SAMPLE PAPER: MATHEMATICS
 CLASS-XII: 2014-15

TYPOLOGY

	VSA (1 M)	LA-I (4 M)	LA-II (6 M)	$\mathbf{1 0 0}$
Remembering	2,5	$11,15,19$	24	20
Understanding	1,4	8,12	23	16
Applications	6	$14,18,13$	21,26	25
HOTS	3	10,17	20,22	21
Evaluation \& MD	-	$7,9,16$	25	18

SECTION-A

Question number 1 to 6 carry 1 mark each.

1. The position vectors of points A and B are \vec{a} and \vec{b} respectively. P divides $A B$ in the ratio $3: 1$ and Q is mid-point of $A P$. Find the position vector of Q.
2. Find the area of the parallelogram, whose diagonals are $\vec{d}_{1}=5 \hat{\imath}$ and $\vec{d}_{2}=2 \hat{\jmath}$
3. If $\mathrm{P}(2,3,4)$ is the foot of perpendicular from origin to a plane, then write the vector equation of this plane.
4. If $\Delta=\left|\begin{array}{rrr}1 & 3 & -2 \\ 4 & -5 & 6 \\ 3 & 5 & 2\end{array}\right|$, Write the cofactor of a_{32} (the element of third row and $2^{\text {nd }}$ column).
5. If m and n are the order and degree, respectively of the differential equation $\mathrm{y}\left(\frac{d y}{d x}\right)^{3}+x^{3}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}-x y=\sin x$, then write the value of $\mathrm{m}+\mathrm{n}$.
6. Write the differential equation representing the curve $y^{2}=4 a x$, where a is an arbitrary constant.

SECTION-B

Question numbers 7 to 19 carry 4 marks each.
7. To raise money for an orphanage, students of three schools A, B and C organized an exhibition in their locality, where they sold paper bags, scrap-books and pastel sheets made by them using recycled paper, at the rate of Rs. 20, Rs. 15 and Rs. 5 per unit respectively. School A sold 25 paper-bags 12 scrap-books and 34 pastel sheets. School B sold 22 paper-bags, 15 scrapbooks and 28 pastel-sheets while school C sold 26 paper-bags, 18 scrap-books and 36 pastel sheets. Using matrices, find the total amount raised by each school.

By such exhibition, which values are inculcated in the students?
8. Let $A=\left(\begin{array}{rr}2 & 3 \\ -1 & 2\end{array}\right)$, then show that $A^{2}-4 A+7 I=O$.

Using this result calculate A^{3} also.

OR

$$
\text { If } A=\left(\begin{array}{ccc}
1 & -1 & 0 \tag{4}\\
2 & 5 & 3 \\
0 & 2 & 1
\end{array}\right) \text {, find } A^{-1} \text {, using elementary row operations. }
$$

9. If x, y, z are in GP, then using properties of determinants, show that

$$
\left|\begin{array}{ccc}
p x+y & x & y \\
p y+z & y & z \\
0 & p x+y & p y+z
\end{array}\right|=0 \text {, where } x \neq \mathrm{y} \neq \mathrm{z} \text { and } \mathrm{p} \text { is any real number. }
$$

10. Evaluate : $\int_{-1}^{1}|x \cos \pi x| \mathrm{d} x$.
11. Evaluate : $\int \frac{1+\sin 2 x}{1+\cos 2 x} \cdot \mathrm{e}^{2 x} \mathrm{~d} x$.

OR

Evaluate : $\int \frac{x^{4}}{(x-1)\left(x^{2}+1\right)} \mathrm{d} x$
12. Consider the experiment of tossing a coin. If the coin shows tail, toss it again but if it shows head, then throw a die. Find the conditional probability of the event that 'the die shows a number greater than 3' given that 'there is at least one head'. 4

OR

How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?
13. For three vectors \vec{a}, \vec{b} and \vec{c} if $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{a} \times \vec{c}=\vec{b}$, then prove that \vec{a}, \vec{b} and \vec{c} are mutually perpendicular vectors, $|\vec{b}|=|\vec{a}|$ and $|\vec{a}|=1$
14. Find the equation of the line through the point $(1,-1,1)$ and perpendicular to the lines joining the points $(4,3,2),(1,-1,0)$ and $(1,2,-1),(2,1,1)$

Find the position vector of the foot of perpendicular drawn from the point $\mathrm{P}(1,8,4)$ to the line joining $\mathrm{A}(\mathrm{O},-1,3)$ and $\mathrm{B}(5,4,4)$. Also find the length of this perpendicular.
15. Solve for $x: \sin ^{-1} 6 x+\sin ^{-1} 6 \sqrt{3} x=-\frac{\pi}{2}$

OR

Prove that: $2 \sin ^{-1} \frac{3}{5}-\tan ^{-1} \frac{17}{31}=\frac{\pi}{4}$
16. If $x=\sin t, \quad y=\sin k t$, show that
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+k^{2} y=0$
17. If $y^{x}+x^{y}+x^{x}=a^{b}$, find $\frac{d y}{d x}$
18. It is given that for the function $f(x)=x^{3}+b x^{2}+a x+5$ on [1, 3], Rolle's theorem holds with $\mathrm{c}=2+\frac{1}{\sqrt{3}}$.

Find values of a and b.
19. Evaluate : $\int \frac{3 x+1}{\sqrt{5-2 x-x^{2}}} \mathrm{~d} x$

SECTION-C

Question numbers 20 to 26 carry 6 marks each.
20. Let $A=\{1,2,3, \ldots, 9\}$ and R be the relation in $A \times A$ defined by $(a, b) R(c, d)$ if $a+d$ $=b+c$ for $a, b, c, d \in A$.

Prove that R is an equivalence relation. Also obtain the equivalence class $[(2,5)]$. 6 OR

Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$.
Show that $f: \mathrm{N} \rightarrow \mathrm{S}$ is invertible, where S is the range of f. Hence find inverse of f.
21. Compute, using integration, the area bounded by the lines
$x+2 y=2, \quad y-x=1 \quad$ and $\quad 2 x+y=7$
22. Find the particular solution of the differential equation

$$
\begin{aligned}
& x e^{\frac{y}{x}}-y \sin \left(\frac{y}{x}\right)+x \frac{d y}{d x} \sin \left(\frac{y}{x}\right)=0, \text { given that } \\
& y=0, \text { when } x=1
\end{aligned}
$$

OR

Obtain the differential equation of all circles of radius r.
23. Show that the lines $\vec{r}=(-3 \hat{\imath}+\hat{\jmath}+5 \hat{k})+\lambda(-3 \hat{\imath}+\hat{\jmath}+5 \hat{k})$ and $\vec{r}=(-\hat{\imath}+2 \hat{\jmath}+5 \hat{k})+$ $\mu(-\hat{\imath}+2 \hat{\jmath}+5 \hat{k})$ are coplanar. Also, find the equation of the plane containing these lines.
24. 40% students of a college reside in hostel and the remaining reside outside. At the end of year, 50% of the hosteliers got A grade while from outside students, only 30% got A grade in the examination. At the end of year, a student of the college was chosen at random and was found to get A grade. What is the probability that the selected student was a hostelier?
25. A man rides his motorcycle at the speed of $50 \mathrm{~km} / \mathrm{h}$. He has to spend Rs. 2 per km on petrol. If he rides it at a faster speed of $80 \mathrm{~km} / \mathrm{h}$, the petrol cost increases to Rs. 3 per km. He has atmost Rs. 120 to spend on petrol and one hour's time. Using LPP find the maximum distance he can travel.
26. A jet of enemy is flying along the curve $y=x^{2}+2$ and a soldier is placed at the point $(3,2)$. Find the minimum distance between the soldier and the jet.

