ($\Delta H_{mixing} = -ve$). So the solution shows a	
	negative deviation from the Raoult's law.	
	r 1	
	P° 0	
	$P^{a}_{A} = P = P_{A} + P_{B}$	
		1
	P _A	
	$X_A = 1$ Mole fraction $\rightarrow X_A = 0$	
	$X_{g} = 0$ $X_{g} = 1$ P-X graph for non-ideal solution	
	showing -ve deviation	
	The forces of interaction between A and B molecules are more than in the A-A and B-B	17
	molecules. So the partial vapour pressure of each component will be less and the	1/2
	partial vapour pressure of the solution will also be less than that from the Raoult's law.	
(ii)	For Old Old (non electrolite)	
(,	For CH_3OH (non electrolyte) $I = 0$	
	$N_{2} P O_{1} \longrightarrow 3 N_{2}^{+} + P O_{1}^{3} \qquad i = 4$	
	$CH_2OH < KCI < Na_2PO_4$	1
13.	Nernst equation:	
	$-$ 0.0591 [Ma^{2+}]	1/2
	$E_{cell} = E_{cell}^{0} - \frac{10000}{2} \log \frac{1000}{100}$	
		17
	$E_{cov} = 2.71 - \frac{0.0591}{1000} \log \frac{[10^{\circ}]}{1000}$	1/2
	2 ³ [10 ⁻⁴]	
	$E_{cell} = 2.68 V$	$\frac{1}{2}$ +
		1/2
	Γ in an analysis of C_{1}^{2+} is a solution of C_{2}^{2+}	
	E_{cell} increases with the increase in the concentration of Cu ⁻ ions and decrease in the concentration of Mg ²⁺ ions	1
14		
(i)	Decomposition of ozone into oxygen is an exothermic process ($\Delta H = -ve$) and results in an	1
(1)	increase in entropy($\Lambda S = +ve$), resulting in large negative Gibbs energy change ($\Lambda G = -$	•
	ve). Decomposition of ozone to oxygen is a spontaneous process.	
(ii)	As we move down the group, the size of the central atom increases and the	
	electronegativity decreases. therefore the bond pair of electrons lie away from the central	1
	atom, the force of repulsion between the adjacent bond pairs decreases. So the bond	
	angle decreases.	
(iii)	The bleaching action of Clais due to the ovidation of coloured substance to	1/2
(11)	colourless by nascent oxygen.	/2
	$Cl_2 + H_2O \rightarrow 2 HCI + [O]$	1/2
	Nascent oxygen	

	А	В	C	
	COONa			
	C NaOH + C	aO D		1⁄2
19. (a) (i)	Chemical test	Methylamine (1 ⁰ aliphatic amine)	Dimethylamine (2 ⁰ aliphatic amine)	
	Carbylamine test: To 1 ml of the organic compound add an alcoholic solution of KOH and CHCl ₃	Gives offensive smell.	No odour obtained (no reaction)	1
(ii)	Chemical test	Aniline (1 ⁰ aromatic amine)	Benzylamine (1 ⁰ aliphatic amine)	
	Azo dye test: To 1mL of the organic compound add HNO ₂ (NaNO ₂ + dil. HCl) at 273- 278 K. then add an alkaline solution of β naphathol to the solution.	A brilliant red dye is obtained	No dye obtained	1
(b)	(any other suitable test) Four structural isomers are pos Only primary amines react with	sible for C ₃ H ₉ N h HNO ₂ to liberate nitrogen g	as.	
	1 ⁰ amines: CH ₃ CH ₂ CH ₂ NH ₂			1/2
	CH ₃ -CH-CH ₃			1⁄2
	NH ₂			
	No reaction for 2° and 3° amine 2° amine: CH ₃ -NH-C ₂ H ₅ 3° amine:	es		
	CH ₃ -N-CH ₃			
	ĊH ₃			
20. (a) (i)	When acid chloride is hydroge reduced to the corresponding a	nated over catalyst, palladiun ldehydes. This reaction is cal	n on barium sulphate they are led Rosenmund reduction.	1⁄2

	сн о — Соон	
		1
	4-Methoxybenzoic acid < Benzoic acid < 4-Nitrobenzoic acid	
21. (i)	Buta-1,3diene : CH ₂ =CH-CH=CH ₂ and Acrylonitrile : CH ₂ =CH(CN) (either name or structure)	1/2 1/2
(ii)	Neoprene is classified as an Elastomer. (the polymeric chain are held together by weakest intermolecular forces)	1
(iii)	Yes a co-polymer can be formed in addition and condensation polymerization.	1
22. (i)	Keratin is insoluble in water. It is a fibrous protein in which the polypeptide chains are held together by strong intermolecular forces, hence insoluble in water.	1/2 1/2
(ii)	α-D-Glucopyranose	
	H = H = H = H = H = H = H = H = H = H =	1
(iii)	The sequence in the complimentary strand is ATGCTTGA	1
23. (a) (i) (ii)	No the chemist did not give the appropriate medicine. Cimetidine is an antihistamine, but it is an antacid and not an antiallergic drug.Antacid and antiallergic drugs work on different receptors. Therefore cimetidine cannot be used to treat nasal congestion.	½ 1 ½
	Critical thinking Social responsibility (or any other two reasons)	1 1
24. (a)	Mechanism of hydration of ethene to ethanol by acid catalysed hydration:	

	$2 \text{ KMnO}_4 \xrightarrow{\Delta} \text{K}_2\text{MnO}_4 + \text{MnO}_2 + \text{O}_2$	1/2
(b) (i)	Mn^{3+} and Co^{3+} are the strongest oxidizing agents from the data given.	1/2 +1/2
(ii)	Copper (I) compounds are unstable in aqueous solution and undergo disproportionation $2 \operatorname{Cu}^+ \to \operatorname{Cu}^{2^+} + \operatorname{Cu}$ Cu^{2^+} (aq) is more stable than Cu^+ because it has high negative $\Delta_{hydr} \mathbf{H}^0$ as compared to Cu^+ .	1/2
(iii)	The highest oxidation state of a metal is exhibited in its oxide as oxygen has the ability to form multiple bonds to metal atoms.	1⁄2 1
	OR	
(a) (i) (ii)	$2 Cu^{2+} + 4I^{-} \rightarrow Cu_{2}I_{2}(s) + I_{2}$ Cr ₂ O ₇ ²⁻ + 14 H ⁺ + 6 Fe ²⁺ \rightarrow 2 Cr ³⁺ + 6 Fe ³⁺ 7 H ₂ O	1
(b) (i)	The third series (5d elements) of the transition elements have the highest first ionization enthalpy (Hf to Au). This is because of the poor shielding of the nucleus by the 4f electrons in the 5d elements which results in greater effective nuclear charge on the valence electrons.	1/2 1/2
(ii)	Due to the lanthanoid contraction the change in the ionic radii in the lanthanoids is very small, their chemical properties are similar, so the separation is difficult.	1
(iii)	+3 is the most stable oxidation state of lanthanides. Ions in +2 tend to change to +3 by losing electrons so act as reducing agents, whereas ios in +4 tend to change to +3 by gaining electrons so act as oxidizing agents.	1
26. (i)	For a chemical reaction with rise in temperature by 10° , the rate constant is nearly doubled.	1⁄2
	$(T_{2} - T_{1} + 10^{0})$	1
	Increasing the temperature of the substance increases the fraction of molecules which collide with energies greater than E_a (activation energy) As the temperature increases (T_2) , the fraction of molecules having energy equal to or greater than activation energy gets doubled leading to doubling the rate of reaction.	1

	$\mathbf{k} = \mathbf{A} \ \mathbf{e}^{-\mathbf{E}\mathbf{a}/\mathbf{R}\mathbf{T}}$ (Arrhenius equation)	1⁄2
(ii)	$\mathbf{k} = \mathbf{A} \ \mathbf{e}^{-\mathbf{E}\mathbf{a}/\mathbf{R}\mathbf{T}}$	
	$-\frac{E_a}{2} = -\frac{28000 K}{2}$	1
	RT $TE_a = 28000 K x 8.314 J/K/mol$	1⁄2
	$E_a = 232.79 \text{ kJ} / \text{mol}$	1⁄2
	OR	
(i)	$t_{99\%} = 2 t_{90\%}$ Given for reactant Q. for first order reaction	
()	$t_{99\%} = \frac{2.303}{k} \log \frac{a}{a - 0.99a} = \frac{2.303}{k} \log 10^2 = 2 \times \frac{2.303}{k}$	1⁄2
	$t_{90\%} = \frac{2.303}{k} \log \frac{a}{a - 0.90a} = \frac{2.303}{k} \log 10 = \frac{2.303}{k}$	1/2
	Therefore t $_{99\%} = 2 t_{90\%}$, therefore it is a first order reaction with respect to Q	1⁄2
	From the graph it is evident that the concentration of R decreases linearly with time, therefore the order with respect to R is zero.	1⁄2
	The overall order of the reaction is 1. Units for rate constant $-s^{-1}$	1⁄2
	Rate = $k [Q]^{1} [R]^{0}$	1⁄2
	For a first order reaction	
(11)	$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$	17
	Time required for the $3/4$ th of the reaction	1/2
	$[R]_0 = a, \ [R] = a - \frac{a}{4}a = \frac{1}{4}a$	1/2
	$t_{\frac{3}{4}} = \frac{2.303}{k} \log \frac{a}{\frac{1}{4}a}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	$t_3 = \frac{2.303}{2.54 \times 10^{-3}} \log 4$	
	$\frac{1}{4}$ 2.34 X 10 -	1⁄2
	= 545 s	1/2