MARKING SCHEME

1.	The formation of micelle takes place only above a particular temperature called Kraft temperature.	1
2.	28	1
3.		1
4.		1
5.	P type semiconductor	1
6.	$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ dsp^{2} hybridisation, Ni in +2 state all electrons are paired, so diamagnetic. [$\left.\mathrm{Ni}(\mathrm{CO})_{4}\right]$ sp^{3} hybridisation, Ni in 0 state all electrons are paired so diamagnetic $\begin{aligned} & \mathrm{A}=\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \\ & \mathrm{B}=\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{en})\right]^{2+} \\ & \mathrm{C}=\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{en})_{2}\right]^{2+} \\ & \mathrm{D}=\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+} \end{aligned}$	$\begin{aligned} & 1 / 2+1 / 2+ \\ & 1 / 2+1 / 2 \end{aligned}$
7.	(i) The electron arrangement is trigonal bipyramidal. The shape is linear because the lone pairs prefer the equatorial positions. The molecule XeF_{2} has 3lone-pairs and 2bond-pairs. (ii) Low bond dissociation enthalpy and high hydration enthalpy of flourine.	1+1
8.	Let us assume a binary solution in which the mole fraction of the solvent be x 1 and that of the solute be $\mathrm{x} 2, \mathrm{p} 1$ be the vapour pressure of the solvent and plo be the vapour pressure of the solvent in pure state. According to Raoult's Law: $\begin{equation*} p_{1}=x_{1} p_{1} . \tag{1} \end{equation*}$	1/2

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
The decrease in vapour pressure of the solvent \((\Delta \mathrm{p} 1)\) is given by:
\[
\begin{aligned}
\& \Rightarrow \Delta p_{1}=p_{1} 0-p_{1} \\
\& \Rightarrow \Delta p_{1}=p_{1}{ }^{0}-p_{1} 0 x_{1} \\
\& \Rightarrow \Delta p_{1}=p_{1} 0^{\circ}\left(1-x_{1}\right)
\end{aligned}
\] \\
[using equation (1)] \\
Since we have assumed the solution to be binary solution, \(\mathbf{x 2}=\mathbf{1 - x 1}\)
\[
\begin{aligned}
\& \Rightarrow \Delta p_{1}=p_{1} 0 x_{2} \\
\& \Rightarrow x_{2}=\Delta p_{1} / p_{1} 0
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$

\hline 9. \& $$
\begin{aligned}
& a=1 g, a-x=0.125 g, t=24 \text { hours } \\
& k=\frac{2.303}{t} \log \frac{a}{a-x} \\
& k=\frac{2.303}{t} \log \frac{1}{0.125} \\
& =0.0866 \mathrm{hr}^{-1} . \\
& t_{1 / 2}=\frac{0.693}{k} \\
& t_{1 / 2}=\frac{0.693}{0.0866} \\
& =8 \text { hours }
\end{aligned}
$$ \& $1 / 2$

$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$

\hline 10. \& | (i) 1-Phenylmethanamine. |
| :--- |
| (ii) N,N-Dimethylmethanamine. | \& 1

1

\hline \& $$
\begin{aligned}
& \rho=\frac{Z X M}{a 3 X N a} \\
& Z=\frac{2 \times\left(5 \times 10^{-8}\right)^{3} \times 6 \times 10^{23}}{75} \\
& =2 \\
& \mathrm{r}=\sqrt{\frac{3}{4}} a
\end{aligned}
$$ \& $1 / 2$

$1 / 2$
1
1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
\& \mathrm{r}=\sqrt{\frac{3}{4}} x 5 \\
\& =2.165 \mathrm{~A}^{0}
\end{aligned}
\] \& 1/2 \\
\hline 12. \& \begin{tabular}{l}
(i) X is more strongly adsorbed than Y . \\
(ii) Copper matte contains small amount of FeO as impurity which is removed as FeSiO 3 slag when reacts with silica.
\[
\mathrm{FeO}+\mathrm{SiO} 2 \text {-----> FeSiO3 (slag) }
\] \\
(iii) Van Arkel Method
\end{tabular} \& 1
\(1 / 2\)
\(1 / 2\)
1 \\
\hline 13. \& \begin{tabular}{l}
(a) \(\mathrm{NH}_{4} \mathrm{Cl}\) (aq.) \(+\mathrm{NaNO}_{2}\) (aq.) \(\rightarrow \mathrm{N}_{2}(\) g \()+2 \mathrm{H}_{2} \mathrm{O}\) (l) +NaCl (aq.) \\
(b) \(\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{NaH}_{2} \mathrm{PO}_{2}+\mathrm{PH}_{3}\) \\
(iii) \(\mathrm{H}_{2} \mathrm{SO}_{4}\) is a very strong acid in water because of its first ionisation to \(\mathrm{H}_{3} \mathrm{O}^{+}\). and \(\mathrm{HSO}_{4}{ }^{-}\). The ionization of \(\mathrm{HSO}_{4}{ }^{-}\)to \(\mathrm{H}_{3} \mathrm{O}^{+}\)and \(\mathrm{SO}_{4}{ }^{2-}\) is very small (it is difficult to remove a proton from a negatively charged ion).
\end{tabular} \& 1
1
1 \\
\hline 14. \& (i) \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}\)
(ii) \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \mathrm{H}_{2} \mathrm{O}\)
(iii) \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{Cl})_{2}\right] \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\) \& 1
1
1 \\
\hline 15. \& \begin{tabular}{l}
(i) It is due to the symmetry of para-isomers that fits in the crystal better as compared to ortho and meta-isomers. \\
(ii) Resonance effect / Difference in hybridization of carbon atom in C-X bond / Instability of phenyl cation / because of the repulsion, it is less likely for the electron rich nucleophile to approach electron rich arenes . \\
(iii)Alkoxide ion present in alcoholic KOH , is not only a strong nucleophile but also a strong base.
\end{tabular} \& 1
1 \\
\hline 16. \& \begin{tabular}{l}
(i) Animal hides are colloidal in nature, havig positively charged particles, when soaked in tannin, which contains negatively charged colloidal particles, mutual coagulation occurs. \\
(ii) Greater the valency of flocculating ion added, greater is its power to cause precipitation. \\
(iii) The optimum temperature range for enzymatic activity is \(298-310 \mathrm{~K}\) i.e enzymes are active beyond this temp. range, thus during fever the activity of enzymes may be affected.
\end{tabular} \& 1
1
1 \\
\hline 17 \& \begin{tabular}{l}
if vapour pressure of pure liquid is \(=\mathrm{P}_{\text {o }}\) \(80 \%\) of pure liquid \(\mathrm{Ps}=80 \times \mathrm{P}_{\mathrm{o}} / 100=0.8 \mathrm{P}_{\mathrm{o}}\) \(\mathrm{P}_{\mathrm{s}}=\mathrm{P}_{\mathrm{o}} \times \mathrm{X}_{\text {solute }}\) \\
mass of solute \(=x\) gram \\
And mass of solvent \(=114 \mathrm{~g}\) \\
Molar mass of solute \(=40 \mathrm{~g} / \mathrm{mol}\) \\
Molar mass of solvent (octane \(\mathrm{C}_{8} \mathrm{H}_{18}\)) \(=114 \mathrm{~g} / \mathrm{mol}\) \\
Number of moles of solute \(=x / 40=0.025 x\) \\
Number of moles of solvent \(=114 / 114=1\) moles \\
Mole fraction of solvent \(=1 /(1+0.025 \mathrm{x})\) \\
\(0.8 \mathrm{P}_{\mathrm{o}}=\mathrm{P}_{0} \times 1 /(1+0.025 \mathrm{x})\) \\
Cross multiply we get \\
\((1+0.025 \mathrm{x})) 0.8 \mathrm{P}_{\mathrm{o}}=\mathrm{P}_{\mathrm{o}}\)
\end{tabular} \& 1
\(1 / 2\)

1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Divide by 0.8 Po we get
\[
1+0.025 x=1.25
\] \\
Subtract 1 both side we get
\[
0.025 x=0.25
\] \\
Now divide by 0.025 we get
\[
\mathrm{x}=10 \mathrm{~g}
\] \\
OR
\[
\pi \mathrm{V}=\mathrm{CRT}
\]
\[
\begin{equation*}
4.98=36 / 180 \times \mathrm{R} \times 300=60 \mathrm{R} \tag{i}
\end{equation*}
\]
\[
1.52=\mathrm{C} \mathrm{x} \mathrm{R} \mathrm{x} 300
\] \\
Divide (ii) by (i)
\[
\mathrm{C}=0.061 \mathrm{M}
\]
\end{tabular} \& \begin{tabular}{l}
\(1 / 2\) \\
1 \\
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\) for \\
unit
\end{tabular} \\
\hline 18. \& \begin{tabular}{l}
(i) \\
Benzoquinone \\
(ii)
\end{tabular} \& 1

1

\hline 19. \& (i)

$$
+2 \mathrm{NaBr}+2 \mathrm{H}_{2} \mathrm{O}
$$ \& 1

\hline
\end{tabular}

		1
	(iii) Aniline will give azo dye test whereas methylamine will not	1
20.	(i) α helix-Intramolecular H bonding. β pleated-Intermolecular H bonding. (ii) Amylose is a straight chain polymer of D glucose whereas amylopectin is a branched polymer.	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
21.	(i) Slope $=-\frac{k}{2.303}$ $\begin{aligned} \mathrm{k} & =-2.303 \times-2.0 \times 10^{-6} \mathrm{sec}^{-1} \\ & =4.606 \times 10^{-6} \mathrm{sec}^{-1} . \end{aligned}$ (ii) $\quad t_{1 / 2}=\frac{A_{0}}{2 k}$	1 1 1
22.	(i) Addition polymers: Polyvinyl chloride, Polythene. Condensation polymers: Terylene, Bakelite. (ii) Buna- $\mathrm{N}: 1,3$-Butadiene + Acrylonitrile. Buna -S: 1,3-Butadiene + Styrene.	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
23.	(i) Caring, empathetic, awareness, application of knowledge at right place. (ii) Because of production of histamine. Doctor will prescribe antihistamine. (iii)Medicines can be potent poisons. (iv) An agonist is a chemical that binds to a receptor and activates the receptor to produce a biological response. Antagonist is a drug that blocks a receptor.	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 \\ & 1 / 2+1 / 2 \end{aligned}$
24.	(i) $\begin{aligned} & \kappa=\frac{G^{*}}{R} \\ & \Lambda_{m}=\frac{1000 \kappa}{C} \\ & E_{N i^{2+} / N i}=-0.25-\frac{0.0591}{2} \log \frac{1}{0.50} \\ & =-0.259 \mathrm{~V} \\ & E_{A l^{3+} / A l}=-1.66-\frac{0.0591}{3} \log \frac{1}{0.001} \\ & =-1.719 \mathrm{~V} \\ & E_{\text {cell }}=0.259 \mathrm{~V}-(-1.719 \mathrm{~V})=1.46 \mathrm{~V} \end{aligned}$ OR (i) $\mathrm{E}_{\mathrm{H}+/ 1 / 2 \mathrm{H} 2}=\mathrm{E}_{\mathrm{H}+/ 1 / 2 \mathrm{H} 2}-\frac{0.0591}{\mathrm{n}} \log \frac{1}{[\mathrm{H}+]}$	1 1 1 1 1 1

	$\begin{aligned} \mathrm{E}_{\mathrm{H}+1 / 2 \mathrm{H} 2} & =0-\frac{0.0591}{1} \log \frac{1}{10^{-10}} \\ & =-0.591 \mathrm{~V} \end{aligned}$ (ii) First law-the chemical deposition due to flow of current through an electrolyte is directly proportional to the quantity of electricity (coulombs) passed through it. Faraday's second law of electrolysis states that, when the same quantity of electricity is passed through several electrolytes, the mass of the substances deposited are proportional to their respective chemical equivalent or equivalent weight. 3F	$1 / 2$ $1 / 2$ 1 1 1 1
25.	(i) In transition elements, the oxidation state differ by 1 e.g Cu^{+}and Cu^{2+}. In non-transition elements, the oxidation state differ by 2 e.g Pb^{+2} and Pb^{4+} (ii) (a) d- block elements exhibit more oxidation states because of comparable energy gap between d and s subshell whereas f-block elements have large energy gap between f and d subshell. (b) $\underset{\substack{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \\ \text { orange }}}{\mathrm{H}_{2} \mathrm{O}} \underset{\text { yellow }}{2 \mathrm{CrO}_{4}^{-}}+2 \mathrm{H}^{+}$ (c) Lanthanoid contraction. OR (i) $\begin{aligned} & 2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+\mathrm{O}_{2}----------\mathrm{C}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\ & 3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+}---------->2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+}-\rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ (ii)	$1+1$ 1 1 1 1 1 1 1

	(b)	
	(c)	1
	(d)	1
		1
		1

