Marking Scheme (Sample Paper)

Section A

Q1. $-\frac{24}{25}$

Q2. We have $1,2 \in \mathrm{Z}$ such that $1 * 2=8$ and $2 * 1=2$. This implies that $1 * 2 \neq 2$ * 1 . Hence, * is not commutative. (1)

Q3. $\left[\begin{array}{ccc}0 & 1 & -3 \\ -1 & 0 & -2 \\ 3 & 2 & 0\end{array}\right]$ (1)

Q4. 4%
(1)

Q5. 5
(1)

Q6. -14
(1)

Section B

Q7. Here, fof : $\mathrm{W} \rightarrow \mathrm{W}$ is such that, if n is odd, $\mathrm{fof}(\mathrm{n})=\mathrm{f}(\mathrm{f}(\mathrm{n}))=\mathrm{f}(\mathrm{n}-1)=\mathrm{n}-1+1=\mathrm{n}$
and if n is even, $\mathrm{fof}(\mathrm{n})=\mathrm{f}(\mathrm{f}(\mathrm{n}))=\mathrm{f}(\mathrm{n}+1)=\mathrm{n}+1-1=\mathrm{n}$

Hence, fof $=I$ This implies that f is invertible and $f^{-1}=f$

OR

Let $(a, b) \in N \times N$. Then $\because a^{2}+b^{2}=b^{2}+a^{2} \therefore(a, b) R(a, b)$ Hence, R is reflexive.

Let $(a, b),(c, d) \in N \times N$ be such that $(a, b) R(c, d)$
$\Rightarrow \mathrm{a}^{2}+\mathrm{d}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}$
$\Rightarrow \mathrm{c}^{2}+\mathrm{b}^{2}=\mathrm{d}^{2}+\mathrm{a}^{2}$
$\Rightarrow(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{a}, \mathrm{b})$

Hence, R is symmetric.

Let $(a, b),(c, d),(e, f) \in N \times N$ be such that $(a, b) R(c, d),(c, d) R(e, f)$.
$\Rightarrow \mathrm{a}^{2}+\mathrm{d}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}$ and $\mathrm{c}^{2}+\mathrm{f}^{2}=\mathrm{d}^{2}+\mathrm{e}^{2}$
$\Rightarrow a^{2}+d^{2}+c^{2}+f^{2}=b^{2}+c^{2}+d^{2}+e^{2}$
$\Rightarrow \mathrm{a}^{2}+\mathrm{f}^{2}=\mathrm{b}^{2}+\mathrm{e}^{2}$
$\Rightarrow(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{e}, \mathrm{f})$

Hence, R is transitive.

Since R is reflexive, symmetric and transitive. Therefore R is an equivalence relation. (1/2)

Q8.

$$
\begin{equation*}
\tan ^{-1}\left(\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}\right)=\tan ^{-1}\left(\frac{\sqrt{2 \cos ^{2} \frac{x}{2}}+\sqrt{2 \sin ^{2} \frac{x}{2}}}{\sqrt{2 \cos ^{2} \frac{x}{2}}-\sqrt{2 \sin ^{2} \frac{x}{2}}}\right) \tag{1}
\end{equation*}
$$

$$
=\tan ^{-1}\left(\frac{-\sqrt{2} \cos \frac{x}{2}+\sqrt{2} \sin \frac{x}{2}}{-\sqrt{2} \cos \frac{x}{2}-\sqrt{2} \sin \frac{x}{2}}\right) \quad\left(\pi<x<\frac{3 \pi}{2} \Rightarrow \frac{\pi}{2}<\frac{x}{2}<\frac{3 \pi}{4} \Rightarrow \cos \frac{x}{2}<0, \sin \frac{x}{2}>0\right) \quad(1+1 / 2)
$$

$$
\begin{equation*}
=\tan ^{-1}\left(\frac{1-\tan \frac{x}{2}}{1+\tan \frac{x}{2}}\right)=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{\pi}{4}-\frac{x}{2} \quad\left(-\frac{\pi}{4}>\frac{\pi}{4}-\frac{x}{2}>-\frac{\pi}{2}\right) \tag{1/2}
\end{equation*}
$$

Q9. $\operatorname{adj} \mathrm{A}=\left[\begin{array}{cc}4 & -3 \\ -1 & -2\end{array}\right]^{\prime}=\left[\begin{array}{cc}4 & -1 \\ -3 & -2\end{array}\right]$

$$
\begin{align*}
& (\operatorname{adjA}) A=\left[\begin{array}{cc}
-11 & 0 \\
0 & -11
\end{array}\right]=-11\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \tag{1/2}\\
& \mathrm{A}(\operatorname{adj} \mathrm{~A})=\left[\begin{array}{cc}
-11 & 0 \\
0 & -11
\end{array}\right]=-11\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \tag{1/2}\\
& |\mathrm{A}|=\left|\begin{array}{cc}
-2 & 1 \\
3 & 4
\end{array}\right|=-11 \tag{1/2}
\end{align*}
$$

Hence, $\mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}$ verified.

$$
\mathrm{Q}(10) \text { LHS }=\left|\begin{array}{ccc}
1 & 1+p & 1+p+q \tag{1/2}\\
3 & 4+3 p & 2+4 p+3 q \\
4 & 7+4 p & 2+7 p+4 q
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1+p & 1+p+q \\
0 & 1 & -1+p \\
0 & 3 & -2+3 p
\end{array}\right|\left(R_{2} \rightarrow R_{2}-3 R_{1}, R_{3} \rightarrow R_{3}-4 R_{1}\right)
$$

$$
=\left|\begin{array}{ccc}
1 & 1+p & 1+p+q \\
0 & 1 & -1+p \\
0 & 0 & 1
\end{array}\right|\left(R_{3} \rightarrow R_{3}-3 R_{2}\right)
$$

=1 = RHS. Hence, proved.

OR

Let $\Delta=\left|\begin{array}{ccc}0 & 2 & -3 \\ -2 & 0 & 4 \\ 3 & -4 & 0\end{array}\right|=\left|\begin{array}{ccc}0 & -2 & 3 \\ 2 & 0 & -4 \\ -3 & 4 & 0\end{array}\right|$ (interchanging rows and columns) $\quad(1+1 / 2)$
$=(-1)(-1)(-1)\left|\begin{array}{ccc}0 & 2 & -3 \\ -2 & 0 & 4 \\ 3 & -4 & 0\end{array}\right|$
$=-\Delta$
$\Rightarrow 2 \Delta=0 \Rightarrow \Delta=0$

Q11. $\mathrm{AB}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]=2 \mathrm{I}$

$$
\Rightarrow \mathrm{A}\left(\frac{1}{2} \mathrm{~B}\right)=\mathrm{I} \Rightarrow \mathrm{~A}^{-1}=\frac{1}{2} \mathrm{~B}=\left[\begin{array}{cc}
2 & -3 \tag{1}\\
-1 & 2
\end{array}\right]
$$

The given system of equations is equivalent to $A^{\prime} X=C$, where $X=\left[\begin{array}{l}x \\ y\end{array}\right], C=\left[\begin{array}{l}4 \\ 1\end{array}\right](1 / 2)$

$$
\begin{align*}
& X=\left(A^{\prime}\right)^{-1} C=\left(A^{-1}\right)^{\prime} C \tag{1}\\
& =\left[\begin{array}{cc}
2 & -1 \\
-3 & 2
\end{array}\right]\left[\begin{array}{c}
4 \\
1
\end{array}\right]=\left[\begin{array}{c}
7 \\
-10
\end{array}\right] \Rightarrow x=7, y=-10 \tag{1}
\end{align*}
$$

Q12. Since, f is differentiable at $\mathrm{x}=2$, therefore, f is continuous at $\mathrm{x}=2$.

$$
\begin{equation*}
\Rightarrow \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2) \Rightarrow \lim _{x \rightarrow 2^{-}} x^{2}=\lim _{x \rightarrow 2^{+}}(a x+b)=4 \Rightarrow 4=2 a+b \tag{1/2}
\end{equation*}
$$

Since, f is differentiable at $x=2$,

$$
\begin{aligned}
& \therefore \operatorname{Lf}^{\prime}(2)=\mathrm{Rf}^{\prime}(2) \Rightarrow \lim _{h \rightarrow 0} \frac{f(2-h)-f(2)}{-h}=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \quad(h>0) \\
& \Rightarrow \lim _{h \rightarrow 0} \frac{(2-h)^{2}-4}{-h}=\lim _{h \rightarrow 0} \frac{\mathrm{a}(2+h)+b-4}{h} \\
& \Rightarrow \lim _{h \rightarrow 0}(-h+4)=\lim _{h \rightarrow 0} \frac{4+a h-4}{h} \Rightarrow 4=a
\end{aligned}
$$

$$
\begin{equation*}
b=-4 \tag{1+1/2}
\end{equation*}
$$

Q13.

Let $\mathrm{u}=(\log \mathrm{x})^{\mathrm{x}}$. Then $\log \mathrm{u}=\mathrm{x} \log (\log \mathrm{x}) \Rightarrow \frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}=\frac{1}{\log \mathrm{x}}+\log (\log \mathrm{x})$
$\Rightarrow \frac{d u}{d x}=(\log x)^{x}\left[\frac{1}{\log x}+\log (\log x)\right]$

Let $v=x^{x \cos x}$. Then $\log v=x \cos x \log x \Rightarrow \frac{1}{v} \frac{d v}{d x}=\frac{x \cos x}{x}+\cos x(\log x)-x \sin x \log x$ $\Rightarrow \frac{d v}{d x}=x^{x \cos x}[\cos x+\cos x(\log x)-x \sin x \log x]$

$$
\begin{align*}
& y=u+v \Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}=(\log x)^{x}\left[\frac{1}{\log x}+\log (\log x)\right]+ \tag{1+1/2}\\
& x^{x \cos x}[\cos x+\cos x(\log x)-x \sin x \log x]
\end{align*}
$$

OR

$$
\begin{align*}
& \frac{d x}{d t}=a p \cos p t, \frac{d y}{d t}=-b p \sin p t, \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=-\frac{b}{a} \tan p t \tag{1+1/2}\\
& \frac{d^{2} y}{d x^{2}}=-\frac{b}{a} p \sec ^{2} p t \times \frac{d t}{d x} \tag{1+1/2}\\
& \frac{d^{2} y}{d x^{2}}=-\frac{b}{a^{2} \cos ^{3} p t} \tag{1/2}\\
& \Rightarrow\left(\frac{d^{2} y}{d x^{2}}\right)_{t=0}=-\frac{b}{a^{2}} \tag{1/2}
\end{align*}
$$

Q14. Given integral =

$$
\begin{align*}
& \int \frac{1}{\sin x-\sin 2 x} d x=\int \frac{1}{\sin x(1-2 \cos x)} d x=\int \frac{\sin x}{(1+\cos x)(1-\cos x)(1-2 \cos x)} d x \\
& =-\int \frac{d t}{(1+t)(1-t)(1-2 t)} \quad(\cos x=t \Rightarrow-\sin x d x=d t) \tag{1}
\end{align*}
$$

$\frac{1}{(1+\mathrm{t})(1-\mathrm{t})(1-2 \mathrm{t})}=\frac{\mathrm{A}}{1+\mathrm{t}}+\frac{\mathrm{B}}{1-\mathrm{t}}+\frac{\mathrm{C}}{1-2 \mathrm{t}}$
$\therefore 1=\mathrm{A}(1-\mathrm{t})(1-2 \mathrm{t})+\mathrm{B}(1+\mathrm{t})(1-2 \mathrm{t})+\mathrm{C}\left(1-\mathrm{t}^{2}\right)$ (An identity)
Putting, $t=1,1 / 2,-1$, we get $A=1 / 6, B=-1 / 2, C=4 / 3$
Therefore, the given integral

$$
\begin{aligned}
& =-\frac{1}{6} \log |1+t|-\frac{1}{2} \log |1-t|+\frac{4}{6} \log |1-2 t|+c \\
& =-\frac{1}{6} \log |1+\cos x|-\frac{1}{2} \log |1-\cos x|+\frac{2}{3} \log |1-2 \cos x|+c
\end{aligned}
$$

OR
$\int \frac{\sin \phi}{\sqrt{\sin ^{2} \phi+2 \cos \phi+3}} \mathrm{~d} \phi=\int \frac{\sin \phi}{\sqrt{1-\cos ^{2} \phi+2 \cos \phi+3}} \mathrm{~d} \phi$
$=\int \frac{\sin \phi}{\sqrt{-\cos ^{2} \phi+2 \cos \phi+4}} \mathrm{~d} \phi=\int \frac{-1}{\sqrt{-\mathrm{t}^{2}+2 \mathrm{t}+4}} \mathrm{dt}(\cos \phi=\mathrm{t} \Rightarrow-\sin \phi \mathrm{d} \phi=\mathrm{dt})$
$=-\int \frac{1}{\sqrt{(\sqrt{5})^{2}-(\mathrm{t}-1)^{2}}} \mathrm{dt}$
$=-\sin ^{-1} \frac{\mathrm{t}-1}{\sqrt{5}}+\mathrm{c}=-\sin ^{-1} \frac{\cos \phi-1}{\sqrt{5}}+\mathrm{c}$

Q15. Let

$$
\begin{aligned}
& I=\int_{-\pi}^{\pi} \frac{2 x(1+\sin x)}{1+\cos ^{2} x} d x=\int_{-\pi}^{\pi} \frac{2 x}{1+\cos ^{2} x} d x+\int_{-\pi}^{\pi} \frac{2 x \sin x}{1+\cos ^{2} x} d x \quad \text { (as } \frac{2 x}{1+\cos ^{2} x} \text { is odd and } \\
& =0+2 \int^{\pi} \frac{2 x \sin x}{d x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 \mathrm{x} \sin \mathrm{x}}{1+\cos ^{2} \mathrm{x}} \text { is even) } \\
& =4 \int_{0}^{\pi} \frac{\mathrm{x} \sin \mathrm{x}}{1+\cos ^{2} \mathrm{x}} \mathrm{dx}
\end{aligned}
$$

Let

$$
\begin{align*}
& \mathrm{I}_{1}=\int_{0}^{\pi} \frac{\mathrm{x} \sin \mathrm{x}}{1+\cos ^{2} \mathrm{x}} \mathrm{dx}=\int_{0}^{\pi} \frac{(\pi-\mathrm{x}) \sin (\pi-\mathrm{x})}{1+\cos ^{2}(\pi-\mathrm{x})} \mathrm{dx} \\
& \mathrm{I}_{1}=\int_{0}^{\pi} \frac{(\pi-\mathrm{x}) \sin \mathrm{x}}{1+\cos ^{2} \mathrm{x}} \mathrm{dx} \tag{1}
\end{align*}
$$

$$
\text { Adding, } 2 \mathrm{I}_{1}=\pi \int_{0}^{\pi} \frac{\sin \mathrm{x}}{1+\cos ^{2} \mathrm{x}} \mathrm{dx}
$$

$$
\begin{equation*}
=-\pi \int_{1}^{-1} \frac{\mathrm{dt}}{1+\mathrm{t}^{2}}(\cos \mathrm{x}=\mathrm{t} \Rightarrow-\sin \mathrm{xdx}=\mathrm{dt}) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=\pi\left[\tan ^{-1} \mathrm{t}\right]_{-1}^{1} \tag{1/2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{I}_{1}=\frac{\pi^{2}}{4} . \text { Hence, } \mathrm{I}=\pi^{2} \tag{1/2}
\end{equation*}
$$

Q16. Given differential equation is

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y}{x}+\frac{\sqrt{x^{2}+y^{2}}}{x}, x>0 \text { or, } \frac{d y}{d x}=\frac{y}{x}+\sqrt{1+\left(\frac{y}{x}\right)^{2}}=f\left(\frac{y}{x}\right) \text {, hence, homogeneous. } \tag{1/2}
\end{equation*}
$$

Put $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$. The differential equation becomes $v+x \frac{d v}{d x}=v+\sqrt{1+v^{2}}$

$$
\begin{equation*}
\text { or, } \frac{\mathrm{dv}}{\sqrt{1+v^{2}}}=\frac{\mathrm{dx}}{\mathrm{x}} \tag{1/2}
\end{equation*}
$$

Integrating, we get $\log \left|v+\sqrt{1+v^{2}}\right|=\log |x|+\log k$
$\Rightarrow \log \left|\mathrm{v}+\sqrt{1+\mathrm{v}^{2}}\right|=\log |\mathrm{x}| \mathrm{k} \Rightarrow\left|\mathrm{v}+\sqrt{1+\mathrm{v}^{2}}\right|=|\mathrm{x}| \mathrm{k}$
$\Rightarrow \mathrm{v}+\sqrt{1+\mathrm{v}^{2}}= \pm \mathrm{kx} \Rightarrow \frac{\mathrm{y}}{\mathrm{x}}+\sqrt{1+\left(\frac{\mathrm{y}}{\mathrm{x}}\right)^{2}}=\mathrm{cx}$
$\Rightarrow y+\sqrt{x^{2}+y^{2}}=c x^{2}$,
which gives the general solution.
(1)

Q17. We have the following differential equation: $\frac{d x}{d y}=\frac{\left(\tan ^{-1} y-x\right)}{1+y^{2}} 0 r, \frac{d x}{d y}+\frac{x}{1+y^{2}}=\frac{\tan ^{-1} y}{1+y^{2}}$, which is linear in x
I.F. $=e^{\int \frac{1}{1+y^{2}} d y}=e^{\tan ^{-1} y}$

Multiplying both sides by I. F. and integrating we get $x^{\tan ^{-1} y}=\int e^{\tan ^{-1} y} \frac{\tan ^{-1} y}{1+y^{2}} d y(1 / 2)$
$\Rightarrow \mathrm{xe}^{\tan ^{-1} \mathrm{y}}=\int \mathrm{e}^{\mathrm{t}} \mathrm{tdt} \quad\left(\tan ^{-1} \mathrm{y}=\mathrm{t} \Rightarrow \frac{1}{1+\mathrm{y}^{2}} \mathrm{dy}=\mathrm{dt}\right)$
$\Rightarrow \mathrm{xe}^{\tan ^{-1} \mathrm{y}}=\mathrm{te}^{\mathrm{t}}-\mathrm{e}^{\mathrm{t}}+\mathrm{c} \Rightarrow \mathrm{xe}^{\tan ^{-1} \mathrm{y}}=\tan ^{-1} \mathrm{ye}^{\tan ^{-1} \mathrm{y}}-\mathrm{e}^{\tan ^{-1} \mathrm{y}}+\mathrm{c}$
which gives the general solution of the differential equation.
Q18. The vector equations of the given lines are

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}+\lambda(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}), \overrightarrow{\mathrm{r}}=-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\mu(-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \\
& \overrightarrow{\mathrm{a}}_{1}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}, \vec{b}_{1}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}, \vec{a}_{2}=-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}, \overrightarrow{\mathrm{~b}}_{2}=-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}
\end{aligned}
$$

$$
\begin{align*}
& \vec{a}_{2}-\vec{a}_{1}=-3 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \vec{b}_{1} \times \overrightarrow{\mathrm{b}}_{2}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
2 & -3 & 4 \\
-1 & 2 & 3
\end{array}\right|=-17 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}+\hat{\mathrm{k}} \tag{2}\\
& \text { The required shortest distance }=\frac{\left|\left(\overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}\right) \cdot\left(\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}\right)\right|}{\left|\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}\right|} \tag{1/2}\\
& =\frac{42}{\sqrt{390}} \text { units } \tag{1/2}
\end{align*}
$$

Q19. Let us define the following events: $\mathrm{E}=\mathrm{A}$ solves the problem, $\mathrm{F}=\mathrm{B}$ solves the problem, $\mathrm{G}=$
C solves the problem, $\mathrm{H}=\mathrm{D}$ solves the problem
(i) The required probability $=P(E \cup F \cup G \cup H)$
$=1-\mathrm{P}(\overline{\mathrm{E}} \cap \overline{\mathrm{F}} \cap \overline{\mathrm{G}} \cap \overline{\mathrm{H}})$
$=1-\mathrm{P}(\overline{\mathrm{E}}) \times \mathrm{P}(\overline{\mathrm{F}}) \times \mathrm{P}(\overline{\mathrm{G}}) \times \mathrm{P}(\overline{\mathrm{H}})$
$=1-\frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times \frac{1}{3}=\frac{13}{15}$
(ii)The required probability $=$

$$
\begin{align*}
& \mathrm{P}(\overline{\mathrm{E}}) \times \mathrm{P}(\overline{\mathrm{~F}}) \times \mathrm{P}(\overline{\mathrm{G}}) \times \mathrm{P}(\overline{\mathrm{H}})+\mathrm{P}(\mathrm{E}) \times \mathrm{P}(\overline{\mathrm{~F}}) \times \mathrm{P}(\overline{\mathrm{G}}) \times \mathrm{P}(\overline{\mathrm{H}})+\mathrm{P}(\overline{\mathrm{E}}) \times \mathrm{P}(\mathrm{~F}) \times \mathrm{P}(\overline{\mathrm{G}}) \times \mathrm{P}(\overline{\mathrm{H}}) \tag{1}\\
& +\mathrm{P}(\overline{\mathrm{E}}) \times \mathrm{P}(\overline{\mathrm{~F}}) \times \mathrm{P}(\mathrm{G}) \times \mathrm{P}(\overline{\mathrm{H}})+\mathrm{P}(\overline{\mathrm{E}}) \times \mathrm{P}(\overline{\mathrm{~F}}) \times \mathrm{P}(\overline{\mathrm{G}}) \times \mathrm{P}(\mathrm{H}) \\
& =\frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times \frac{1}{3}+\frac{1}{3} \times \frac{3}{4} \times \frac{4}{5} \times \frac{1}{3}+\frac{2}{3} \times \frac{1}{4} \times \frac{4}{5} \times \frac{1}{3} \\
& +\frac{2}{3} \times \frac{3}{4} \times \frac{1}{5} \times \frac{1}{3}+\frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times \frac{2}{3}=\frac{5}{18} \tag{1/2}
\end{align*}
$$

Section C

Q20. $\mathrm{f}^{\prime}(\mathrm{x})=(\mathrm{x}-1)^{2}(\mathrm{x}+2)(5 \mathrm{x}+4)$

$$
\begin{equation*}
\mathrm{f}^{\prime}(\mathrm{x})=0 \Rightarrow \mathrm{x}=1,-2, \frac{-4}{5} \tag{1/2}
\end{equation*}
$$

In the interval	Sign of $\mathrm{f}^{\prime}(\mathrm{x})$	Nature of the function
$(-\infty,-2)$	$(+v e)(-v e)(-v e)=+v e$	f is strictly increasing in $(-\infty,-2]$
$\left(-2,-\frac{4}{5}\right)$	(+ve)(+ve)(-ve)= -ve	f is strictly decreasing in $\left[-2,-\frac{4}{5}\right]$
$\left(-\frac{4}{5}, 1\right)$	(+ve)(+ve)(+ve)= +ve	f is strictly increasing $\text { in }\left[-\frac{4}{5}, 1\right]$
$(1, \infty)$	(+ve)(+ve)(+ve)= +ve	f is strictly increasing in $[1, \infty)$

Hence, f is strictly increasing in $(-\infty,-2]$ and $\left[-\frac{4}{5}, \infty\right) . \mathrm{f}$ is strictly decreasing in $\left[-2,-\frac{4}{5}\right]$

In the left nhd of $-2, f^{\prime}(x)>0$, in the right nhd of $-2, f^{\prime}(x)<0$ and $f^{\prime}(-2)=0$, therefore, by the first derivative test, -2 is a point of local maximum.

In the left nhd of $-4 / 5, f^{\prime}(x)<0$, in the right nhd of $-4 / 5, f^{\prime}(x)>0$ and $f^{\prime}(-4 / 5)=0$, therefore, by the first derivative test, $-4 / 5$ is a point of local minimum.

Q21. We have

$$
\begin{align*}
& \vec{a} . \vec{b}=0, \vec{a} . \vec{c}=0 \Rightarrow \vec{a} \perp \text { both } \vec{b} \text { and } \vec{c} \text { (as } \vec{a}, \vec{b}, \vec{c} \text { are nonzero vectors) } \tag{1}\\
& \Rightarrow \vec{a} \| \vec{b} \times \vec{c}
\end{align*}
$$

Let $\vec{a}=\lambda(\vec{b} \times \vec{c})$

Then
$|\overrightarrow{\mathrm{a}}|=|\lambda||(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})| \Rightarrow \frac{|\overrightarrow{\mathrm{a}}|}{|(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})|}=|\lambda| \Rightarrow|\lambda|=\frac{1}{\sin \frac{\pi}{6}}=2 \Rightarrow \lambda= \pm 2$
$\therefore \vec{a}= \pm 2(\vec{b} \times \vec{c})$

Now $\left[\begin{array}{ccc}\vec{a}+\vec{b} & \vec{b}+\vec{c} \quad \vec{c}+\vec{a}\end{array}\right]=\{(\vec{a}+\vec{b}) \times(\vec{b}+\vec{c})\} \cdot(\vec{c}+\vec{a})=(\vec{a} \times \vec{b}) \cdot \vec{c}+(\vec{b} \times \vec{c}) \cdot \vec{a}($ As the scalar triple product $=0$ if any two vectors are equal.)

$$
\begin{align*}
& \overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})+(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \cdot \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})+\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})=2 \overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}}) \tag{1+1/2}\\
& =2 \overrightarrow{\mathrm{a}} \cdot\left(\pm \frac{1}{2} \overrightarrow{\mathrm{a}}\right)= \pm 1 \tag{1/2}
\end{align*}
$$

Q22. We have the curve

$$
\begin{equation*}
4 y=x^{2} \Rightarrow 4 \frac{d y}{d x}=2 x \Rightarrow \frac{d y}{d x}=\frac{x}{2} \Rightarrow\left(\frac{d y}{d x}\right)_{x=2}=1 \tag{1}
\end{equation*}
$$

The equation of the tan gent is $y=x-1$

The required area $=$ the shaded area $=$

$$
\begin{align*}
& \int_{2}^{3}\left[(x-1)-\frac{x}{2}\right] d x+\int_{3}^{6}\left[\frac{(x+3)}{3}-\frac{x}{2}\right] d x=\int_{2}^{3}(x-1) d x+\frac{1}{3} \int_{3}^{6}(x+3) d x-\frac{1}{2} \int_{2}^{6} x d x \tag{1}\\
& =\left[\frac{x^{2}}{2}-x\right]_{2}^{3}+\frac{1}{3}\left[\frac{x^{2}}{2}+3 x\right]_{3}^{6}-\frac{1}{4}\left[x^{2}\right]_{2}^{6} \tag{1+1/2}\\
& =1 \text { square units } \tag{1/2}
\end{align*}
$$

Q23. The equation of the line passing through the point $(3,-2,1)$ and parallel to the given line is
$\frac{x-3}{2}=\frac{y+2}{-3}=\frac{z-1}{1}$

Any point on this line is $(2 \lambda+3,-3 \lambda-2, \lambda+1)$

If it lies on the plane, we have $3(2 \lambda+3)-3 \lambda-2-\lambda-1+2=0 \Rightarrow \lambda=-4$

Hence, the point common to the plane and the line is $(-5,10,-3)$.

Hence, the required distance $=\sqrt{(3+5)^{2}+(-2-10)^{2}+(1+3)^{2}}$ units $=4 \sqrt{14}$ units

The equation of the line passing through $(3,-2,1)$ and perpendicular to the plane is
$\frac{x-3}{3}=\frac{y+2}{1}=\frac{z-1}{-1}$

Any point on it is $(3 \mu+3, \mu-2,-\mu+1)$

If it lies on the plane, we get $3(3 \mu+3)+\mu-2+\mu-1+2=0 \Rightarrow \mu=\frac{-8}{7}$

The required foot of the perpendicular $=\left(\frac{-3}{7}, \frac{-22}{7}, \frac{15}{7}\right)$

Any plane through the line of intersection of the given planes is
$\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}})+1+\lambda(\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}))=0$
or, $\overrightarrow{\mathrm{r}} .((2+\lambda) \hat{i}+(3+\lambda) \hat{j}+(-1-2 \lambda) \hat{k})=-1$

If it contains the point $(3,-2,-1)$, we have
(3) $(2+\lambda)+(-2)(3+\lambda)+(-1)(-1-2 \lambda)=-1 \Rightarrow \lambda=\frac{-2}{3}$

The required equation of the plane is
$\overrightarrow{\mathrm{r}} .\left(\left(2-\frac{2}{3}\right) \hat{\mathrm{i}}+\left(3-\frac{2}{3}\right) \hat{\mathrm{j}}+\left(-1+\frac{4}{3}\right) \hat{\mathrm{k}}\right)=-\operatorname{lor}, \overrightarrow{\mathrm{r}} .(4 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+\hat{\mathrm{k}})=-3$

If θ be the angle between the normals to the two given planes, then θ is the angle between the planes and $\cos \theta=\frac{\overrightarrow{\mathrm{n}}_{1} \cdot \overrightarrow{\mathrm{n}}_{2}}{\left|\overrightarrow{\mathrm{n}}_{1}\right|\left|\overrightarrow{\mathrm{n}}_{2}\right|}=\frac{2+3+2}{\sqrt{14} \sqrt{6}}=\frac{7}{2 \sqrt{21}}$

Q24. Let us define the following events: $\mathrm{E}_{1}=$ Two white balls are transferred, $\mathrm{E}_{2}=$ Two red balls are transferred, $\mathrm{E}_{3}=$ One red and one white balls are transferred, $\mathrm{A}=$ The ball drawn from the Bag II is red
$\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{{ }^{4} \mathrm{C}_{2}}{{ }^{9} \mathrm{C}_{2}}=\frac{4 \times 3}{9 \times 8}$
$\mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{{ }^{5} \mathrm{C}_{2}}{{ }^{9} \mathrm{C}_{2}}=\frac{4 \times 5}{9 \times 8}$
$\mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{{ }^{5} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1}}{{ }^{9} \mathrm{C}_{2}}=\frac{4 \times 5 \times 2}{9 \times 8}$

$$
\mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)=\frac{3}{8}, \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)=\frac{5}{8}, \quad \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{3}\right)=\frac{4}{8} \quad\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)
$$

The required probability, $\mathrm{P}\left(\mathrm{E}_{3} / \mathrm{A}\right)$, by Baye's Theorem,

$$
\begin{align*}
& =\frac{\mathrm{P}\left(\mathrm{E}_{3}\right) \times \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{3}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \times \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \times \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)+\mathrm{P}\left(\mathrm{E}_{3}\right) \times \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{3}\right)} \tag{1/2}\\
& =20 / 37 \tag{1/2}
\end{align*}
$$

OR

Let X represent the random variable. Then $X=0,1,2,3$

$$
\begin{align*}
& P(X=0)=P(r=0)={ }^{3} C_{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{3}=\frac{125}{216} \tag{1/2}\\
& P(X=1)=P(r=1)={ }^{3} C_{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{2}=\frac{75}{216}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{P}(\mathrm{X}=2)=\mathrm{P}(\mathrm{r}=2)={ }^{3} \mathrm{C}_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{1}=\frac{15}{216} \tag{1/2}
\end{equation*}
$$

$$
\begin{equation*}
P(x=3)=p(r=3)={ }^{3} C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{0}=\frac{1}{216} \tag{1/2}
\end{equation*}
$$

x_{i}	p_{i}	$x_{i} p_{i}$	$\left(x_{i}\right)^{2} p_{i}$
0	$125 / 216$	0	0
1	$75 / 216$	$75 / 216$	$75 / 216$
2	$15 / 216$	$30 / 216$	$60 / 216$
3	$1 / 216$	$3 / 216$	$9 / 216$
Total		$1 / 2$	$2 / 3$

$$
\begin{equation*}
\text { Mean }=\sum \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}=\frac{1}{2}, \operatorname{var}(\mathrm{X})=\sum \mathrm{x}_{\mathrm{i}}{ }^{2} \mathrm{p}_{\mathrm{i}}-\left(\sum \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}\right)^{2}=\frac{2}{3}-\frac{1}{4}=\frac{5}{12} \tag{1}
\end{equation*}
$$

Standard deviation $=\sqrt{\operatorname{var}(X)}=\frac{\sqrt{15}}{6}$
Q25. Let the radius of the circular garden be r m and the side of the square garden be x m . Then
$600=2 \pi r+4 x \Rightarrow x=\frac{600-2 \pi r}{4}$

The sum of the areas $=A=\pi r^{2}+x^{2} \Rightarrow A=\pi r^{2}+\left(\frac{600-2 \pi r}{4}\right)^{2}$
$\frac{\mathrm{dA}}{\mathrm{dr}}=2 \pi \mathrm{r}+\frac{2}{16}(600-2 \pi \mathrm{r})(-2 \pi)=\frac{\pi}{2}(4 \mathrm{r}-300+\pi \mathrm{r}), \frac{\mathrm{dA}}{\mathrm{dr}}=0 \Rightarrow \mathrm{r}=\frac{300}{\pi+4}$
$\frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dr}^{2}}=\frac{\pi}{2}(4+\pi),\left(\frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dr}^{2}}\right)_{\mathrm{r}=\frac{300}{\pi+4}}>0$

Therefore, A is minimum when $r=\frac{300}{\pi+4}$ For this value of $r, x=2 r$

To achieve any goal, there is every possibility that energy, time and money are required to be invested. One must plan in such a manner that least energy, time and money are spent. A good planning and execution, therefore, is essentially required.

Q26. Let the number of pieces of model A to be manufactured be $=x$ and the number of pieces of model B to be manufactured be $=y$.

Then to maximize the profit, $P=\operatorname{Rs}(8000 x+12000 y)$
subject to the constraints $9 x+12 y \leq 180$, or, $3 x+4 y \leq 60, x+3 y \leq 30, x \geq 0, y \geq 0$

Graph work (on the actual graph paper) ($1+1 / 2$)

At	Profit
$(0,0)$	Rs 0
$(20,0)$	Rs 160000
$(12,6)$	Rs 168000 (maximum)
(0.10)	Rs 120000

The number of pieces of model $A=12$, the number of pieces of model $B=6$ and the maximum profit $=$ Rs 168000 .

