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FUNDAMENTAL DUTIES

(a)

(b)

(c)

(d)

(e)

(f)
(2)

(h)

(i)
@)

1t shall be the duty of every citizen of India :

to abide by the Constitution and respect its ideals

and institutions, the National Flag and the National Anthem;

1o cherish and follow the noble ideals which inspired
our national struggle for freedom;

to uphold and protect the sovereignty, unity and integrity of
India;

to defend the country and render national service when called
upon Lo do so;

to promote harmony and the spirit of common
brotherhood amongst all the people of India transcending
religious, linguistic and regional or sectional diversities; to
renounce practices derogatory to the dignity of

women;
to valuc and preserve the rich heritage or cur composite culture;

to protect and improve the natural environment including
forests, lakes, rivers and wild life, and to have compassion for

living creatures;

to develop the scicntific temper, humanism and the spirit of
inguiry and reform;

to safeguard public property and to abjure violence;

to strive towards excellence in all spheres of individual

and collective activity so that the nation constantly rises to
higher levels of endeavour and achievement,
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About This Textbook...

We are happy to publish the textbook for semester III for standard XII, in
continuation of tlextbooks ol semester I and semester 1l for standard X1 prepared
on the base of NCERI syllabus and NCE 2005.

This textbook has been prepared originally in English as in the case of textbooks of
semester T and 11 for standard XI. The manuscript has been thoroughly examined by
learned teachers from schools and colleges in a workshop in the month of October.
The suggestions and proper amendments had been accepted and the revised
manuscript has been translated in Gujarati. The Gujarati version was also examined by
teachers from scheols and colleges and the necessary amendments were made. The
English manuseript and the franslated version in Gujarati were read by language experis
and the corrections were made. This way the final draft of the manuscript was prepared.
[t was rcvicwed in the office of Gujarat Higher Sccondary and Sccondary Education
Board by invited expert teachers in the presence of the wmters. The suggestions made
by them were incorporated and the manuscrnipt was finalized.

In chapter 1, there are explanation of relations, types of relations, equivalence
classes, functions, one-one and onto functions, inverse functions and binary operations
as functions. These points are explained in the textbook as in the NCERT textbooks. In
chapter 2, we explain triponometric inverse functions and their graphs and related
theorems. The result of these chapters are very useful in the study of calculus. In
chapter 3, we deal with the information about determinants and their theorems and their
applications Lo solve a syslem ol linear equalions and in coordinate geometry. In chapter
4 we apply this information for the system of linear equations. The Echelon method
to find the inverse of a matrix is an important point of this chapter. To find the inverse
of a matrix without the usc of determinants, Echclon method is uscful. In semester III we
began with the study of the limils. [n chapler 5, we proceed [urther with the idea ofl limit
and study continuity and differentiation in details. This chapter is very useful in the study
of application in scmester [V. Chapter 6 is the beginning of indcfinite integration. Study
of integration and differentiation i5 a base for calculus. Lebnitz and Newton both
sindied them in different directions and connected them. We have started with
differentiation and taken as a basis of integration. Chapter 7 and & are the sections of
statistics. We have continuously the study of probability which began in standard IX
and carried 1t further upto binomial distribution. Chapters 8 is about lingar programming,.
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We have studied graphs of lihear inequalities in semester 1 of standard XI. We use
them to solve practical problems in this chapter.

Altraclive four-colour litle, four-colour printing and figures make this texibook
very useful and valuable. Plenty of illustrations and exercises are useful to explain
concepts and variety of problems. They will help the students in achieving good marks
in semester examination and competitive examinations.

Wc thank all who hclped to preparc this textbook. Wc hope that all students,
teachers and parents all would like this textbook. Positive sugpestions to enhance
the quality of this texibook are welcomed.

— Anthoers

Borm 22 December, 1887
Erodc, Madras Preaidency
Died 26 Agril, 1920 (aped 32)
Chetput, Madras, Madras Presidency
Nationality India
Fields Mathematics
Alms mster Government Arts College
Pachaiyappa's College
The University of Cambridge
Academic advisors G H. Hardy
1. E. Littlewood

Known flor Landav—Ramanujan constant
Mock theta functions

Government of India

: - has declared to
Ramanujan conjecture celebrate the year

Ramanu_!an prime 2012 a8 ‘a year of
Ramanu_!an—Suldnﬂr uo_natant Mathematics® im
Rmu']_an_m function memory of Shres
ST RE sutF‘ ] . Ramanujan on his
Rogers—Ramanujan identities 125¢h birthday.

Influences G. II. ITardy
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RELATIONS AND FUNCTIONS 1

The roats of education are bitter but the frull is sweel.
— Gauss

Mathematicians do not studv objects but relations between them. Thus they are free to
replace some afjects by others so long as the relations remain unchonged. Content to them
iv irrelevent, They are interested in form onlv

— Henri Poincare

1.1 Relations :

Last year we have studied the concept of a relation and a function. We also studied algebraic
operations on functions and graphs of relations and functions. We will develop these concepts further
in this chapter.

The word ‘relation’ is used in the context of social obligations also. We will relate the concept
of the word ‘relation’ as used in social and family terms with the word relation as used in
mathematics,

We define a relation of the set of human beings H as

S5=1{x | x € H, » € H. x i5 a brother of ).}

Dev is a brother of Rucha. 5o ordered pair (Dev, Rucha) € S.

Let C be the set of all captains of Indian cricket team till 2011.

Let 8 = {{x, ¥ | x precedes p, x, p € C)

Then (Kapildev, M. 8. Dheni} € S.

Bul {M. 5. Dhoni, Kapildev) ¢ 5.

In the szet of natural numbers N, x precedes », if » = x + & for some % € N. Let
S=1{(x yy|xprecedes v, x € M, vy € N}. Then (3, 3) € Sas 5=3 + 2. Bul {5, 3) & S.

If 8 is a relation in A ie. S C {A X A) and {x, ¥) € 5, we say x 1z related to y by 8§ or xSy,

Let 5 be a relation in N defined as follows :

S = {{x, ) | | x — y| is an cven positive intcger x, ¥ € N}, then whenever (x, y) € 5,
(v x)E 5. (Why 7)

Also note that (x, ¥} & 5.

Now we will define various types of relations.

Void or Empty relation : A relation in the set A with no elements is called an empty
relation. ) © (A X A). ! is a relation called empty relation.

The relation 5 in N defined by

S={x»|x+y=0,xe N, veE N} is an cmpty rclation as sum of two positive intcgers
can never be zero.

Upiversal Relation : A relation in the set A which is A X A iisell is called a universal
relation.

RETATIONG ANBR FUNCTIONS 1
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The rclation § In R defincd by
S={{x »| x = yoryv=nx}is universal relation berayse of the law of trichotomy.
A relation is defined on the set of all living human beings by
5 = {(x. ) | Differcnce bevween ages of x and v is less than 200 years) . Obviously & is the
universal relation.
Reflexive Relation : If § is a relation in the sei A and aSa, Va € A ic. (@ @) € S,

Ya € A, we say 8 is a reflexive relation.

For example similarity of triangles. congruence of triangles, equality of numbers, subsets in a power
set (A < A for all A € PU)) are examples of reflexive relations.

< is not a rellexive relation in R. Infact @ << a is false for all 2 € R.

But < is reflexive relation on R. 0 € a, Va € R.

Symmetric Relation : If § is a relation in a set A and if aSh = b»Sa

ie. (@ B) €S = (b,a) € 8§ Va b € A, we say § is 2 symmetric relation in A.

If ABC <3 PQR is a similarity relation in the set of triangles in a plane, then POR 3> ABC is
a similarity.

In the sel of all non-rero inlegers, we deline relation § by (@ ) € 5 < J divides a — b where
A is a fixed non-zero integer.

If m divides o — &, then m divides # — a. (@, 5 € & = (b, ) € S. If APQR = AABC then
AABC = APQR. These are examples of symimetric relations.

For unequal sets A and B, A C B does not imply B C A,

So < is not a symmetric relation in P(U).

Transitive relation : If § is a relation in the set A and if aSh and bSe = aSe, Va, b, c € A

iec. {o; b) € Sand (b, c) € 5§ = (o0, c) E 5, Ya, b, ¢ £ A, then we say that 5 is a
iransitive relation in A.

< is a transitive relation in B as AC Band BC C = A C. VYA, B, C € P(U),

Similarly < is a transitive relation in R, as g < band < c = a < ¢ Va b c € R.

Equivalence Relation : If a relation 5 in a set A is reflexive, symmetric and transitive,
it is called an eguivalence relation in A,

If § is an equivalence relation and (x, y) € S then we will write, x ~ y.
For example equalily is an eguivalence relation in R, congruence of tnangle 15 an equivalence
relation on a set of coplaner trianples.
Example 1 : Prove that congrience = is an equivalence relation in Z.
x = y(mod m) (Read : x is conpruent to v moedule »1) & mdivides x — vy, m = 2 — {0},
Solution : Heflexivity : ¢ = a(mod m} as ¢ — g = 0 is divisible by any non-zero intcger m.
{Mote : 0 is divisible by any non-rero real number. Bul no real number is divisible by 0.}
Symmetry : If @ = & {(mod m). then » dividies ¢ — 5.
leta— 5 = mn ne 7
b —a = —mn = mi{—n) —ne L
b = a (mod m)
Il a =k {mod m), then & = & {(mod m)
S = is a symmetric relation in X
Transitivity : If @ = b (mod m) and » = ¢ (mod m) then s | (@ — d) and m | (A — ).
(m | (@ — b) means m divides (a — 5))
forsome k€ At Lfg—b=mhkand p —c=m
g — b+ b—c=mkt it
Soa—e=mk+H k+i1eZ

2z MATHEMATICS 12
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a = c (mod m)
If a =& (mod m) and & = ¢ {(mod m), then a = ¢ (mod )
Congruence relation is an equivalence relation in /2.
Fxample 2 : Prove that similarity is an equivalenec rclation in the sct of all triangles in a plane.
Solution : For any AABC, AABC ~ AABC for the correspondence ABC <> ABC.
If AABC — APQR, then APQR — AABC.
Also, il AABC —~ APQR and APQR ~ AXYZ, then AABC ~ AXYZ.
~ i% an cquivalence eclation.
(Note : Similarly congruence is an equivalence relation in the set of all triangles in plane.)
fxample 3 : A = {the set of all lines in plane}
5= 1{(x. )| x =y orx is a line parallel to line 3.}
Is S an equivalence relation in A 7
Solution = (£ H € Sas ! =1 S0, 5 is reflexive. (given)
Let (£ m)e 5. Sc/||mor {=m
It || m, then m || or if / = m, then m = [,
If {/ m) € & then (m, ) € §.
5 is symmetric,
Let ({, my € 8 and {(m, n) € 5.
If 4, m, # arc distinct lincs, then 7 || m and m || # and hence 7 || &,
If!||mand m=w or if { = and m || n, then { || 5
Iff=mand mw =n, then{ = n
If {{ m) € 8§ and (m, n) € §, then ({, u} € &
5 Is transitive.
S0, 5 is reflexive, symmetric and fransitive,
5 is an equivalence relation.

Example 4 : Prove that the relation 5 = {{a &) | |a — &| is even.} is an equivalence relation in
the set A= {1,2,3, 4,5 6 7}
Solotion : | odd integer — odd integer | = | even integer — even integer | = an even integer
8- [0, 3, G 1L 505 1, (3,5, 5,30, N DL 3,707, 3, (5,7, (7, 5),
(2, 4). (4, 2), (2. 6). (6, 2}, (4, 6). (6, 4), (1, 1) (2, 2}, (3, 3). (4, 4), {5, 5), (6. 6). (7, 7)}
Since (x, x) € 8, Vx € A S is reflexive,
Let (x, ) e 5
Hence |x — ¥ is even.
| —v¥| =]y —x]. S0 |v— x| is cven. Henee (x, 39 € S = () x) € 5. So § is symmctric.
Let(x, ¥} € Sand (y 2} € 5.
If |x — y| and |y — =z| are even, then x and ¥ have zamg parity (hoth even or both odd) and
v and z have same parity. Thus x and z have same parity.
| x — z| is even,
(x,. )€ 8, if(x, YY) E Sand {y z) € X
8 [s transitive.
S0, S is reflexive, symmetric and transitive.
5 is an equivalence relation.
Antisymmetric Relation : If 8§ is a relation in A and if {g, ) € Sand (b, a) € § = a= 5,
Va b€ Athen § is said be an antisymmetric relation.
 is an antisymmetric relation in the set P(U)asAC Band BT A = A =B, VA, B e B}
< is an antisymmeric relation in R becawse a S pand b<a=a =5 Va b€ R
Example 5 : Give an example of a relation which is (1) reflexive and symmetric but not wansitive
(2) reflexive and transitive but not symmetric (3) symmetric and transitive but not reflexive,

ReLATIONS AND FUNCIIONS 3
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Solution :
(1) A = the set of all lines in plane.
= {{x. ¥} | x =y or x is perpendicular to y, x, v € A} is a relatiocn in A.
Since /=4 {1 Ne 5 50 85 is reflexive.
If (f m) € &, then ! = m or 7 is perpendicular to m.
S m o= { or m is perpendicular to f
S (m D e s,
S {(Pmye S=(m He s
%0 5§ is symmetric.
Leti{l, my€ Sand (m, p) € Sand/#m m#n l#Fn
Henecc / Laowmand m L s, So ! || n, as ! # n.
o bwe s
5 iz reflexive and symmetric but not transitive.
(2) = in R is reflexive and transitive but not symmetric.
a< g Ya € R 8o, 8§ is reflexive.
aSband bSc=asc Va bc € R SoS is transitive.
but if @ < 4, then & € g, unless g = A,
S 5 iz not symmeiric.
Thus (3, 5) € 5, but (5, 3) € S where S is the relation =.
.. 8 ig reflexive and transitive but not symmetric.
(3) Let A= 11,2, 3}.
§={(1,2), 2 1)1, 1) @2 2)
8 is symmetrie and transitive but not reflexive as (3, 3) € S
Example 6 : Give an example of a relation which is (1) reflexive but not symmetric or
transitive (2] symmetric but not reflexive or transitive (3) iransilive bul not rellexive or
symmetric.
Solution ¢ (1) Let A = {1, 2, 31,
S= {1, 1), (2. 2), (3, 3). (1, 2), (2, 3);
(1, 13, €2, 2), {3, 3) are in 5, Hence 5 is reflexive.
(1, 2y = S5 but {2, 1) & K. Hence 5 15 not symmetric.
{1,2)e S8, (2, 31 € Sbu{l, 3y & 5.
& is not transitive.
S 8 s reflexive but neither syvmmetric nor transitive.,
(2) LetA={1,2,3},5={(1,2), (2, 1)}
% iz symmetric but neither reflexive nor transitive.
(4) Considsr < in the sst R.
ga<bhand b<ec=>a<ec Ta bce R S0, 8 is transitive.
but 2 ¢ a and if a2 < & then & ¢ a 8o, 8 is neither reflexive nor symmetric.
S < is transitive but neither reflexive nor symmetric.
Example 7 : Give an example of a rclation which 15 not reflexive, not symmcetric, not transitive.
Soluton @ Let A = §1, 2, 3}, § = {(1, 1), (2, 2), {1, 2), (2, )}
(3,32 8. 5o 8§ is not rellexive.
(1,2 € S but (2, 1€ S Sc § is not symmetric.
(1,2 € Sand (2, 3) € Sbut (1, ) & 5. S0 & is not transitive.

5 is not reflexive, not symmetiic, not transitive.

4 MATHEMATICS 12
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Fxample 8 : Following is a proof that a relation which is symmetric and transitive is also reflexive.
Find what is wrong with it

Let xSy
¥Ex (Symmetry)
Since xSy and vSx, so xSx (Transitivity)

8 is reflexive.
Salution : This (s nol correct argumenl,
There may be some x such that xSy is not true for any ¥ in set A.
Then the arpument fails.
For example let A = {1, 2, 3, 4}
8= {1, 1) (2, 2). (1, 2}, (2, 1), (1. 3), (3, 1), (3, 3), (2. 3}, (3, 2}}
{4, 4) & 8. This is because for no x, {x, 41 € 5.

% is not reflexive even though it is symmetric and transitive.,

Example 9 : A relation § is said to be circular if x8y and 8z implies z5x. Prove that if a relation
15 teflexive and cireular, il 15 an cquivalence relation.

Solution = 8 is reflexive. (given)
Let xSy. We already have 1Sy
x8y and y8y = 18x
aly = yBx
8 is symmetric.
Let xSy and 35z
z5x (S is circalur)
x5z (S is symmetric)
8 is transitive.
5 iz an equivalence relation.

Arbitrary Union : Let [ be a ncn-empty set of real numbers. Let A; be a set comesponding
to i€ |

Then we define [ A; = {x| x € A, for at least one i € T}
iel
MA; =fx|xe€ A, forall i€ I}
iel
For cxatnple, let T — [0, 1]. Let A; — [0, 4]
Then |JA; = [0, 1]
iel
[4A; = {0}
il
Equivalence Classes : Let 8§ be an equivalence relation in a set A, If xSp, we say x ~ ¥ (x s
equivalent to 3} (Read ~ as wiggle)

LEIAP={x|x~p,xE Al

ReLATIONS AND FUNCIIONS 5
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Let us prove the following :

if p— g, A, =A, and if p is not equivalent to g, A, M A =1
FA, NA, #d letx € (A, MAY

y x € A,n and x € Aq

x~pand x ~ g

p—xand x — g

P—g

pEAqanqu Ap

Ap _ Aq and Aq L Ap.

Ap = Aq
Now, if AP ™ Aq # ¥, then AP = Aq
Also, p ~ p.
P E AP Yp e A
LA, = A

fEA
Thus an equivalence relation *partitions™ A into disjoint sets A, such that
(i) Ap i Aq =, if p is not equivelent to q.
iy LA, =A
FEA

‘These sets AP are called equivalence classes corresponding to the equivalence relation ~.
Conversely any partition of A gives rise to an equivalence relation in A.
We define x ~ y if x and y are in the same class Aﬁ.
x ~ x g5 x and x belong to the same classes AP'
If x ~ y, then y ~ x because if ¥ and y belong 1o the same class, then ¥ and & also belong w
the same class.

If x ~ yand y ~ =, then x and y, ¥ and = belong to the same class. Hence x and z belong to
same class.
Hence x ~ 2
—~ is an equivalence relation.
Example 10 : We define g = » (mod 2), if @ — A is even. Prove = is an equivalence relation in £.
Find equivalence classes.
Solution : @ = @ as 2 divides 0, or 0 is cven.
fa=hthen b =gas o —bis even &= b — ais even.
fe=band b =¢, then a= ¢ since ¢ — & is even and § — ¢ is even implies
a—c=a—h+ 85— cis even.
= 15 an egulvalence relation.
1,3, 5,..€ Aysay. {1=3,3=3 et}
2,4,0,.. € Aysay. {2=4,4=06¢lc)
All integers are divided into bwo equivalence classes,
A, = the set of odd integers and A, = the set of all even integers.
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Example 11 : Let Z = A W A; U A, where Al

kl a-

o LA
"GD@"-J

El "

Define an equivalence relation whose equwalence classes arg AI, A, and A,
Solution : Let us detine S5 it 3 | (¢ — 6) or « = b {mod 3).
Then = is an equivalence relallon as

a = aas 3 divides a — a = 0, 50 ¢Bu

a = bdmod 3) = 3| {a— &)
= 3| (F—em
= b = ai{mod 3)
alh = bRa

I|la— 8 and 3 | (& — ) implies 3 | [{a — 8) + (F — )] = & — . Hence aSk and 8¢ = abc.

8 is an equivalence relaiion. 8o we can write & ~ 5, il a85. For this equivalence relation,

Ay = {4 7 10,00 Ay = 1.2, 05, B Ay = {03, 6, 9.1 are cquivalence classes. For
this relation, difference x — y is divisible by 3, if » and y belong o the same class.

Fxample 12 : Let L be the set of all lines in the XY-plane and S be the relation defined in L
as 5 = {{L;, L) | L, = L, or L, is parallel to L,}. Prove $ is an equivalence relation and
obtain cquivalence classes containing (i) X-axis (ii) Y-axis.

Solution : We have seen that 8 is an equivalence relation.
The equivalence class of lines containing X-axis 15 the set of lines y =&, b € R.
The equivalence class of lines containing Y-axis is the set of lines x =@, a € R.

Example 13 : Show that the set 8 = {(P, Q) | distance of P(x, ¥) and ({x,, ¥)) from origin is same.
P, Q € R?} is an equivalence relation. What is the equivalence class containing (1, 0) ?
Solution = &P, Y = 4(P, (. So (B, ) € 5. 50 5§ is reflexive.

If KB, Q) = &(Q, O) = r, then HQ, O) = &P, Q) = . S0 S is symmetric.
If AP, €0 =d(Q, 0}y =r and &KQ, (F) = d(R, ) = r, then &P, O) = @(R, () =
SR e S5 {(Q,R)e § = (1) K) € 8. Hence S is transitive.

5 is an equivalence relation.

d(A(l, 0}, O} =1

The equivalence class conlainimg {1, 0) consists of all points al distance 1 from erigin i.e. unit circle.

[Exercise 1.1 I

1. Determine which of the following relations is reflexive, symmetric or transitive ?
(1) A=1{1,23.., 104 8= {{x, ¥} | y = 2x}
(Z2) A=N,8={(x » |y divides x}
(3 A=1{1,2 3,4, 5 6}, 5= {{x, )| y divides x}
4) A=Z S={x ¥|x—y € Z}
5 A=R,8={x»|y=x+1}
2. aSbif6 |(g—b). o b€ Z Prove that § is an eguivalence relation and write down equivalence
classes.
3. Prove € is reflexive, antisvmmetrie and transitive in P{LI).
4. (1) f:N =N, f{x) - x? is a function. We deline xSy il f(x) — £ (). Is S an equivalence relation ?
What are equivalence classes ?
(2) If: Z = Z, fix) — x%, whal arc equivalence classcs lor this equivalence relation ?

RELATIONS aND FUNCTIONS ri
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FiNXN = NXN f{im )= (n m) We say (a b)s(c, & if f{la b)) =Fllc, ). 5 §
an cquivalence relation ? What is the cquivalence class containing {1, 2) 7
Let L be the set of lines in XY plane. Define a relation S in L by xSy & x =y arx L y
or x || .
Is 8§ an equivalence relation ? 1f so, what are eyuivalence classes ? What is the equivalence
class containing X-axis ? What happens if L is the set of all lines in space ?

*
One-one and onto Functions
We have studied the concept of a special type of relation called a function.
Remember, if A & hand B 2 @ and if £ < (A X B) and f = ¢ such that for every x € A,

there is one and only one ¥ € B such that {x, ) € £ then fis a function.

Thus f is a relation whose domain is A. We also studied graphs of functions and algebraic

operations of addition, subtraction, multiplication and division of functions.

Consider following twao functions :
FfiN—>N, fizx)=x*
=, 1, (2, ), (3,9, (4, 16),....}
Here x| # xy = fix)) # flx;)
2 Z—=Z glx)=x"
Then g = {{0, &), (1, 1), (=1, I} (2, 4, (2, 4)....}
But —1 # | and g{—1) = &1y = 1.

Functions like f are called one-one functions and functions like g are called many-one

functions.

Let us give a formal definition.

One-one function : If f: A — B is a fanction and if Vr”x: € A, x; #x, =D (%) # [(xy),

we say f : A —» B is a one-one function, also called an injective function.

Generally we deal with equality with ease rather than working with an inequation. Using

contrapositive of defining statement, we can say that if f(x|) = f(x;) = x| = x., Vxl, X3 € A, then
F: A — B is a one-cne function.

For a function f: A — A, § = {(x,, x5) | f(x;) = f(x5)} is an equivalence relation in A.

Obviously f(x)) = f{x) {(Reflexive)
J(x) = flxg) = flxg) = f{x)) (Symmetry)
fixy) = fOr) and fixy) = Flxg) = F(x)) = fixy) {Transitivity)

% is an egquivalence relation.
For a one-one function /1 A — A, the equivalence class containing x; is {x;} only.

So A= lJix}. Also A, = {x;} is the partition of A corresponding to this equivalence relation.
e A

Consider £ {1,2,3,4,3} = {2, 3, 6,7, §}
F= 001, 2) (2, 2), (3, 3), (4, 6), (5, 6)}. fis not a one-one function as 1 £ 2 and

Sy =5@2) =2

MATHFMATHS 12
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Many-one function : If f: A — B is a function and if Jx,, x;, € A such that x; # x;, and
Sxy) = f(x;), then f: A — B is said to be a many-one function.

Sce that this defining statement is the negation of the statcment used o define & onc-onc Tonction.

We define f{C)={v|y=flxLxe C,Cc A, C#4y} and

FD)={x y=f(x)hx€ A ye D, DcC B}

Scc that F(C) and (D) arc mcrely symbols.

We nole that £(C) is never empty. Set #~1{(D) could be {.

In this example if C = {2, 3, 4}, f(C} = {2, 3, 6}

Ifc =11, 21, Fcy = {21

If D = {8}, Iy =

Iro = {2}, oy =1, 2}

D - {2, 6}, F Dy — {1, 2, 4, 5}

In lact #{A) is the range of f: A — B.

F~ND) is the set of pre-imapges of the elements of D.
By = A

Let us see some examples,
Fxample 14 : Determine whether f: N — N, f(x) = 2x is one-ocne or not.

Solution : Tet x), x, € N,

Fix) = Ffilx) = ) = 2x, = X = xy
F:N = N, f(x) = 2x 15 one-one.

J,isf:R— Z

Example 15 : If f: R — Z, f{x) = [x] = integer part of x {or floor function | x
one-ong ?
Solution : No. £(2.1) = [2.1] = 2
F(223)y=[223]=2
F: B = Z f{x} = [x] 15 nol one-che,
Example 16 : Is f: R = RY U {0}, f{x) = | x| one-one ?
Solution : No, f{i-T1=fFf(1)=1
Fr R — Rt w {0}, Ff(x) = | x| is not onc-one.
Example 17 : IfF: N O {0 > N O D), FA(x)—x— 3[%], is fone-one ? Find equivalence classes
ter the relation 8 = {(x;, ) | /{x|} = f{x;)}.
Solution : f(=1-3[] =1,/ =273)=3-3=0,7dH=4a—-3[%] =1,

Fey=s-33]=2 5 =-6-3[¢] =0
[n fact (k) = the remainder when » is divided by 3.

F=fA =FN=F00=_..=1
F2y=f8)y=F8y=Ff(11)=..=2
FOY=76)=Ff9) =f(12)= ...= 0

FiN U {0} = N U {0}, 7{x) = x — 3[£] is not one-one.
The equivalence classes are {1, 4, 7, 10,...}, {2, 5, 8 11}, 40, 3, 6, 9, 12,...}

ReLaTioNs AND FuncTiONs 9
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Onto Function : If the range of the function £ : A — B is B, we say that f is an ento
function or surjective function or more precisely f is a function from A onto B.

I Rf=f(h} = B, Fis onto.

Thus, if there cxists at lcast onc ¥ € A corresponding to cvery » € B, such that y = 7(x),
f: A = B is an onto function. If dy € B, for which thers is no x € A such that y = f(x),
f: A — B is not an onto function.

Example 18 : Give one sxample each of a function which is (1) one-one and onte, (2) one-one
and not ente, (3) many-one and onto, (4) many-one and not onto.

Solwtion ¢ (1) f: N — E, E being the set of even natural numbers, f{x) = Zx.

(2)

3)

(4)

F=1(l, 2) (2, 9. (3, 6),.....}

S =)= 20 =20, = x) = x,

Fis one-one.

R,={2,4, 6.} =[

Infact every y € E is of the form 2x for some n € N and fin) = 2n = »
Rf= E

Fis an onto function.

F:N = N, fix) = 2x

F={(1, 2,2, 4, G, 6}

Fis one-one as in (1).

Rf= {2n | m € N} = E, the set of even natural numbers.
Rf_ E#N

Fis nol an onto funciion.

F R =2Z fix) = [x]

A =1,7/(13)=1

7 is many-one.

But R, = Z, since for every m € Z, f(m) = n. Thus every integer is in the range of f
F is onto.

F1Z—=Z fix)=x°

F{—1) = (1) = 1. Se Fis not one-one, but it is many-one.
R=1{0.1,4,9.}#Z

7 is not onto.

One-one and onto function ;

Iff: A— B is a one-one and onto function, it is called a bijective function.
Fxample 19 : Prove that / : R = R, /(x) = ax + & a # 0 is a bijective function.
Solution = Let f{x} = fix;)

axy+b=ax, + 5

I =Xy {a = 0)
F is one-one.
y=ar+b<:>x=—y;b @+ 0

For every ¥y € R, dx € R such that,

f{x)=f[y;bj=a(y7_b]+.!:-=y—z=+.a=y

10
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. Range of fis R.
s R — R is onto.
s 7 : R — R is a hijective function.
Fxample 20 : Tn how many points does a horizontal line intersect the graph of » = f(x), if f is

one-one 7
Solution : Y
Y T
| L 1 7
__ 1 y—o
> X
-T ]
4 3 - 2
w

Figure 1.1

The graph of a one-one function /: A — B is intersected by a horizontal line » = ¢ in
al mosl oue poind.

For f: R —> R, the graph of f(x) = x? is intersected by a horizontal line y = ¢ in two points in
general (¢ = 0). For x| 3 x;, we should have f(x,) # f{x,). 80 if restrict the function to f: Rt - RT,

F{x)=2x2, it is one-one. The same thing happens in the case of graph of ¥ = simx. If x € [_n % .

=
[ﬂ, %} ete, the graph of ¥ = sinx is imtersected by line ¥ = ¢ (—1 £ ¢ £ 1) in at most one point.
Otherwise the line ¥ = ¢ intersects the graph of y = sinx in infinitely many points. {(—1 < ¢ £ 1)
Example 21 : If A = {x,, x5, Xq,..., x,}, prove any function f : A — A is injective if and only if it

surjective.

Solution : Let f: A — A he one-one.

S FOg), flxg),.., £{x,) are all distinct elements of A.

Butl A has » elements x;, x,,..., x, only.

S F0xg). Sk, F(x,) must be x), x5, X5...., X, in some order.

R:,-= A

S F A Ads onto.

Conversely, suppose : A — A is onio.

Rf= WX s Xy Xgaueen Lt

Now, {f{x), f(Xhn S0} = {31 X3 X300 X0

& Na fix;) can be equal to f{xj}_ (=N

{If somc f(x) =f{xjj, Rf will not contain all x;, x5, X3....s X,,.)

~. fis one-one.
Exsmmple 22 : 1T F: {x, %3000 X} — V2 Youew ¥} IS one-one, prove that m <

Solution @ f is ocne-one.

S F(xy), Fixg), f(x,) are mo distinet elements from amongst {3, V..., ¥,

S o mSn
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Example 23 0 I 0 {x{, Xgeeers X0 = £ Voreow My} is Onlo, prove that m 2 n.
Solution @ Some of f{x;}. f(x;)..... fix,) may be equal but they must l[orm ihe sel
V1 Y20 ¥t
If m < 7, at most m elements out of {y,, ;... ¥,} will be in the range, not all »,, ¥,..... ¥,.
mzn
(Note : If A, B arc finitc scts and f: A — B is bijective then #(AY = #(B).

Example 24 : f: N — 7, Fin) = % n even

h—1
2

roodd
Prove that fis bijective.

Solution :f= (1,0, (2, I, (3, =1}, (4, 2},...}

as f(ly=—-——=1( i1 odd)
fy=3=1 {2 even) etc,

If » is a positive integer, f(2n) = % = Since 27 € N, 20 € s 2n is even.
—2n+1—1

If n is a negative integer or zere, f{(—2n + 1) = — (+J = n.

If 7 is a negative imteger or zero, —2r + | € N. —2r + 1 iz odd.

All integers are in the range of given f: W — Z.

R, = 7. S0 fis surjective.

=4 or (452)

mo_mn = mol Al =
and % = _"27_1 = n, + n, = 1, impossible.
J(n) # f(ny) for any r,, n, € N.
f is ong-one.
Fis bijective.
2x-1

Lxample 25 : Prove that # : R — {2} — R — {2}, f{x}= ~—3 is one-one and onto.

) i | _ 2):.—1 _ 2-‘:2_1

Solution © flx) = flx) = =2 x—2
= 2x 33 — X —4x) + 2 =203 —x)—dx, + 2
= 3x; = 3x,

fis one-one.
letx € R — {2}

2x—1
Let ¥=f(x)= xx—z where x = R — {2}

xp—2v=12x—1

=2m =21 ¢ =2
_ 2yt
x = v —2

For every y € R — {2}, there is x € R — {2} such that,

12 MaTHEMATICS 12



23:—1) 2[}'—_1)_1

y = Jo, sinoe () = f (2=

4y —-2—-y+2
2y=-1=-2yt+4
=¥
R,= R — {2}
fis onto.
Example 26 : fF: N XN — N, f{{r n))=m+ n Is f one-one 7 Is f onto 7
Solution : UL 2} =1+2=3, f(2, IN=2+1=3
but (1, 2) # (2, 1).
F 18 not one-one.
mzl.rzZl=mt+tnz2
Flim mN 22, Vim me NXN
1 Rj
S fis not onta.
Example 27 : f* N XN = N XN, f{(m ») = (m m). Prove f is bijective.
Solution = F{(my. D) = Flmy, mp)) = (g my) = (g, mi3)
= Hy T Ry, My Ty
= (m, n}) = (Mg, n5)
fis cne-one.
Yim n) € N XN, fi{n, m)) = (m, n)
Rf= NxXN

f iz onto.

Exercize 1.2

Are following functions one-one 7 Are they onto ? (1 to 11)

1. f:R—=R fix)=5x+7
. f:R—=R Fflx)=2—3x
3. f:R=>R fi)=x2+4x+5
4. f:R—>R, fiy=xr—-x-2
5. f:N =N, f(m= % n 1s cven
";l H 15 odd
6. SR LD, f =T
F:AXB = A, fa 8)=ua Aand B arc not singlcton, A = ¢, B # i,
JFiR =R, f(x)=x
f:Z—}Z,f(rr)=([n+2 n is even

|L a4+ 1 n is add.

ReELarions ane Funorioss 13
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. f:2—=272 fim={er+1 # even
#—3 n odd.

1. F.Z2—=Z, fim=in-2 # Bven
{Zn +2 72 odd
12. How many one-cne funciions are there from {1, 2, 3...., n} 10 itself ?
13, Ay = {1} A, = {1, 2}, Ay = {1, 2, 3}
How many onto [unctions /@ A; — A, (7 =1, 2, 3) are there 7 Can you generalize ihe result ?
*
1.3 Composite Functions

We have smdied the concept of composite functions. Let us revise i

Iff: A—>Band g: B— C are two functions, their composite function gof : A — C is
defined by

(gof)x) = g(f(x)
Iff:A—> Band g: C — D are lunctions and RJ,-C Dg, gof : A — D is delined by

(gof }ix) = gif (x))
Example 28 : Iff: N =N, fix)=2x+ 3 and g : N = N, g{x) = 5x + 7, find gef and fou.

Solution : gaf: N = N

(g = glfx)} = gx + 3 =5(2x+ D+ 7 =10x + 22
Jog N - N
ooy = e =FfGx+N=253x+H+3 =10x+ 17

In general, gof # fog.
Example 22 : If f: R — R, f{x) = X and g : R =2 R gix) = x5 prove thal gof = fog
Solution :gof: R — R, (gafix) = gf () = gG) = (&)° = =
fog : R = R, (fog)x) = flgx)) = f() = (%)} = x13
Here foo = gof
{Note : Obviously (&™) = (o™ = o™
Example 30 : f: {1, 2, 4, 5} — {2, 3,6, 7}
=401, 2), (2, 3), (4, 6), (5, 7)} and
g:4{2,3,6,7, 8} = {1, 3, 5, 6}
g = (2, 1), (3, 1}, (6, 13, (7, 5%, (R, 6)}. Find gof and fag whichever is possible.
Solution : R}r= 2,3, 6,71 — Dg ={23 6 7, 8
gof exists,

gof = (1, 1) (2, 1), (4, 1), (5, 5)}
us (go)(1) — 27 (1)) — 22} — L, (gof2) — g(F(2)) — =(3} — 1 etc.
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R,=1{1,5, 6} @D,={l, 24,5}
Jog doss not exist.

Example 3] : I f: A — Band g: B — C arc onc-onc functions, prove that gof : A — C is

one-0ne.

Solution : (gofixy = (gofilxy) = gl (x)) = gf{x,)} (xyy x; € A)
= filx)) = ) (g is one-one)
=X T X (f is one-one)

rof 1 A — C is one-one.
Example 32 : If f: A —> Bisonto Band g : B = C is onto C, prove that, gof': A — C is onto C.
Solution : Let y € C.
Since g : B — C is onte C, there exists z € B such that gz} = .
Now, f: A—= Bis oute B and z & B.
dx € A such that f{x) — z
g2y =y = gf(x)) =y
(gofix} = y
For every y € C, dx £ A such that {gofx)y = y
gof A — O is onto (.
Example 33 : If gof : A — C is one-one, can you say f: A — B and g : B — C are one-ong ?
Solution @ No.
Let f:tA— B, A=1{l 23, 4,5, B={56, 78,09, 10, 11}
S=1(1, 5), (2, 6}, (3, 7), {4, 8), (5, 9}
Letg . B 2B gx)=x+1,ifx# 10 or 11
#10)y = g(11) = 5
Then gof : A — B, gof = {(1, 6), (2, 7), (3, 8), (4, 9), (5, 10)} is onec-one.
But g : B — B is not onc-one.
[Note : Here we have taken I = (]
Example 34 : If f: A = Band g : B = C are two functions and gof : A — C is one-one, then
prove that ¥ : A — B is anc-onc.

Solution : Let f(x]} = _f'(xz] Xy X3 € A
2 (x)) = glf (%)) (flx;) € B, f(x;) € B)
{gafXx)) = (gaf)lxy)

X =X (gof is one-one)

fF: A — B is one-one.
FExample 35 : Ifgof : A2 Cisonto C,arc f:A—>Bandg:B = Conto C7?
Solution : No. Let 72 {1, 2,3, 4% —» {2, 3,4, 5,6, 7}, f(x) = x + |
£:12,3,4,5.6, 7 = {4,6,8, 10}, #lx)=2x ifx#6or7
&) = g(7) =10

ReLATIONS AND FUNCIIONS 15
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Then gof - {1, 2, 3, 4}y — {4, 6, §, 10},
gof — {(1, 4), (2, 6), (3, B), (4, 10)}
gofisonto C. Bul f: A — B is nol onlo as 6, 7 & Rf

Fxample 36 : I f: A — Band y: B — C are two [unctions and il gof : A — C is onlo C,

prove that g 18 onle C.
Selution : gof : A — C is onto C.

Letze C
dx € A such that (gofix) = z
gfxn =z

x € Aand f: A — B is a function.

f) € B. Let y = F(x).

£y} = z, where y € B.

For every z € €. 3y € B such that g(y) = =
&£: B — Cis onto C.

Exercise 1.3

Ff:R=2R zg:R— R &: R — R are functions.

Prove . {1} {fogoh = folgok} (2) (f + gloh = foh + goh
Find gof and fog [or
(1 TR R =%, g:RIR gxy=4x
2 F:RY =3 RY 7o) =43, g RY = RY, g0 =x%
J: RY = R, f(x) = cube root of (3 — x°). Find fof.
F:R =R, Fix) =x* — x — 2. Find fof

1—x

FiR—={-1} = R—1{-1}, f(x) = 75 Tind fof

f: R = K 15 signum function.

Fixy = 1 x>0
(] x=0
-1 x< D

g: R = Z, g(x) = [x]. Find fog and gof
f:Z > Zand g: Z = Z are defined as follows :
Jfim=[ n+2 n eveln glmy=( Im ¥ even
{ 2n — 1 n odd { n;l n odd
Find fog and gof.
(1) IfAzZ2¢, B#{and f: A — B iz a one-one function, prove that there exists a function
g : B — A such that gof = 1,. (I is identity function} (g is called left inverse of £}

16
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(2) IfA#i, B#¢and f: A — B is a function onto B, prove that J a function g : B — A

such thal fog = Ig. (g is called righl inverse of £

(3) Combine results (1) and (2) if f/: A — D is a bijective function.

1.4 Inverse ol a Funclion

We have 3 -1 =3 as 1 is multiplicative identiry. 3 - % =1 and so % is multiplicative inverse of 3.
Similarly we have seen in XIth standard that for a function f : A — B, fol, = fand Ipaef =
where 1, and [ are identity functions on A and B respectively. 50 does there exist a function
g : B — A such that gof = [, and fog = 157 The answer is yes under some conditions. We define inverse
aof a function,

Definition : If f: A — B is a function and if therc exists a function g : B — A such
that gof = I, and fog = Iy we say g : B — A is the inverse function of f : A — B and
denote g by f7L

The guestion arises why ‘the’ inverse ? We must prove that g : B — A is onigoe before we
call it the inverse of f : A — B and assign a symbeol /.

Unigueness : Suppose g : B — A and & : B — A are two inverses of /1 A — B.

gof = Ly, fog = Ly, Bof = 1,, foh = 1.
g~ goly — golfeh) — {gofljoh — 1,0h — h

Alsng:B —2> A, h: B — A are functions.

Tnverse of a function F: B — A, if it exists, is unique.
When does the inverse of a function exist ? This is reflected in the following theorems.
Theorem 1.1 : IT S : A — B has inverse g : B — A, then f : A — B is one-one and onto.
Prool @ For x|, x; € Al let fix|) = fix;)
G = &) /(s fx) € B)
{zofix 1) = {gq)‘)(xz)
L(x) = [4(x) (g : B — A is the inverse of f : A — B)
xl = Iz
F: A — B is one-one.

lety€ B
1) =¥
{fog¥yy = » (fog = Ig)
figon =y

g:B — Ais a function. ¥y € B. Hence g(3} € A.

Let 2000 = x. So f(g(¥) = fix) =y

€ Aand f{x)=v
For every ¥ € B, there exists x € A such that y = f{x).
Ff:A — B is onto B.
Theorem 1.2 : If f : A — B is onc-one and onto, it has an inverse g : B — A,
Proof : Let f{x) =y x €A
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Define g3y = x
Since f: A — B 15 onto, for every v € B there exists x £ A such that f{x) = y and this x is
unique as f . A — B is one-one.
g : B — A is a function.
(goNx) = g(f(x)) = gy = x
o)) = flgl = fix) = »
S gof =1, and fog = 1g.
g is the inverse of f
A result :
Iff:A—> Band g: B — C are one-one and onto, gof : A — C is one-one and onto and
o™ = fTlog L.
Prool : We know gof : A — C is one-one and onto, (Ex. 31, 32)
(goH ! : C — A exists and (gnfy ! : C = A is a function.
Fl:B = Aund g™! : C = B are lunclions.
Flog™1 : C — A is a function.
(gaNHo(f~log™") = goltlofNeg™!)
= gollgog™ ")
= gog™!
Ic
(log THo(geN = Flel(g log) af)
Flo(ler)
= f7lof
= l!’i
(ga) 1 = flog™!
Example 37 : For f: N = E, f(x) = 2x. find /) and verify jof ™1 = 1, f7lof = 1y where E is
the set of even natural numbers.
Solution @ fz) = flx) = 2% = 2%, = %, =1y
* F: N — E is onc-ong.
ifye E,y=2nTorsome n,n e N
flay=2n~=y
For cvery y € E, dn € N such that f{n) = »
F: M — E is onto.

yEfW=n=r=5 =005 F =779

FUESN S-S af -
Verification is leli to the reader.
Example 38 : /' R - R, fix}=ax+ & a# ¢ Find the inverse of /: B — R.
Solution © flx) = flxy) = ax t & =axy + &

= ax| = @,
= X; =Xy (a # 0)
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F is one-one.

Let v e R.
_ I
y—ax+h$x—TER {a = 0)
y—b y—b
For every ¥ € R, dx € R such that f(x) = F p =g/ | tb=y
fis onto R,
SRR k=g =20
or we may write /1 : R > R, flix) = I;b
Example 39 : If /: RY — RY, fix) = »2, find 771
Solution : f(x)) = fix) = %% = x?
= x| = | x|
= X =Xy (X Xy € RY
Fis one-one.
Let y € R
dx € R* such that x = J; so that f(x) = x2 = 3.
For every y € RY, Ax € R* such that f(x) = ».
fis onto RY.
FTUIRT 5 RY FTI0) = oy
or we may write /7' : R" = R", f'(x) = Jx
Fa4+2 . _
Example 40 : f: R = {-3] 5 R=- {2},  f) =355 Fimd s
Solution : Let f(x)) = ftx;)  xpxy € R — {-3}
Iy +2  3x, +2
20 +3 0 2xy+3
bxx, + 9% 4+ dx, + 6 = bxyx;, + 9% +dx, + 6
5x, = 5x,
S
Fis one-one.
a _ 3x+2
letx e R — {—2} and y = 53
2xy+3v=3x + 2
(2y =3 =2-3y
23y
ST »o g
S i -1_3 ) =
Forevery y € R {2}, there exists x € R { 2} such that f{x) = y.
Fis onto.
—1.p I3 _ 1 3] gy = 22
JS iR {2} —+R { 2}-f ) =—-3zy—3 ot
-1 . 3 231 gy 372
! 'R_{E} _)R_{ 3}'f & ===
ReLariows anp Funorioss 19
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Example 41 : [f f: A = B is onc-onc and onto. Prove (f )71 exists and (F~ 171 = £
Solution : By definition of inverse if F7! : B — A has inverse # : A — B, it must satisfy
hof 71 = i and foh ! = a- But /1 A — B does satisfy these conditions and inverse is unique, if it
exists.
(F 7 exist and F1L = £
Example 42 : A= {1, 2,3}, B = {1, 4,9}, f: A = B, f(x) = x% Find ™! and verify f~laf = 1,
for 1 = lg.
Solution : £= {(1, 1), (2, 4), (3, 93}
§ 15 one-one.
Ry={1,4,9 =B
Fis onto B.
S ST B o AW = S T = (L 1), (4 02), 9, 3D
Fof =1 = {01, 1), (4, 4, (9, D} = T,
Flaf =10, 12,2, (3,35 =1,
Example 43 : For f: R = {x|x 2 5, x € R}, f(x) = x2 + 4x + 9, lind 7 if possible.
Solution : fixy = flxy) = xlz +4x;, +9 = xzz + 4z, +9
= x? —x 2 +4(x; —x)=0
= & —X)x, +x, +4)=10
= x;=x or yy+x+4=0
Letxy =0, xy = —4 (To make x; + x, + 4 = 0)
Then f(0) =9, f(—4) =16 — 16 +9=19
£ is not one-one.
F~1 does not exist.

11—
Fxample 44 : Iff: R— {1} 2> R — {—1}, f(x) = ﬁ Prove that £~ 1 exists and show that f= 7L,

Solution © (fof¥x) = F(F(x)
]_
- (752
1=1=%
L+ x

|—x
I+ x

I+

1+x—14+X
1+x+1—x

=x
fof =1,, where A=R — {-1}
By uniqueness of inverse and the definition of 1, =1 exists and /= f~L
Note : Examples mark with * are only for information, not for examination.
*Example 45 : If £ gk are functions from A te A and if fog and goh are bijective, prove that
£ gk are bijective.
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Solution @ (1) Firgt of all we prove that § g & are one-one.
Let g(x;) = g(x;) X, x5 €A
Jlglx)) = flglxy))  glx)) € A, glxy) € A
{fogXxy) = (fog)lx;)
X = X (feg is one-one)
glx) = glxy) = x) = xp
g A —» A is cne-one,
Let A{x,) = A(x,) X, x E A
glhix)) = glhix,)  R(x)) € A, hix,) € A
{goh)(x1) = (goh)ixy)
X =X {geh is onec-one)
hlx)) = Alz3) = x| = x4
h 1 A — A s one-one,
Let fix) = f(x;) 3, E A
Since gof is onto A, Elyl, ¥, € A such that,
{goh)(¥)) = x;, (gok)yy) = x;

Jgol)yy)) = fgof){y)) ix)) = fix5)
{og¥hly N = (foglh(y,))
hiy)) = hily,) (fog is one-one)

ghy, ) = glhQy; 1) hiy,), #Qs) € A
(goM(y)) = (gof(s)
) T
Jixp) =fix) = x) = xy
JF:A — A is one-one.
(2) Now we prove f, g F are onto A,

Let v e A

Since fogr is onwo &, Jz € A such that
(fog)z} = y

flgz) =y

Let giz) = x. Themx € A  Also f{x)=yaend x € A
For every v € A, dx € A such that f(x)} = ».

fis onto A,

Similarly, since goh is onto A, Jdz € A such that
(gohXz) = »

g(h(z) =y

Let A(2) = x. Then gix)} = y whero x € A

£ is onta A,
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Let y € A, Now g2(3) £ A

Since goh is onto A, dx € A such that
(goh)x) = g(¥)

glhix)) = g)

But g is one-one.
hix) =y
For every y € A, dx € A such that A(x) = y.
& is onto A,
*Example 46 : f: A > Band g: B — C and i : B — C are functions,
(1) Prove if fis surjective and gof = hof, then g = &
(2) Give an example in which gof = hof but g # b
Solution : (1) Tet ¥ € B, fis onte RB.
dr € A such that F(x) = ¥

g ix) = g} (fx) € B)
K7 = g0) (gof = hof)
Ay = 80

Since v< Bis arbitrtary and g: B —- Cand » : B — C are functions, g — k.
(2) F:41,2,3,4y = {5,6, 7}
F=1{(1, 5, (2, 6). (3, 6). (4, 51}
Let g: {5, 6,7} — {6, 8}, p = {(5, 6). (6. &), (7, 8)}
Let h: {5 6,70 = {6, 83, h = {(5, 6), {6, 8), (7, 6)}
gaof = {(1, 6), (2, 8), (3, 8), (4, 6)}
haof = {(1, 6}, (2, B), (3, 8), (4, 6)}
gof = hof. But g ¥ h
“Example 47 : I f: A — B, g : A — B are functions and 4 : B — C is a function.
(1) Prove if Aof = hog and H is onc-cnc, then f= g.
(2) Cive an example where kof = fog but £ % g
Solution @ (1) Aef 1 A —» C and hog : A — C arc fonctions.
(hoN(x) = (hog)x) for Vx € A

BE(x)) = Alglx)
Ff=gx) VYxe A (& is one-one)
f=g

(2) FiAl 2,3} = {4, 5}, S=1i, 4, (24,3, 4}
g:1L, 23 = 4,5}, g- {(1,5) (2 5), (3. 5%
B4, 5) o 16, 7}, h— {{4, 6), (5, 6)}
hof = {(1, 6), (2, 6), {3, 6}} = hog, but f # g.
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Find /1 if it exisis : (1 to 6)

:R—= R,
L= 7,

:RY > RY, Fx) =X

2
LY

th

[

tZ N, fin) = dn

4|n|+1

dn + 2

4\n|+3

(Hint : fis not onto. 3 & Rj)

For f: A — B, J a function g :
For f: A — B, 3 a function A -

S 01,2, 3. 4., 1) — {2, 4, 6.

2 Zx {0, 1}, 7 - | (£.0)

I Exercise 1.4 I

Fix) = 2x + 3.
fxy=x— 1.

- 20Y, fn) = 2n.
n even.

n—1
2

R 1] # odd.

n>
7=y
n> 0
n < 0,

H E¥VCI
H E¥Ven
n odd
n odd

B — A such that gof = I,. Prove / is one-one.
B — A such that foi = 1. Prove f is onto B.

Examine if following functions have an inverse. Find inverse, if it exists :

(1 r:
R = RT U {0}
:R = [0, 1),

I
I
fiR—Z,
I
I
J

R — R,

> C,
TNXN — N,
TNXN — NXN,

1.5 Binary Operations

flxy=| x|

fx) = |x]|

Sy =x = [x]
HOESED
foy=1

Fl{lm n)y=m+n
Jim 1)) = (. m)

5

(Floor function)

(Ceiling function)

{C = set of complex numbers)

We know thatl addition ef two natural numbers s a nalural number.

le.ae Nbe N=2a+be
Smilaly a—db€ £ [ a b
axbe 2 f ab

N.
e Z
e 2

Thus there is a non-empty set X and an ordered pair of elements (a7, &) of X X X giving a

vnique element of X obtained by so
operations on X.

called ‘addition’, ‘multiplication” etc. These are called binary

Binary Operation : Let A # ). A function * : A X A —» A is called a binary operation. Instead

of notation like f({a, b)) or *(a, b)

, we use the notation @ * b for the image of this function

HELATIONS aMD FUNCTIONS
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for (@, b) and call # a binary opration on A. Thus, corresponding fo (4, &) € A X A, a unigue

clement @ * b of A ¢can be obtained by *.
Thus =+ is a binary ¢peration en N, Z, Q. R, C.

X is a binary operation on N, 7, (3, R, .
— is a binary operation on Z, (J, R, C as g — & does not necessarily belong to N if

aE N, be N,

Forexample 3 N, 7€ N, bt 3 —7=—4& N.
Similarly + is a binary operation on QQ — {0}, R — {0}, C — J0}. It & = 0, % is not defined

in Q orm R or in C.
Ifae N, b E N,then%{é M unless & | a.

Hence division is nol a binary opertion on N.
If * is a binary operation on set Aand ifa * b=5h * g, Va b € A,

Commutative law :
we say * is a commutative operation.

+ 15 commutalive on N.
— s nol commulative on Z asa— b b —a u e Z
If * is a binary operation om A and if (@ * b)) * ¢c = a * (b * o)

Associative law :
Ya, b, ¢ € A, we say * is un associative binary operation on A.

What is the nead of this law ?
Seethat{a + #l+ c=a + (5 + ¢) ie + is associative on R. Hence we can write a + & + ¢

without ambiguity for this expression.
VYa b c € R

a—MN—c*+xa— b —7c)
iz not associative on K. S0 we have to specify brackets while using ‘—" for three

Hence *—
real numbers.

Identity Element : If * is a bhinary operation on A and if there exists an element ¢ in
e*®* a=a Va € A, we say e is an identity element for *.

A such that g * ¢

O+a=a+0=a ¥Yae R
l-a=wa.1=a, Yae R
0 is the additive identity and 1 is the multiplicative identity in R.

gd—0F0D—aforae R unless g = (.

.. =" has no additive identity,

Inverse of an element : If * is a binary operation on A with an identity element £ and
if corresponding to ¢ € A, there exists an element @' € A guch that a * @' = a' * a = ¢
where ¢ is the identity eclement for *, we say @' is an inverse of @ and we denote the

inverse @' of @ hy a .
sSoa*ragl=glsxg=¢

In R, every non-zero real number a4 has an inverse al for multiplication.

Every element .7 has an inverse —a for addition in R,

{) has no inverse far multiplication in R,
MlarnEviancs 12
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Operation Tahle : IT' A is a [inile se1 and m(A) is “small’, we can prepare a lable as [ollows :

* lay & dy ... 4,

53
13

3

o

L)

a; ¥ & i1s written at the mtersection of the /ith row and jfh column.

If # is commutative, the table 1s symmetric about the main diaganal.
Example 48 : * js defined on N \J {0} by a * b =|a — b|. [s it a binary operation ?
Solution : Yes. Ifae WO {0Lhe N {0 thena — b e Zand |a— &l € N O {{}
* j5 & binary opeation.
Example 49 : Determine whether following operations * are commutative or not ? associative
or not?

(1) On N {0}, a*% b = 2ab

[
(2) OnRY, a*b- 3.7

Solution : (ya*p=290=200=px g Vg be NWI0}
¥ js commutative.
(2%3) % 4=26%4=22"4=2925
2% (3 *4}:2*212=21.2|1=2213

* i3 not associative.

&
(2) a*b=3T7.0*%a="717

b
P = = alta=5+ 5

= a@a—"Matbd)t+ta— =10
= (g—ba+b+1)=20
HWae=bora+b+1=0then a* b =5 % g

=2 _1 =3 _
2% 3 r = 3 %2 5 1
¥ i3 not commutative,
1
R*3)*4=2xa=-Llxa-g5-1L
2%3*4 2*5 241 g 4

S ¥ is not associative.
Example 50 : A : R X R = R is defined by Ala, 2= o A b = min(a, b
Frepare the operation table for A for the subset {2, 3, 4, 7, B}.
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Solution :
A 12 3 4 7 B
202 2z 2 2 2
32 3 3 3 3
4 12 3 4 4 4
T2 3 4 7 7
8.2 3 4 7 8

Example 51 : Define # on {2, 4, 60, 8} by a # b = god (a b).

Prepare the operation table for *. Is # commutative ?

Solation :
ged | 2 4 6 8
2 % 4 2 3
4 2 'a 2 4
6 | 2 2 6 2
8 2 4 2 8

Obviously g.od (e 8 = god(d o)
¥ is commutative.
See that the table is symmetric about dotted diagonal.
Fxample 52 : * 5 the binary operation on N defined by @ * b = fem (o &)
(1) Find 8 = 10, 5 # 3, 12 # 24,
(2) Is * commutative ?
(2) Is # associative 7
(4) Find the identity for *, if it exists,
(5) Find inverse of those elements for which it exists.

Solution : (1 8 * 10 =lem (8 10y =40
53 ={cm (5, 3) =15
12 % 24 =lcm (12, 24) =24
(2) lem {a b)Y =lcom (b a)
* is commutalive.
(3} * is associative.
(4) a*e=aq, Ya € N means le.m. {a, e) = a, Yae N
¢la Va €& N, In special case ¢ | 1. So, e =1
Also, Lem {a 1) = a.
1 is the identity lor ZLoom. operation.
(5) lem (a By 2 a and lem. (o 8) 2 b,
lem (a b)) # 1 unless 4 — b — 1, Inverse of | only exists and it is 1.
Fxample 53 : Lel X # {3 Prove that union and interseefion arc binary operalions on P(X). Arc
they commutative ? Are they associative ? Find the identity and inverse if any for L and M
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Solution : AUB e P(Xyand A B e PX)iFA, B € B
‘) and r and are binary operations on P(X).
Let A, B, C € P{X}
AJUB=BUA AMNB=BMA
ad (AUBUOUC=AUBUOCand{ANBYNC=AMBM"NC)
and ¢ and are associative.
Ao AUD=0U A=A forall A € P(X)
¢ is the identity for union.
AmX=XmMNA=A foral A e PX)
X is the identity for intersection.
AVUB=foS A=B=1
f is the only element of P{X} having # as the inverse for unien.
(A B)YC A, Hence A B # X unless A =B = X.
X ig the only element of P(X) having inverse X for intersection.
Example 54 : Define a ¥ A = a + 2h on N. [s ¥ commutative ? [z ¥ associative ? Is there any
identity or inverse for any clement in N 7
Solution : 2*®*3=24+6=8
3®2=34+4=7
¥ 15 not commutative.
23N *d=8%4=8+8=16
2 3 =2%11=2+22=24
* is not associative.
Ifa#e=e%ag=athena+2e=¢+2a=a Yae N
ad+2e=ua
e=10
But 0 &€ N.
* has no identity and therefore there is no question of inverse.
Example 55 : ¥ is defined on Z by a * b =g+ & + 1. Is ¥ associative ? Find the identity and inverse
of any element, if it exists.
Solution : (fa*¥ by % c =(a+ b+ 1) *¢
=at+bé+1l+ct+l=at+tbt+tc+?2
a*b*r)=ag*b+e+ =0+ {hF+ec+NN+1=ua+b+c+?2
* is associalive.
Leta*e=e*a=afor Vae Z
at+te+1=ga
Seoe=—1
Also, g *{(—1}=a+ {1+ 1=a Ao D *g={—-114+a+1=a
—1 is the identity for *,
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a*b=atbt+tl==1=b==-2—u
Alsoca* (—u—2)—a+{—a—2)+1 - —1
S —a — 2 is the inverse of a.
Fxample 56 : Prove if * iz an associative binary operation having identity ¢ and if # has an
inverse, the inversc 15 vnique.
Solution : Suppose g has two inverses o' and a”.
.o a¥ad=a*ta=¢
a¥a" =g " ¥ag=e¢
Now o = ' ¥ g =o' *% (¥ am)
={d *ay ¥ a"
=g * g
=a"
.. The inverse is unique.
Fxample 57 : Define % on R by a % b = a + b — {ab)’.
(1) Prove #* is commutative but not associative.
(Z) Find the identity element for *.
(3) Prove that | has two inverses [or #,
(4) Prove it & € R, ¢ has at most two inverses,

(5) Which elements have no inverse T Which have only one inverse ? Which have two inverses 7
Find the unigoe inverse if there is any.

Su!uliun:[lla*Ii—a+f:—{ab)2—h+a—(ha}2—j5*a
S ¥ is commutative.
(2 % 3) % (=2) = {2 4+ 3 — 36) * (=2) = (=31} ¥ (-2)

= =31 — 2 — (62)2
=—33 — 3844
=—3877

ZF(BE(2)=2% (32— (6?2 =2 * (35
=2+ (—35) — 49(H)
=—4933
S % s not associative,
(2) a*e=at+e—(ml=-c+a—(al =g =e—del=0 Vac R=e=10
{(Take in particular @ = 0)
g*0t=a+0—-0=g=0%*g
v 0 is the identicy for *,
(3) Let 17l = a.
l*ga=1+a—a’t=0
S —a—1=0

. _ 145

e [¥) 3

. 4=l _ Y541 1— 5
| 3 or >

S 1 has two inverses.
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(4) Let b be inverse of a, @ € R.
. oa¥ h=0

a+ b=t =0

Pat —h—na=10

This is a quadratic equation in A.

(0 is identity)

It has at most two real roots as A = 1 + 4a' and A may be positive or negative or zerc.

Fvery element g can have at most two inverses.

1
Ifda’ < —1ora< [—-i-)ﬂ, A<
o has no inverse.

If 4% > —1, @ has two inverses.

If a® = _TI’ @ has only one inverse.
- . 14 J1 + 44’
S Ifa = Tl’ a has only one inverse, namely b = ————
20
1 1 2 1 1 1
¥ — — —_ L) - - _ 4 — 4 _
F M:’. o + M'Z (ZHJ a+ m'z 4‘31 a + 4‘;2

o= ﬁ_Tl has only one inverse namely ﬁ

(Note : Here # is not associative. Hence uniqueness of inverse cannot be asscried.)

Miscellaneous Examples :

Example 58 : A relation 5 is said to be triangular, if xSy and x5z = »Sz.

Prove § is an equivalence relation <= 5 is reflexive and trianpular.
Solution : Suppose 8 is an equivalence relation.
8 is reflexive.
Let x5y and x5z
. ¥5x and x5z
5z
a8y and x5z = ¥8z
5 is miangular.

Conversely lel § be reflexive and triangular.
Let xSy. Also x8x.

yex
xSy = ¥Bx
S 8 is symunetric.
Let xSy and &z
S ¥Sx and 38z
. xRz
5 is transitive.

5 iz an equivalence relation.

Example 59 : In R, let x5y if x — ¥y € £, Prove that 8 is an equivalence

equivalence classes 7

(S is symmetric)

(S is transitive)

(S is symmetric)

relation. What are

ReLATIONS AND FUNCIIONS
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Solution : x —x &€ Zas e Z
x5x
8 is reflexive.
fx—ve L theny—x € Z
X8y =» yix
S is symmetric.
fx—ye Zand vy —z € Z, then
x—y+y—z=x—z€ £
[f x5y and ¥z, then x5z
5 is transitive.
5 is an equivalence relation.
S0 now we can denote 5 by .
Now x — y <=y x — v {5 an inleger.
Like if x = 782, y =282, then x—y»=5 & £
X~y
x—[x] =782 —7=082
¥y — [¥] = 582 — 5 = (.82 nwst be same, if x —
X — [x] consists of those real numbers whose decimal expressions after decimal point are identical,
x — [x] = ¥ — [¥] or equivalently x — ¥ = [x] — [¥].

The equivalence class of x consists of those real numbers p for which x — y = [x] — [¥]

Fxample 60 : Prove f: R — {2} > R — {1}, f(x) = x_i’z is ong-one and onte. Find F~L

- . £ )
Solution : f(x]) —f(xz) — — — m

= X T Xy
Fis one-one.
let yve R— {1}, xe R — {-2}

Let v = 575
xy+2v=x
x{y — 1) =2y
x=%=12—_yy v € R— {1}
For every y € R — {1}, dx € R — {—2} such that y = f{x)
R,=R — {1}

Ffis onto R — {11},
SR SR 2 MW=

Example 61 : * is defined on R by & % b = a + & — ab. Iz there an identity for * ? What s inverse

of a € R, if it exists ?
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Solution ta*e=¢*g=g, VaE R = ate—ae=a Vae R
= e—ae=0 Yaec R
— e -0 (Take @ = 0 in particular)

Alsog* 0 =0%a=a+0—-0=g
0 is the identity for *.
Nowag*¥b=ag+b—agb=0={l —a)p=—a

=b="55ifa# 1

—

Ifa# 1, a!exists and a! = P

Fxample 62 : Defing relation 8 on Z — {0} X Z — {0} by (a £)S{c. &) & ad = be. Prove that
it is an equivalence relation. What about equivalence classes ?
Solution : {q, 55(a, b)Y as ab = ba

8 is reflexive.
If {a, 5)S{c, d), then ad = bc

ch = da

{e. HSa b}

5 is symmetric.
Let (a0 M5(e. &) and {c. &S(e. N
S ad = be and cf = de

ade = bez and acf = ade

act = bee
af = be, since ¢ £ 0
{a, B)S(e, /)

5 is transitive

§ is an equivalence relation.

In fact ﬁ- = ia,‘- if ad = be.

- A R - R
4 6 2 10

I'he equivalance class of fractions (g, &) consists of non-zero rational number %

EmmpleﬁB:Lel*bedeﬁnedhya*b—‘lz—é’ for @ e QF

Find the identity element. Find 471 and (4 * 5)71,

Sulutiua:a*b=a=>‘f—l§’=a=:~b=l[] (as a = 0)
Also a * m—m*a—“l'um ~a

10 is the identity for *,
Let 4 # a =10

der
ﬁ_m
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a=25
25

471 = 25 (4*—25=4—;ﬁ—=11})

4.5
% 5 = =
4% 5 D 2

NDWZ*a=]U:>":‘—B=lU

= a =50
(4 % 57l =271=35p

Exercise 1

Prove that there is only one relation in {1, 2, 3} which is reflexive and symmetric but not

transitive and which contains (1, 2) and {1, 3}
Prowve that the number of equivalence relations in {1, 2, 3} containing (1, 2} is two.

S is defined on R by, (4, ) € S & | +ab» 0 Va he R
Prove % is reflexive and symmetric but not transitive.

(Hint : Take a =3, b =3, c=-8. (@ H) € §, (b )€ Sand (@ ) & S)

A=11,2 3,14 15}, 5= {{z )| v=>5x, x ¥y € A}
Determine whether S 1s reflexive, symmetric or transitive.

The relation § 13 defined on R as follows :

S={la B)|a<h,a bhe R}

Prove § is not reflexive, not symmetric and not transitive.

et S < (R X R). 8= {{A, BY | £A, BY < 2}, Prove § is not transitive.

S ig defined on W X N by

(a. B) 8 {c, &Y &= ad(k + ) = bola + &) Prove that § is an equivalence relation.
Determine whether following fanctions are injective or not 7 surjective or not ?

() f:R=R f(x)= {2x+l x20

x2 ¥<0

(2) F: R —= R, Fflx)— —x+1 x=0
{ x2 x< 0

3y f-2=7 fin)= n—1 r odd
{ n u even

4y f- 2 =272, {fim) - " B oeven
{";] n odd

(5) fTRXR—{0) SR [ =7

6) f: 2 =4, fin)= [n n even
20+ 3 n odd (Hint : Ts 3 € R, [$]

M FEL ] 2 FL AL AE) == (x|
) FrNo>NU{0L @ =r+ (17

32
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9,

10.

12.

13.

14.

16.

17.

18.

19.

(9) f: N = {1} = N, f(») = largest prime diviser of »,

(0 f:R— {3} = R— {1}, f(x) =

-3
(M f:R =R, fixy=x—[x]
Frl0 1] =0, 1], fix)= [ x x e Q
{l—x x & Q

Prove {(fof}ix) = x.
FiE = Z fn) - 52 and

g:Z = Z, un) = { £  ifS|n
0 otherwise. Find gof and fog.

—

x>0
0 x=10

fiR—= R flx)=

—I x =<0
and g : R — R, glx) = [x]. Prove (fogXx) = (goHlx) ¥Vx € [—1, 0)
Iff:A— Band g: B — A are twoe functions such that gof = 1,. then prove that f is
one-one and g is onto A.
Prove for functions f : A 5 Band g : B &5 C
(1) Hgof : A= CisontoC,g: B — C is onto C.
(2) If gof : A — C is one-one, f : A — B is cne-one,
(i) Ifgof:A—Cisontoand g : B — C is one-one, : A — B is onto.
(4) fgof: A— Cisoneone and f: A—> B is onto B, g : B — C i3 pne-one.

F:RY U {0y = RT U {0}, f(x) = ¥yx, 2 : R = R, g(x) = x2 — 1. Find fog or gof
whichever exista,

.If_f:Nu{ﬂ}—}Nu{ﬂ},f{n}=J'n+l n even

{n -1 nodd. Prove f= f~L

0% —107F
. Find 71, if it exists.

FrR = (=1 1) flx)=

10° +107F
4
F:R — {%} — R, f{x) = ﬁxx—jiv Prove (fof¥x) = x. What can you say about /~! 7

* js defined on R by o ¥  =a + 6 + ab. 15 * commutative ? Is it associative ?
Angwer the same question if @ % b= a — b + gb.

Examine whether following binary operations are commutative or not and associative or
not :

(1) a*b=aton N
(2) a* b =ged (a Hon N

3) a*b=a—>bon
(1) a*b=a%%onQ
5y ga*b=a+db—5%onR

RELATIONS AND FUNCTIONS KK
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(6) a*bh=gy7onR— {1}

(7) a*b=a:b ot ()
(8) a*b=a;b on Q

(9 a*h=a+h—2ond

(Mya* b=a+2b—3 on Z

Find the identity element for following binary operations and inverse of any clement in
case it exists (provided idemtity exists) :

iy ab=g+ b+ abon } — {—1}

(2) a*b=22onQ— (0}

3) a¥*b=at+b—-—2o0nZ

4y a*bdb=g+b—abonR— {1}

(5) a* b= II"|,¢,;2_g,2| on R

) a*b=3a+4F—2on R

(7y a*b=a+34 onZ

(8) a* b=ged (g b on N

(9 A*B=ArmnB on B{X) for a non-empty set X,
(1A #B =AU B on P(X) for a non-empty set X.

Section A (1 mark)

Select a proper option (a), (b), (¢) or (d) (rom given options and wrile in the box given
on the righi so thai the siatemeni becomes correct :

(1) The relation § = {(1, 1), {2, 2), (3, 3), (4, 4), {5, 5)} on {l, 2, 3, 4, 5} i5 ...... 1
{a) symmetric only {b) reflexive only
{c) transitive only {d} an equivalence relation

(Z) IfA = {1, 2, 3}, then the number of equivalence relation containing (1, 3) is... | |
{a}y 1 (by 2 {c) 3 (d) 8

(3) Sisdefinedin Zby (x, ) E § = |x—py| = 1.5 5., -

{a) reflexive and transitive but not symmetric.
{b) reflexive and symmetric but not transitive.
{c} symmetric and transitive bt not reflexive,

{d} an cquivalcnee rclation

(4) T 8 is deflined on R — {0} by (x, ) € 8 & x3 = 0. Then S is... ]
{a) an cquivalcnce rclation (b} reflexive only
{c) symmetric only (d) transitive only

(5) Which of the following defined on Z is not an cquivalence relation... 1
{(aY(x, ME S x2y (bY{x, VE S x=y»

{chixr, e 8§ & x— yi1s amulliple of 3 yiéx, 3 5l |x—y| 15 even
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() Ma*bs -+ 52onZ then (2 % 3) % 4 — ... )
(a) 13 {(b) 16 (c) 183 {d) 13
(M HHa*xb=a +d»2 +ab+2onZ then3 *4= ... .0
(a) 40 {b) 39 () 25 (dy 41
(8) If @ = & = 22 on QF, then the identity for * is ..., (-
(a) 2 (b) 3 0 (d 1
(9 fa*h= “Tb on QF, then the inverse of a (@ # 0) for * is ... -1
3 i) 1 Z
@ 3 (b) 2 © 2 @ 2
(10) The number of binary opetations on {1, 2} is ...... L ]
(a) 16 (b) 8 () 2 (d) 4
{11y The oumber of binary operaticns on {1, 2, 3,..., #} is ... =
(a) 27 (b) »" (¢) #° (d) #2"
(12) fag*b=ag+b+abon R — {—1}, then g ! iz ... .
—a 1
(@) o (b) - © Zai @ —r
(13) Fora* =g+ b + 10 on Z, the identity is ...... .
(a) 0 (b) —5 () —10 (d 1
(14) The number of commntative binary operations on {1, 2} is ___ L1
(1) 8 (b) 4 (c) 16 (d) 27
(15) Ifa* b = -]‘% on Q1 inverse of 0.1 is ... 3
(a) 100000 (b) 10000 (c) 1000 {d) 10
Section B (2 marks)
ea=[-1,1L,B=[0,1] C=[-1,0]
S, =lx»|x+)y=1Lxe A ye A} -
S;={=WIx2+)>=1,x€ A, ye B}
S;={xW|x2+)y=Lxe A ye C}
S,={x. »|x2+)y"=1,x€ B, y € }, then
(a) &, is nol a graph of & [unction. (b) S, is not a graph of a functon.
{(c) S is not a graph of a function. (d) S, is not a graph of a function.
7R RFfO=¥+3%1=_, Ll
{a) one-one and onto (b) one-one but not onto
{e¢) many-one and onto (d) many-one and not onto
(18) f: R — {g} > R— {1}, /(%) = ==, p # g, then f is .... —
fa) one-one and ento (b) many-one and not onto
{c) one-one and not onto {d) many-one and onto
RevLaTions avp FonveTioxs 3%
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(9 £:[=1,1] = [=1, 1], F{x} = —x | x| i5 ooome |
{a) ong-one and onto {b) many-one and onto
() many-one and not onto {d) onc-one and not onto

(200 If £: R = R, f{(x) = 2x — 3, then.., =]

— 1 — i

@' = 353 (b) fix) =
(c) f~! does not exist () £~x) = 3x — 2

(21) f: [—%, %] — [—1, 1] is a bijection if.. e
{ay f{x) = | x| (b) flx) = sinx () f(x) = &* (d) flx) = cosx

(22) F* R 2R, f{x)=x+ 2x + 3 is_ |
{a) a hijection {h} one-one but not onta
{c) onto but not one-one {d} many-ong and not onto

(23) Ife* b=ab+ 1 on R, is... =
{a) comrnutative, but not associative {b} associative, but not comumnutative

{¢) neither commutative nor associative  {d) both commutative and associative

(24) If @ * b = a* + 5% on Z, then ¥ is... 1.
{a) cormunulalive and associative {b) commulative and not associalive
{¢) nol commutalive and associalive {d} neilher commulalive nor associalive

(25) fae*b=a+ &b — ab on Q — {1}, then the identity and the inverse of o for # arc

respectively... ||
@0and =% (@) 1 and “a;l (¢} —1 and a @Wo L

(26) I a % b~ 22 on QF, then 3 = (L # 1) is.. ]
(@) 3 (b) 35 ©) = 4

(27) If A is defined on P(X) (X #= ) by, A A B = {A W BY — (A M B), then... ==

(a) identity for A is ) and inverse of A is A
{b} identity for A is A and inverse of A is §)
{¢) identity for A is A' and inverse of A is A
{d} identity for A is X and inverse of A is @

Section C (3 marks)

(28) S is defined on N X N by ({@, bhic dIE S S a+d=F+ c.. ]
{a) § is reflexive, but oot symmetric {b} 5 15 reflexive and transitive only
{c) 5 is an equivalence relation {d} § is transitive only

i MarHEMATICS 12
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(29) Lei § be the relaiion on the set A = {5, &, 7, 8},

8 = {(5, &), {6, 6), (5, 5), (8 &, {5 7, (7. I, (7, 6)}, then... -
fa) S is reflexive and symmetric but not transtive
(b} 5 is reflexive and transitive but not symmetric
fc) % is symmetric and transitive but not reflexive
{dy 5 is an cquivalence rclation.
(30) If £ R* = R, f(x) = 7o 5 weonn =
fa) one-one and onto (b} one-one and not onto
{c) not one-ong and not onto (d) onto but not one-one
(B fFf:R =R fix)=[x],g: R >R, gix)=xinx, i : R — R, g{x) = 2x, then
holgaf) = ... S
fa) sir[x] {b) [sinix] (c) 2(sin[x] (d) sim2[x]
—xlxl
(32) f: R = (=1, 1), f{x) =~ T4z then F - =]
| . lxl
(@) 1, (b —signum x =7
2
() _1"?:: (d) .rit+1
(33) F:R =R, fx) ={ —1 1< 0
0 x=10
1 x>0
g: R —= R gix) =1+ x — [x], then for all x, f{g(x) = ...... |
fay 1 {b) 2 () 0 {d) -1
Section I (4 marks)
(A liEf:{xlx=2l,xe R =2 {x|x22, xe RL A =x+ -j;,f_l(x)=...... e
7 - 2
@ ZHT 4 gy Td o (g 2 @ <2 -4
(35) Iff: R > R, F(x) = x — [x], then f~l(x) = ... 1
fa) does not exist (b) is x (c) is [x] (dy » — [x]
(36) If f(x) = Jﬁ then (fo(fo/)(x) = ..... =
—x 1+ x° . x X
Wy T+ <2 {b) - () m (d) m
AN Ff:R=R fx)=x% g : R = R, gla) = 2%, then {x | (fopdx) = (goflx)} = ... =l
(a) {0} (b} {0. 1} () R {d) {0, 2}
RevaTions ane Fonvemioss 37



38) £: R — Z, £(x) = [x] i$ e
(a} one-one and onto and has an inverse (b) many-one and not onta, no inverse
{c} many-cne and onto, no inverse {d} one-one and not onto, no inverse

0y A=4{0,1,2,3,4,5, 6} Ifa A€ A, g% b= remainder when ab is divided by 7. From
binary operation table of *, inverse of 2 is ...... ()

(o) 1 (b) 3 (c) 6 d) 4

We have studied the following poinits in this chapter :
1. Relation and equivalence relation.

2. One-one and onto functions

3. Composition of functions

4. Inverse of a function

5. Binary Opcrations on a sct
"—

Srinivasa Ramanujan

Born in Erode, Madras Presidency, to a poor Brahmin family, Ramanujan first encounterad formal
mathcmatics at age 10. He demenstraled a natural abilily, and was given books on advanced trigonometry
written by 8. L. Loney. He mastered them by age 12, and even discovered theorems of his own, including
independently re-discovering Euler's identity. He demonsirated unusual mathematical skills at school,
winning accolades and awards. By 17, Ramanujan conducted his own mathematical research on
Bernoulli numbers and the EulerMascheroni constant. He received a scholarship to study at
Government College in Kumbakonam, but lest it when he failed his non-mathematical coursewoerk. He
joined another college w pursue independent mathematical research, working as a clerk in the
Accountant-General's office at the Madras Port Trust Office to support himself. In 1912-1913, he sent
samples of his thearems to three academics al the Universily of Cambridge. Only Hardy recognised
the brilliance of hiz work, subsequently inviting Ramanujan to visit and work with him at Cambridge.
He became a Fellow of the Royal Society and a Fellow of Tonity Collepe, Cambridge, dyving of illness,
malnutrition and possibly liver infection in 1920 at the age of 32,

During his short lifetime, Ramanujan independently compiled nearly 3900 results (mostly identities
and equations). Although a small number of these results were actually false and some were already
known, most of his claims have now been proven correct. He stated results that were both original and
highly¥ unconventional, such as the Ramanujan prime and the Ramanuvjan theta function, and these
have inspired a vast amound ol [urther research. However, the mathemalical mainstream has been
rather slow in absorbing some of his major discoveries. The Ramanujan Journal, an international
publication, was launched to publish work in all areas of mathematics influenced by his work.
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INVERSE TRIGONOMETRIC 2
FUNCTIONS |

No maiter how correct a mathematical theorem may appear to be, one ought never to be
satisfied that there was nof something imperfect abowt it untill it alsa gives the
impression of being beautiful.

— George Boole

Mathematics consists af proving the most obvious things in the least obvious way.
— George Polya

2.1 Inmtroduction

We have studied that a function has an inverse if and only if it is one-one and onto. There ans
many functions which are not one-one or not onto or both and hence they cannot have an inverse
function, In ¢lass XI, we have studied that all trigonomerric functions are periodic and hence they
are all many-one functions, Therefore, they cannoi have an inverse, In order to have inverse of
these functions, we must restrict their domain and codomain in such B way that they become one-one
and onto, With this modified domain and ¢odomain, it can have an inverse,

We know that if = {(x 0| ¥y =F(x), x € A, ¥y € B} is one-one and onto, then 71 exists and
STT={xn ) |y=Sfx)xe A ye B}

Also fof ! = I, and flof = I,

S xc A0 lofa=xye B= (of DW=y

In this chapler, we shall discuss the existence of the inverse of migonometric fimctions and
discuss theit properties.
2.2 Inverse of sime Function

We know that sin : R — R is meny-one and range of sine is [—1, 1]. So, it is not onto R.
sine = {{x, y) |y =simx, x € R, v € [—1, 1]} is a many-one function on R and is onto [—1, 1]. It is
many-one and periodic with period 2. We can see from ity graph that, if the domain of sine is
taken as, [—%, %] or [%, %—] or [_L;r,_, 525-] or [(Zk - 1)%, 2k + 1)%], k = Z, it bacomes one-one
and remains onto [—1, 1].

1-
57'3“ L —m /\_ E i i I ﬂ i zlﬂ/\ -
XI - v i ax 0 i D A i . 0 .‘_ﬂ T 0 3}{‘ x
Tz . it z 2

v

L]
Y

Figure 2.1
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So, to define the inverse of sine function, we can take any of these intervals as the domain of

sine., We shall take the domain of sine function as [—%, %] to define the inverse of sine. So we
consider the function sin = {[.r, M|y=ysinx,x € —7, 1] ¥y E |1, I]! This is a one-one and
onto function. Therefore, it will have an inverse function. The inverse of sime Tunction is
denoted by sin~ L.

sin 1 = {{P. x) | y = sinx, x € [—,, .,] ¥y €1, ll}
Thus, for x € [-Z, Z]| and y € [-1, 1]
y = ginx & gin ly = x

|

Remember that if y € [—1, 1], sin Ly is not jusi any real x for which simx = v bul only

The domain of sin~! is [—1, 1] and the range is [—

rafs
r3f=

b ]

that x € [—E, %] for which sinx = y. For instance, given p = ""_ , we know that sin % = % and
% S [—%, %] S0 Sr’n'l(éj = % Although s:‘n(ﬂ:—?] = sm[z.f] = %, we can not
1V 2 2R - T
WIIte i = B bocause 3 & [ > o |
Also W0 e [—%, %1, sin Wsin) = 0,
sin(sin lx)} = x. ¥x € [-1, 1].
For instance, .s'fn(.i'fﬁ_l:'}) = %, because % e [—1, 1]. sin™ (szTn) = % hecause
21 _n = o L gip [ 3 3n 3N 11
S € [ 2’2]:b””m (Sm(il)i because <= & [ 2’2]'
If the inverse of f : A — B is f-l : B — A, then we know that,
Jof 7t = 15 and f7laf = 1,
Thus, sin —— —] —» [—1, 1] has inverse, sir 1 : [-1, 1] — [—2 . 2]
sin Wsinx) = x, Vx € [ > 2 and sin(sin lx) =x Vxe [, 1]
We note that,
{1 =€ [ = 2] <:>—— = 5%{2}|x| E%and

ye[-L, 1] 1<yl |y sl

(2) sin lx # ——, that is siv lx # (sime) ]
SINX

2.3 The Graph of y = sin 'x

The domain and the range of sin ! ure [—1, 1] and [—%, %] respectively. Its graph will be

confined bebtween the two vertical lines x = —1 and x = | and the two horizontal lines y = —%
==
and y =

4 MaTHEMATICS 12



_————-'\-_____

We can use our knowledge of the graph of ¥ = sinx to pet the graph of ¥ = sin~1x, To obtain it,

let us first examine how to find the graph of f~1 from the graph of f, when inverse of f exists.

The graph of ¥ = f{x} and the graph of y = f 1(x) are Y

very interestingly related. If point (a, ») is on the graph 1

of y = 7(x), then & = F{a) and so @ = £~(b). Therefore, Aab) -,
the point (5, @) is on the graph of y =/ ~1(x). The converse

is also true. Hence, A{a, b) is on the graph of v = f(x) Biba)
if and only if B(d, @} is on the graph of p = f~(x). - LX

We can see that the line y = x is the perpendicular o)
bisector of the line-segment joining A{a, 5) and B(b, a).
Slope of the segment joining A{a, b) and B(b, a) is

b—a 2
75 — 1 The slope of y = x is 1. Hence AB is

perpendicular to the line y = x. Also the mid-point AB is v
a+b a+b . L . Y
37+~ 5 | and obvicusly it lies on the line y = x. Figure 2.2

- The line ¥ = x is perpendicular bisectoer of AB. Thus, B(b, a) is the mirror image of A{a, #) in the
line ¥ = x. Thus, the graph of ¥ = #1(x) is just the image of the graph of y = f(x) in the line y = x.

Y Thus, the graph of v = sin!x is obtained by
s simply reflecting the graph of sin through the line
¥ = x. First draw the graph of y = siix, x € [—%,% .

¥ € [—1, 1] on a piece of paper. Now fold this paper
on the line y = x. Now turn the paper upside down,

5 x interchange the X-axis and Y-axis and look at the

graph. What you see is the graph of y = sin” x.
Note : The stwdent herself should perform this
activity in the clags-room.

For the graph of y = sinx, x € —325-,%-,

:;_ﬂ y € [-1,1] and for the graph of y = sin lx,
Figure 2.3 x& [, 1]and y € [-E&, Z].

Example 1 : Obtain the value of : (1) s;‘n‘l(%), (2) sh“'(ﬁ], (3 Sfﬂ_l(—%).

Solution : (1) sin-'(%) = s:'n_l(a’in%) = %, because -Ei = [—%, %]

(2} sin (ﬁ] sin (31114) 4,l:ureu;:ar.uiute 3 < [ = 2|

/ Pl | R W TR NSOy -5 RIS ¥ ST S 1 | N _K _

(3) sin ( 2). = sin ( smﬁ] = sin (Jm( ﬁ)) =% because 5 € [ -%-, %]
2.4 Imverse of cesime Function

We know that cos : R — R is many-one and range of cosine is [-1, 1]. So, it is not anto.
cos = {{(x, )} | y = cosx, x € R, y € [, 1]} is a many-one function onto [-1, 1] with
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period 2. We sec from its graph that it becomes onc-onc and onto if the domain is rcstricted to
[0, ] or [T, 27] or [2M. 3R] or... [kR, (k + DAL, k € Z

We shall take the domain of cosime function as |0, R to define the inverse of cosine. So
consider the function eos = {{x, ¥) | ¥ = cosx, x € [0, %], y € [~1, 1]}. This is a one-one and
onto function. So, its inverse exists. We denote its inverse hy cor 1.

S, eos 1= {(y, x) | y = cosx, x € [D, ], y € |1, 1]}. Thus, for x € |0, ] and y € [—1, 1],

y = cosx & cov Yy = x.
The domain of cos™! ix [—1, 1] and its range is [0, 7]
Like sime function, here also we have to remember that if y € |—1, 1). cor 'y is not just any

real x for which cogx = y bul ooly thal x € [0, T], for which casx — p, For insiaoce ¢ % = 52E and

% € [0, ]. Hence, cm_l(’;i] = % But, cm(—%) = cos% = % But, —-E- £ [0, K]
S
A cos_l[?a) = —%.

cos : [0, K] — [—1, 1] has the inverse cos ! : [—1, 1] — [0, R].
So, cos Yeesx) = x, Vx € [0, %] and cos{cos x) = x, Vx € [, 1].
Note that sin (sinx) and cos fcosx) Y
exist, Vx € R, but they may not be equal -1, m Mg
to x. [lowever, each will be equal to x in its
appropriate domains. [The above sxperiment

can be done with some appropriale change ] y = cos lx
2.5 The Graph of y = cos x (1,0
We have discussed the method of X € =:1 0 >X

drawing the graph of the inverse function
ftom the praph of the function. As in
the case of the graph of sin~! the graph

of cos™ ! as obtained from the graph of

¥ = cosx, x € [0, X] is shown in the ;;:
figure 2.5. Figure 2.5
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Example 2 : Obtain the value of : (1) cos™! (ﬁ] (2} cos™! [—‘?J

, because % e [0, m.

IS

Solation : (1) cos™! [ﬁ) = gos~ | (Cﬂ'»‘r‘%) =

_ - V3 -
(2) cos ][_T = ¢os I[COSSTE) = STTE, because ST"" < [0, m).

2.6 Inverse of tan Function

We know that tan : R — {(Zk + 1}% | & € Z} —> R is many-one and range of tam is R.
So it is onto.

tan = [(x, W) |y =tanx,x € R — {(zr.: + e ke z}, y € R} is many-one function with

period X and it is onto R. If its domain is restricted to {—%, %) or (%, 37“} or (37“, %) or

2k — D& 2k + DEY, & € 7: it becomes one-one and Temains onto R. S0 we can get its inverse
2 * 2 k el g

by taking one of these intervals as its domain. We shall take (—%, %) as the domain and gel the
inverse which is denoted by tan™!. So, ran~! = {(r. xX) |y = tanx, x € (—%. %). y € R}.
Thus, for x € (-—1;-, -'g-) and y € R,
y = tanx & tanly = x.
Domain of zan~! is R and its range is {'—%, %)
=
Note = tan \x # {fanx)” le. tan \x # ek # %
tanxy o5 X
tan Weanx) — x, Vx € (—%, %) and fan(tan 'x) — x, Va € R.
Ry _ _ _ - R
“‘”[ 4) land =3 € ( 2" 2)-
So, tan (1) = &
But mﬂ(ﬂTﬂ:) = —1 does not imply fan 1{—=1) = 3TE as ET“ & (—%, %)
| _ Iy - _1& -z _n & —1f 333 - 533
tan (fan( 6]] = because = € { > 2) and fan [Icm [413)) Tt

Bul tcm'l(tan%) * % because EE'E & (—%. %}

2.7 The Graph of y = tan"'x

The graph of y = tan~'x is obtained by taking the image of y = tanx, x € (—%, %], ¥y € Rin

the line y = x. We get the graph of y = tan lx as shown.

INVERSE TRIGONOMETRIC FUNCTIONS



Figure 2.6
2.8 Imverse of cet Function

We know that cof : R — {kmm | £ € Z} — R iz many-one and the range of cof is B. 5o cof is
onto. cad = {{x, yy|v=comx,x€ R— {k | ke 2}, y € R} is a many-one, onto and pericdic function
with period Jt. The function becomes one-ome and onto R, if its domain is restricted to {0, ) or
(x, 2K} or {2;, 3W) or (K, (k + 1IM), £ € Z. We shall take the domain as (0, ™) and pet the
inverse which is denoted by cor 1.

So, cof ' = {(y, x) | y = cotx, x € (0, W), »y € R}.
Thus, for x € (0, ©) and y € R,

¥y = cotx < cof \y = x.
Domain of cor ! is R and its range is (0, 7).

caf Wcarx) = x, x € (D, M) and cot(car™!x) = x, x € R.

Figure 2.7
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2.9

Note that col 1(&#(37) = %, because % € (0, m)

Also cof( ) = -1 & cor (1) = .

cor(—%] = —1, but ea”l(—1) # —% because —% € (0, m).

cm‘ﬂ(cot%t) * 4Tn, because %m & (0, m.

[Iowever, cor(d‘Tn} = c:m[']'l: +%) = cor% and % e (0, ).

1 Lo p—| y_n
S0, cot (car 5 J cof (‘7“‘3) 3
The graphs of y = cotx and y = cof x are given in figure 2.7.

The Inverse of sec Function
We know that cos : [, ] — [—1, 1] iz one-one and onto.

sec @ [0, ] — {%} — R = {—1, 1} is also one-one and onto.,

sec = {{.r, »|ly=2secx, x € [0, %] — {%}, y € R=(=1, l}} is one-one and onto.
Thercfore inverse of this function exists and is denoted by sec .
So, sec 1 = [{_v, x) | y = seex, x € [0, ] — {%},y e B — {1, I:I}.
Thus, for x € [0, ©T] — {%},y € R — (-1, 1), y = secx & sec \y = x.
Domain of sec? is R — (—1, 1) and its range is [0, 7] — {lzi}
Also, sec(%) = ﬁ

So, sec!(¥/2) = %, because % € [0, ] - {%}

But sec(—%) = J2 does not imply sec_l{ﬁ 1= —% because —% & [0, W] — {%}

1

¥ = fec x

Figure 2.8
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For each x, x € [0, ] — {%}, sec” Yseex) = x and for each x € R — (=1, 1), sec(sec™1x) = x.
Wenate that xe R— (-, N x=-1lorx21 & x| 2 1.

The graph of ¥ = secx and ¥ = se¢” 'x are given in figurc 2.8,

2.10 Imverse of cosec Function

We know that sie : —%, %] — [-1, 1] is one-one and onto,
S cOoSeC —%, %] — {3} — R — (-1, 1) is also one-one and onte.,
cosec = i{.r. ¥) | ¥y = cosecx, x € [—-%. 5—] - {0,y e R—(—1, 1}} is one-one and vnto.

Therefore, the imverse of this function exists and is denoted by cosec™.

So, cosec | = {{_p, x) | ¥ = cosecx, x € [—-ag—:-, -gu] - {0,y e R = (-1 IJ}.
Thus, for x € [-£, Z| - (0}, y € R — (-1, 1),
¥ = cosecx <> cosec”ly = x.

Domain of cosec ! is R — (=1, 1) and its range is [-J.;[-, 3_?] = {03}.

osecE = %= E g [_E R]_
Also, cosecy = 5. £ € [ L, 2] {0},
So, cosec”! - = I
’ ol
For each x € R —{—1, 1), cosec{cosec x) = x and for x € [—%-, %] — {0}, cosec Ncosecx) =x.

The graphs of ¥ = cosecx and ¥ = cosec™ 'x are given in figure 2.9.

VY = coselx

Figure 2.9

|
L

Example 3 : Evaluate : (1) fan_I(ﬁ} (2) cat_l(—ﬁj 3) co.'.'ec_][—

(

wia

€ (__125

wla

)

Solution : (1) mn_]{ﬁ) = fm_l(fan%) -

wd
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(2) cot {(—3) = cor_l[—cor%) = cot_'(co.ts?ﬂ) = 5?“ (%E- € (D, -n:}}

(3) cusec_l[—%) = r:asec_l{-camc%] = casec_l[cmec(—%]) = —% (—E‘ = [—%,J %I - [ﬂ])

2 21

Example 4 : Evaluate : (1) co.s_](m.s‘Tn) (2) S:'n_'[sinT) (3) mn_'(aangT“)

0 cor () o) cor{an]

Solution = (1) cos " [casZE) = 2 (3E € 10, m))

2) sin Y sin2E) = sin\(sin{m — L)) (& ¢ [-Z, Z])
= sin YsinZ)

o sin (sin2f) = & (Fel53)

(3) ran_](ran%}): mn—l[;an{ﬂ _%))

o o) 3 5 e(53)
(C))] co."_l(mn?Tn)= cot_l(ﬂm(ZR —%])

= cof | (—RHIE)

)
= .::nr_'(coa (%+%))
= caf-l[car%)
o cof VtanZR) - i (3£ e (0, m)

cos"(.s'inﬂ) - in L e |0, Tﬁi]

Example 5 : Find the value of -

(1) c‘os(zsin_l%} (2) sin(zmm_l %) 3) mnz(%cos_l 41} (4) co.s(ﬁicos_' %)

Solution : (1) Consider cos(2sin™' ).

Let sin™' 5 B,BE[Z,zl.SosmH e
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S0, cus(Zs:‘n_l %) = rcas28

=1—2si8=1-2[%) =

1%
. . —13y_ _1
o cos(.’lsm ?} =3
(2) Lettan ' 3 6.8 < ( =, 2]. Then rand 2
2tand 2(%)
H _li ] 1 = = & = jﬂ
So, sm(Zmn 5) sin28 T 1an’0 T I T
- . 5. _Ii = ﬂ
o] .sm{z.tan 5) al
(3) let cm_'% =9, 0 € |0, K. Then % = cost
50 Jr.an?(l.::f;-e_li =r.:m2(§) = L _cos@ = ]_% _A-s
Sy 3 o 4) 2 1+ cox8 H—% 4+3 7

o !.:111':2(-é-|r:a:¢_1 %] = -"]f

(4) Leteos '% =0,0 € [0, ®). Then cos® = %

S0, tras(Bcos_l %}

cos30

4cos*0 — 3cosB = 4[%) - 3(%) = % = _%2_?

cas(?:ca.s‘l Z) =2

3/ 27

Example 6 : Express the [ollowing in ihe simplest form :

. 1 — COsx — COSX
(1) fan 1(1J_1+m5x],—ﬂ<x<1t (2) tar 1[1_'_“’“ y —
1—evosx
Solution : (1) fan™’ (Jm} = far ! [ Ianz-gj = mn_'( |m'n -§| )

Cascl:lf—ﬂ{x{[],then—%{

o=

I
<x{2

<0

XYW

. X
A rfmz < 0

o ot () - (can) = ™ ()

X o R R & I
Now, {0 < 2-::2.80, < z'iz
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(:asezzlfusx-:mmennigc:%
=
tan 20
fan [|mn2) fomi ("‘1"2} 2 (0<4 < z)
-
_1| Ji=cosx ey D= xr< T
oo fan Ttoox | =
—% —M<cx<O
f mszé—sinzé
—1 —QQL, = —1
(2) tan (1+smx) tan Lmsz-g-+s.r‘n2§-+zsina2¥-cm{=
i X fan K X P
| (CGS? + 5in ?)(CO‘SE — 8 ?)
= tam Fl
[ms-§-+sin-§-)
L
(msf—sin%J
_ — | —_—2
= {an x . X
\mﬂ"?+.ﬂn?
'3
l—mn%
= tan”! 1+ tan s (cm‘% #+ 0, why '?)
LY
_ —1 Z;T_x
= tan (m[al 2]
I iy | . I
MNow, 2-=:x{ 3 Hence 4< 5 < T
i _J_] ’E
< {x « B
0<(F-3)<3
-1 _COSX | _ | tan[Z2-L£})| =R _ x
Thus, tan [1_,_5_,_”) tan [ 4 2) i
- L8R _m x W I
fan (1+smxj i e

Evaluate :

3
(4) mn_l{—\ﬁ}
Evaluate :

1(&'1}1
[mn

() tan !

5)

(1) mn_l(

-1|A

)

2T
4

(1) cos™

lLn

Evaluate :

(1) s:'n[Zrcm_l

7.1 %]

)
)

(3) Sin(ans -1

s

Exercise 2.1

(2) sin_l(—%) (3) sec”{(=2)

(5) sec L [%} (6) cosec (=2

I
5

)

(4) sec”! ((:mt:c [

(2) sin~) (ca.i‘

Pa R

B

)

A

(2) Ianz(%co.t_] %J

(4) fﬂﬂz[%.ﬂ'.ﬂ_l%] {5] SEH[B jiﬂ_l %]
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4. Express in the simplest form :

_ . f cosx — sinx r
tan COSX +oinx )+ 4 - X %

Y]

2.11 Values of Inverse Trigonometric Functions for —x

We have seen that by restricting the domzin and eodomain of a trigonometric function, it can be

made cne-one and onto, which is the necessary and sufficient condition for a function to have its inverse.
Also, we have restricted the domain in such a way that the domain of each tfrigonometric function

contains (ﬂ, %) as its subset. By doing so, we always have the value of each inverse function in
(t}, %), whenever the value of the function is positive., We alse make 2 note that the domain of all the
inverse trigonemetric functions are such that x belongs to the domain if and enly if —x also belongs
to it. This is because the domain is |[—I, 1Jor Ror R — (—1, 1}, ie. [x| =1 or R or |x]| = 1
respectively. If A is in any of this set, thenx € A & —x € A,

The walucs at x and —x ol cvery trigonomcttic nverse [unclion are related as shown in
the following theorem.

Theorem 2.1 : (1) sin Y—x) = —sin lx, x| =1
(2) cosV(-x) = & — cos \x, |z =.1
(3) tan l(——x} = —ftan lx, xr e R
(4) cof 1(—=x) = ® — cof lx, x€R
(5) cosec V(—x) = —cosec lx, =] = 1
(6) sec Y (—x) = ® — sec lx, |x] 21

Proof : (1) x| £ 1

Suppose sin lx = 0.0 € —%, %] Then x = sinf.

sin(—8) = —sinfl
Fin(—0) = —x @
oc[53]=>-Fco<s
=Z2z2-82-2
=»-2<-9<2
—0 € [-E. Z] and |x| = |—x| Hence [x| £ 1 = |—x| < |
s By (i), sin(—6) = —x (8 e [-& Z), I=1=1)
sin l{—x) = —0 = —¢in Lk
sin~{—x) = —sin~ 13

(2) Suppusc cos lx=90. 8 ¢ [0, ], | x| € 1. Then x = cosB
Also, cos(lt — 0) — —cos8,
cos(Tt — 8) = —x a)
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B [0,R] =0X0=<nR
= 0=2-B2-n
=>az{n—6820
=0<(m-M=n
(m—®e [0,Rland |x|=|—x . Thus [x| £ 1 = |—=x| =]
By (i}, cos(t — O) — —x (t—0 e 0,=x], | x|=1)
cos (—x)=m — O =71 — cos 'x
cos {—x) = T — cos 'x

(3) Suppose fan 'x=0.8 (—%, %), x € R. Then x = tan

Now, tan(—8) = —tan® = —x ®
0c (-5.) = -F<o<]

= Z>-0>-

8]~

—fre (—%, %) and x € R. Thus x e R
By (i}, tan(—8) = —x (0 € (& 5) = <R
tan Y—x) = =0 = —taon"lx

s tan W—xy = —taw lx

Similarly we can prove (4). (5) and (6).

Fxample 7 : Evaluate :
(1) sm—l[—%] @) cas_'[—%j 3) ra?:_{—ﬁj ) cot =13
Solution : (1) sr'n_l(—%) = —s:’n_l[%) = —%

— ﬁ] —_

| _¥2 | — 143 — mT _ 5%

(1) cox [ 5 L —coy "= =N e =
1 ]

e
=1 — — _ -1l L | - _m
(3) fan [ )" ian [ﬁ] .

(1) cof {=1)=T —cof '1 =1, — % = n
2.12 Values of Trigonometric Functions for -}

Now we get relations between the values of frigonometric inverse functions at x and at i,
when x # 0,

Theorem 2.2 : (1) cosec 'x = sin™' L, %] 21
(2) sec”lx = cos"l-.-i.-, |22 X

(3) (a) cot lx .ftm_i—_ir, x>0

(b) cof 1x = tan™] ':l? + 1, x<0

Proof @ (1) Let cosec 1x =6, 8 € [—%, %] — {03. Then x = cosecB. |x| = 1

INVERSE TRIGONOMETRIC FUNCTIONS =1
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2)

(3)

|x|21.30x¢[]and‘i|£]_

cosech = x
sinB = L
X
= egp—1 L e R 1] S I & 5 B
B = s 5 @e([33H-®c<c[55|:]=1
casec \x = sin 1 L
X
Letsec 1x =8, 8 € [0, T] — {%}, |x| 2 1. Then x = sect
|x|21.50x¢0and\§|£1.
sec® = x
casB = L
X
= pos— L — K =1
8 = cos ! (@ e (0, = {2}} c o x| | <1)
sec”lx = cos1 L
x
(1) Letcor 'x=8,8€ (0, W), xe R
L ocotB =x
x}Uandhencex#U,SoiE R.
ranﬂ'=IlaJ1dBE (0, )
Now, since x > 0, tauﬂ=i >0
Also 0 < 8 < . S0 we must bave 0 < B{-ZE. (tan©® > 0)
-1 Y _E I
Thus, anB = x,ﬁ = [0, 2)::( i3 2)
— gl (L
0~ (]
cof lx = !an‘ii
(b) As we have seen above, if cof 'x =8, 8 € (0, ), x € R, then caed = x.
Since x < 0, cor = x < 0. Thus, ran® < 0 and B = (0, K.
This means that%{ﬁ{'ﬂ}
%—:ru:(ﬂ—x}iﬂ:—n
—%{(ﬂ—ﬂ)-ﬂ:ﬂ
- - _I _E & 1 -
ie. O EE(?,D)C(E,E}HﬂdeRde?"—'D
tan(B — ) = tanB = i (Period of fan is 7)
_ gy =L
ran(B — ) .
B—n=mn—1i (B—ﬂE(—%,%),i—ER}

Icm_'i =cof lx — T

For x < (), eof Vx = tan~1 i + T
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(Mote : We can derive from this theorem that

(1) sim lx = w_m:*"l%, x € |-1, 1] — {0}
(2) cos7lx = sec V4, x € [-1, 1] — {0}
(3) () tan lx = mr_'-]]';, x>0

(b) tan'x = cor 't — W, x <0
2.13 Formulae for Value of Trigonometric Inverse Functions for Complementary Numbers :
Theorem 2.3 : (1) sin 'x + cos lx = -:TE, x| =1
(2) cosec x + secIx = %. |x| =1
3) tan”'x + cof'x=F, x€R

Proof : (1) Let sinlx = 0.8 € [-F, Z],|x| £ 1. Then x = sin@

C(J.ﬁ'(%— )=J‘.'

Now 6 ¢ 5. 5] = -F<0<E
= Tz2-0<-%
:nz(g—e)zu
:)DS[%—B]S’E

(%—B)E [ﬂ,‘n:]a.udlx|£I.Alsfocos{%-ﬁ)=x

cos X =3 B 3 st 1x

i 'x + cos x =

rafA

(2) Letcosec lx=8,8 ¢ [—-ZE, J;—] — {0y, |x| = 1. Then x = cosect
sec(% - H) =x

Now, 8 £ [—% %]— {0} = —

wA
1A
e ]
1A

A
4 )
#
=

%—GE [U,‘K]—{%}, |x|21andsec(%—ﬂ)=x.

sec 1z = % — B
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S B+ oserx= %
cosec lx + seclx = %

“‘L“ii)

or we think in another way as, cosec 'x + sec ly = sin™) i + cm_li (1 x|Z21= 7] =

-z (By (1))
(3) can be proved similarly as (1),
2.14 Addition and Subtraction Formulae
Theorem 2.4 : If x > 0, y > 0, then

. _I_ 5
(1) fan1x + .rcm'l_v = tan1 []x_ ,r: J, ifxy <1

+ -
(2) fan 'x 4+ ran"'y = W + tan”! [;r_ .1.::']* if xp > 1

(3) tan 'x + tanly n if xy =1

(4) tan'x — tan 'y = tan! [ix'i.- r)
Prool : Here, x > 0, 3 > 0,
Lel tan Ix = @ and tan 1y = B, O, B (= (—%, %)
S fanCt = x > 0 and tanfd = » > O

As tantt and tanf3 are positive and o, B € (£, £), o, B & (0, £}

tano. + tanp ity
(1) tan(a + By = I—ranctianB ~ T-xy

Let x>0, y>0and xy < 1. Hence, {1 — xy) > (0 and x + » > 0.

i+ ¥
1= xy

Alsoc, Be (0,2) o<a<fando<Pel

= 0. Hence, fan(t. + ) > 0

o bsoa+Pan

But zan(ct + ) > 0. Hence, @ + B € (ﬂ, %)
X+ y
=

o+ B tan! ]x_-'g- ({"1 + P e {“' ‘E) o= (_"*-E ﬂ'))

Thus, fan(0t + B) =

-1 -1 -1 22
fan 'x + fan 'y = fan T— &y )

(2) fan(—M + & + B) = tan({Cf + B] (1 is a period of ram)

tano + ranfl
T 1—tantt tanP
X+ y

fan(—ﬂ+ﬂ.+|3)=q
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Now, x> 0, v > 0. Alseo, x> 1. 80, 1 —ap < 0

X+ v
1—xy

tani—R + L + [y <0

< 0

Now @, P e ((}, %)

. 4 L
not<o<fad 0<P<P

S tea+fen

s <o+ -n<o
Butasta(-m+ O+ P <o T <a+P-n<o

so,0+B-me (-£,0)
x+y

Thus, tan{—T + & + B) = =y

L t+B-me (—E,[}}
So=m+ ot B=ren! [%)

. _ -1 x+ Yy
oo+ B—fan []_xy

)+n

-1 1, o [ 2
tan x + fam Yy = tam [l_x},)+‘ﬂl
(3) tar Yx + tan 'y = tan Vx + tan ! -JIE- (xy = 1)

ti 1x + cof Vx (x > 0)

T

2

(4) As we have noted &, B € (I[], %}

Thus,(]<(1<:%and0<:ﬂ-ﬁ:%.So—%«:—B{{).

not<a<Zad-E<-pf <o
Z<@-F<E

Thus, (&t — P) € (—%, %)

_ tuna—tanf
tan(0. — [3) = 1+ tanc ranp

s tan( = By = {5 o-pe (-% L)

_ r—¥
U.—ﬁ=.rtm] T+ xy

j {"{;r_—'iel{nndx}ﬂ,y:?ﬂ;m;}a;e_'[}

- _f A ¥
S tanVx — tan ‘y = tun ](l+x§,]
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Example 8 : Prove :

(1) tem L E

= + tepr ! % = I:m_](%)

3) :an_'% + tan}

Solation : (1) L-H.5.

= fan

(2) LHS.=cor!s +cor ' 3

fan 12 4+ tan 13

2+ 3
= =
m + tan [1—2343)

K + fan~ L (—1)

T — ran L (1)

(3) L.H.B5.

=X _
5 RE.H.5.

Example 9 : Prave that : 3sin™x = s 13x — 4x%), if —% <x=

™

Solution : letsin Ix=6.8 € [—?,

% .|x| = 1. Then x =
Now, 5138 = 33inB — 45in®0

S w38 = dx — 4yt

Pl e e L i [— ] < i < sin E
Mo, > S=xs =.'.-sm( 6)_smﬁ_sm6
= o It
= ﬁ_e_ﬁ
= 2_39_2

\/-\

11 -
> R.H.5.

2>0,3>10)

@x3>1)

(tan"' (—x) = —tan 'x)

4
x?-cl}

1)

p—
o

] [e]

1
7

<inB

{ sim is T in {—%, X
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Since sin3B = 3x — 4x2, —% =38 = %
10 = sin”1(3x — 4x7)
3sin~lx = sin”13x — 4x7)

1 Je—x -
Example 10 : Prove (1) fan ! = %cos li, —a<x<a ac RT

(7 cor! J1+ sinxe + 1 — sinx ML _iI Egrenq
JT+ st — f1— sinx 2 272

—L _ 41 —1
(3} fanr (ﬁ+x+1”l—x > COS o0 x <0,

84—
a+.ax

Solution : (1) Consider ran™! , A< x<a

—ae:x-::a::»—l-c:f;cl (¢ € RN
CX e
A Ze L

38 € (0, ®) such that cas9=§or9=cos_ll

7]

0<:G<msmn<%<:%

_ . fl-cos@

= fan 1+ cos @

= tan ! :a,nz%

= fan | ‘ tﬂn% ‘

=ran1(rm%) (9":%‘-%]
X ¢« @3 =(53)
= %cas ‘f

(2) LHS :wt_,’ﬁ+smx+,f|—sm xR
' |1+ sinx = fi-sinx |7 2

[ X X : X X :
(L‘US'?+5IH ?] + [cm ?—.‘.‘m ?]

= —1
et X X : X X ’
L [Cf)s T + &§IH ?] - [Cﬂ.’i' T - 5IM TJ

-
o5k 4 yin & . e
|LG.!1+3IH-2|+|C-U.52 .Hﬂzl

= cor !

arp ok af e X ary oy iy
= =] = |y s — xina
I'.L|(.|‘.}'.!\2.+.5”12| | 3 2|
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As,%{x{nz}ﬂ-{-&{%

4 2z

c:r.w-% < s':';n-g- and cn.i'-gk >0, .i‘l'?!-& >0

[ms£+ sin< J (cas——sm—\]

1
cor” (( u.si+ a:n-"i] [cos%—smé—)
cot ! (mng—)

cort(eor(E-5))

) 2

I _x K

.l:l-zt2 2-::4.
-Lﬂ€=%—i=RHS

(3) Consider rapr

Let 6 = cos 1x, O € [0, X]. x € (0, 1). Then x = ensh.

L.H.S.

As D x < ]

= {an

-1 (J1+cosﬂ—‘f1—msﬂ
tJ1+msB+,f|—m.-;ﬂ

fan

= fan

-1
|co.rgl+
\
= 0 < cosB < 1
— co&‘% < pos B < cos0
= u-::ﬂ--:%
8.z
= 0 < > L 1
4]

Also, —& = —5 < 0

4

0.0 (5 - 9 < X

LIS,

8 _ cin8
o8 = sin >
temr
Casﬂ + sin 8
2 3
ren

i { tan ]

———=%—-Lcos lx = RH.S.

I—WH%
I+£an%
B
2

(

(cos is ¥ in the 1st quadrant)

<8 <)

(Cﬂf% 2 0. Why ?)
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2.15 [nter-relations

(1) sin 1y =

(2) cos Ix =

(3) fam lx =

m

Between the Inverse Functions

cus‘"lilh ~x* = tan ] _iJ‘E—F, fo<x<1.
Jr= x4
si;r'q‘h._xz = tan") —— if0<x<

_'l - _1 .‘ 5 X
cos = = gin =, if x>0
Jl.;r Jira

Proof : Suppose, sin lx =8, 8 ¢ [—2, 2]an-:ixE {0, 1). So sinB = x

Alse, sin@ = x > 0. Hence, 8 & (U, %)

Also, cos?@ = | — sinfD = | — &2

cosO = 1’] _x*

(cos® > 0 in (0, Z))

. P—— | 2 2
0 =cos 11— x (Be(ﬂ'z) 1< J1-42 <1)
sin e = cos 1 f1_ 2
sin€
Also, tant = 050
X
tan® =
Jl—.ﬂt2
- —] —x n
g feint m . g5 B e [D, 2).
o osin lx = tan”! _Lz
1-x
Similarly (2) and (3) can be proved.
y " R ] —115 136 _ K
Example 11 : Prove : sin s tooos o5+ osin 2 >
=g 13 gL 43 1 36
L H.S. = sin 3 + cos T + &in 25
2 _ 225 34
= fgn”! = ¥ otan 4 ! =
25 17 -
- ) = —1 o289 - 225 - 36
fan m + ian — + tan TR
tan 4 + tan 5 + fun e
i3
i | T_3x g |+ tam ( FxEESY
45+ 32
= -1 -1{36
[ ] + tan _”)
= ran~ (g—)+mn '[ )
= _ = & ur
2 ( 7 = 1)
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Eiercise 2.2

Find the value of :

(1) SI—H_I% - CO.E'_] (-% + EIan_l[l}

(2) 33.:‘:1_‘% + deos ! if— + sec 11

(3) cor ' (1) + 3sin % — cosec” 1 {(=2) — Jtan™! %

(4) Scos”! [_%) — Har 1 (—/3) + 357 (1)

(5) cos (.s'fn_l (_%)] + sin (?ﬂ'ﬂ_] %) + cos (cosec_l %)

(6) sin (% — cos | %} + cox (STE — s ] %) -+ (.-c.ir(!un_l 1!5]

(M sin_l(sin%t) + aos ! (CO.!' 5?”) + tan! (mn %)

Prove :
(1) fan l% + tom ]_% = rcm_l%
(2) mn_l% + tan ! ﬁ = mn_l%
(3) rcm"% + tﬂn_lé + xan‘l% -z
(4) tan': + dignmld = 2
(5) fan_l-é + tan IJ:; - .ran_l-_},- = mn‘l%
(6) tan~! % + .Ecm_l% + :an_l% + tan™! % = f
Prove :
(1) cos 12 + sin™! % = tam 1 [%)
(2) sit 2 + cos™) F = cor 1[%
(3) 2sin ' S = cos' 2
(4) Zsin”! % + cos | % = %
(5) 2eor™ 12 + cm-ec"l-g- = %
(6) s:‘n_‘% + sfn_'% + sin '% = %
Prove :
(1) 2e0r 1L 4ianl4 =1
2) cof V1 + tam 12 + cu:_l-::- =1
(3) CUf-1J5" + -Z,Lcat_] -15-.1 = %
(4) sin”! % + cos ! % + fan_l% =R
*
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Miscellencous Examples :
cos Va + cos Vb + cas Ve =0 = o + 82 + ¢2 + 2abe = 1,

Example 12 :

Prove :

where 2, &, ¢ € [—1, 1].

Solution : Let cos 'a = O, cos”'b = B, cos e =y
a = costi, b = cosP, ¢ = cory

Now, cos 'a + cos '6 + cos lc = T
o+P+y=m
x+pf=m-v

cos(OL + E}} = cas(lM — V)

coylt cu.sB = sinll .sinB = —cosy
cosOL cosfi + cos’¥ = sin0t sin[

----I-----I-.-.....-.-...---------.-.

(cosOt cosP + cosV)® = sin’Q sin’P

(ab + ¢ = (1 — ™1 — &9

@b+ 2abe + P =1 — &t — B2+ o282
@+ b2+ 2+ Zabe =1

Example 13 : Prove that cosec[tan Neos(eor Wseclsin Lu))))] =

Solution : L.H.S.

cosecftan (cos(cofr” Wsec(sin~! a)))]

co.sec[ran_l(cos (cot_] (sec (.sec_
.-:c:-.ser;[mn-'

cmec[mn_l

cosec[mn_' (cos

cosec| tan™ = )
-g
|, - '||2 —-ﬂz i —1
cusec{s'm —]) {mn X
_al
casea(.sin_ > }
cmec(cm‘ec_I 3 2 )
% ) S = a

cos {eoi™]

e IR

3 -— az = R.H.S-

Example 14 : Solve the following equations :

(1) .ran_l-#'g + 2an x = AT

Solution :

% + 2an Ix

6

— O

6

(2) dom 12x + 2am x = %

(1) tanlof3 + 2an~lx = STT;

=2, where

{Im:_l.\:

o, B, ¥ € [0, =]

0 < a< 1.
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. e lx =
. tam lx =
El
— T
. X tam 3
ox=1

Equations involving inverse trigonometric funetions ean also be selved. However, as the domain
and range of such functions arg restricted, one must alwavs verify the answer by substituting the
solution in the original equation.

Verification : Putting ¥ = 1 in the given equation,

— -1 e T | ny _ = T _ 5S¢ _
LHS. = w13 + 2tan™x 3+:z(4] L+ 2 -3 _pHuS

.+ The solution set is {13,

(2) ran~"2x + 2tan”x = %

We observe that if x 2 |, then 2aam 'x 2 2 - % = %

that is tom '2x £ 0 which is not possible, Since x 2 1.
Ifx <0, LHS. <0, RH.5 > 4. This is not possible.
S0 0 x < 1,

Now, fan 12x + Ztaw lx — %

S tan 2% + ran Tx +otan x = %
X+ X
. —1 || _ =
o tanT'2x + tan (l—f] 5 0 <2 <1)
. -1 1|2 |_ &
oo fan 2x + tom [1—;:2] 5

We know that, xy = | < i 'x + tan 'y = %

oo

S dxt =1 —x2

S Skt =]

x=if.lﬂutx>ﬂ

Verification : laking x = ﬁ
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— —_Z -1
L.H.S. te NG + 2tan NG
= gl 1L —1-L
tead J§+tan J§+fcm 75
A4 L
= tan "= + ran! = f
Jg 1- 5
= !a.l'z_li + .ram_l(ﬁ ‘EJ
45 51
-2 —145
— 1 1845
tan J5 + tan 5
=2 = RHS,

The solution sct is {ﬁ}
Example 15 ; If 0 <x <1 and if fas Y1 — x), tar Lx and rar {1 — x) are in arithmetic progression,
prave that x¥ + x2 = [.
Solution : As fan I(1 — x), taw 1x and zan~1(1 — x) are in ALP.

2an 'x = tan 11 = x) + 1w W1 + x)

Il—-x+1+x
tan Vx + tanw 1x = ran) —l—{l—x’J [l—xbl],l—i-xb-l}.{lct—.rz{l]
_ 2 _
ran](]_zz)=mnl[%) W<x2 <1
. 13.1;2 =x_23 (fan”! is one-one)
Bl
X+ =1

Example 16 : Solve cos Ly + sin 12x = %

Solution : ecas~ e + sin~12x = %

Let cos lx = ¢, O € [0, w]. Then, x = cost.

sintt = 1 coffu = f1- 42 (sinct 2 0 as o € [0, ®])
Let sin 12x = ﬁ, |3 S [—%, %] Then, 2x = s.i'nB.
s cosP - m {casﬂ >0as P e [—3;-, J,H)
Now, cos 'x + sin 12x = &
a+B=%
o sin(oe + By = sink
sinCh cosB + cosCl sz'nB = %
aof1-a 14 s =1
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cof1ma? 1?2 - 1 - 222

N N
. - 4 — (1 _ 7,2
oo 1 — 5x2 4+ ax (2 2x}2
1—5x2+4x4—%—212+4x4
_ 3
. 3;:2—E
_
X xZ—E
_t_i%

Verification : For x = -%,

LHS. = cos = + sin ' 5 + = # = # R.H.5.
For x = _?’
1.HS. = gos™! (—%] + sin{—1)

. The solution set is {_%}

Exercise 2

Prove :
(1) sinl@2eyl1-22) = 2sim ls, |x| < =
’ vz

(2) cos W2x2 — 1) =2cos lx, OQ<x<1

(1) cos l{4x® — 3x) = 3eosIx, %flx <1
J1+x% -1
(4) cof ! [LJ =X - Ll
(5) l[l+.r2] = 2an Vx, |x| <1
) ix—x 1
(6) fan I[I_ng St lx, 0 < x < E
. o1+ sinx + J1— sinx % -
(7) cot” [J1+Smx Ji-simx | 27 Py < 5
JL+ osx + 41— cosx
-1 =R _x i
(8) tan [,,f1+ms,r - J1-cosx 4 7 HSxXe s
Jl+x +\i x?
(9) Jl+x = =&t toosT, —1<x<,

x# 0

m
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ucosy — byinx
— | — " | = — 2] _ _It n a _
(10 tan [bms.x+asfnx] = temi (b] X, —% Cx <, b tanx > —1

sbf_x+wsx]

| | 222 T ER
(11 sin [ N
(1) T tan 'x + tan 'y + fan"lz = 7, then prove that x + p + z = xyz

=&}y —%-ﬁx{

+[=

_ 1 _
(2) Tf cot 'iﬂkcof 1;+mf 1%=%, then prove that xy + ¥z + zx = |

(2) If cof la + cor™'d + cof ¢ = W, then prove that ab + be + ca = 1

b+1 be+1 |
(4) Ifa> 6> ¢ >0, then prove that co!_](‘;_bj + cot_][;_cj + Cﬂf—‘(?—a] =T

(%) It E 4+

xr ¥ z
(6) If .rm:_lJﬁ + Ian_]#b—’ + mn_l‘,l =M, thenprovethata +b+c=7 (@ b c.r>0
br ca ab

(7) Wsin % + sin"ly + sin”1z — T, then prove that xJ[ x4+ yJ] - },2 + ZJ[ —z2 — 2z

_1%+mn_'%=%,thenprovel]1&rtx2+y2+zz=r2.

(3) Prove that ran(% +—ér:us_1%) + mn(%—%ws_lﬁ = %

n
- 1 -
(9) Prove : Z] fun 1[—I+F(T+I}J — tei ln + 1) — %
r=

(10) mn—l[Jz-:mzA) + fanYcorAy + tanH(coPA) = | 0, it R <A< &

:rc,ifﬂv:Aq%

Solve the following equations :

x+1
at+2

—1
(1) tan] = + tan!

x—2

ol

(2) tan "2x + pan 13z = %.

(3) 2Uan Hcosx) = mn_l(lcnsecx}
(1) sin e+ coyl2x =L

. —1 5 L
(5) sim ' + sin L1
X X

(6) tan (x4 1) + don Mg — 1) = fan 1 E

(7)) fan 2x + tan™! [_r_:_4] = %

Select a proper option (a), (b), (c) or {d) from given options and write in the box given
on the right so that the statement becomes correct :

Section A (1 mark)

1) 31‘?1(351'?;_]%) = ]
@ 2 ) 4 © & @ 28
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(2) If sin"x - % for some x € (—1, 1), then the value of cos™lx — ... (|
(a) 25 (by 2% © & @ £E

(3) seci(tan12) + cosect(vor 13y = ... . 3
{a) 15 (b) & {c) 13 {d) 25

(4) cas_l(cus??“) = e . ]
(a) & by L () —% @ Ik

(%) The domain of cos™! is ...... . [}
(a) {—oo, o0} {b) [0, 1] (e) |0, T (d) -1, 1]

() The range of &mi ! is ... . ]

— -t R

(8) (T, ) (b) R () (0, M) @ (%, &)

(7) The value of cos_l{cas(—%}) is ... . ]

T T 491 am

(a) =% (b) 3 (©) 5 (d) ==

(8) sin_l(cm%) is cqual to ... . ]
(a) & mE ) & ) &

(9} The value of sfn_l(sin"’?“) - =
@ —% (b} £ () & @) 2L

(10) CUS({:U.E_I(—;) + sfn_l(—-;-)) % ... =
@ 3 ) 4 (c) 0 @ -1

(11) r:m_](é) + Esm_l(%) 8 e I |
(@) & ) & © & (d) <&

(12) sfn_'(sin??n) TR : =)
@ % by & © E @ E

(13) sfn{% - s:‘n_l(—%)] is ... . ==X
(@) 0 ® 3 © & @1

(14) Value of sin(cos ' £) is ... i |
(8) 3 (b) 2 () 2 (d 3

(15) Value of cus(!cm_l %) s .o . .3
() % () 3 () 2 W 2
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Section B (2 marks)

(16) 2an~15 + tan™t 5 = 3
@ & b &£ ©m @z

(7)) If sin 1z + i lx = %, then cos 'x + cos ly = ... -
@ £ () £ © & (@)

(18) If 4sin"lx + cos™lx =T, then x = ...... ]
(s) —1 (b) + (€} =3 (d) 3

(19 sr’n(fan_l [ran F‘%)) + cos (cos'](cas T?Tr’} = e [
@ -1 (b) 0 @1 @ L

(20) If cos(2sinlx) = % then the value of T = ...... 1
@ 3 () 4 © % (@) 1

(21) The value of sin[2shr (cosA)] is ... -
{a) sinA (b) casA () cos2A {d) sin?A

(22) The value of a‘fn[3.xin_l(%)] i5 e -3
@ —3 ) {3 (©) —155 @) 155

(22) s H—tam LR s ...... =l
{2) —F (b) & (c) —3F @)

(24) sin_l(si'n' MTT‘) 5 e ==
@ I (&) 4 () 15 O

(25) Value of Cﬂ.i‘[% + eos | (—%}] is ... =3

¥3 - _ 3

(26) fan™ 12 + tan~ '3 is ... ==

@ —% ® F (© & @ &
< int T iAo

(27) The valuc of sin [mrn (—3) + cos [ 5 j 5 = .. .

(a) —I (b) 0 CH % (d1
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(28) sin_l%+ mn_l?l is ...... 1
(ay & () £ (c) (d) sin ' %

(29) The value of tan (cas_' % + sin ] % — sec 1 3) 5 e 1
@ 75 ® 7 © 775 & 775

b

(30) The value of sec [rcm_' [btzj — i} (%]] i5 .. ]

@} | (b} ¥2 ) 2 () 4
Section C (3 marks)

(31) The value of co¥ [-E - 2c0f‘|3] i= ... ]
{ay 3 (b) 7 () 9 (3

(32) .t‘cm‘(%} — t‘.:m_i[i;ij = (le}] i
(@ L OF: () ¥ CHE:

AN Ifx = -%, then the value of cos(Zeos v + sin 1) = ... |
(a) —E (b) —,E (c) % L

(34) a:,*a.s_l(%) + cmec_'(-}) = ];, then the value of x is ...... ]
(ay 1 (b} 3 {e) > (d) 4

(35) The value of cor (coscc"% + mn']%) is e =1
@ 7 OF © 7 @ &

(36) tan (Ecas_' %) i5 ... 1
(a) 5 (b) 23 (€) 55 () —%

(37) The value of ran [%cos_lél iS e 1

2443 -5 V3-1 V5 +1
@ —p— by — ©) & d) —
- q‘l—x2 .
(38 I 0 < x < 1, then tan™! (W] i5 ... | i |
— - — _ 1 —

{a} %sm IJITI (b) %cm Ix {c) %co:‘ ][I+i) (d} %tan 1(%}
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(39) If cos(2tan 1x) = % then the value of x is ... -
@ 5 ®1-3 @1-7 @ V3
(40) The value af fuar {.st'n—1 [%) + cw_'[%)} 15 ... =}
24 ) 4
(a) —% (b) — (cy & @ 4%
(41) If .sin_lf + cmec"% = %, then x is ... 0 |
(a) | (&) 2 {c) 3 {d) 4
(42) sin Ucos(sin 1Y) + cos Nsin(cas™ix)) is ... =
(=)0 ) £ & F (dy &£
Section D (4 marks)
[ 1 - sinx + 1+ sinx
H*’”"”(Jl-sm-,ilumx = s (0<x< ) -
{2y £ (h) T — 2x {c) 2T — x (@Hmw— %
(44) If sin~! i = 2tan! % + cos”! %, then x = ... =)
@ 2% (b) % (c) 12 @y 4
45y Il e = cas_l(%], [3 = f:m_l(%), o, B S [0,%), then ¢ — [.)l = ... ]
(@ m“% ®) ran () (c) cos™! [;1,-;] (@) sin™! [—5‘%]
(46) Match the following :
Column (A) Column (B)
{n ran_l(%) + fﬂﬂ_l(?:_J (a) %
{2y .tin_l(%] + .cin_l{%) + .s'fn_l(%) (b) ™
(3 tan (1) + cos -2} + sin (1) © tan (&)
@ 2tanX(5) + tan ) W &
(B l-¢c2-b3-d,4-a (b} 1 -¢c,2-a,3-d,4-b
©)1-¢,2-a3-b4-d (dy1-a2-h3-d4-c
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wl 10 S | 5 R
(47) ian (Zmn 3 4] ...... - |
14 = 17 24
(a) 14 ®) 3 () 1 ) &
(A8 If sin~ 10 — x) — 28w Ny = %, then x is ... o0
(a) — (b} 0 (©) 5 () +
(49) The number of values of x satisfying the egquation
tan Vx + 1)+ tan x4 tan VWx — 1) = taw 3x is . o |
{a) 2 (b} 3 (c) 4 {d) infinite
(50) If cof 'x + caa'_'y + cor 1z = ER then x +y»+ 2= ... E
@xy+yetox  (b) mz @L+y+i @ IXIZ
(=1) If sin”! [ mzj + sin! [ H’z] = 2tan 'x, then x is ... (D < &, & << 1) |
1+ 1+ &
@—b ath b h
@) T ab (b} T—2F ) 7—ab ) 7355
#

We have studied the following points in this chapter :
1. Definilion of inverse trigonometric funclions.

2.  Graphs of inverse trigonometric [unclions.

3.0 (D) sini—x) = —sin i, |x] =1

(2) cos Y (—x)=T — cos Wy, |x]|< !
(3) tan '(—x) = —ran 'k, r*xe R
4) cof {—x)=T —cotlx, x€ R
(3) cosec L(—x) = —cowec 1z, |x] =1

(6) sec {—x) =T — sec”lx, |x| =1

4. (1) coses lx = s:‘n_li, |x] =1
(2) sec lx = cm_'i, |x] 2 1
(3) corlx = rcm_Li, x>0
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5. (1) simlx + cosTx — % |x| =1

(2} cosec”lx + sec”lx = % x| 21

A
£
m
=

(3} fam 'x + cof Ix = =

6. Ifx>=0,y >0, then
(1} ranx + rany = tan! ( J; ] if xp <1
() tar x4 tanly = T + tan™ [ J,if.xy'.‘—"l
(3) fan 'x ¥ tanly — L ay — 1

(@) tan 'x — tan v - f.:m_l[%)

7. (1} sin ly = cos l1|i .!anl‘!—z,ﬁ[}dx{l
(2} cos lx = sin” J

1_2
-

COx = xim

3) tam lx
(} 1+ x? 1+ x

[+

Srinivasa Ramanujan : Adulthood in India

On 14 July 1909, Ramanujan was marricd to a ninc-year old bride, Janaki Ammal. Tn the branch
of Hinduism to which Ramanujan belonged, marriage was a formal engagement that was consummated
oily aller the bride tutned 17 or 18, as per the traditional calendar.

After the marriage, Ramanujan developed a hydrocele testis, an abnormal swelling of the tunica
vaginalis, an internal membrane in the testicle. The condition could be treated with a rontine surpical
opetalion lhat would release the blocked fluid in the sereial sac. His [amily did not have the money
for the operation, but in January 1910, & doctor volunteered to do the surgery for free.

After his successful surgery, Ramanujan searched for a job. He stayed at friends' houses
while he went deor to door around the city of Madras {now Chennai) looking for a clerical position.
To make some meney, he tutored seme students at Presideney Cellege whe were preparing for their
F.A. exam.

In late 1910, Ramanujan was sick again, possibly as a result of the surgery earlier in the vear.
He feared for his health, and even told his friend, R. Radakrishna Iyver, to "hand these [my mathematical
natebooks] over to Professor Singaravelu Mudaliar [mathematics professor at Pachaivappa's College]
or to the British professor Edward B, Ross, of the Madras Christian College.” After Ramanujan
recovered and got back his notebooks from lyer, he took a northbound train from Kumbakonam to
Villupuram, a coastal city under French control,
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DETERMINANTS

In mathematics, the art of praposing a question must he held af
higher value than solving it.
— Georg Cantor
*
Mathematics is the cheapest science. Unlike Phvsics and Chemiistry,
it does not require any expensive equipment. All one needs is a pencil and paper.
— George Polya

3.1 Introduction

3 is called 1 2 X 2 determinant and its value is defined to be adf — &e. This
is another symbolic way to present real number af — Ae. Do you remember the method of solving a

The expression

pair of simultangous linear equations in R? by the method of cross multiplication ? Do you realise
the connection now 7

3.2 Second Order Determinants

‘: 3,, where a, b, ¢, J are real numbers, is called a second order determinant. These

real numbers are called the elements or eniries of the determinant. @ & is the first row, ¢ d is

Symbol

) . u . 2l 3
thc second row, ‘; is the first cofumn j is the second column, 4 15 the principal diagonal,
is the secondary diagonal of the determinanl. The expression ad-—be is called the value

g b| _ _
d—ad be.

= the product of the elements on the principal diagonal minus the product of the

c
of the givem determinant. We write

Thus, @

d
eleinents on the secondary diagonal.

1 5| _ _ B
4 5| (16} — (4X3) — 6 — 20— —14

3.3 Third Order Determinants

If we want to solve a system of three simultangous lingear equations in three variables, we

%0, for instance

shall have to deal with a ‘third order determinant’.

@ H o«
@z by 2| ig called a third order determinant.
a3 By
Here ;, b;, ¢; are real numbers (7 = 1, 2, 3). These real numbers are the elements or
entries of the determinant. @ b, ¢;; @ b, ¢, ay by ¢, are the first, second and third
a b g
rows respectively. 4z. & 02 are the first, second and third columns respectively.
ay b e
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The value of a third order determinant is written as

& B
oo =l Sl g
@ by o By e a3 c3 a3 b

= ay (g = Byey) = by {ayey = a0y + o (phy = ayhy)
= ayhycq — aybycy — ash ey + aybey + ashie| — aybac is the expansion or
the value of the third order determinant.
Now, further we shall use D for both, a determinant as well as for its value.

Note : In obtaining the value of & third order determinant, the multiplier of @, is the second order
determinant obtained by removing the row and the column of the given determinant containing «; and

B o

€3

keeping the other entries in the same position. We get it as . The same applies for the multiplier

of b and ¢|.
3.4 Some Symbols

When we work with determinants, it is convenient to convert one deternunant into another by
performing ccrtain operations on rows and on columns. To denotc them in a precise form, we
shall use some symbols. We introduce them now.

(1) B, —» ,: We shall use this symbol, if we want to convert every row into the cerresponding

]
column {or every column inte the corresponding row). Perlorming the operation R; — C; on D, the
o 23 a4y
given determinant D will become DY = |8 & Iy

0 2 &
(2) R,.j. (C i) (1% ) : If we want to interchange ith and jth rows (columns), we shall use symbol
Rﬁ. (CI}.).
e.g. C;5 is the process Lo interchanging second and third columns.
a4 B g
So, if D = |42 b e . then after performing C23 on D,
@ b
we get a new determinant
a o B
D=2 & &
a; e b

(3) Wk [C 8] « Denctes the symbol of multiplying all elements of ith row (column} by £.
k€ R — {0} (called multiply ith row {(column} by k.)

a b g
If, D = |92 ® <] on performing R,(3} on the given dcierminant, D changes to
a3 b
Ja; 3y 3g
D= & o
a; b e
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(@) Ryk) [Cylk)] i = )) : This symbol is used for the operation of multiplying each elements
of the jth row (column) by a non-zero real number & and adding its elements to the comresponding

clements of jth row (column).
=20y B =2 -2

Thus, performing R4,(—2) on the determinant, [} changes to I = a2 by 2
a3 & €3
1 3 x+1 x
Example 1 : Evaluale : (1) 2 4 (2) X e

Solution ¢ (1) We have

1 3
5 _4| = 14— (-2}.3=—4+6=2

a+1 x
D, s g mEFDE-N-@E - -1 =P
2 3 2
Example 2 : Evalvate |1 2 3.
2 1 -3
23 =2 2 3 1 3 1 2
Solation : D = 12 T 33=21 -3 —3_2 _3+{—2] 51

2A—6—3) —H-3+6)—2(1 +4)
= —18 —9 — 10 = =37

Exercise 3.1

1. Ewvaluaie :

]2 -3 cos®  sind 2+43 3+411
1) 7 11 ) —5int  cosb 3) 31-411 2-43
2. Solve :
2 3 Zx -1 x 3 o =2
Wl a5 T s = Eila A T lzx s
3. Ewaluate :
2 =1 1 2 1 =2
(1 13 2 1 2)|-3 7 1
g -5 4 5 -3 4
—cosa  sinp 0
4. Prove : 0 —sin0,  oos| = 0
Strex 1] —sinf
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3.5 Properties of Determinants

We shall now prove some properties of determinants. 'We shall consider third order determinaiis,
They are also true for second order determinants.

Theorem 3.1 : If all the rows of a determinant are converted into the corresponding columns,
the value of the determinant remains same.

{Note : Tf R; — C, is performed on D, then the value of determinant does not change.]

g H o
Proof : Let D = |42 B2 ¢,
3 g o3

Canverting all the rows inlo the corresponding columns (i.c. perferming the operation R, = Cj),
the new determinant [ obtained is,

& dap
D'~ B B
€ © O

= ay(bgeqy — Byeg) — ap{bjog — bao) + ay (bjey — By
= ey baty — aybacy — aybiey + oashie; + oaghie, — asbse
— ayhyoy — ayhic, — apbiog + azbog + axbioy — azhae
= ay (byoy — bacy) — bylaye; — aies) + oy lazhy — azhy)
=D

So, converting all the rows into corresponding columns, the value of 2 determinant does
not change.

2 1 -1
Example 3 : Evaluate D= |3 4  2|. Verify that the value of D does not change while performing
5 -3 4
R, = C,on 1L
2 1 -
Solution : D=3 4 2| =216+ 86— 1{12 — 10) + (—1)(—9 — 20)
5 =3 4

=44 =2 +29=71
Neow performing R; — C; on D} pives

2 3 5
p=|1 4 -3 =216 +6) =34+ =3+ 52+ 4)
-1 2 4

=41 —-34+30=71
So, Oy = I¥,

Theorem 3.2 : If two rows (columns) of a determimant are interchanged, the value of the new
determinant is the additive inverse of the value of the given determinant.

[MNote : IT R,},- (CU-} is perlormed on D and we gel new determinant DY, then I¥ — =)

aq b oq
Proof : Suppose Tx = |72 b o
ay by o
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Interchanging, the first and the second rows (i.e. performing R,), we get a new determinant
ay B o
D'=\@ &4 a
a3 by o
= -D

Thus, the value of the determinant obtained by interchanging any two rows is the additive
inverse ol the value of the given delerminant. We can have the same resull for columns also.

(Try it D
1 2 3

Example 4 : Evaluate D = -3 4 - Verify that the value of the new determinant obtained
2 1 4

by performing the operation C,, is the additive inverse of the value of D.

1 2 3
Solution : D=]-3 4 -l =Kl6+1)—2(—12+ 2+ -3 — &)
2 1 4

17+20—-33 =14
Now, performing operation C,;, we get

1 3 2
D'=|-3 -1 4] = 1{-1 — 16) — 3(=3 — 8) + 2(—12 + 2)
2 4 1

=—17+33-20=—-4
S0, D' = =D
Theorem 3.3 : The value of a determinant gets multiplied by &, if every entry in any of its

row (column) is multiplied by &(k = 0).

[Note : If the result of R{k) or C{k) on D is IV, then I = &D. (4 # 0)]

@ B
Proof : Suppose D = |82 & ),
g3 by o3
Multiplying all the clements of its first row by & (i.c. performing R, (k)); wc get
kay kb ke
D'= |92 B2 2| = ka (bycy — bacs) — kB, (@) — anca) T ke (Goby — aqby)
a3 by

= kD
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Hence, |2 & 2| = gtz B2 <. ke R
ay B o ay b o

Note : If all the alements of a row or a column of a determinant are multiplied by a non-zero
real number & and the wvalue of the determinant is divided by &, we get the value of the given

kay ki ke aq & q
determinant, ie. Lley B |-l &b o k= 0

) @ B oo a3 by
3 2 1
Example 5 : Evaluate D = |4 5 5[, Verify that the value of D becomes 3 times its value after
performing C,(3). b
3 2 1
Solwtion : D=4 I 8 =310+ 18) = 2(8 — 6)+ 1(—12 = 5)
1 -3 2

=84 —-4-=17=463
Mew, performing operation C {3}, we get

9 2 1
D =|12 5 6 =9(10+ 18) —2{24 — I8) + 1(—36 — 15}
3 3 2
=252 -12-351
= 189
= 383)
D' = 3D}
m+dy bt o+ f @ b oo 4 a h
Theorem 3.4 : ) by 2 =0 B wal 4|n bk a
a3 by 3 @y oo a oo

Proof © LS. = {a) + d))(fy0q — 8cy) — (B + e)diaey — a36y) + (o) + fllaahy — aiho)
= Hl(bzcs - b362) + dl(b-zﬁ-'a - b3C2) - b]{ﬂ2C3 - (1'352} - ﬁ]{ﬂzC:a - ﬂjﬂz] +
ci(axhy = ayhy) + filayhy — a3hs)
a boq|l |h e A
p By | + | B2 2| = R.H.S.
ay b o a3 b3 o
{Mote : Thus a determinant can be written as a sum of two determinants. This applies to any row

or column. Theorem 3.3 and 3.4 suggest that a determinant is a linear {multilinear} function of 18 rows
ar columns. Thus a determinant is a ‘muoltilinear” form.]
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Theorem 3.5 : If the corresponding entries in any two rows (columns) are identical, the value of the
determinant is zero.
Prool : Suppose the first and second rows of a determinant are identical.

C I S
ie. D=1 B O
a3 b o

By interchanging the first and the second row (i.e. performing R,;) we should get —D.
(Theorem 3.2)

But we see that [ remains unchanged, since the first two rows are identical, So D' = D.
Hence D' = —1> and ' = 1}, S0 D = —10.
s 2D =10, Henee D=0
Thus, if two rows or columns are identigal, then determinant has value 0.

Theorem 3.6 : The value of a determinant does not change if any of its rows (columns) is multiplied
by non-zero real number & and added to another row (column). (& = 0)

@ b oo
Proof - Suppose D = |[&2 B
az By

[.et 1’ be the determinant obtained from 1> by performing R, (k) on it. Then we get

ay tkas b tEkby o+ ke
D o=| @ By <y
ti by 3
g B kay kb ke
D = B a4+ b o (Theorem 3.4)
ay by o ay b o
4 & o @M b oo
=la2 B o2 +k|lea BB @ (Theorem 3.3)
a3 by o3 a3 by oo
=D+ KO {Theorem 3.5)
=D

Thus, a determinant does not change if all elements of any row {column) are multiplied by a

non-zero real number k and added Lo the comesponding elements of anciher row (column).

1 e b
Example 6 : Prove that |1 a+b & | = ab
1 i a+b
| I b
Solution : Tet D=1 g+bé &

1 i a+b
0 -b ¢

=1l ae+dk b [Ry (—1)]
1 7. a+hb

=hla+ b— M (terms with multiplier 0 are 0)

= ab
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Fxample 7 : Withoot expanding, prove that |[-a 0

Solution : Let D =

0 a —-&
—_ :U
E ¢ O
0 e -b
-—a U —c
b o D
0 —-a b
=la 0 ¢ ®, = C)
-& —¢ 0
0 a -b
—1Y¥ [~a 0 =-¢ RA-1), i = 1, 2, 3)
b ¢ 0
=-D

Thus D = -D, giving 2D =0 or D = 0.

Example 8 : Prove thal the value of

Salntion :

let D=

cos(B+4) —sin(B+d) cos2b
5in cos® sind | is independent ol 8.
—ces rind cosp
cos(B+¢) —xsin(O+d) cos2d
sinf s &ind
—rastl sinf cosd
coxB cosd — xinB sin —sin0 cosd — cosB ying  cos
= sind ceosd sing
—cnsf sinB casf
0 0 cos2a+
= | sin® cos®  sing (R, (sind), R;, (cosp))
—cosB  sind cosd

= (cos2¢ + N{xin?0 + cosO)

1 + cos2¢, which is independent of 8.

2 6 4
Example 9 : Withomt cxpanding, show that |1 divides a0 6
3 5 2
Solution : Performing C3(100) and C,,(10), we get
2 6 264
=[5 0O 506
3 5 352
2 6 11x24
=15 0 1l1x4d6
305 11x32
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2 6 24

=115 0 46

3 5 32

Il-n

11 divides the given determinant.

Example 10 : By using theorems, prove that

Solution :

[Note :

Example 11 : Without expanding the determinant, prove that

Solution :

2 2
a b
1 1

= —{a -

m

(cs())

(n € Z)

Mk — X — a).

(@ = b, b# e c#a)

(First C“{—!) and then CH{-—I}]

2

c
1

2

c

2 g2 2
B
1 1
&2 a? -8 B -t P
=| a-b b—¢ o
1 a ] 1
a+b b+o ¢
={a—08p—0c)| 1 1
0 0
a—c b+c ¢
={a—b)ib—cy| O 1
0 0
1

={a — hXh — cKa — c} |}
o

={a—b)b—cYa—oc)-[l]

1
Bte o2
1 C
0 1

= —fa — 5)d — e — a)

(C, [TF_TJ i Gy [h+]

a;tb*b"tc)

lczli_l}'

(nt:I [a—lf] (a # c]]

fa=borb=core=a D=0 llence the result is true in this case also.]

Let D

1 | 1
x ¥ z
y+z z+x x+ty
1 1 |
x ¥ z
x+y+z x+yv+z x+y+z

1 1 1
x+v+zd|x v z
1 1 1
x + 3+ 2) (1)
1]

1
Xx
¥y+z

1 1
¥ z |=0
Z+x x+y

1€a(1)]

(CJ (t—T‘H—:]. xt+ty+z+# 0})

Ry = Ry

[Note : Even if x + ¥ +z = 0, Ry = 0 and the expansion gives D = 0.]
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2x+3 3x+4 4x+5

Example 12 : Solve [ ¥+2  2x+3 3x+4| =9
3x+5 5x+8 10x+17

2x+3 3x+4  4x+5
Solution - | x+2 2x+3 3x+4 | =9
3x+3 5x+8 Wx+17

2x+3 3x+4 dx+5

A+2 2x+3 3x+4]| -0 [Rys(—=1)]
x+2 2x+4 o6x+12

x+1 x+1 x+1
x+2 2x+3 3x+4 =0 [Ryy(—1)]
X+2 2Ux+2) 6{x+2)
1 1 1
(x+ Dix+2) [x+2 2x+3 3x+4| =0
1 2 6
1 o i
x+ Dix+2) |x+2 x+1 x+1 =0 (Cya(—1) and C;,(—1))
1 1 4

x+ Dx+2x+ D4 = 1x+ 1] =10
Ix+ DM +2Y-x+ 11=0
x=-1 or x=-—-2

The solutien set is {—1, —2}.

x 4 6 5 6 1 2 3 -9

Fxample 13 : Solve : |2 3 9] + |6 4 53| =|2x-1 -8 -1l
5 6 1 2 3 -° 3 6 1

2 3 -6 2 3 -9 2 3 -9

Solution : (—1)|x 4 6| —|6 4 5|=(C-D|1-2= 8 1l
5 6 1 56 1 5 6 1

(Performing R,; im the first determinant, R, in the second determinant
and R, (—1) in the third determinant.)

2 3 -9 2 3 9 2 3 9
x 4 6| +|6 4 S|=1-2x 8 11
36 5 5 5 6 1
2 i 2 3 -9
x+6 8§ 111 =|1-2x & 11 (Theorem 3.4)
5 & 1 5 6 1
2 a -0 2 3 -0
x+6 § 11| —[|1-2x & 11]=20
5 e 1 5 a 1
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2 3 -9
Zx+5 0O O] =10
5 6 1
2 3 -9
Gx+5|1 ¢ 0=0
56 1
e+5-0 as 1]° | =0
5§ 1

o3

The solution set is {—%}

Fxercise 3.2

Prove using theorems,

(1)

2)

(3)

(4)

(5)

1 1 1
x ¥y z|=(x—3Ky— =2z —x)
yr x
1 x x
1y 3| =G =00 -2z -0 +y+ 2
1 z 2

1 1 1

X ¥ z ={x — ¥y — zdz — x)
(x+1? (y+1¥ (z+1)?

X ¥y Z
x—y y—z z—-x| =%+ + - Inz
Y+zI ZI+Xx X+Yy

0 ab* ac’
ath 0 bt = 2239355
a‘c b ©

cost sinte cos{+8)

Without expanding, prove that |cosp sinf cos(B+8)| =0

cosy sy cos(y+8)

x 5 9
Find the solution set of |16 3x+8 36| = 0.
3 1 7
a a+b a+hbh+r

Prove that 3¢ 4a+3p Sa+4db+3¢c| = —a.

ba a+6F 1la+95+60

1+ 5in0 0528 4 xind0

Solve | sin?0  l+cos®®  4sindd | =0.0< 0 < z

sin’@ cos28 1+ 4s5ind0
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a
6.  Prove that |b

[

E oo

C
a| = —a + b+ )ia — BP + (4 — ) + (¢ — af]
b

x—2 2x-3 3x-4
7. Find the solution set of |x—4 2x-9 3x—-16] =0
x=8 Zx-=-27 3x-0564
a+x ao—x a—x
8. Prove that the roots of the equation |[a—x a+x a-x| =0 are x =0 and x = 3a,

a—-x a—x a+=x

x? v omx+zt
9. Prove that |x° +xy ¥ x| = dxfied
Ay }'2"')’2 32
a+bx d+exr pHogx a & p
10. Prove that |ax+5 dr+e px+g =(1—aD |6 e ¢
Py f v ¢ f r
(b+c¥  ab ca
I11. Prove that | ab  (c+a)? be | = 2abc(a + B+ o)
ca be  (a+b)

3.6 Minor and Cofactor

Minor : Removing entries of the column and the row containing a given elementi of a
determinant and keeping the surviving cntries as they are, yields a determinant called the
minor of the given element.

For example, to get minor of ¢; in the determinant

a B ¢
D - |% & ¢, we shall remove the entries of the column and the row of D containing ¢, and
a3 by o3

o]

we shall keep the remaining entnes in the same posilion. We get Lhe delerminant . This

3
by
determinant is the miner of ¢;.

Cofactor : If we multiply the minor of an element by (—1) */, where 7 is the number of
the row and j is the oumber of the column containing the element, them we get the cofactor
of that elemeni.

a B q
In D= |92 & i, the minor of a is hoa and muliiplying this by {(—1)2 * 1, we pel
ay by oy “

cofactor of a,. (a, is in second row and first columnn.)

Thus, the cofactor of a, is (=132 * 1 .

2 :;l = —(byoy — bac,).

The cofactors of a;, 5;, ¢; n D are dencted by A;, B,, C; respectively, where i = 1, 2, 3.
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In advanced mathematics, we write D as
41 41z 93
D=lez1 @z a3
@31 43z 933
Here, a;; means the element in the jth row and fth column.
Cofactor of ay = (—1) *J (minor of ay)
+ - +
Simply remember following symbolic determinant format |- +  —|.
+ - +
Element in any diagonal have the minor prefixed by + and other elements have the minor
ptelixed by — to gel the corresponding cofactor.

[Note : The cofactor of an element is the factor by which that clement gets multiplied in the
expansion of the deierminant or the muliiplier of thal element in the expansion of ithe determinani.]

a & q
IfD=|2 & ¢, then
ay by o3
Ay = by — ey B, = —(a,c; — axc;) C, = ayh; — azb;
Ay = =Byeg — byey) By = ayey — aye Cp = a3 — a3h))
Aq = bey — Byey By = —{ac; — asc)) Cy = @by — auhy
1 2 7
Example 14 : Find the minors and cofactors of 2 and =1 in (3 7 5.
-1 4 3
3 -5
Solution : The mingr of 2 = | ‘
- l+2 3 -9 _ —
The cofacter of 2 = (—1) i = -1 X 4=—4
2 7
The minor of —1 =
7 3
- I+1 7 - -
The cofactor of —1 = {—1)} 7 o = 1 > (—59) = —59
1 4 ¢
Example 15 : If D= |4 2 1f, then find the value of the determinant formed by the cofactors
a -1 3

of the elements of D.

1 4 0
Solution : D=4 2 1
0 -1 3
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1
3

1

2

The cofactor of 1 is A; = (—1) +1 1
=1

The cofacter of 4 is By = (D! * 2 [ 0 o = (=1)(-12) = 12
—4
0

= IX{E+1)=7

2
_1| = (1}4) = 4

The cofactor of O is C; = (—1)! +3

The cofactor of —4 is A, = (—1)2 +1

4 0
L 3 =1 =12

1 0
0 3l =X =3

Similarly C, = 1, Ay = 4, By = —1, C, = 18. (Find by yourself !)

The cofactor of 2 is By = (—1)2 2

7 12 4
The determinant formed by the cofactors of the elements of D is |[-12 3 1].
4 -1 18

Its value =754 + 1) — 12(—216 — H + 412 — 12)
=382 +2640 4+ 0
= 3025

[Note : The value of D is 55. The value of the determinant formed by cofactors is 3025 = (55)2.
This is tuc in gencral.]

Theorem 3.7 : The value of any third order determinant cam be obtained by adding the
products of the elements af any of iis rows or columns by their corresponding cofactors.

a b
Proof : If D = (%2 B 2 and cofactors of ay, by, oy are Ay, By, G, respectively, then
ay by 3
boq
A, =(—-1P+] = —(bc, — bicy)
2 by e 193 i
o q
B‘z = (_1)2 +2 {13 'C3 = “1{:'3 - H3C]
a; b
= ¥ -
CZ - (_]) + 3 aa bﬂ, - _{a|b3 - a3b-|}4

Now, ayAy + BB, + 6,0y = —ay(bcy — by} + Bylacy — ayeyd — cqlady — a3by)

= —aybjoy + aybye + baaicy — faaic; — cyahy + caagh

= a)byeq — aybyoy — byayeg + o biaye, T oaybae) — aghao

= a{byey — byeyd — b (ayeqy — ayep) + ey layhy — agds)
a B q

=laz & o =D
ay by o
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aA, + BBy + o,C, = D (i)
Similarly a A + B, + ¢ C; =D (i)
ayAy + BBy + cyCy = D (iii)
alAl -+ a2A2 -+ 53A3 =D {iv)
bB, + 5B, + 5;B; =D (v)
€y + 56 + 56— D {vi)

Here, (i}, {ii) and (iii) are called expansions of the determinant by the second, the first and the
third row respectively. Similarly (iv), (v), (¥i) arc cxpansions according to the first, the second and the
third column respectively.

Theorem 3.8 : If we multiply all the elements of any row (column) of a third order
determinant by the cofactors of the corresponding eclements of another row (column)

and the products are added, then the sum s zero.

a Mhoq
Proof : Let us multiply the elements ay, b, ¢; of the first row of D = @2 & ¢, by the
a3 Boo

cofactors of the corresponding elements of the second row ie. with A,. B,, C, respectively and

add. That is 1o say we evaluate a A, + & By, + ¢,C,.

Now, Ay = (1) *! 2 : = —lbjgq — b30y)
I:’:r=(—1:|2*'2 “ = g0 — @0
2 dy O3 1€3 1€
a B
C’Z = {_1}2 +3 as E_B = _{albs - ﬂ3b]).

Thus, @jA; + 8By + C; = —ay{bjey — Bso)) + b {aje; — azey) — oy {ab; — azdy)
= =iy toagbgey +oapb g — agbiey — agbge; +oughiog
=1

Similarly, A + £B; + ¢ C; =0

az | + 8B + e, C, = 0
g + BBy + oCy = 0
a;A + BB + cC) = 0
a3ha + BB, + oG, = 0

[Note : Similar results hold for colomns also. Infact g A; + #B, + ¢, = the value of the
determinant where first row and second row are both a; b, ¢| i.e. identical.

af, + 5B, + ¢Cy, = (0]
3.7 Solution of Two Simuliameous Linear Eguations
Suppose, we wish to solve simultaneous lingar equations ax + s,y + ¢ = 0 and
ax+ by +cy;=0in R2. Here a,, b, ¢, € K and af + biz #0. (i=1,2).
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We shall consider only these equatiens in which none of a,, a;, &, #; is zero. (If some of
these are zero, then it is easy to solve the equations).

We have already studied the method of solving two simubtaneous linear equations known as
Method of Cross-Multiplication. The methed is

X _ ¥ _ 1 - —x ¥ 1
& o O &4 a b 12 ey - b Ci@s — Cath ahy - ayby
B, & G &4 b

X ¥ 1

b 4 oa @ b
b o 4  oay B

MNow, in this chapter we shall use delerminant notation.

b a4 <
) a3 o Iy, b,‘
So, ¥ = and y = — , where |™ # (.
al -b] y al t"l al bl
a b a; by

This form of the solution is known as Cramer's Ruole.

Note : (1) If a1, — apb = 0 bt gyo; — apey # 0 or bje, — by # 0, then we get solution
set of the above equations as empty set.

(2y I ayby, — ayby = bjog — by = aye; — aye; = 0, then solution is neot unique it is
the infinite set. {(x. ) | gpx + by +¢; =0, x, ¥y € R]

Consiztent Equations : If the solution set of a system of equations is not empty, then the
equations are called consistent equations,

Equations which are not consistent are called inconsistent eguations.

Equivaient Equations : For the equations ax + by + ¢; = 0 and ax + by + ¢; = 0,
if there is a non-zero real number &, sach that ay = kﬂz, ""I = le. €y = #‘::' then the two
equations are said to be equivalent. IT they are not equivalent, then they are called distinet,

Example 16 : Solve : 2x + 3y — 8 = 0 and 5x — 4y + 3 = 0, using Cramer's rule.

. . i B 2 3
Solution : Here I = = =R - 15=-23%0Q
bl |5 4
So we shall have a vnique soelution.
b q 3 -8
. . _ 2] _ |4 3] _9-32 _ o3 _
Cramer's mile gives x = @ Bl B m o
a, b
4 |2 —E|
__l# |l _ I8 M __ e+ _ a5 _
and y = — =— =— = a9 =
2 B =23 -73 23
@ by

Hence, {x, ) = (1, 2).
. The solution sct is {(1, 2)}.

Example 17 : Solve : 2x + 3v = 13xp and 5x — 2y = dxp.
Solution : ‘'hese equations are not linear equations. They are gquadratic equations in x and v
S0 they have two solutions.
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One solution is x =0 and v = 0 (x=0=04+3p=0=y=0
If x # 0, then obviously v # 0. p=0=x=0
We can convert these equations in a linear form taking xy # 0 and dividing them by

xy # 0, we have lincar equations in the form of

23 i _2
y T 13 and ¥ . 4,
Now, let us write ; = m and i = Then, the system iz 2m +3n — 13 =0, 5m — 201 — 4 =10
which is a system of lincar cquations.
2 3
Here, I = == =15==1920.
5 2
S0, we shall have a unique solution for m, n.
3 13 2 -3
= 5 =4 _ff12-26  B+65%  r_ag 57y _
bt m ==~ "7 —[ - j - (FHH-ey
(m, 1) = (2, 3).

1
ok m'.=?tmn:ln=l
X

[%i] — 2,3, ie. (i#) — 3, 2)

S0, (x ) = (4:3)

3.8 Area of a Triangle

In eleventh standard, we hawve found out aresa of a triangle, if coordinates of vertices of
4 triangle are given.
If the vertices of a triangle are (x|, »|), (x3. ¥,) and (x4, »4), then we bave applied the

expression % [y (v — ¥3) + 25005 — ¥)) + x50/, — »)] to find the area of a given triangle.

n on 1
We shall write this expression in the form of determinant as % X2 ¥ 1.
x3 yq 1

Since area is always a positive quantity, so we shall take absolute value of the above

determinant. We denote area of a triangle by A,

o on |l
Hers A = %| D] where D = |x3 ¥y 1f.
X3 oy |

Shifting of origin does not effect the area of a triangle.
[f we shift origin to (4, k), then the vertices (x;, ¥|). (X5, ¥5) and (x5, ¥;) of the triangle will change
o (x, — &y — k), {x; —h vy, — &) and (x; — &, y3 — k) respectively.

Now, area of the triangle after shifting the origin is A = %| D).
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,’C]—ﬁ _}'l—k 1

-k vk 1
1’3--‘1 }’3-‘12 1

where [

n »n l

=lx ¥ 1 (applying Cal{.ﬁ') and C4,(K))
Xy M 1

=

—lip=1
A= 3D = 4D]
Thus, the area remains same.
As an example find the area of the triangle having vertices (2, 3), (5, 1), (7, —2).

203 |
D=5 1 1| =2(3)=3=2)+ 1(=17)
7 =2 1

=6+6—17=-5
A=dip|=d)-51=3

If we shift the origin to (2, 3), new coordinates of A{2, 3) are (0, 0). B{5, 1} changes (o
-2, 1—3=(3 -2

(7, —2) changes to (7 — 2, =2 — 3} = (5, —5)

0 0 1
3 =2

D=3 -2 lJ< |=—15+1u=—5
5 -5 1 P

- = Ly_s1 = &
A= =3-5]=3
Thus, the area remains same.
Example 18 : Find the area of the trangle whose vertices are (5, 4), (2, 5), (2, 3).
5 4 1

Solution : D= |2 5 1
2 31

55— 3) — 42 — 2) + L(6 — 10

10—-0-—4

A=4D|=1i6/=3
The area is 3.

FExample 19 : If area of a wiangle whose vertices are (8, 2), {k, 4) and (6, 7) is 13, find k.

E 2 1
Solution : D=k 4 1
6 7 1

84 — ) — 2(k — 6) + 1(7k — 24)

=24 -2+ 12+ 78— 24
5k — 36
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]3=%|5k—36|
5k—36=26 or 5k—36=-26

5k =062 or 3k =10
=%2 o k=2
k=2or %

Cartesian Equation of a line :

m

In standard X1, we have studied the equation of a line when twn distinct points on the line

are piven.

—> >
If A(x;. »y) and B(x,, y,) are two distinct points of AR, then the eguation of AR

is j:z__j;l = ;_’__1 [Xé is not perpendicular to any axis)
£ )

The determinant form of the above expression is |3 W

¥ N2

:u_

Example 20 : Find equation of the line passing through (7, 8) and {5, —2) using determinant form as

well as by vsing two point form.

x y» 1
Solution : The equation of the line is [x  » 1| =0,
*¥ ¥ 1
where (x|, ¥} = (7. 8) and (x5, ¥,) = (5. —2)
x vy 1
T OB 1 =0
5 21

B+ 2y—W7 -5+ -4 -4 =0

10x = 2y — 34 =90

Sx —p— 27 =10

|

. |

The two point fonn of the equation of the line is
y—8 x—=7

v—8  x—7

Ty R,
—2y+ l6==—10x+ 70
10x—2p—354=20

Sx —p—27=10

Exercise 3.3

Yo— N KX

1. Solve the following systems of eguations using Cramer's rale :

(1) a4x + 10y = Zxy (2) x=2¢=17

5x + 16y = 3xp ix —3y=46

3

+2 =9

L R e
SRR

+ 2 =1, =0
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2 6 1
2. Using cofactors of the elements of third row, evaluate | -2 0 5.
5 4 -7
2 3 =2
3.  Using cofactors of the elements of second column, evaloate [ 1 2 3.
-2 1 -3
4.  Using determinant, find the arca of the triangle whose vertices arc
(1 (11, 8), (3, 2), (8 12y  (2) (7, 9), (10, 8), {12, 10)
5. TFind %, if the area of the triangle whose vertices are (2, 2), (6, 6) and (5, &) is 4.
6. Find a, if area of the triangle whose vertices are (5, g), (—2, 5) and (-2, 3) is 7.
7. Using determinant, obtain the cquation of the line pasing through the points
(43, -2 1.4 @6 -1006G3) ), =306 -2)
1 1 1
8. Find the value of the determinant formed by the cofactors of the elements of |3 4 3.
3 3 4
+
Miscellaneous Examples :
-2a a+b a+c
Example 21 : Prove that |b+a -2 &+c| = Ha + bXd + e + @)
c+a c+b -2c
—2a a+hbh a+tc b+ec a+ec a+b
Solution : |b+a —2b b+c|=|b+a 26 b+c (Ry,(1) and Ry (1))
c+a c+b 2c c+a c+b -2¢
a+b+2c 2a+b+ec a+h
=| a=b c=h h +c| (First C,,(1) and then C5,(1))
at+b+2c b—vc —2¢
L Zla+e} g+b+2¢c
— 2{a+ ) 0 h—c fR:“['-'l} p— RJI'“})
a+b+2c b=-c =2c

=—XNate)|dlat+te)—(d—clla+h+ 2]+

@+ b+ 20)-2(a + )b — ¢)
=8cla + )+ 2a + cWb — oo + b+ 2¢) +

20a + eXb —ea + b + 2c)

=8clag + ¥ + Au+ )b — cXa+ b+ 2¢)
=da+ ) 2ce{u+ )+ (B — cKa + b + 20)]
=Ma+ c) (2ac + 2c2 + ab + B2 + 2bc — ac — b — 260
= d{a + ¢} {ac + ab + & + bc)
=dla + c) (@ + b + o)
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1+x 1 1

Fxample 22 : Prove that, [1+y 142y 1 | = 2x0z [3+i+i+ﬂ
1+z 14z 143z
(@z#ﬂ,é +§+ . +3;f:n]
1 1 1
I+ ¥ ¥ !
3 s . = _l _1 .L J‘ =i
Solution @ LH.E = xu= 1+}. 2+ ¥ ¥ (R!{ r]' “'3[ },J. RJ(::)' Xz + 'l]']
1 1 1
I+E ]+E 3+E
1 1 1 1 1 | 1 1 1
3+E+?+E 3+T+?+E 3+E+?+E
— 1 1 1
= xyz T+ 2+5 ¥ (R,,(1) and Ry;(1))
l+% 1+% 3+%
1 1 1
_ 11,1 1 4 1
_xyz(3+ +y+zj 144 244 4 (Rl(3+_!+LTL])
1 1 1 x -
1 0 0
L,1.1 1 :
= xvz [3+;+?+E) 1+'}T 1 -1 (Cia(—=1) and C,4(—1))
1+L1 o 2
Z
= 34L4L41
nyz( x ¥z
1+ a® — b7 Zab —2&
Example 23 : Prove 2ak 1-a” +b2 2a =1 + a* + 5%
2b —2a 1-a® - #*
1+a® —b? 2ah —2b
Solution : L11S =] 2ab L—a® +b° 2a
2b —2a 1—a® — b2
1+a* +h° 0 =2h
2 2 - =
= 0 l+e°+5& 2a (C3y(—b) and Cy,(a))
bl+a® +5%) -all+a’ +h%) 1-a* - b*
1 0 ~2b \
- 23 Y . S S —
(1+a+ 0|0 1 2; ) [L,(l_ﬂgw;}, C2[1+ﬂ3+b‘;]
b —a 1-a"-b

=1 + &+ PR — & — B2+ 22%) — 2b(—H)]
={l+a +5P2 (1 +a+ 5

= (1 + & + B2y

= RHS.
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x=3

-4 x-a
Fxample 24 : [t |x -2 x-3 x-»| =0, then prove that o, & ¢ are in arithmetic progression,
r—1 x-2 x—e¢e
2-3 x—4 x-a
Solution : [x—2 x-3 x-5] =10
x—1 x-2 x-¢
| -1 b-a
-1 -1 c—-k[=0 (Ry,(=1) and then R;,(—1))
x—-1 x-2 x-¢
1] 0 2b-a-c
-1 - c—b | =0 [R,(—1)]
=1 x=-2 X-c

(2h—a—)[-lx—2)—(x—1}—-11]=0
(b—a—c)(«x+2+x—-11=0
bh—a—c=10
2b=a+e
a# b, coare in AP
Example 25 : If two rows of a determinant are identical, then the valug of the determinant is zero,

Uzing this fact prove that if two rows arc imtcrchanged, then the value of deicrminant so

obtained is additive inverse of the value of the original determinant.

g tay B+b o+teo
Selution @ |g +ay K+ gtoy| =0
a3 by 3
ay+ax +d o to tap B+h gto
i B gq |+ « ) € =0
ay by o3 a3 &y €3
a b o @ b o a b G b oo
a B o|l+|a B o tlaz B oo tla b el =0
a3 &y | |a3 by o a by o az by oy
ay b o a B ¢
a b al=—l6z B o
az by e a3 By o3
Exercise 3
+5
1. Solve * o =0
x+9 x-=2
3x+4 r+2 2x+3
2. Solve| 4x+5 2x+3 3x+4 — 0
I0x+17 3x+5 5x+8%
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10.

x 2 2 i -2 b 5 3 7
Solve|7 2 o] +|5 4 3|=|4 7 -2
5 4 3 1 5 & I B -5
5 4 8
II'flx—3 —-& -=-16] = 0, delermine the value ol x.
3 9 4
a-b—c 2a 2a
Prove that 26 b—c—a 2b =fa+ b+ )
2e 2c c—a-—-#&
y+z X x
Prove that | ¥ I+x ¥ | = dxpz
Z z x+y
2 o(y-2¥ - m

Show that [¥* (z=2 =3 zx| = ~(x =)y — 2z —x}x +y + D2 +17 + ).

12 (x_y)l_EE Xy

1 1 1
Prove that |@? »° ¢*| = (a — ks — cle — alabd + he + cal
ad b

x2 }?2 22
Prove that [(x+1)° (y+1? (z+ 1% = —4(x — YNy — )z — x).
=107 (-1 (-1

Select a proper option (a), (b), (c) or (d) from given options and write in the box given

on the right so that the statement hecomes correct :

Section A (1 Mark)

2 3 4
(1y |4x 6x Br| — ...
5 7 3
(a) 18x (b) 0 @ 1 (d) 18x3
(2) The value of 2008 2003
2010 2011
{a} —1 ihy 1 () —2 fd) 2
x 1 y+rz
2|y 1 z+x = ...
z 1 x4y
fay)xt+v+z {b) (x + yKy + z}z + x)
{c} 3 (d) ¢
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) sird?  —cosQ” _ ]
sn30°  coss0°
{a) 0 ib) 1 (c) —1 (d) not exist.
2 3 1
(5) fD=|5 -1 2|, petforming R, .{—1) on I} then I will become ...... ]
12
74 =1
-1 3 1 2 1 1 -3 4 - 2 3 1
(ay |6 -1 2 i) |5 -6 2 cy|5 -1 2 @3 4 1
3 4 -1 7 -3 -1 7 4 =1 T 4 -1
Section B (2 Marks)
52 50 5
) |8 £ 5 =... -
5 st 5
(a) 5° (b) 512 (c) 50 (d)y @
1 »w «x 1 1 1
(7Y D=1 zx yland D, =|x 3 z|, then .. .. -
| x oz 2 oy 2

@D, +2D,=0 (M2D,+D,=0 @D, +Ny=0 (HD =D,

0 X ha xX+b
() Fa=0,b#0,c20,|x°-a 0 x—c| =0, then x = ...... =1
xa—b x2+c 0

(a) 1 (b) O e+ bd+rc (d) —(a + &+ ¢}

(x+D? (3+17 (z+1)?
9 MMx,pze RLx>yrzand D = x ¥ z , then D is ... ]
1 | 1
(a) negative (b} positive (c) zero (d) not real

1 cosb 1

(1If D = |—cosB 1 cosB|, then value of D lies in the interval . -
-1 —cosh 1
(a) (2, oo} (b) 2, 4) (<) 2, 4] (d) [-2, 2]
Section C (3 Marks)
] b x + by
(1) IfF| & c bx+cy| =0 and ax® + 2bxy + o # 0, then ... ]
ar+ by Br+coy 0
(a) o, b, ¢ are in AP ib) o & ¢ are m GP.

() a b c are in AP and (P hoth {d) o, b, ¢ are neither in AP. nor in GP.
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1 25
(12)If |1 x 5|=0, then x = ...... 1]
1 -1 2
(a) 2 (b) —2 )5 (d) —5
142 1—x 1—x
-

(12) The roots of |1—x 1+x 1—=x| =) are ...... .
l-x 1-x I+x

{a) 0, 1 (b) 0, —1 {cyn, —3 (dyn, 3
Section D (4 Marks)
x =6 -1
(1) If |2 —3x x-3|=0,then x = ... . ]
-3 2x x+2
{a) -3, -2, 1 by -3, 2, -1 (c) =3, 2,1 fdy 3, 2, 1
J14+43 V20 45
(15 Jﬁ+@ \I"E \"ﬁ = .. . D

34470 15 23
(@) 2543 — 1542 (b) 1542 + 2543 (€) 2543 — 1542 (d) 1542 — 2543

a b ox+ b
: -

(1&) If b c bxr+c| =0, then a, A ¢ are in .....
ac+b bx+c 0
(b)) G

{d) a decreasing sequence

(a) AP

{c} an increasing sequence

We have studied the following points in this chapter :

1. Second arder determinant |2 3 and its value 15 ad — be.
& B

2.  Third order determinant D = |[¢2 &2 ©
a3 B o
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3. Some symbaols :
(1) Ry (Ca'r'] (i # ) : Process to interchange ith and jth row (column).
(2) R, = C, : Process of converting every row into respective column.
(3) RK) |CLh)] : Operation of multiplying #th row (column} by .
4) le(kj [Ci}{k}] (i # i) : Operation of multiplying ith row (column) by & and adding its
elements to the corresponding elements of jth row (column}.
4. Properties of determinant :
(13 If we interchange rows to respective columns, then value of determinant remains same,
(2) If we interchange any two rows (columms), then we get the value of new determinant as
additive inverse of the given determinant.

{3 Il we mulliply every entty of a row (column) by k(£ 00), then the value of determinanl
sc obhtained is & times the value of criginal determinant.

ap+d Bte o+ h 4 b g d o A
@ | & by 2 |=(22 &2 o|+|m b o
& in €3 gy & as by 6

(5) If the corresponding elements in any two rows (columns) are identical, the valne of the
deictminant is zcro.
(6) If any row (column) is multiplied by & and added to another row (column), the value
of determinant remains same.
5. Minor : Minor of an element is the determinant obtained by removing the elements of the
colurnn and row containing that clement.
6. Cofactor : If the value of a minor is multiplied by (—1)' ¥/, we get the cofactor of that element,
where ¢ is the number of the row and ;7 is the number of the column containing that element.
7. On adding the products of the elements of any ef its rows (columns) by their corresponding
cofactors gives the value of the determinant.
8. If all the elements of any row (column) are multiplied by the cofactors of the corresponding
elements of other row (column) and added, then the sum will be zero.
9. Sysiem of two simullanecws linear equalions in lwo unknown can be solved by using
Cramer's Rule.
10. Area of a triangle whose vertices are (x|, ¥;), (x5, 1), (x3, ¥3) is

P |
-;-|D| where D = |xp w0 .
B ol

11. On shitting of origin, the area of a triangle remains same.

12. Cartesian equation of a line passing through two distinet points (x, ), (%3, »3) is

o |
Eo| | 1| =
x2 ¥y 1
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or an ordered pair of vectors in R2.

Thus, determinant is a multi-variable linear functicn.

| Determinant as a function I

We have studied about vectors in standard XI.
% = (x;. x,) is a veetor in R2 and ¥ = (x,, x5, x3) is & veetor in R3,
Now we shall define one function I : R X R3I X R} = R

Let x = (a), &y, 1), ¥ = {ay, by ) and T = (ag, by, €5)

a B g
Let I{X, ¥.Z)=|ea & &
a3 by o

Similarly if ¥ = (o}, &), 7 = (ay, b;), then we can define

@ bl|_
a b

Thus, a determinenl is a real funclion, whose domain s an ordered (riplet of veclors in R3

D:R2XR? 2R Dz, ¥) =

Thus, if £ € R, then D{z%., ¥, )Y =4&-IN%, ¥. 7}
We can write this for all variables ¥, y, T
If @ = (uy, 0y, w3), then (T + 7, ¥, T)= DT, ¥, T} + DT, ¥, 7)

This result 15 true for all variables.

Thus, determinant is a linear function in every variable. (Other variables being kept constant.)

Alse, Dz ¥. z) = —IN¥, % 2}
This function is called an alternating function.
From this, we can gelt (¥, ¥, T) =0

We can explain the example 25 like this,
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MATRICES 4

It iz easier to square the circle than fo get round a mathematician.
- Augusrtus De Morgan

Cur notion of symmetry is derived from the human face.
Hence we demand symmetry horizontally and in breadth only not vertically nor in depth.
— Bluise Pascal

4.1 Introduction
If you are asked aboul your weightl in by, you can use & tcal nomber such as 55 to answer the
question. Again if you arc asked for vour height in em, your answer is another rcal number say 135,
One way to organise these data is to use an order pair. You can represent your weight and height with
the order pair (55, 133). The elements of this order pair indicate the information such as weight and height
respectively. If we want to include vour age in vears say 16, then we have order triplet (55, 135, 16),
The elements of this triple indicate the information such as weight, height and age in the sequence
[for an individual. We can wrile them in a row, like [55 135 16] or in a column, like | 55
135
16
If the above questions are asked to three or four individuals named Rita, Raman, Rahim and John,
then the informations can be collected in the order tniples as {55, 135, 16), (58.5, 140, 1&), (59. 138, 17)
and (60.5, 155, 20 respectively. However, it will be nice if we can combine all these triples together
in one set of data. 1If we consider each triple as one column, then we will have all our data in one
arrangement. Tf we organisc them in an array form as
Rita Raman Rahim lohn
Weight | 55 585 59 50.5

Heaght | 135 140 138 155
Age 1t 18 17 20

If there is a selection of soldiers for the Army wing, then they have to collect above data from so
many individuals. If the data so collected can be arranged in the precise form as shown above, then it
is easy to interpret them. Also, it is easy to make selection of individuals.

The above arrangement of real numbers in a rectangular array is known as a Matrix (Plural is
mairices}. The real numbers are the elements or eniries of the matrix.

Mairix is a lalin word. The origin of matrices lie with the study of syslems of simuoltaneous
linear equations. An important Chinese Text between 300 BC and 200 AD, nine chapters of
Mathematical art (Chin Chang Swan Shu), give the use of matrix methods te solve simultaneons
cquations. Carl Friedrich Ganss (1777-1855) also gave the method to solve simultancous lincar
equations by matrix methaod.

Matrix operations are used in electronic physics. They are used in computers, budgeting, cost
estimation, analysis and experiments. They are also used in cryptography, modern psychology, genetics,
industrial management etc.
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4.2 Matrix

Any rectangular arrangement or an array of nombers enclosed in brackets such as | |
or { ) is called 8 matrix. We shall consider only real matrices, i.e. elements or entries of
the matrices will be real numbers only.

a b e
The matrix, { i e f] has two rows and three columns. So we say that it is a 2 X 3 matrix.

2 % 3 is also known the order of the matrix.

In general, an m X n matrix is a matrix having m rows and n columns. It can be
written as

eyl Bz oeee- Henny

Here " is the element of the matrix in “#A° row and “fek’ column. In a compact form, we can

if
write this matrix as [e,, If there is no confusion, we write it as [ezy;] also. We denote matrices

] .
im W on
by A, B, C eic. In the notation of the order m X » of a matrix, m denotes the number of rows of

the matrix and »n denotles the number of colomns of the mawrix. An a2 X n matrix 15 called a
rectangular matrix.

Example 1 : Construct 4 X 3 matrix A = [a;] whose clements are given by ay=1i—]

t; di2 13
a1 dz a4y
g3 a3 03y
fa) g2 43

Solution : We have matrix A =

[Ierea&.=f—j,snmhavea”=l—]=ﬂ,a]2=1—2=—],a13=1—ﬁ=—2,
g -1 -2
1 0 -1

dy =2 — 1 =1 etc. Thuos, we have A = 2 1 0
3 2 1

Difference Between a Determinant and a Matrix

(1) A determinant has a real value where as a matrix has no real value as i1 is an arragement
of real numbers only.

(2) In a determinant, number of rows is equal to the number of columns where as in a matrix,
number of rows may or may not be egual to the number of columns,
Equality of Matrices :
Two matrices A = [ay],, ., , and B = Ibi‘jim w pn Are equal if they have the same order and
a; = by for all i and j. We denote equal matrices A and B as A = B.

i
Here, A= B & [a)), 5 n = [yl 5o € a5 = By Yai=1,2,3,m =1, 3.,n
, -1 2] [3x-7 -3
Example 2 : Find x and y, if xty 4|~ 6 t
Solution : Corresponding elements of two matrices must be equal.

x—1=3x—7, Zyv=yw —3andx+y=6and 4 = 4.
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S 2k =6, W—2r—3=0
Sox =3, (y—3y+1)=0
¥y=3ory=-—1

Ilere, x — 3 and ¥ — 3 satisfy the equation x + ¥ — 6 and x — 3, ¥y — —1 do not satisfy x +  — 6.
Hence, x = 3 and y = 3.
Types of Matrices :

Row Matrix : A 1 X » matrix |a,, a,; @3..a,| is called a row matrix.

A row matrix bas enly one row {and any number of columns).

eg. A=[3 5 —1 4 0]isal X5 row matrix.

Column Matrix : An m X 1 matrix | @33 | i8 called a column matrix.

A column matrix has only one column (and any mumber of rows).

15

70, .
eg A= is a 4 X 1 column matrix.

10

-8
Square Matrix : An n X n matrix is called a square matrix.
A square matrix has the number of columnz cqual te the number of rows.

5 -1 3
For instance [ 11 2 9 | is 3 X 3 square matrix,
-4 0 -7

{(Note : [afj]l w | Tatrix is a row matrix, is a2 column matrix and a square matrix alse.}

Diasgonal Matrix : If in a square matrix A = [ﬂ'yl” « g» We have ay = 0 whenever i # j, then
A is called a diagonal matrix. This is a square matrix in which all entries are zera exeepl
possibly those on the diagonal from top left corner to bottom right corner (principal diagonal).

[(aqy 0 0 - 0]
g @ @ i g
A=|0 0 a3 - 0 |js a diagonal matrix.

|0 0 0 - ay

A diagonal mairix is also denoted as diag |a); @,y a33..a,]
500

g A=|0 0 0| is a diagonal matrix, i.e. diag[5 0 3]
0 3

llere, 5, 0, 3 are the elements of the principal diagonal of the matrix A.

Zero Matrix : IT all elements of a matrix are zero, then that mairix is known as zero
mairix. We denote zero matrix by [(i]
0
0 0 0

mxn OOy . O, . . is also written as O.

Thus, [ ] is a zero matrix. It is a O, _ ; zero matrix.
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4.3 Operations on Matrices
Sum of Two Matrices : If A = |ay| and B = [b,] are both m X n matrices, then their
sum is defined as A + B = iﬂf; s bij'm x g» i-¢- @ matrix obtained by taking sum of the

corresponding elements of A and B.
For the sum of two matrices, they must have the same number of rows and the same
number of columns, otherwise it is not possible to add the matrices. If A and B are both

m ¥ n they are called compatible for sum. In notation [nqi + [by] = lay + by].

L 5 -3 2 1-2 542 -2 7
For instant, ifA=|2 —3|and B=|1 2 | thenA+B=|2+1 3+2(-|3 I
4 —7 -5 4 4-5 -7-4 -1 -11

Properties of Matrix Addition :
(1) Commutative Law for Additon :
If A = [ay] and B = [by] are both m X n matrices, then A + B =B + A,
MNow, A+ B = [.sz‘}.] + [bé.]
= [a‘}- + bij]
= [b,}- + “a‘;‘] (Commutativity of addition in R)
= [by] + [ay)
=B+ A
A+B=B+A
(2) Associative Law for Addition :
For m X m matrices A = !ﬂI]FI"' B= Ibﬂl and C = lf;jl!
(A+B)+C=A+ (B + C).
Now, (A + B) + C = ([a;] + [5,]} + [c;)
= [a‘j + .-5!.;.] + [cﬂ-]
= [(ar}- + b:}-] + ¢y
= la; + [bb- + ¢ (Associative law of addition in R)
= [a,j] + [bij + C{}']
= [yl + (5, + [e,])
=A+{(B+0)
(A+BY+C =A+{B+C)
(3) The Identity for Addition of Matrices :
LntAﬂlagtmx"aud0=]ﬂlmxn be the zero matrix. Then A 4+ 0 =04+ A=A

A+ O =[a]+ (0]

= [ay + 0]
=layl = A (0 is the additive identity in R)
A+ O =|ay
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By commutative law A+ O =0 + A
A+0O0=0+A=A
Thus, O is the identity matrix for addition.
{(4) Existence of Additive Inverse :
Let A = [a.:j]-m w n b€ any matrix. Then we have another matrix I—uu‘,j]‘,,,|I w g S0 that
A+[a) =0, .-
A+ [_a:'j = [a,j] + [—ajj]
= ey = ay]
=[0]
=0 xn
We denote [—a{r-] as —A.
By commutative law A + (—A) = O = (—A) + A,
Thus, —A = 1—aﬂ] is called the additive inverse of A = [aﬁl.
Differemce of Matrices : If A = 1¢I¢-J-| and B = !ﬂﬁl are hoth m * n mairices, then the
difference of A and B is defined as A — B = A + (-B) = |ay] + [—byl = [aﬁ = hﬁj.

2 -3 4 5 4 -2
Emmple3:|fA=[ }andB=|ﬁ 2}ﬂlanﬁndA+BandA—B.

5 2 & 31
z2 -3 4 5 4 =2
Solution : A+ B = -+
5 2 8 31 2

245 344 42 71 2
“15+3 2+1 B+2|7 |8 3 10

A_B=A+(_B)={z -3 4]+[—5 —4 z]

5 2 8 -3 -1 =2
_|2-5 3-4 4+2| |-3 -7 6
5-3 2-1 B-2 2 1 &
1 2
3 5 35 :
Example 4 : Can we add A = and B = ? Give reason.
2 3
4 1
Splution @ llere A is 2 3 X 2 matrix and B is a 2 X 2 matrix. They do not have same

number of rows. They are not compatible for addition. S0 we cannet add A and B.

Product of a Matrix with a Scalar and Properties :

IfTA= ""ij' is an m X n matrix and & is any real number, then the matrix Ikﬂ,ﬁ is called
the product of the matrix A by the scalar £. It is denoted by kKA. Thus, for A = Iaﬂ!, kA = Ikﬂfj].

In KA cvery clement of A gets multiplicd by & (Comparc corresponding result for a detcrminant )
Properties of Addition of Matrices and of Multiplication of a Matrix by a Scalar :

Suppose, A = iﬂ,}l and B = Ib;jl are m X n matrices and k, /| € R, then
(1) k(A + B) = kA + kB (2) (k + DA = kA + IA (3) (ADA = Kk(IA)
(4) 1A= A 3 1A =-A

MATEICES 103



Proof = (1) &(A + B) = kla,; + by
= [ka, + b}
= [kay, + kb

= [kay] + [&b,]
= Kay] + &b,
= kA + kB
(3) (A = (¥lay) (4)
= [(&)) a;]
~ LKiay)

Kla,

= k{H(ay)]

K(iA)

[(—Dayl = [Fay] = —A

(5) DA =yl
Thus, (—1)} A = —A

m

(2) (k+ DA = (& + Dlay]

= [k + Dayl
= [hay + lay]
= [kay] + [iay)
= klay] + lay)
=kA+ /A

1A = [1-a

= [a,_:','-l
— A

4 2 1 0 1 2 -
Example 5 : IfA=|=3 1 =5 T|andB=|4 0 1 —6|, then obtain 3A — 2B,
2 -0 -8R 5 -2 3 4
Proof : 3A — 2B =3A 4+ {-—2)B
4 2 1 @ 1 2 =3 3
=3-3 1 -5 7|+(-2)4 0 1 -4
2 -8 -8 5 =2 3 6 =7
[12 & 30 -2 -4 &6 -l10
=|-% 3 =15 21|+ |-8 0O =2 12
| 6 27 -24 15 4 -6 12 14
[12-2 6-4 3+6 0-10
_|-9-8 3+0 =15=2 21+12
| 6+4 -27-6 2412 15+14
10 2 9 -—10
=[-17 3 -17 33
|10 =33 -36 29
5 4 1 2
Example 6 : IfA=|0 2| and B=|3 —4], then find the matrix X, such that 3A + 2X = 4B.

3 6 & -5

Saolution @ We wish 1o find mainix X such thal 3A + 2X — 4B

{=3A) + (3A + 2X) = (—3A) + 4B
{(—3A + 3A) + 2X = (—3A) + 4B
O+ 2X = 4B — 3A

2X = 4B — 3A

(adding additive inverse of 3A)

(O is the identity for addition)
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. — Ledn
o x=dun -3

(71 2 5 a4
X =443 al+-pjo 2
[ |6 -5 3 6])
Td 8 -15 =129
=-%- 12 -16|+] 0O 6
24 —20 -¢ -18])
[4-15 &-12
=% 12+0 -16+6
|24-9 —20-18
(11 —4 -2 2
=% 12 =-10|=| 6 -5
15 -3 Loy

Transpose of a Matrix and its Properties :

Transpose of a Matrix : If all the rows of matrix A = iﬂgi arc converted into

m X n
corresponding columns, the matrix so obtained is called the tranpose of A.
If A = [a;l, x » i3 @ matrix, then its transpose is [a;], . , i5 denoted by AT or A"
If A = [l o p then AT = [a], o

3 2

For example, if A = 3 V5 2 ,then AT = |45 -1
2 -1 0 2 o

Symmetric Matrix : For a square mairix A, if AT = A, then A is called a symmeiric

matrix. If A = [ay],  ,» then AT = (@4l » n- AS AT = A, so ay = ay for all i and j.

1 3 -5 1 3 -5
Thus, ifA=|3 0 2 [[thenA'=|3 ¢ 2
-5 2 T -5 2

We have AT = A, s0 A is a symmetric matrix.
Skew-Symmetric Matrix : For a square matrix A, if AT = —A, then A is called a

skew-symmetric matrix. In such a matrix AT = [2dy % w+ @ = —a;; for all i and j.

Now, when { = j, then we have aq; = —a;;, for all i,
v 2a; =0
ay; =0, i,
This means that all elements on the principal diagonal of a skew-symmetric matrix are
zero. Here, By = Gag == By = 0.
0 -2 1
For example, the matrix A= | 2 0 -5, then
-1 5 1
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0 2 -l 0 -2 1
AT=[—=2 0 5|==1l2 0 -5|=(-DA=-A
1 -5 0 -1 5 0

A is a skew-symmetric matrix.
Some properties of Addition and Multiplication Regarding Transpose of Matrix :
(1 A+BT=AT+ BT, @@ANHT=A, @ KAT=4AT, ke R
Frool : (1) For m > n matrices A = [ag] and B = [EJI]-]1
AT = [a;] and BT = [5,], are n X pr matrices.
Now, A+ B = [aﬂ- + b{f = [r;'-j-] where Cy = dy + bg-
A+B)T =[]

- [aﬂ + ‘i’j.']

= la,l + [b,)
A+Bl=al+RB!
(2) Let A = [g;]
AT = [4;) and hence (ATHT = [a] = A
ATy = A
(3) Suppose A = |a,]

kA = [frag] = [r:&.] where €y = kay.
{(kA) = [Cj;‘]
= [‘rmjj]
= k[ajj]
= kAT
[2 -1 5]
Example 7 : IfA=|3 2 —4| obtain A+ A" and A — AT,
|6 3 B |
What can you say about the matrices A + AT and A — AT 7
[2 -1 5] 2 3 -6
Solution : A=|3 2 4| Hence AT=|-1 2 3
|6 3 8] 5 -4 ¥
2 -1 5 2 3 -6
Now A+Al =3 2 —d|+]|-1 2 3
-6 3 8 5 -4 8§
(4 2 -1
=12 4 -1
-1 -1 16
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IfFB=A+A'
a 2 -1
Then BT =2 4 -1|=8B
-1 -1 16
Thus, (A + ADT = A+ AT Hence A+ AT is a symnietric matrix.
[2 -1 5 2 3 -6
Again, A—AT =| 23 2 4|—|-1 2 3
6 3 8 5 -4 8
0 4 11
=l 4 0 =7
-1 7 0
let C = A — AT
0 4 -11 D 4 n
cl-|4 0 7 |-¢1)} 4 0 -7
11 -7 © -1 7 0

Cl =—C

(A —ADT = <A — ATy, Hence A— AT is a skew-symmelriec matrix.

cosec B —cufl —cotd  cosecO
Example 8 : Simplify cosec® | _ 0 __ gl Tco8___ 0 o0

cosec® —entB —cot® cosecB
Solution : cosec8 + catD
cotl —cosecB —cosecl oot

_ [ cosec?o —cosec co rﬁi| N [ —cot’0 cotb oo .S'EE.‘H]
| cosecBcott —cosecd —cotB cosect cot 8

_ I cosec’® —cot’0 —cosecOcot® +cotB rosecﬂ}
| cotB cosect — cotl cosect —cosec?® +cot 2@
1 0

T o - 1:|

Example 9 : Prove that if A is a square matrix, then A + AT {5 a symmetric matrix and A — AT is
a skew-symmetric matrix and every matrix A can be uniquely written as a sum A =B + C

where B is a symmetric mairix and C is a skew-symmetric matrix

Solution : FB=A+ AT, then BT ={A+ ADT = AT + (AT =AT+ A-A+AT=-B

* B=A+ AT is a symmetric matrix.

Let C=A—AT

Then €t =(A — AL =AT — (ANl =AT —A=—A(A-Al)=—C
C=A— A"l is a skew-symmetric matrix.

Also A= 2(A+AT+A-AT) = 1A+ aAT) + LA - AT) = 1B + {C.
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A {5 a sum of a symmetric matrix and a skew-symmetric matrix as %B and %C are

symmediric and skew symmetric matrices respeclively.

10.

Conversely let A = B + C where B {5 a symmetric mairix and C is a skew-symmeiric matrix.
BT =B and CT= <

Now Al=Bl+Cl =B -
A+Al=2B A-AT=2C

AtaT o A—AT

B = :
7 2

The expression for A as a sum of a symmetric matrix and a skew-symmetric matrix is

uricjue.
Exercise 4.1
(2 —4 -3 1
IfA=|3 2 |andB=|0 5 | thenfind A+B, A—-—B,2A+ B, A—- 2B.

-1 1 4 =2

[sin® —cos @
ra=|"" """ then obtain A + AT and A — AT,
| cos B sinB

HA=diag[l —1 2]and B=4diag[3 2 1], find B — A, 2A + 3B.

2 2 —7
Solve the matrix equation |:x2] —4|: x} = |: }
¥

¥ 12
(-2 .
If @y = "3 » obtain [a;jjz < 7
1 2 5
IWA=|5 1 1|, tind A— 2A".
30 4

If |ix+y ly} = |i 6 8},1]1&11 find x and y.

-8 3 e
) la-2 c+d 20
Obtain o, b, ¢, d, if sa—b 3a—c| =17 10l
Find matrix A and B, if A+ B = 23 and A — B = 6 3.
9 0 -1 0
8 2 =2
Find matrix X, if 5A— 33X =2B, where A=[4 2| amd B=|4 2
3 6 -5 1
3 1 1 2 -1 0
Suppose A=|—-12 -3 0 |andB=|3 2 —4|and3A+ 4B — X =0, then find matrix X.
0 -1 -12 5 1 9

1gd
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112. 1-“'Lnd.aam;l.E:,ll‘"Z3 4 + 1 51 =7 ol

Multiplication of Matrices :
The product AB of two mairices A and B is defined only if the number of columns of A is

cqual to the number of rows of B,

and B = [&; are two matrices. Then their product

Suppose, A = 1::,;} rjin xp

M X n

nj*

n
AB = [¢yl,,  p I8 defined by, c; = Ea“”"b” =ay by +ap-by + ap-by +..+ a,-b

To vbtain the entry in 7 th row and jfth column of matrix AB, we multiply elements of the
ith row of the matrix A with corresponding elements of the jih column of the matrix B and
then we take the sum of all ithese producis, Thus, for A = l“y]m xpand B = Ib.‘jln X p? the

-

n
product AB = l 2 ag by
k=1

L "
If A= |u§jjmI «npand B = |bij|n x p We say A and B are compatible for multiplication.
2 3 1 -2
Example 10 : If A = 4 5| B = 3 4 | find AB and BA and also show rhat AB # BA.
f2 31 [1 -2
Solation : AB = 4 5|13 4

[ 2013433y 2(-2)+3(4}
- | 1) +5(3) —-4(-2)+35(4)

11 8 )
“ |1 ozs ®
(1 -2 2 3
BA =13 4[4 5
(12y+(=23(=4) 1(3)+{=2)5
| 3(2)+4(4) 33y +4(5)

(10 -7 _
“[-10 2 (i)
Observing results (iY and (if), we can say that AB * BA.
2 -1 1 1 1
Example 11 : IfA=|-3 2 4 |and B =4 -2/|, then {ind AB. Is BA delined ? Why ?
g 3 -5 2 -3

Solution : AB=|-3 2 4 4 -2
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Example 12 : If A = [

Example 13 :

[2(D+(-D4+ 1(2) 2D+ (-1D{-2)+1(-3)
=31+ 2(4)+4(2) 31 +2(-2)+4(-3)
L0 +3(4)+(-53)2 M) +3(-2)+(-5)(—3)

0 1
13 -19
2 9

BA is not delined because, B has two columns and A has three rows.

cos’a Ccosd xin o, crvszﬁ cosp sinfd
, .7 LB = , , and
COSOLSIRTL sin“c casP sinp a‘mzﬁ

o-pP=0@n—- ])%, n € Z, then prove that AB is zero matrix.

Solution : AB

cos’o. COSCL 5N a:| [ caszﬁ cosp sinﬂ}

| cosoLsing sin o casfisinf sin 2

2 2

cos®tcosP + cosc sintz cosB sinB  cos®a cosp sinP + cosce sino sin ZB}

| cosOLsing cos 2B+ sin2ccosP sinp  cose sintt casp sinf + sin’ot sin B

[cosccosP{costcos B+ sina 5sinB) casa sinfi (cas o cos B+ sino sin ﬁ]}

| cos P sintx (cos o cos P+ sina sinB)  sino sin{cosaces B+ sint sin )

[cos ot cosPeos{tt—PB)  cososinfcos (o —P)
| cosPsinacos(a—P) sinosinfeos (o —[3)

[0 ©
0 ﬂ] (c'm'{tt - B) = cos(@n — 1 J"EE - g}

5 2

1 -3 -1 4
IfA= [2 4}, B = [ } prove that (A + B)? # AZ + ZAB + B<.

1 -3
Solution : We have, A = [2 4}

A2=AA

B2 = BB

1 371 -3
2 4]|2 4
[1-6 —3-12
_2+E &+ 16

[—5 —15
L1010
-1 47[-1 4
|5 2]|5 -2
[1+20 —4-8
|—5-10 20+4

(21 -12
=15 24

11
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1 —31[-1 4 _1-15 4+867 [-16 10
AB=\s 4 |ls 2|7 |-2+420 8-8|"| 18 o0

—32 20
s 28B=| g
, , [ -15 32 20 21 -12
AHIAB+B =11 1p|*| 3 o|T|-15 24
, . [-16 -7 _
A2+ 2AB+B2=| 5 o, @)

T A T B

S (A4 B)E =(A+BXA+B)
o 1770 1 0+7 0+2
|7 2]|7 2] " |o+14 7+4
7 2
S (A+B)E = a4 11 (ii)

From (i} and (ii), we can see that (A + B)? = A2 + 2AB + B2
[Note : For the matrix A, A2 — AA and we do not take simply squares of entries of A_]
Properties of Matrix Multiplication

Matrix multiplication has the following properties. We shall assume them without proot.
(1) Distributive Laws ;

M ForA=lagl,,pns B=[bl, xp> C=lcgd,
A(B + C) = AB + AC
(i) For matrices A = [ayl, y o+ B = Ibjlp x nr» €= leyl, «p

(A + B)C = AC + BC
(2) Associative Laws :
(i) For matrices A = [a,|, . , . B=|b], , p C= [cuip X ¢
A(BC) = (AB)C
Identity Mairix (Unit Matrix) : A square matrix in which all elements on principal
diagonal are 1 and the rest of them are 0 is called an identity or a unit matrix. Identity
miatrix is demoted by L

Thus, 1 = [a&-]n < n Where dy = { 1, iféi=j

0, ifisxj

1 is also represented as I, or [,
1 00

e [=|0 1 0)jsadxy identity matrix.
0nn1

e

As this identity matrix is a 3 X 3 matrix, it is denoted by [; , ; or simply by T;.
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ITA=|a then for the identity matrix 1, we have AL, = L A = A,

J'j[u = ar

(Note : A symbol 5&" called Kronecker delta iz used to define L
By= [ 1 if i=j

0 if i+

Thus, T = [8,])

Scalar Matrix : If £ € R, then &I, is called a scalar matrix.
4 00O

Thus, A = B 4 0] s a scalar matrix.
c 0 4

Here £ = 4 and A = 41,.

a h g x
Example 14 : IfA=[x y z],B=|" b f] and C = | ¥ |, then find (AB)C.
g f ¢ z
a h g
Solution : Now, AB =[x y z] -
5§ f «
=lax+ Ay + gz hRx+hy+ 2 g+ A+ ez
X
(ABYC =[x+ +gr x+dy+f g+ fy+ez]|¥
Z

= [(ax + hy + gz x + (Ax + by + £y + (gx + fy + ez 2]
= [ew? + hgy + gzx + By + B2 + oy + gz + iz + o]
= [ax® + by* + 22 + 2hxy + 2gzx + 2f]

m

1 2 -2 5 3 2
Example 15 : If A = . B = 6 1,C=74,ﬁnd32><2maﬁix.){5uchthat

3 4]
BX —AC =0

a b
Solation : Let X =
¢ |

Now, BX — AC = O

P | B s R R P

[ —2a +5¢ -2b+5d -4 -6 0 0
| 6a+c  6B+d | |43 22| |0 O

[—22+5¢+9 —-2b+54+6 00
| 6a+c-43 6b+d-22 | |0 O

112
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—2a+ 5S¢+ 9 =1,
ba+c—43 =0
—6a + 15¢ = =27, (i)
G+ =43 (ii)
. Adding (i) and (if),

‘——_.,-_\———'—

—2h+ 54+ a=10
6+ d—22=20
—6b + 154 = —18 (iii)
6h+ d =22 (iv)
Adding (iii) and (iv),

lge=le=>c=1land a=7

a b 7 %
Henee X =
¢ d

l6d=4=d==+and b =2

1
T3

COSK  —Sinx

Example 16 : Prove that if A{x) = { } then A{C)} A(ﬂ} = Al + |3) and deduce that

Binx  CoOsx

A(c) A(PY) is the identity matrix 1, where &0 + 3 = 2n7, 5 € Z,
—sin [5}

cos

[cosa —sina || cosP
| sinot cosa || sinf
[coscteasP—sinoisin P —cos o sin 5§ — sin ot cos b
| sinccosBreososinP —sinosinPptcosocos B

- AOD A(B)

Solation

[cos (ot+B) —sin (o + )
__.sfn(c:‘.+[3) cos (o + )

= A{0. + [3)

Lo

=|2

1. IfA=[1 _1}B=[_1 D}
o 2 2 1

) ”a+b 4 6 o b 3a
2. Find a4, &, ¢, o, il 3 c+d+2d 1|7 132 2el

If & + B = 2am, A(ct) A(B) (cos2nm = 1 and sim2nm = 0)

Exercise 4.2

o1
and C = |:] 1} then prove that A(B + C) = AB + AC.

1 o -2 0o 5 —4 1 5 2
3. A=|3 -1 0,B=|=-2 1 3 |adC=|=1 1 @, then prove that
-2 1 1 -1 0 2 0 -1 1
A(B — Q) = AB — AC.
2
4. IfA=[1 =1 2], B =|3], obtain AB and BA, if possible.
1
2 0 1
5 IFA=|2 1 3| find A2 — 5A.
1 -1 0
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[3 1
6. HA=|_, 2], find A% — 5A.

[ 0 —!an% cos —sm b
7. Ifa= mn% 0 , then prove that (I, — A) sin® cos@ | = I, + A
[ 2
8 A= ‘”’2 % | then obtain A2,
| —a® -—ab
1 6 7
9. Obtain Xand YifFX+Y=A=|2 5 9| where X is a symmetric and Y is a skew-symmetric
3 4 §]
matrix,
5 -7 -16 —6
10. Fmd a 2 X 2 mairix X such ihat m 13 X = 7 9

0o 1
11. Find real numbers x and y such that (xI + yA]2 = A where A = [ ]

-1 0
1 3 211
12 Find x if |1 x 1] 2 5 1||2| =40
15 3 2| |x
3 4
13, IfA= 1 -1 then prove by the principle of mathematical induction that
2n+l1 —4n
AR = € N
n 1-2n|

4.4 The Determinant of a Square Matrix :

If all the entrics of a square matrix are kept in their respective places and the determinant of
this array is taken, then the determinant so obtained is called the determinant of the given square
matrix. If A is a square matrix, then determinant of A is denoted by | A | or derA,

a1] &2 g3 2] &2 83
For instant, if A = | @31 a1 a1 |, then its determinant iz |A| =] ay @ @23 |.
43] o33 a3 i3] a3z a3
1 5
IfA= |4 slthen A =], ,|=2-15=-13.
Theorem 4.1 : For sguare matrices A and B, |[AB| = |[A[|B|

We will accept this theorem withoul proofll

1 0 0
Example 17 : Find |A|, it A— |0 sit® -—cosB|
0 cos9 sin®

1 0 0

Solution : |A| =0 sin8 —cosB| = 3in?0 + cos20 = 1.
(1 cosB sinD
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Adjoint of a Matrix : TFor a given squars matrix A, if we replace every entry in A by its
cofactor as in | A | and then the transpose of this matrix is taken, then the matrix so obtained is called
the adjoint of A and is denoted by adfA.

If A= [aﬂ-]" w o then adih = [Aﬁ]" w » Where Aﬁ is the cofactor of the element .
2y A3 A Ay Ay Ay
If A= @y Gaz {491 |, then ﬂ(i‘_rfﬁ = AIE Azz A32 .
Gy Gy a3 Az Apn Axp
4 2
Example 18 : For A = 1 5/ find adiA.
_4 2 ﬂ” H|2
Solution : We take A = | . =
15 a1 A

_ Ay Ayl 5 -2
WA A Ap| T |-1 4

[Note : To obtain the adjoint of 2 X 2 matrix, interchange the elements on the principlal

b
diagonal and change the sign of the elements on the secondary diagonal. e.p. if A = [a d} then
e

adjA = [d _b}-]

—
3 -2 3
Example 19 : Find adfA for A= |2 1 -1/
4 -3 2
3 -2 3 Gy oz d3
Solution : Let A= |2 1 =1|=|as a3 ang
4 -3 2 dq1 @13 4
We have A =1 Ay =—8 A5 =—10
Az =5 Ay =6 Az =1
Ay =1 Ay =0 Agy =7
-1 -5 -1
S oadin=| -8B -6 9
=10 1 7

4.5 Inverse of a Matrix :

For an » X » square matrix A, if there exists another 7 X a2 square matrix B, such that
AB = [_ = BA (I is an identity matrix), then B is called an inverse matrix of A. Inverse of A is
denoted by A~

It is clcar that if B is an ioverse of A, then A is an inverse of B.
Theorem 4.2 : If inverse of matrix A exists, then it is unigue.

Proof : If possible suppose B and C hoth are inverses of A,

S AB=1=BA and AC =1 = CA.
Now AB =1
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C(AB) — CIL
(CAB = C
1B = ¢
B=C

This shows that A has a unique inverse matrix.

Note : Remember in chapter 1, we had seen that for an associative binary operation with
identity, inverse is unique. Matrix multiplication of » X » matrices is associative and has identity 1 .

Theorem 4.3 : For a square matrix A, A(adjA) = (adjA)A = |A | L
Prool : We will prove this result for 1 3 X 3 square matrix A.
aj; a4z 93 Al Az Az
SI.IFPUSE A= g8y dar oz |. Then ﬂu‘.{fﬁ = Alz An A32
as1 @i 413 Az Ax Amp
ap @2 My | | A A Ay
g1 @z doz || A2 Axn A
ay] Gz a3z |Ajn Az Am;

Now. AfadiA)

griAn + @A ey anAn Fepzdan FapnAar oA HazAaz anAag
an1Ag ez iz d31Ag) FaAnr + Ao waAs) aopAsg Hagshag
| 8518 + dyafgy +daafny GypAg Ha33Ans +Faasfay dy Ay +asafas +dgsfog

flal 0 0
= & 1Al 0O (by the theorems on determinant)
B 0 |al
1 00
=|A||G 1 O
001
= Al

Similarly, we can prove that (adfA)A — | AL,
Non-singular Matrix : A sguare matrix is said to be non-singular, if it has an inverse matrix.
[Note : If A is a non-singular matrix, then A™! iz also non-singular matrix and (A71y7 1 = A ]
Singular Matrix : A matrix which is not non-singular is called a singular matrix.
Theorem 4.4 : A square matrix A is oon-singular il and only il | A | = 0.

Prool : Suppose A is a noo-singular mairiz and lel B be ithe inverse ol A,

AB =1
|AB| = [1]
|A[IB|=1#0
|A|# 0

Conversely, let |A| # 0. 50 ﬁ exists.
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Let B =

|

=

Then AR = A ﬁade] = o (AadiA) = a7 | AL
AB =1

Similarly, we can prove that BA = 1.
B is the inverse of A.

-

A i5 & non-singular matrix.

(Note : Inverse of matrix A is A™! = 757 adjA, if it exists.)

2 3
Example 20 : Find the inverse of A = |:5 4 :|, if it exists.
2 3
Solution : Here |A| = 5 3 =8+ 15=23=0.
A™T1 exists.
4 3
MNow, affd = _5 9
_ 1 .
So, A7l = TaT adiA
1|4 3
B |52
a4 3
AR I
SOATT = 5 2
23 23
5 B 1
Example 21 : Find A7 ifA= |0 2 ]
4 3 -1
5 B 1
Solation ¢ [A] =0 2 1 =5(—2 —3)— R0 — 4} + {0 — &)
4 3 -1
=-—25+32—8
==120
s AT exists,
-5 11 6
adiA = 4 49 -5
-8 17 10
. -1 = L
A Ihla‘#‘q
-5 11 6
=L 4 O -5
-8 17 10
5 =11 -6
=4 9 5
g -17 -10
MATRICFS
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Some Tmportant Results :

(1)

S0,
S,

(2)

Again, (ABYB1A™H

For a square non-singular matrix A, the value of the reciprocal of the determinant
ol A is the same as the value of the determinant of the inverse of A.

This means [A™']| = |[A 7L

Proof : A is a non-singular matrix. Hence | A| # 0 and A7} exists.

AaTl =1
| AAT =T
Al AT =1
— |
AT = A=)
AT = AT

if A and B are non-singular matrices, then AB is also non-singular and
(AB)™1 = B71A71,

Proofl : A and B are non-singular, so A7l and B™! exist and |A |2 0, |B| % 0
|A[|B| # 0

|AB| # 0

AB is a non-singular matrix.

A(B(B™1ATT)

A((BB HA™)

= A(IA™D

= AA™!
=1

Similarly, we can prove (B TATI)(AR) = |

Hence, (AB)™! = B™1A™!
(3) For m x n matrices A and B, (AB)" = BTAT,

(4)

We shall accept this result witheut giving proof.

AT is non-singular if and only if A is non-singular and (AT = (A7HT,

Proof : A is a non-singular matrix & |A| # 0
AT #0 (1a]=1AT)
& AT is non-singular.

Again, AATI = ATlA =]

So, (AATHT = (A7) = [T

(ATHTAT = AT(A™HT =1 =3

(AT = @y

118
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(5) adiAT = (adjA)”

Proof : Let A = [a#.

s AT = [a;]

adiAl = [A,] @
But adiA = [A)]

(adiA)T = [A, (ii)

g
From {i) and (i), we get adiAl = (adiA)T

4.6 Row Reduced Fehelon Form

We have seen some operations like R, R (k) and R‘-j(k] as applied to 8 determinant. Similar

5
cperations [or columns also can be applied.
The application being similar, we will consider row operations.

(1) I the operalion R}j is applied lo identity matrix 1, the resulting matrix is called
an glementary matrix Ej.

(Z) If the operalion R4) is applied 1o idenuty malrix I, the resulling mainx 1s called
an clementary matrix E (k).

() 1f the opcration Ry(£) 1s applicd to identity matrix [, the resulting matrix is called
an elementary matrix E#{k}.

Applying R}, to matrix A is the same as finding product T;;, A for any matrix A.

1 2 3
LetA=2 1 4
21 6
21 4
R, gives [1 2 3 (i)
21 6
10
Also Ey 00
01

0
1
0
¢ 1 of1 2 3
EHA—[100 2 1 4f- (i)
2 1 6

(1) and (ii) prove our assertion.

LAV BT R o ]
i B
[= IRV

Similarly any slementary operation R{F"
A by E&-, E; (k) or E:-j(k) respeclively.
For column operalions post-rnultiplication has o be carried oul.

R(%) or Rg(k) on malrix A is equivalent to premultiplying

Now we define a reduced row echelon matrix. A matrix is in redoeed row cchelon form if

{1) The first non-zero eniry of each row called the leading entry is 1.

(2) Each leading entry is in a column to the right of the leading entry of the previous row.

{3) A row with all entries zero is called a zero row. All rero rows occur below rows
with at least one eniry non-zero (called 8 mon-zero row).
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(4) The leading ecniry is the only non-zere eniry in its column

|
0
0

a0 O 1 00
1 0,10 O 1 0| are in reduced row echelon form.
0 1 DO OO
A result :

The row reduced form of a non singular matrix is 1.

W can obtain inverse of & non-singular matrix as follows :

Write A =

IA.

Apply elementary row operations on A and 1 so that A on left-hand side is converted o i1s
reduced row echelen form namely 1, (being non-singular).

Then, we will have an equation like this I = PA,

where 1 gels converted to P by elementary row operalions same as on lefi-hand side matrix A,

Then P =

AL

How to get row reduced echelon form of a mairix A 7

(1) {a)

{b)

(<)

{d)

Find the pivot, the first non-zero entry in the first column,

1 2 3
For, |0 6 2.1 is the pivol
3 4 35

If ncoessary interchange rows so that the leading entry in the first row (5 non-zero.
o1 2

2 1 2|. To have pivot in the first row, we will apply R, or R,.
1 3 3

3
1 . we will get 1 3 3 as a first row with
l

| SEI F B A%

1
For instant, if we apply R, thenin |2
0

| as a pivot.
Multiply each element in the pivot row by inverse (reciprocal) of the leading entry,
s0 that leading entry becomes 1.
3 51
In 2 1 3| leading entry is 3. S0 we moltiply each element of the first row by -% to
4 1 2

get 1 % % as the first row.
1
So the matrix will be | 2

=
3
1
4 1

[ I FFRE b

Add multiples of the pivot row to each of lower rows so that every element in the
pivot column of lower rows becomes 0.

We apply R,,(—=2), R4(—4) to the matrix which we have at the end of (¢). The

1 1

matrix will become with first columno (.

LI
mh |~ wha
Wi el ]

0
0 0

124}
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2) (a)
(b)
()
(X)) fa)
{b)

(<)

Repeat the above procedure from step (1) ignoring previous pivot row.
Continue till there are no more leading entries to be processed.

Now the matrix becomes a triangular matrix having zeroes below principal diagonal.

After performing some operations on the maftrix cbtained in (1)(d), we have matrix

5 1
1 5 3
asU]_]
00 1

Identify the last row having leading entry equal to 1. Call it the pivot row now.

Add mulliples of this pivol row 1o each of the upper rows untlill every element above
the pivot becomes 0.

Moving up the matrix repeat this process for each row,

Now performing RSI(—%) and R;,(1) we have,

1 20
D01 0
O 01
1 00
Now applying RZ](—%], we have |} 1 0| ie, we get 1.
o 01

Thus performing operations on A = [A, we get I = PA. Here P = A7)

Let us understand by an example.

n -1 1
Example 22 : Find inverse of (|3 =3 4| by elementary row operations.
2 3 4
0 -1 1 1 0 0][0 -1 1
Solution : (3 -3 4|, =101 0|3 -3 4
2 -3 4 oo 1)2 -3 4
(2 3 4 00 1
¥ 3 3 4 =]01 O0|A (R3;) (To bring leading eniry non-zero)
0 -1 1 1 00
(1 -2 2] oo 4
<~ |3 3 4f=|o1 0|A Ry(1) (To make leading entry 1)
0 -1 1 L 00
- ) L
1 -3 2 (] 5
_ _2
0 3 =2|=(01 -$]A Ry2(=3)
0 -1 1 1o 0
_ ) e
-3 2 a0 0 K3
a 1 —% = |0 % 1A Rz(‘%) (Leading clement of second row is made 1)
o -1 1 1 0 0
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Example 23 :

Solution

We shall

Example 24 :

3 L
-5 2 a o0 >
| —% =19 % -1\ a R,4(1)
_1 i _
0 3 | _1 % 1
_3 1T 1]
3 2 o 0 3
1 _% =0 % -1 A R4(—3) (Leading element of third row is made 1)
0 1 -3 =2 13
_3 _
5 D 6 4 3
= - 4
1 0|=|-4 =2 3 | “31(3]- Ry, (—2)
0 1 -3 -2 3
a0 (] 1 =1
1 0| _|4 2 3|a Rm['%]
01 -3 -z 3
0 1 -1
=4 -2 3
-3 2 3
1 4
By using elementary operations, find the inverse of A = 3 ol
: We lake A = [A.
use elementary row operations on this matrix equation.
4 1 4
2[=lo 1|4
4 1 0
—10] = -3 1A R;,(—3)
41 [1 o}
3
= R\~
J-la 5 (-3
- [ 2 4
0 BT
1T _a|® Ry (—4)
- L 10 10
L1l Z
1 _ 3 3
A L
10 10
5 8 1
Obtain the inverse of matrix A = |0 2 | | by reduced row echelon method.
4 3 -1
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Solution : We write, A = TA

(5 8 1 1 0@
02 1]=(o1 0la
4 3 -1] |0 01
[1 5 27 [1 0 -1
02 1|l=]0o1 0|A (Ry,(=1))
4 3 1] [0 0 1
[1 5 2 1 0 -1
g 2 1]=10 1 0A (R;;(—4))
0 17 -9 <4 0 5
- 1T s
1 { 3 1 5 1
o0 2 1|=|o 1 ola [Rn(ug-])
a -17 -9 -4 0 5
- - s
1 0 —F 1 f 1
(r:(4)
o0 —-17 -9 -4 0 5
_ _ [ 3
1 0 —% v -7 -
1
o1 Li=[o % ofa (Ry5(17))
0 0 —3] -4 2 s
(1 0 o] [5 -11 —6]
g1 4 o 1 o
. 21 = 1%? A (Ry;(—1))
00 -z |4 F 3]
(10 o] [5 -11 —6]
1 17
00 5| [4 % 5
[1 0 © 5 -11 -8
< o1 o= 9 5 | A (R4(—2))
0 0] B —17 =10
5 <11 -6
© 1=A1A where Al = |4 9 5
&8 -17 -10

1
1
0
1 5 2 1 0
Splution : Wewrite |1 1 7] = |0 O A
0 J 0 0 1
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R, (~%)

le (=35)s st (3)

Ry (4)

Ry, {%) Ry [:.%'3'}

Unique Solution of a System of Linear Equations Using Inverse of a Maitrix :

Suppose, ayx + a v+ az = Ay
ax + 5y + gz = by

is a systen of three linear equations in x, ¥ =z

If we take, A = ay ay s X =|y|and B =

then the sysicm ol cqualions can be wnitlen as, AX — B.
[f A is 2 non-singular matrix, then Al exists.
Now, AX =B

ATNAXy = AT'B

(A7la)x = A lB

1IX=A"lB

X=A"B
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4| A |
Suppose, ATIB = | py |, then |y | = | 22 |-
Fiz z 3

Thus, x = p, ¥ = ps, z = p3, is the unique solution of the given system of linear
equations.

[Mote : This rasult is also true for a system of two linear equations in two unknowns, )

Example 26 : Using matrix method, solve : x — 2y = 4 and —3x + S5y = 7.

1 -2 |x 4
Solution : The system can be expressed as {_3 5 ] { y} = [_.J

1 -2 X 4
or AX =B, where A=| _, 5 |,X= y ad B =| -

I -2

Now, |A|-| 4

|—5-6——1#U

AT exists,
Hence, the systern has a unigue solution given by A7'B = X.
5 2
Now, adfA = [3 1]

S0, ATl = 5 adjA

=_L[5 2}
131

20+ 14
—12+7

NE M

S x = —6, ¥y =—5 is the required solution.

Example 27 : If the system of equations x + y + =3, 2r —y —z =3, x — y + £ = & has unique
solution, then find i

Solution : The system of equations can be expressed in the matrix form as,

1 1 1]« 3
2 -1 -1||»|=|3
1 -1 1 I 9
1 1 1 X 3
LetA=|2 -1 -1|,X=|y|, B=|3]|, then the system of equations is AX = B.
I -1 1 z 9
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3.

1 1 1
2 -1 -1

Now |A| =

=2-3-1=-6#£0

o A7 exists and hence the given system has a unigue solution.

-2 =2 0
Now, afiA=|-3 D 3
-1 2z -3

ATl = L adiA

2 2
T
=—|3 v 3
-1 2 -3
Now, X = A”'B
-2 =2 0][3
N
. ~1-3 0 3|3
z -1 2 -=3]|¢
[—6+(-6)+0
- 1| _
== 04+0427
| -346-27
[—12
=L 18
—f
|24
2
=|-3
7 4

So,x=2,v=-—3 aund z = 4.

Exercise 4.3

Find the adjoint for the following matrices :

5 2 |la ¢
M |y Pils 4

1 1
HfA=|1 0 , find A7V if it exists.
31

— b e

[ sin®  cos B

If A =

—cos B sin E':|’ prove that A~ = AT

3)

=11 —D—- 12+ D+ 12+ 1D

4)

5 B 1
0 2 1
4 3 -1
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1 0 3
4. MA-|g 4B,
P
5. Fu-rA=|: i|, show
r X
3 5 6
6. A=, ,,B=|,
5x
7. Find xe RifA= g
8. By using reduoced row
1 2
M 12 4
9,
(1) I x+4+5=0
llx — 2y =I5
10. Use matrix method e

(1) 4x—3p+2z—4
Ix—2y+3z=238
dx +2y —22=2

Miscellancous Examples :

2

Example 2B : For A = [_1

Solotion : Now, A = [

m

2 3

2

4], verify (ABY™! — B~1a™L,

that adi{adiA) = A.

9

s} then verify (AB)™! = BT1A™L
10

7 and | A | = 25.

echelon method, find the inverse of the following matrices :

(2) [2 _,_.} |1 2 3 Wl-1 3 0
31 1 oD =2 1

Solve the system of equations by matrix method :

(2) 5xa—Tv=12
Tx—5v=171
solve the following system of equations :
2) x+2y+:z—-4
x—y—z=10
—x+3y—z=-12

3

2], prove that A — 4A + 71, = O and hence obtain A™".

|

1 2

2 312 3 703 1 0

AP —4A+ 7, = Y Y Y B I P
112 -8 -12 70
"l 1| te 8]0 7
[ 1-8+7 12-12+0
T | 4+440 1-B+7
[0 0
oo
=0

2 3
Here, |A| = 1 3 =4 +3=7F0
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A is a non-singular matrix, Elence A~ exists,
Now, multiplying AZ — 4A + 71, = O by A7 on both the sides, we get,
ATL(AZ -4+ 71,)=A"10
LA A —aATTAY AT L) =0
(A7laA —dl+7AT =D
TA—41+7A71 =0
ATl =41 — A

ATl = 1ar — Ay

o 23]}
{tH]

-~1|--

Il

‘-4|!—'

-3
=l
o e
2 _3
_ |7 7
T2
7 7
1 2 2
Example 29 : IT A = 21 2,thc|1 prove that A2—4A—513=0and hence obtain AL,
2 2 1
1 2 2
Solution : A=[2 1 2
2 2 1
1 2 2] 2 2 1 2 2 1 00
AZ—4a—5, =|2 L 2[|2 1 2/ 4|2 | 2|_5]0 1 O
2 2 1]|2 2 1 2 2 1 00 1
[ 8 8] -4 -3 -5 0 0
=8 9 8|+|-8 4 -8+ -5 0
8 8 9| |-8 —4 6 0 -5
[0 O 0]
_lo oo
0 0 0]
=0
1 2 2
Now, [2 1 2|=1(=3)—2(-=2)+ 2(2)
2 21
=—3+4+4
=5%0
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Now, mulliplying A2 — 4A — 51, = O by A™! on both the sides,

we have,
ATAY -4t A -5 lIp=A"10
(ATlA)A — 41, - 5AT1 =0
1;A =41, = 5471
A =4l = 5A7]

. -1 _ 1
oo AT = LA - 4Ty
1 2 2] 1 00
=§‘212-4010
2 2 1] 1
M1 2 21 [4 0 ©
=é{212+0 4 0
1z 21]]o o —

1-4 240 2+0

=3 (240 1-4 240
2+0 240 1-4
-2 2 2
5 h] 5

_ |2 _3 2

o 5 5 5
2 2 _3
5 ] 5

1 0 0
Example 30 : Find the inverse of |0 coxa  sin

0 sina —-cosa

1 o L )1 &2 43
Solution : Let A= |0 coso sine | = a2 a2z ax
0 sinax —costz @y 3z U3y
1 D 0
A | A | - D o8 O _S'm 0 = —COSZG — anza = _l ?(-_ 0
0 sinot —rosc
AT exists,

Cofactors of the elements of A are,

Ccos oL SO

Ay = DT —ees | = —CostO — sinte = =1
14 1 sinc
Ap =) 0 —cosa =0

m

o AT exists.
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1+ 3 0 covro
Ap =D 0 sinc =0

Sil“l‘ﬂlaﬂy, Az] - ':}, Azl — —(:USO'., AES — —xin(k

-1 0 0
aedih = | 0 —eosot —siho
0 =-sina coso

_ 1 .
ATV = = adiA

-1 a 0
= _—IT 0 —wwosx —sinde
0 -—-since s
1 0 0

0 coso sinoe
£ sinQ —cosQ

[ane : If A™! — A, then such a matrix said to be an idempotent matrix. |

Example 31 : Find the equations of lines passing through (2, —1) (4, 0) and (—1, —2), {4, 1) using

determinant methed. Find the point of intersection {if it exists) using matrix method.

x v 1
Solution @ The equation of the line passing through (2, —1) and (4, O¥is [ 2 -1 1] =0.
d 0 1
W-1)—wW-2y+4=10
—x+2p+4=1
x—2v=4
x v 1
The equation of the line passing through (=1, =2}and (4, Dis | -1 -2 1| =10
4 1 1

LB — =5+ T=10
—3x + v =7
Ix —5s=7
The equations of lings are x — 2y = 4
x — =7

The systcm of cquations can be written in the matrix form as,
1 =2||=x 4
3 5||»| |7
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1 -2 x 4
or AX = B, where A = , X = y and B = .

3 -5 7
1 =2
Now, A| = 3 _5‘=—5+6=1¢0
s AT exists,
-5 2

-5 2
:|.Hence A_IZﬁadeZ |: ]

““F“:[ 31

-3 1
Now, X = A”'B

HE=HIE

[—20+14
=12+ 7F

- 3]

S x=—Band y = —5.

.. The point of intersection of the two lines is (—6, —5).

Example 32 : Does the system of simultaneous lingar equations,
x+3y+d4z=8 2x+ y+ 2r=15, 5x + y+ z=7 have unique selution ?
1f =0, find it using matrix method.

Solution : Writing x + 3y + 4z = 8
2x+y+2z=75

Sx+y+ z=7 in the matrix form as

1 3 4| = 8
21 2||y|l=|5
5 1 1 z 7
1 3 4 X g8
letA=|2 1 2|, X=|y|and B=|35
511 z 7
The svstem is AX = B.
1 3 4
Now, |Al=|2 1 2| = 1(=1) — 3(-8) + 4(=3)
5 11
=—1+24—12
=11 &0
A7) exists.

The system has a unique solution.
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Ap=—LAp=8A="3
Ag) T2 A3y T 6, Ay = 3

-1 1 2
adia =8 =19 6
-3 14 -5
R
Now, A7 = 157 adiA
-1 1 2
-1 - L -
ATl=L18 -19 &
-3 14 -5
As, X=ATB
X -1 1 27][%
y =ﬁ B8 -19 6|5
z -3 14 5|7
[ —B+S5+14 ]
= 7| 64-95+42
| 24+ 70 - 35|
[11
|
=17 11
11
1
=1
1

kl

[ sin®  cos©
IfA= |, prove that A~1 = AT, Also find AAT,
| —cos®  sin®
2 3 -1 1
IfA= 5 2] prave that A~ = A
(6 7 . 5 -2 _1
1f.:!~.=_H g|and BTl =1 o . [ find (ABy L.

m

Now, taking the matrix A = [.:;9.]3 w 3+ WC have cofactors ol the cnirics of A as,
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7 -3 -3 5 8 1
4. A '=|-1 1 O|andB=|0 2 1| find (ABY",
-1 9 | 4 3 -1

2 2 21 .
5 WA= 2 5 and B = 1 2,ﬁm:lr-] AR,

2 -3
6. Prove that If A? — 6A + 171, = O, where A = [1 4} and hence find A7
-1 2 0
7. IfA=|-1 1 1|, prove that A7 = A2
0 1 ©
1 1 1
8. ForA=|1 2 -3 prove that If A3 — 6A% + 5A + 111; = O. Using this matrix relation,
2 -1 3
obtain A™L

30 30
. IT A= [4 3:| and B = |:_4 3}, then oblain A2 + AB + 6B withouwt multiplying the given
matrices.
10. Solve the system of equations by matrix method (if unique solution exists).
M 3x—35y=lLx+2yr=4 NDix+dp—5=0,ry—x—-3=0

11. If the following system of eguations has unigue solution, then find the solution set :

_ 2 & 3

(1) Zx+y+z=2 @) Ty *+I-l0

x+3y—=z=3 x+_}’+z 10

_ 3 _Ll,2_
Ix+yp—2:r=6 P J"+Z 13 oz = 0)

d b
12. ForA = L l+bc], find (&2 + bc + 1)L, — aA”",

[H

13. Two intersecting lines have slopes m, and m, and their y-intercepts are ¢; and ¢, (m; # m,)

respectively. 1Jsing matrix, find their point of intersection.

14. Find x € R,ifA=[2; 92] and |A | = 3.
1 0 2)[x

15 Findx€ R, if[x =5 —11|0 2 1||4|=0
2 0 3|1
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16.

17.

18.

19,

20.

1.

21.

23.

24.

m

1 -1 2
Express (2 1 3| as a sum of a symmetric matrix and a skew-symmetric matrix,
4 -1 5

[+ frg O o -
If A = [ cost s } prove AAT = I Deduce A~ = A",
—&m 4 ooy O

If for square matrices A and B, AB = A and BA = B, prove A2 = A and B2 = B.

If B is a squarc matrix and BZ = B, then prove that A = T — B satisfies A2 = A and
AB = BA = Q.

1 1 3
fFa=|35 2 & |, prove A3 = (3. {See that A? = (), even though A # ()
-2 -1 -3

A is a2 3 X 3 squarc matrix, prove that, | adiA| =A%
Find matrix A and B such that A # O, B # O but AR = O.

cos oL SR

If A(Q) = [ ] prove A(C)) A(—C) = L

—sin cosce

Sclect a proper option (a), (b), (c) or (d) from given options and write in the bex given

on the right so that the statement becomes correct @

Section A (1 Mark)

(1) Ais a3 X 3 matrix, then |3A] = ... | A [}
(a) 3 (b} 6 (<) 9 (d) 27
(2) f A = [agl, ., such that a; = 0 for § # j then Ais ... (a; # a;) (n > 1} -
(a) a column matrix {b) a row matrix (¢) a diagonal matrix (d) a scalar matrix
g 0 -1
(1) A=|0 -1 0], the correct statement is ...... . =
-1 O 0
- . _
(a) A™" does not exist (b A=(-1)14
(c) A2 =1 (d) A is a diagonal matrix
(4) Ais 3 X 4 matrix, if A'B and BA" are defined then, B is a ...... matrix. -1
(@) 4 X 3 (b) 3 X 3 (©) 4 X 4 (d) 3 X 4
(%) If A is skew-symmetric 3 > 3 matrix, |A] = ...... . L1
(a) 1 (b) 0 (c) —1 (dy 3
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Section B (2 Marks)

(6) The system of equations ax +y+z=a—-lL,xt+taw tz=a—landx+yptar=a—1

does not have unique solution if ¢ = ... ]
(a) 1 or —2 {h) 3 (c) 2 (dy —1
a b x ¥
(M IfAa=], _|andA?= v o |-then x =y = =l
(@) x =a® + b2, p=a2 — H? (by x = 2ab, y = a* + 42
) x =a? + 5%, vy =uab dyx=a + 5% y=2ab
(%) If o and B are not the multiple of % and
cosuL cosasine | corpB s:‘nﬁgﬂsB _(0 ¢ then gt — B is o [
cos, sing sirfo sinfeosp sin P 0o
(a) any multiple of & (b) odd multiple of %
)0 (d) odd multiple of 7T
x 0 2 -4 35 21
(9 If 1 y| |3 4|76 3| |2 l,tl‘u.:nx— ...... s V= e ]
(ayx=3,y=12 (b)x=3,y=—2 (gdx=-3,yv=-"2 (dx=-3,y=2
1 -1 1 4 2 2
(M inverscof A= |2 1 3]s lJﬁ -5 0 cgf,then O = ... £ ]
1 1 1 1 -2 3
(a) 5 {h) —5 {c) 2 (dy—2
Section C (3 Marks)
L1
(11) If AB = BA andA=|:0 1i|,thcn]3= ...... : =
X x Xy x x x
(@) y O b g & © | y |,
1 3
(12) IfA = [3 4] and AZ — kA — 51 =0, then k = ... . ]
(a) 3 {0y 7 () 5 (49
1 3 2|1
(Il x 1J{0 5 1||1| =0, then x = ... -
0 3 2| |x
-9+ 33 1+J51 5+ J53 -7+ .35
(a) 2958 & 2L © 2% (¢ T8
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0 2y z
(aMatrix A=|x y —z|ifAAT =1 then (x 2 2) = (g ooy d (B R 2> D)
xr —y¥ z

2 s -1 -8 =10
{IS]IFA[ _ﬂ}— 1 -2 -5 |, then A= ...
9 22 15
2 1 1 5 -2 2 -l 11 o
@|np —3 4 (b1 O {c)| 1 D {d} 2 3 4
-3 4 -3 4
cosl —:EHZTE_
eTFA=| > ® |, then A3 = .....
sin?’T“ c:ua‘sz
01 [1 0 11 0 0
b d
{a) L 0] (b} 0 1} {c) L’ 0} { )[1 J
-1 & o 1 2 5
11 7)1Check, whether l]_l 1 =19 14 |isaninverseof A=|3 1 1|, if so, then ¢¥ =
2 6 =5 4 2 1
{ay —3 (by 2 {c) —5 {d) not exists.

w

Gammar>

We have studied the following points in this chapter :
as [ ] ot { }is called a matrix. The numbers arc the clements of the matrix.
then they are equal matrices. A = B — [ay.] = [bé,-] — @y = f;q Vi j
matrix,

number of columns, otherwise it is not possible o add the matrices.

[, + [B] = la; + b

&

1. Muairix : Any reclangular arrangemenl ot an array ol numbers enclosed 1o brackels such

Z. If two matrices have same order and corresponding clements arc same in both the matrices,

3. Types of matrices : Row matrix, Column matrix, Square matrix, Diagonal matrix, Zero

4. Som of two matrices : I'wo matrices must heve the same number of rows and the same
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10.
11.

12.

13.
14.
15.

16.

17.

18.

19,

20.

21.

Properties of Matrix Addition :

{1) Commutative lLaw for Addition

¢2) Associative Law for Addition

{3) The Tdentity for Addition of Matrices
{4) Existence of Additive Inverse

Product of a Mairix with a Scalar and Properties :

(1) IFA = and £ € K, then for £ € R, &A = [karj]m et
(2 A+ B)Y= kA + kB where A, B are matrices and &, f e R
(3) (kDA = &(IA)

) LA =A

(5) (—NA =—A

[a{-}-]m ¥ R

Transpose of a Matrix : A = [“r}']m w p» then transpose ol A s Al = a' = [aﬁ]n %

Symmetric Matrix : For a square matrix A, if AT = A, then A is called a symmetric matrix.
Skew-Symmetric Matrix : For a squarc matrix A, if AT = —A, then A is called a
skew-symmetric matrix.

(DA+B =AT+B", @AY =A @) (k)" =kAt

Multiplication of two matries : If the number of columns of A = the number of rows of B,
then the product AP is possible.

Identity (omif) matrix : In a square matrix, if all elements on principal diagonal are 1
and the rest are 0, then the matrix is called an identity matrix, denoted by 1.

De¢ternminant of a square matrix A is deonted by | A |
|AB| = |A||B| where A and B are square matrices.

Adjoint of 2 matrix : If we replace every entry of a square matrix A by its cefactor and then
tranpose of this is taken, then the matrix so obtained is the adjoint of A denoted by adfA.

Inverse of a matrix : For two square matrices A and B; if AB = BA = I, then they are
inverse of each other.

Nop-singular matrix : If the inverse matrix of a square matrix exists, then that matrix is
called a non-singular matrix. Detetminant of a non-singular mattix is 2 non-zero real number.

Inverse of A is A™! = ﬁ (adiA), A| =0

A~! can be obtained by elementary rows (or column) operations on the matrix A. (Symbols of
the opcrations arc as determinant.)

Echelon Method of finding inverse of a matrix : Take matrix cquation A = 1A, now
apply a scquence of clementary row (or column) opeeations on A on L.H.S. and same to I,
then A of L.ILS. will be converted into 1 and 1 on R.IL5. will become A™! as 1 = AT1A.
This method of finding inverse of matrix is called reduced row echelon method,

Solution of a system of simultanecus linear equaticns can be obtained by matrix.
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CONTINUITY AND 5
DIFFERENTIABILITY

Do not worry about your difficuliies in mathematics.
I assure you that mine are greater
— Albert Einstein

The last thing one knows when writing a book is what to put first.
— Rlaise Pascal

5.1 Introduction

We introduced the idea of limit in standard XI. An intuitive approach and graphical
understanding helped us to grasp the idea of limit. At several places, we mentioned the word
‘continuous’. What is a “conlinuous funclion® 7 We will now try 1o learn the concepl of conlinuity
which is very uscful to study limits and it links limits and diffcrentiability. Look at the graph of

Fixy=[x], x € R.

We cannot draw the graph of the function Y
without lifting the pencil from the plane of the 3 A
paper. At cvery point on the graph, with 5
integer x-coordinate, this sitmation arizes. The
1 —_—

samc is the situation with the graph of signum

i X
function -3 -2 10 1 2 1
-1
fix) = -1 x=0 -
0 x=1 3
1 x>0
or
lxl Figure 5.1
Jix) = { - x#E 0D
0 x=0
Y At x = 0, the graph *‘jumps’.
3 Here lim Ffix}=-land Lm jf(x)=1.
¥ = (- £ — 4
2
; y=1 So, lim f{x) does not exist. In the
x—=0
i 1 _12 | O ] 2 3 * X example of f(x) = [x] also, we infer from the
- . .
a1 graph, lim [¥] =0, lim [x] = L.
+ =2 - 1—- = 1+
43 S lm [x] does not exist.
J X =31
Figure 5.2
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5.2 Continunity

. 4 _4
Consider the function f{x} = f_z xF 2
5 x =2
tHence, f{x} = Ix + 2 x#2Z
5 =2

A~

o FHere, the graph of the function consists of
(aB — {P}) © {Q}

=
m fC)= lim f() =4 ;
X —2- r— 2+ -
ljm2 fixy=4
o Figure 5.3
But f{?} =3

S dim filx) F F(2)
x =2

Elere alzo the praph of f(x) cannot be drawn withont lifting the pencil from the plane of the
paper. This is the idea of continuity. The graph *breaks’ or is ‘not continuous’.

Let us now give a formal definition.
Continnity : Let f be a function defined on an interval (g, &) containing ¢. ¢ € R

If m f(x) exists and is equal to f(c), then we say f is continuous at x = ¢,
X —» L

In other words, if lim J(x) and Ilim f(x) exist and are equal to f(c), we say [ is
X - G+ K= 0=

continnous at x = c.

o S is continuous at x = ¢ &  |lim f(x) and lim Jf{x) exisi and

T = O X =3 0—
im f(¥) = Lim f(x) = f(c).
Xt X —%C—

If f is not continuous at x = ¢, we say f is discontinuous at x = c.
That fis discontinuons at x = ¢ in a domain may occur in one of the following situations.

(1)  bm  fFix) or lim #£(x) does not exist,
x—re—

1o+

(2 m_fG)and lm_ f(s} exist but are unequal.

(3) IEmH F(x) and xiﬂ}_‘_ F(x) exist and are equal.
ie. x;hfr;+f(x) = ximc—f(x} = xﬁ_l')ﬂcf(-"']

but £ is not defined for x = ¢ or lilﬁcf[x) # )
X —

If fis defined at an isolated point, we say it is continuous at that peint. Consequently a function
defined on a finite set {x,, x;, x5,..., x,} is continuous.

We say fis continuous in a domain, if it is continuous at all points of the domain.
IT iz delined on [a &), then fis conlinuows on [e, £] 0
(1) £1is continuous at every poinl of (g, &)

(2) lim  fixy = f(a) (f is not defined for x < a)
x =t
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(3) bm fix) = f(B (f is not defined for x > b)
x—b—

Example 1 : Examine the continuity of f: B — R, f(x) = 2x — 4 st x = 3.

Solution : f(x) = 2x — 4 is a polynomial in x.

ki
lim F(x) = lim (2x—4)=2.3—4=2 ]
r—1 r—3
4
Ff(3) =2-3-—4=2 )
lim £(x) = £(3) PR 20, sx
x—3 =6 -4 220 4 &
Fis continuous at x = 3. .4y 4
The graph is a straight line and it is %
‘unbraken’.
Figure 5.4
Example 2 : Examine comtinnity of f/ : R — R, v
fly=xratx =2 4
6»-
Solution : lim f(x) = Lim x> =4, f(2) = 4
.:—pzf =2 d -2 4+ (2.4)
(f (x) = x* is a polynomial) 24
- — _._5 s i i i 1 i . X
xhiPz f&x) = 1@ -6 -4 -2 CI“ s 2 4 A
J(x} = x° is continucus at x = 2. + -4
The graph is ‘conlinuous’. + 6
L 4
Figure 5.5
Example 3 : Is /: R = R, f(x) = | x| continuous on R?
¥
Solution : Here, we have to examine A
continuity of | x | on the domain. 6T
f(x)=|x|={ x x=Z0 a1
—-x x < 0 S
X
Let ¢ > 0. For some & > 0, -6 -4 20 2 4 6
+ -2
we can have ¢ — & > 0 ﬂet5=%} )
f@=|x|=xinfc— 8, c+ B) (e —8 >0 ls
lim fx})= lim x=c, flcy=lc]=clc>0) v
£ r=c Figure 5.6

lim 7Gxy = f(c)
X

Fis continous for all ¢ > @
Let ¢ < 0. There exists some & > 0 such that ¢ + & < 0,
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fD=|x|=—=xinfc— 8 c+ &

Gim ()= lm ()= . fl0) = |e| =~

lim £ = fie)
E—rC

F iz continuous for all ¢ < Q.

Iim (x)= lm |x|= lm x=20
—’U""f .t—H:H-l | x =0+
lim —x=10

im fx)= Lim |x|=
—Pﬂ'—f X0 | x— -

f©0)=10]=0
lim f() - £(0) - 0

F 15 continuous at x = 0.

Fis continuouws for all x € R,

Example 4 : Discuss the continuity of constant function f{x) = & on R

Solution : Fore g R, Im F(3) = lm %k = & = f(e)
x—=r X—C

A constant function is continuons on its domain.

Example 5 : Discuss the continuity at x = 0.
FR= | 2+2+x+1 x#0
5 x— 0
Solution : lIm fxy = Em (2 + 2 +x+ )= 1
x =3[} x ==

fi -5
lim - £(x) # £(0)
x—0

Fis discontinuous at x =

Example 6 : Examine the continnity of the identity
function on R.
Solution : Here fx) = x.
Let 2 £ R.

m f()= lm x=a =/
X—3a X—a

The identity function is continuous on B

(c+ 86 <O

(c <)

x> 0)

x < 0)

(m k = k)

X—>

(limit of a polynomial)

Y
i}
2
o n r n s n i -._X
6 -4 2 7102 4 g
-2
y==x -4
-6
Figure 5.7
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Example 7 : Discuss the continuity of f(x) = -_% x € R — {0}.

Solution : f(x) = -i- is a rational function.

let e 3 0.

Him 1 1
J:hEe:f{x] - :i:}ncr T e
@ =%

N _ _L _
Jm £ =L =S
Fis continuous for all c € R — {0}.

Noete : Forx = 0, fix) = '.1]; iz not defined. Lat us study behaviour of #{x} near 0.
Let x > O

X 0.1 001 0.001 1™

Fo 10 100 = 102 | 1000 = 103 107

As x — (4, f{(x) incresses unboundedly.
In such & case we say f(x) — = as x — (4. Wa do not write I'imm JFix) = =
x>

im  f{x) does not exit.
> M

Limit of & fonction is a real number, oo is not a reel number or it is a member of extended real
number system.

Tet x << Q.
x |0l —0.01 —0.001 —Lo™
f{x) —10 [-100 = —102|-1000 = —103| —1¢P
Here a3 x decreases f(x) decreases and
88 x — 0=, f(x) — —oo,
Again Ilj_.}mn_f(x)= —oo i5 nol to be written.

lim f{x) does not exist.
x =% 0=

Example 8 : f(x) = ;:12-, x 7 0. Discuss continuity for x € R — {0}.

lim 1
Solution : Let ¢ 2 0. lm fy = tim L = = -1 i
=2 =g X thpn..-x o
Fis continnous for x € R — {03
Note : Forx =0, lim x"L does nat exist.
x>0 o
5 1 5
—]; —> ez gz x —> 0. 1
x
x —0.1 0.1 —0.01 | 001 |X10™ 54
w
fix) | 1100 10¢ | 10000 | 10000 | 102 Figure 5.9
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Example ¥ : Examine the continuily ol
Fix) = )( x+3 x < 2
13—1’ x>32 atx € R

Solution : Let a << 2. Bo f(x)=x+ 3 in

some nterval arouond z.
lim fxy= lm (x4+3=a+3 =11l
X = X —rrr
Fis continuous for all x € R, with x < 2.

Let 2 > 2. So fi{x) — 3 — x in some inlerval
around a.

Fflen=3 —a
im f{x)= lm 3 —x)=3 —a - f(a)
X—a 4

Fis continucus for all x € R, with x > 2.

[eta=2 lm fx)= bm x+3)=3
X = 2— X — 22—
i = lim - =
x ]i,:mz+f(x) £ -3 2+{3 x) !

lim  £(x) does not exist,
x—2

Fis continuous for all x € R except at x = 2.

2.5

Figure 5.10

w

(x < 2)

[Note : Generally, f is continuous at all points where possibly formula for £{x) changes or its

graph is in transition stage.]

Example 10 : Find points of discontinuity of

Flxy =7 x+ 1 x>=2
0 x=2
1 —x x <2

Solution : Ax per abuve note and a look al
the graph of ¥ = f(x), it (s clear that / is continuous

at all ¥ € R except at x = 2 possibly.
lim f(x)= lim (1 —x)=1—2=—-1
£ — 2= = 2=

lim fi{x)= lm x4+ 1N=24+1=3
x—r 2+ £ —» 2+
S hmo fiey docs not exist.
=32

Fis discontinuous at x = 2.
Example 11 : Prove that f{x) = { x — 1 <1
{ 1 —x x> 1
Solution : Let a < 1. S0 f{@) =a — 1.
For some @ > 0, we can have a + O < 1.
letxe (a—d, a+ Q). flx)y=x—1

Figure 5.11

is continuous on R — {1}.
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Im f{x)= lim (x—1)=a—1=Ff(a) Y

I X i

fis continuons for ¢ € R with @ < 1. 3
Leta> 1. S0 fimdy=1—a 2

For some & > 0, we can have s — & > 1
[et x € (a—ﬁ,a+ &). Hence x > 1.

J -1 —x &
lim f&x}= lm (1 —x)=1—a=f(a)
X = 11 X = g+

fis continuous for zll @ € R such that ¢ > 1.

£ is continuous on its domain.

Figure 5.12
Example 12 : If f(x) = x=1 x< 1
0 x=1
1—nx x>l

Examine continuity of £
Solution : As seen in example 11, £ is continuous for all x € R, x # 1.
m f(x}= lim (x —1)=10, lim f{x}= lm (1 —x)=0
a—1- x— - x— 1+ a— 1+
F{y=o0
7 is continuous for x = 1.

£ is continuous on R.
Mote : snot F: R =R, fixy=—x—-1|7

Example 13 : If f(x) = [ x + 2 x=0
2—x x>0
k x=10

determine & so that f is continuous on R.
Solution @ Lovking at the graph and since
Fix}=2 —xforx>0and f(x)=x + 2 for
x < 0 are linear polynomials, f is continuwous
forall x € R — {0}.
lim fG)= lm (x+2)=2

x =0
Im fx)= lm (2—-=x)=2
x =04 1=+ Figure 5.13

lim f(z) =2
x>0
[n order that f is continuous at x = 0 alsa, ]im() S{x) = 2 = {1 s necessary.
A=
floy=k=2
If £ — 2, fis continuous for all x € R.

Example 14 : Prove that a pobynomial functien is continunous.
Solution @ f(x} =ax +a, _ X" "V 4+ +a,a, € R{i=01,2.__ na #0isa
polynomial.
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We know lim x? = &°
x—a

lim a;, = a; (limit of a constant function)
x—d

Alsp xliﬂ“{fl(x) + L(xy +o+ L0 = xﬁi}ﬂa Ji(x) + Ilii’nu Flxy +o.+ xll_t’na S

Now lim f{x} = lim (ax" +a, " -1+ + a,)

x—a X —a
= lim g, lim ¥+ lim g lim "~ 1+ + lim g
r—a H);—}&I = "_]x—nz r—da v
=ad+a,_,a ' +.+4a,
= f(®

A polynomial function is continuous for all x € R

Example 15 : Prove f(x} = [x] is continuous at all x € R except at all integers.
Solution : f{x) = [ ..

—1 —1=x=<0
{ 0 D= x <
1 & x<2

—

Fis a constant function in any interval (n, & + 1) where n € 7.
Fis continuous in all intervals (n, m + DD ie. atallx € R — Z.
Nowf(x)={n—l n—lESx<n

] nSx<n-+1
letx=nm ne £
We can choose © » O such that # — 1 < n — 8 < n. (In fact 0 < & < 1)
Iﬂnn_j(x)= x—hﬂ;_"_ l=n—1 (x € (m— 8, m)
Choosc & > Osothatn<m+ 3 <u+1 . 0<éd <)
lim f{x)= lim mn=n (x € (n, n + 8))
I—+n+ PR
ljin F(x} does not exist, {See figure 3.1)
i—n

J is discontinuous for all integers.
F(x) = [x] is contipuous on R — Z and discontinucus for all 4 € Z.
Example 16 : Find &, if the following function is continupus at x = 2

f(x}={kx+3 x=2

7 x> 2
Solution ¢ lm Ff{x) = lim {kx +3)=2k+3
X -2 X - 2

Im f(x)= hm 7=7
=2+ =2+
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Im fix)exists if 25+ 3 =7Tie. £=2
x—2

Fork=2,f(2})=2-2+4+3=7

m #(x) =7 = f(2)

x—»2

Fis conlinuous at x = 2, if k= 2.

Example 17 : Find a and & so that the following function is continuous,

Fix) = 3 x= 1
ax +b 1<x=<3
7 xzZ3

Solution : fis a constant function except for x € (1, 3)
Fis a linear polynomial in (1, 3} So it is continuous funciion.
Henee, S is continuous for x € R — {1, 3} and in (1, 3} cxcept for possibly x = 1 and 3.
lim f(x)= lim (@ 4+ M =a+bh &m flx)= lm 3 =3

=1+ x— 1+ = 1- £—1-
Since fis required to be continwous at x = 1, lim f{¥) must exist.
x—1

im f{x) = lim fix)
31—

x— 1+

a+ h=13 (i)
lim = lim + by =3a+ & litm = lim 7 =7

J:—}B—f{x) x—:3—(ax ) “ x—;3+f(x) x =1+

Since f iz required to be continuous at x = 3, lim f{¥) must exist,
x—>3

xll)m}l-f(x) - ximl?»— f(.t)
S da+b=7 (ii)
Solving (1) and (i), o = 2, b= 1. Also limlf(x) =3, Iimaf(x} =7
Now, (1) = 3, Jil:llI fixy=3=fF(I
£ =
fGy=1, xlil_zlsftxl =7=r03)
If a =2 and &= 1, fis continuows on R.

Example 18 : Find & and A, if following function is continuous at x = 0 and 1.

Fix) = x+a x<0
2z D= x|
bx—1 1<x«<2

Solution : Hm fix) = Im {(x + ay=a
x—=0- x—=0-

lim 7(x) = lm 2 =2
xr— 0+ x— 0+

Since £ is continuous at x = 0, lim f{x) = lm F{x)
x—0- x— D

a= 2, Also f{i) =2
xlimﬂf(x) =2=/7(0
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‘Taking # — 2, f is continuous at x — 0.
lim f{xy= lm 2=2
x— 1= X ==
im fxy= lim (dx—1D=86—1
14 31+

Since, f is continuous at x = 1, bDm Ffix) = Wm f(x)
2= 1+ x— -

b—1=2
Sob=3
Also, flly=h—-1=3—1=2

xliLn] Fixy =12 =)

Taking a = 2 and # = 3, { iz continuous at x = 0 and = = 1.

5.3 Algebra of continuous functions
The concept of continuity is formulated in terms of limit. Hence, just like working rules of limit,

we can have working rules {or continuily of fX g, X g, %, elc.

Theorem 5.1 : Let f and g be conlinuous at x = ¢ and ¢ € (g, d) for some interval (a, b).
Then (1) /' + g is continuous at x = ¢.

(2) &f is continuwous at x =c. kK € R

L]

(3) f — g is continuous at x = ¢,
(4) f % g is continuous at x = .

(5 ‘% is confimuous al x =c ifglc) # 0. K E R

(6) {" is continuous at x = ¢ if g(c) = 0

lim f{x) = ficy and lm g{x) = glc) as £ g are continuous at x = c.
E—e

e 'Y
(1) hm ¢+ gMx) = lm (f(x) + g() = m fG)+ lim g(x)
F—rC T—r X—we ¥ —¥c
= flc} + glc}
= {f+ gXe)
F+ g is continuous at x = ¢,
2y bim {(&A(x)} = lim-kf(x)
= lim & lim f(x)
A0 X
= K (c)
= (K)He)

4 is continupus at x = ¢,
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(3) If £ = =1, =g i3 continuous at x = ¢ as g is continuous.

F+ {—g)=F— g is continuous at x = c.

(4) lim X 2)x) = Iim f{xke(x)
X = X—r
= lim f(x) lim g(x)
X220 X =7
= fe)glo)
= (f X gXc)
F» g is continuous at x = ¢.
n Lhm &
. _ X—=cC
© 1m [£e - S &0) # 0)
- _k
% is continuous a1l x = ¢.
L - L
@ (£)ea = (£23)w
Taking & = 1 In (3), é is continuous at x = ¢.
[f X'é‘;] - % is conlinuous at x — ¢.
or
(L L fD
}E‘,‘C( P )(") T
lim frx)
=
T Tlim glo
A -
()
L] (2(c) = 0)

(£ )

! . .
E is continuous al x = ¢.

Some Important Resolts :

(1) A rational lunction is continuous on its domain.

Rix) = % is a rational function, where p(x) and g{x) are polynomial functions and g(x) £ 0

. . pix)
lim % = lim —
k—Fd (x) e 90

Lim  p(x)
T —+F

= lim glx)
X—a
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¢ta)

h(a)

S M s a continwous on its domain,

(2) xime function is continuous on R.

We assume [ollowing resulls studied last vear

lim sinx =4, lim cosx = 1
x—d =0

Letae RLctxs=a+ i, sothatas x — a, A — 0

lim simx = hm smia + k)
x—oa k=0

— Hm (sina cosh + cosa sink)
h—0

= gina lim cosh + caosa lim sinh
A1} R0

= sicr- 1 + cosa- 0
= gin

lim simx = siwg
x—a

S Sime function is continucus for all x € R,
(3) cosine function is continuous on R.

Lt ge RRletx=a+ A Asx — a, A — 0

lim ¢cosx = hm cos(a + A
X—a k=0

= lim (cosa cosh — sina sinh)
=0

cose lim  cosh — sima lim sinh
h—=>0 A—=>D

cosa-1 — sina-D

CO8ET

im ¢osx= cosa
i—=a

. cosine function is continuous for all x € R.

(4) fan functiom is continuous :
tax = SBE xR — l2k— DT | ke Z}

sine 12 continuous for x € R.

cosine 1s continuows for x € R,

cosx =0 S x e R—{{Zk—l}%|ke z}

(g(a) = 0)

By working rule of % for continvous functions fand g, fan function is continuons on its demain.
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(5) Continuity of Composite Function :
Let £: (g by — {c, dyand g : (¢, &) — (e, f} be twe functions, so that gof is defined.
If fis continuous at x; € (@ b)) and g is continuows at fix,) € {c, d), then gof is
continuous at x; € (a, &)

According to the rule of limit of compaosite functions (std X1, semester 1).

x“_—;ﬂxlg(f{x)} = .2\(){15_—:'"?[1 ) = etfix))
Laf is continuous at x = x|.

Fxample 19 : Prove thalt x — [x] is disconlinuous for all n € Z.

Solution : f(x) = ¢ T
....... N |
x 0=x<1
2l
fox=1 1 £x<2
1g
x—2 25 x<3 / i‘ i 7
X
e e -5 -2 .1 0O 1 z 3
\ + -1
Forany ne 2 L2
lim f(x}= lim {(x—[x]) +-3
X —— X —>H— w
= lim {(x—(u—1)) (For0<&<l,x€ (n— 8 n) rpigures.ia
X —* H—
=n—(n—1)

=1
and fiw) =n—[n]=n—n=10
im f{x)# f(n) Vne Z
X—rnR—

F(x} = x — |x] is not continuous for n € 2.
Note : On intervals (00, 1], {1, 2),... efc. f(x) = x — [x] is continuous. Let if possible, x — [x]
be comtinuous for n € Z. g(x) = x 15 continucus on R.
Fi{x) =x — [x] and g{x) = x both are continuous on R.
) — F(xy=x — (x = [x]) = [x] is also continuous on R, But [x] is discontinuous for
n e Z 5o f(x)=x— [x] is not conlinuous for n € Z,
Example 20 @ Prove sinm x| is continuous on K.
Solution @ f: R = R, fix) =|x| and g : R — R, g{x)} = sinx are continuous.
gof . R 2 R, (gofhx) — gf () — gl x|} — sim| x| is continuous for all x € R,
Fxample 21 : Prove f: R — R, f{x) =| 1 — x +|x|| is continuous,
Solution : p{x)} — 1 — x and h(x) — x| are continuous on R.
XY+ Rx)=1—x +|x is conlinuous.
Fixy=hol(exr + RxN = h{g + AU =|1 — x4+ | x || is contipuous as b, g are continuous
on R.
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Example 22 : Prove cos(x’) is continuous on R.

Solution : /1 R 2 R, f(x) = 3, g : R = R, g(x) = cosx are continuous.
gof - R — R, {gofix) = #f(x)) = g(x®) = cosx? is continuous.

Example 23 : f(x) = —i%— x# 4
k2 x = %

Can you find & so that £ is continvous at x = % ?

; : krosx . ksno
5 = s 1 — ‘I = — = i = E —
Solution : Jti‘ﬂlf(:vc:) ,;:.HE 2(1-.1:] EPTQ ) 5 (@ 3 x)
2 2
T
F-#
Since f is continuous at x = %, lim  £(x) =f(%]
oL
k — g2
= &
' =1
k 7 or 0

[Mote : For k=10, fixy=0 for all x € R]

Example 24 : f(x) = | S22 x =20
k x=0

Can vou find £ so that £ is continnous at x = 0 2

Solution ¢ LIm f{x)= lim % = i SRX -
x =+ x =3+ x =+
< siny . :
lim f(x)= lm == = lim &2 —
x—)U—f( ! z— 0= |xl 11— 0= =X

lim f{x} does not exist,
x—0

' f cannot be continuous for x = 0, for any value of £ € R.

Example 25 : f(x) = Si’;% x #F {
k2 x=10

Find %, il f is continuous for x — 0.

Solution © lim f(x} = lim Sindx
x—)ﬂf(} r—0 9x

— i Si#dx 4
x>0 4x &

4

9
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12.

13.

14,

16.

"——-__-\——-“'—

T
I
]S
=h

or f to be continuous at x = 0.

k=% % for fto be continnous at x = 0.

Excreise 5.1

Prove cot, cosec and sec arg continucus on their domains.
Prove ceiling function f{x) = ’-T-| is discontinuous for all # € Z.

Prove signom function is discontinmous at x = 0,

Discuss continuity of following functions : (4 to 12)

fixy= [x+3 x22 5. fixy = | x* x20
3—x =2 x x<0
= (243 x< 1 7. flo = % x#0
5 x =1 2 x=0
3x+ 2 x> 1
Flx) = “2’”‘ xZED 9. flxy = [2x =3 x <D
1 x = ¢ 2 x=
| Jv — 2 x>0
; f 2x+3
F0) = i;—j‘f x#E0 1. fvy = | 575 x>0
2 — sindx
3 x=10 { x x=<0
3
| E x=0
x2 =1
f&y = | T x>0
| x| x< 0
-1 x=10
Determine &, if following functions are confinuous at piven values of x : (13 to 16)
_ tarkx
Jixy = T x#0
1 x=10 (at x = 0)
= | =nsx
Fi{x) e x#ED
1 x=10 (at x = 0)
(x+ 1 hrn{x—1)
L flx) = sin(x?-1) x#F 1
K x=1 (at x = 1)
Fixy= |2+ k x< 0
X2 — 24 xz0 (at x = 0)

Find & and ¥ if fis continuous :

152
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17.j'(xj=[2_x+3 1<x<2
1ax+b 2=x<3
v+ 2 IJ=xE4 (at x = 2 and x = 3)

2 2

18. Prove sin<x — cosiy is continuous on R.

19, Prove sirmlx cos3x is conlinuous on R,

20, Prove sin| x| is continuous on K.

21. Prove |sinx| is continuous on R.

22. Prove sin’x and sinx® are continvous on R.

23. Prove cosx™ is continmous on K. (n € N)
24. Prove cos"x is continuous on R. (n € N)
25, flx) = 5K — cosx £ 0

{ —1 x=10

Prove f is continuous at x = 0.

26. f(x) = {|sinx—cosx| x#0

—1 x =1}

Is fis continuous at x = 0 ?

SINY — rOSX
27. Flx) = _x_% x# %
k x= %
If fis contibuous at x = &, find &
_ xR —an

28. f(x) = ) x#*2
8O =2

If #is continuous &t x = 2, find A

5.4 Exponential and Logarithmic Fuonctions

The function £(x) = x™ is used in pelynomial functions and raticnal functions.
Let £,(x) = x7.

[ = x, £ = 22, fix) = X, ete

Let us draw the graphs.

For f(x), % 1 4 3 4 5 —1 —2 —3
£ 1 4 9 16 25 1 4 9
For £i(x). &3 1 2 3 4 5 —1 —2 —3
f3(.tj 1 ] 27 [ 125 —1 —8 —27
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As x increasees, f,(x) increases. For @ fixed increment in x, where x > 1, the increment in f (x)
increases as » increases. For example if x increases from 2 to 3, £,(2) = 219, 7,(3) = 319,
Fip(2) = 220, £,.(3) = 320,

Obviousty 320 — 220 & 310 _ 510,

itk ik
U s 5 4

Figure 5.15
Now we consider ‘common exponential® fimetion F(x) = 10%. This fumction increases faater

than any £, {x). Let x = 102.
2
Now, figof) = x'0 = (10110 = 102%, f(z) = 10! = 19!™
For x = 107, fgn(x) = x199 = 103, y(x) = 1010% = 11000
For x = 10%, fjap(x) = (104100 = 10490 £(x) = 1g10* = plecoe
Obvicusly, if x > 103, f(x) increases much faster than f,,q(x).

X

Lt -lﬁv

Figure 5.16
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Exponential Function : f(x) = &%, @« € R, x € R is called an exponential function.

(1) If @ > 1, f(x) increases as x INCreases,
If @ < 1, f{x) decrenses as x increases.
(2) The graph of f(x) passes through (0, 1) for any a € R,
(3) If a # 1, the function is one-one and omto.
{(4) Iis ranpe is rt,
(5) If a becomes larger, the graph of f(x) leans towards Y-axis for a > 1.

(6) As x becomes nepgative and decreases, the graph of f(x) approaches X-axis but does
not intersect X-axis.

Laws of indices for real numbers :

X
) FF =a 7 (7) A =gy
4]
(3) (@Y = o (4) (@bY = a be R x,ye R

{This content is only for link to the discussion that follows and this is not from examination
view point).

The constant & : Limit of a sequence : Just like functions, some sequences also approach a *limit’

L

“ T5* i has terms ngaring 0.

The sequence 1, El° %,..

We say  lim l={)
n—yo 't

We do not fermally define limit of a sequence. We accept following results.

(1) lim + =0 (n€ N} We also assume lim — = 0 {x € R)
A—p o x oo

2) lim ~t=10 lr| <1
n—s o

For example if r = % we have the sequence, % %, %, 1]_6 and [%)ﬂ approaches 0 as r

becomes larger and larger.

Consider the sequence

1"_ n 1 ny 1l ny 1
{1+E] =1 +(1]n +(2]n2 . [“jn"

1 et e e S
B o B U - S i G- G

* L}

1 - i- 1 - ‘E:- [l = -3- are all less than 1 and hence their products wherever cccuring are less

than 1.
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z L I 1
e n, St s R e e (n>1)

= @ -1<nl)

141
LR R R

{Geometric Progression)
(1+1)° <|+2(1—(%)"]=3—2{é)” <3 @
TbTEaLsly E1+i]" > 2 1) Gi)

(i
We assume sequence (l+i) has a limit called ¢ and hy (i) and (ii) above 2 < 2 < 3.
Thus e is a definite constant satisfying 2 <X e << 3. It is called Napier's constant.

Approximatly e = 2. 71825183

H
lim (l+l) =¢
H—r o2 n
x 2L
We can prove but we will not prove lin (1 +i] = ¢ or replacing 1 by x, im (1 + x)F=¢
£ — oo & x x =0
Logarithmic Function :

We know exponential function f : R — R, Jix) = a° (a & RY — {1}) is one-ome

and onto.
Its inverse function g ¢+ RT — R is called logarithmic function. So if v = F(x) = &%, then
x =gy = log,y
This function is denoted as g = log,
If y = &% then x = log,y
We know for inverse functions, f : A = B and g : B — A, (fog)dy) = », » € B and
(2 ix)=x, x € A
Now f{g(y}) = »
Sllog,y) =¥
A9BaY = y
or in other words, &'"* = x for x € R’
If « = 10, we get what is called common logarithm. ie. log;,x
Thus, £ : R — RY, £(x) = 10% has inverse log,, : RY — R, g(x) = logyx

if a = e, we get natural logarithm and it is denoted by In_x. Bul unfess otherwise stated,

we will write Inx as log _x or simply logx.
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(1) log has domain R and range K. Hence, logarithm of only positive number can be
obtained and log x is a real number if x € R .

(2) &® =1. Hence log,l =0
Hence log,1 = 0, log;,l = 0
(3) a' = a Hence loga = 1
loge = 1, log,10 = 1
e ® = x ag 49%a* = x for ¢ € RY — {1}

Y
19y

—>
" £

_',,.
€ 3 X

-15

Figure 5.18
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We can ses that graphs of f(x) = log,x and f(x) = £ are mirror images of ¢ach other in the
line ¥ = x.

{1} (1, D) is on the graph of log function.

(2) For g > 1, it is increasing.

For 0 < a < 1, it is decreasing.

Some rules for logarithm :

(1) loggomm = logm + logn (m, n e R, aec R — )
Let logm = x, logn =y

Som=Eag,n=a

S o mm=gd=gty

S logmn=x+y=logm+ logn

@) log, T = loggm — logn (mn € RY,a € R" = {1}
Proof is similar as in (1)

(3) logx" = nmlogx xkeR,neZasgerR"-{)
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iogrb
log . a

{(#) Change of Basis Rule : log,b = beRYagce R -1}

Let log b = x, loga =y

b=d" a=¢
log b = xy = log b X log a
log b .
log b = Tog,a (since a # 1, log.aa #+ 0)
Also lim L Ol R im = log (1 + x)
x— 0 X x—=a *
il
= hm log (I + x}*
=14
AL
= lng.( lim {1 + x}I) {flog iz continuous)
=0
= loge
=1
e lim M :I
=40 X

5.5 Differentiation

We have leamnl the concept of diflerentiation last year. Lel us remember.
If f: (a &) — R is a function and if ¢ € (@, &) and k& is so small that ¢ + h € (a, b),

then hh'_“:U w if it exists, is called the derivative of f at ¢ and is denoted by f'(c)
d 4y | _ .
or [E f[-"f‘_]x - OT ) i Jx=¢ where y = f(x). If the derivative of f exists at x = ¢, we say

S is differentiable at xr=¢ g-i is also denoted by y,.

If f is differentiable for all x in a set A, (A # ), we say [ is differentinble in A,

im J€+M— L@ 4 fim JEEM— IO e i

fis differentiable at ¢ £ (g, $} means P 7 e s T

and are equal.
Let f be defined an |a, b). f is differentiable in o, 5] means

(1) fis differentiable in (a, b)
im J@a+h—fia

(2) Py h exists,
We call this limit right-hand derivative of [ at x = a and write f'(a+).
lim fb+h—-fd .
& o B exists,

We call this lefi-hand derivative of f at x = b and denote it by f'(b—).
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We also assume following working rulcs and standard forms.
If f and g are differentiable at x,

(1) /+ g is differentinble at x and (/) * g(x) = L7 (x) + L)
(2) f x g is differentiable at x and -g;f{x} £gix)) = fi(x) f;g(x] -+ gix) %f{x}

r 8@E - Fon L g

(3) L is differentiable at x if g(x) = 0 and L L0 - T
(4) f;.x"-mr"—l neRxeR'

(5) f;sinx = Ccosx xe R

(6) -c%r-casx = —ginx xXER

(7 Etﬂm=secz.t .rER-{{?k—l]%“:EZ}
(8) f;:erx=wcxmu xeR-{ek-1L |k ez}
(%) ﬁcafx = —cosectx xER—ln |k e

(an j";m.:ﬂ:r = —¢asecx cotx x € R— {imt 1 k € Z}

Now we prove a theorem.

Theorem 5.2 : If f is differentiable at x = ¢, it is continuous at x =¢c. ¢ € (a, h)

Prool : Let £ be differentiable at x = ¢,

lim Jixy= fiel

e  x—r exists,

Now f{x) — f(c) = (w] (x — ) for x # c.

. i (xy=Jc) oy —
im G = s = B LETHD In e mo

, @) — [ o)
(because f is differentiable, *—’f—-r—f—— cxists)

=fey-0 =0
Jm f(x)= lim {(x) = fley + f{e)
= x]jir}lc{f x) — flen + ;]ji;nc T (both the [imifs exist)
=0+ fle)
= fe)

Fis continuous at x = c.

But a continnous function may not be differentiable,
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Consider f(x) = |x|
im Jx|= lim x=8, lm |x|= lim {(—x}=0,/{0)=|0]|=10

x> x— x —{- x (-

S fis continuous at x = Q.

i LEZJO Xz
x—10

b x—0+ X P, Y

tim LE SO Wy =X

x— - x—=0 == X 3D X

lim Fix)y— Fom

ST <=0 does not exist.

S0 f(x) = | x| is continuous at x = 0 but not differentiable at x = 0.

L-an we explain the sitvation ?

We had seen that £'(¢) is the slope of tangent
1o y=Ffi(x)atx=rc

See that the graph of f{x) = | x| consists of two
rays meeting at {0, 0) and does nol have a lanyent at
(0, 0). It has a ‘corner’.

When can a function fail to have a derivative ?

(17 It is discontinuous at that point. (Fig. 5.21)

(2) The tangent is vertical at x = ¢. (Fig. 5.22)

(3) There is no langent a1 x = . (Fig. 5.23) Figure 5.20
Y Y
M o)
3--
2.-1-
—1}

<« >N € >N % + 4 4 — X
3 -2 3% 0 -3 o2 a1 0 1 2 3

T -1

-2 42

| 4 -3
L iy

Figure 5.21 Figure 5.22 Figure 523

Exercise 5.2

1. Prove that f(x) = |x— 1|+ |x — 2] + |x — 3| is continuous on R but not differentiable at
x— 1,2 and 3 only.

2. Prove fi{x) = xs:'n% x= 0

0 =40 is continucus but not differentiable at x = Q.
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3. For flx) = xls:'ni x#0
0 x = 0. Prove /{00 = 0. Deduce fis continuous at x = 0.
4. Find £'(x) Tor (1) £(x) = sin®x, (2) f(x) = arx, () fQx) = 2%, (1) fix) = cos'lx
*

5.6 Chain rule or Derivative of a Composite Function

We have seen how to find the derivative of sin®x or ta’x using product rule or the derivative of
yin2x or cos2x using lormulae [fom trigonometry like sin2x = 2Zsinx cosx, cos2x = cos’x — sim’x
along with product rule.

But they were simple cases. Suppose we want to find the derivative of tgn’(x? — x + 1), It is not
50 easy.

Let us take an example.

Let fix) = (2x + 1)*

= 162t + 32x% + 2422 + Bx + 1
F{x) = 64x% + 96x* + 48x + 8

=88+ 12xT + 6x + 1)

= 82x + 1)°
=2.4(2x + 1)?
Let g(f) = ¢ and ¢ = &(x) = 2x + 1. So, g(h(x)) = g(Zx + 1) = 2x + 1)* = f{x)
Six)= glh(x))
Now g(f} = 44 and % = Hx) =2

Fix) = 82x + 1 =a@2x + 172
= 482 = g0 = g0 R

So, -0 = - alix) = R () H(x) = gUAx)) K(x)

Here, we have expressed F(x} as a composile function of 1wo funclions g() = ¢ and
H(x) = 2x + 1 whose derivative can be found out in a very simple manner and £7(x) can be calculated
in a simple way.

Let us make it formal.

Chain rule : [ : (a, §) = (¢, d) is differentiable at x and g : (¢, d) — (e, ) is differentiable
al f(x) are two differentinble functions.
Now, (ge/)(x) = g(f(x))
Then (gof)'(x) = g'(f (x)) f'(x)
In other words let A(x) = (gofMx) = g(f(x)). Let fi{x) =1
Then k'(x) = (gof)'(x)= g'(f (x) f'(x)
=g'(1) ['(x)
d d d &
7 8 () = Z- g(0) - f(x). where 1 = f(x)

dx
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Thus, -ﬂ%g{f(x}} = % d—i where u = g(f) and ¢ = f(x).

flence -g& % -di where # = g(f) and ¢ = f{x) and u = g{f{x})

Thus if & is a function of ¢ and ¢ is a fanction of x. Then ¥ is a composite fanction of x and
du _ du dt
dx dr dx

This rule is called chain rule.

Continuing :{‘: = %i! _:;;.f: ,gj% %

Here u is a function of 4 ¢ is a function of s, 5 is a function of v and v is a function of x.
Example 26 : Find f"{x) if f(x) = sin(tan x)
Solution : We have g(f) = sis ¢ and ¥ = hix) = fanx
Fixy = (goh)x) = glh(x)) = sinltanx)
fz) = g(hx)) Hix)
gl Hix)
cost /Hix)

cos(fanx) secix (r = tanx)

F(x) = cos(tanx) sec’x
But we can make it simpler,

Fluy = sinu where ¥ = ranx
f’{-\f) u.{f .dii. — 2. —

= cosu seciy = cos(ianx) sec
du dx ( )

Generally, we make calculations orally.

2y

Go on differentiating functions selecting the outermost funetion first and then preceeding to
differentiate till we reach the variable and multiply all derivatives.

Let fFix) = sinf(cos{2x + 3))

F'(x) = cos {eos(2x + 3)} (—sin(2Zx + 3D . 2
Derivative of outer most {Froceed to {(Derivative of last function
function at its variable. *inside™) 25+ 3)
= —2sin (2x + 3) cos(cos(Zx + 3)) (rearrange)

Let f(x) = sin(tan {cos (x2 — 3x + S1)))
F'(x) = cas{tan (cos (x2 — 3x + S1))) (sec? (cos (x2 — 3x + S1)) (—sin (x2 — 3x + 51)) X
Stage 1 Stage 2 Stage 3
(2x — 3)
Stage 4
= —(2x + D sin(x? = 3x + 51) see? {eos (x2 = 3x + 51)) cos{ran(cos(x2 — 3x + 510

(rearranging)
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Example 27 : Find jr—y, if y = sin’x cos'x

sinx 4 cas’x + cosx 4 siix
dx ax

Solution : %

— cindy L 5 5y L einet3
sirx o= (cosxy + cos'x i {sinx)

= sin*x - Scosy {(—sinx) + cos’x - 3ainy cosx

—5sintx - costx + 3sinx cos®x

[Mote : In sin™x, sin"x = (sinx¥*; power is ‘outermost’ function.]

Example 28 : Find % sl — x + 1)

Solution % st —x + 1) = % (sin(x2 — x + DP
=3si?(x —x+ Deosx —x+ D) 2x— 1)

=3Cx — Dsirt(xI —x+ Deostx>—x+ 1)
Example 29 : Find 4 fo 03
1
o 2 i g .
Solution : ox ‘f_,“-MS = a(s:m.ﬁ)z
1
= %{sfnxflj_z ‘cosx?  3xt (I is outermosi function)

] 3
2t cosx

_ i ———

2 o sinx?

8

3 —1_
{Note : Remember % J; = 25)

Example 30 : Find f; simdx

1 2
Solution : d gy _ 4 sinxy' |t = 4 simx)?
dx Yyinx dx [Csinx)’] dx (sih)
; -k
= < gim *x - cosx
4
_ _3cosx
a3 sinx

Exercise 5.3 |

Find the derivative of the following fonctions defined on proper domains :
1. sz + 3 2. tamx 3. sifx cosix
4.  eos(sin(sec{2x + 3 5. sec{cof(x? — x + 2))

6. Dilferentiale the identily sin3x = 3sinx — 4dsin’xs. What do you observe 7
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7. Find 4= (2x + 3" 3x + 2)" 8. Find <= (sin™x — cos™)
dx ox
9, Find di sincx cosx
X

10. Find ﬁ sind(dx — 1) cos®(2x + 3)

5.7 Derivative of Inverse Functions

We have studied inverse trigonometric functions in chapter 2. Now we would like to find their
derivatives.

Derivative of Inverse Function : Let f : {a, §) — (¢, d) be a one-ogne and onto function,
so that its inverse function exists. Its inverse

g : (¢, d) —> (a, b) satisfies x = g(») = f ) if y = f(x)

. s =1
We assume f'(x) = % =2 = % (‘gi ¥ DJ
dy i g 1
dx - u._,uf »n
We have some standard forms ;
d .- _ !
(1) <y SinTx = x| <1
Let y = sin"lx. y € [—%,%J S0 x = siny v +# :f:lzi as x # %1)

% = cosy = J1 - sindy (cosy >0asy € (-F.5)

1

oo
dx dx 1- x?
oy
I S R |
4 X T
d -1 1
(2 —ecos 'x = ——/—— x| <1
£ P | x|
Lot v = cos x. v € (0, T). So x = cosy =0, T as x > *1)
dx ;
= sy = —J1-cody (siny > 0 a8 y € (0, 7))
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(3)

(4)

&1
dx 1-x
d -1, _
4r CO5 % o
or
sin lx + cos lx = %
e g = d o
dxxm x + ix Cos X dx 2 )
4 Cos ¥ prt L . | x|
Ayl = —— xE€R
dx 1+ X

Let y = fam Ix. y € (_%1 %) S0 x = tany.

%;‘ = secly

4 _ 1 _ 1 __1

dx secty 1+ taniy 14+ x*

L oy = —1

dx 1+ %

"'Lcur"‘x S— - X ER
dx 1+ x*

We can prove as in (3) or faw lx + cof 1x = % will give the result.

4 oy = - x| > 1

dx Ixlyfx —1

Let p = gec—] — 1L 8o x = ; ?
et y = sec” x. y € (0, ) {2 } S0, x = secy. (Why y= 0,y # T {)

dx

‘E = xecy fany

Now, secy =x, y € (0, T} — {%}

There are two cases. } € [0:%) ar y € (%,T[).

M ye (0.3)

x=seﬂy>(},mny=1’12_1 as iany > 0

% = seqy rany=x1fx2_1 = |x|Jx2=1. Since x > 0, so |x| ==x
& - 1

dx lxtyfa? -1

o) ye (£.7)

secy < 0, S0 |x| = —x

b
Il
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tany = —J 2 1, since fany < 0
. gy L _ 1 _ 1
Codx seyiany o _xd2 1  axidxt-a
dy 1

o =m Wx such that | x| > 1

S |
(6) Similarly we can prove, 4 cosec iy = ——F=— x| > 1
dx 1x1yx* 1
or since sec”lx + cosec™1x = %
d . -1 A -1, d x _
37 36 X+ - coser” x — =5 0
d -1 _ _.d -, _ _—1
=-cosec X = ——— fec X = — || =1
dx dx EINE
We have introduced e in this chapter. 2 < ¢ < 3, £ is the base of natural logarithm.
_eh
We assume lim =1
Rt R
. 1 1
We know lim 5 LR (i)

0w

Let log{l + x} = k. So x = & — 1.

x—10 X

- h
Using (i), hlinnen 1—1 {As x = D, & = log(1 + x) — 0}

. i
im ‘-"1=1

(7)

kE—1 h
. L
ti.te &
.d_ . l!=,.‘(+.'1_f,x . . Eh—l
&= Im £~ — lim g lim % =gt ] =
dx i h k—0 f—tl
d
d‘xer e
A v _
o Fis lng‘n

We know a = ¢l08e#
a = {elogea)x = gX¥logn

a = ¢ Here + = x log.a

i d 2 _d o gt
By chain rule e & T e
=¢ . loga l{?‘% kx = k)
=g loga
4z = o logu
dx ¢
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Nete : By using chain rule ieﬂ”x = &M rpgx.

It is like this & ¥ = exp(sinx)
Outermost function is exp. -(% {exp x) = -r% et =" = expx

4:"{__1: gHny = i exp(sin x) = explsin x) % sinx = &% cocx

A tan2y — gtanze s
dx dx

= 227 L goeddy

{exponential (sinx))

®) “Llogx =L

x

Let, y = log x

x =aF

dx _

dy = g¥

dy 1L -1

dx  dx e x

dy

£ =1

dxlu‘gex x
= . - x—x ) i
Example 31 : Find Hd;e‘an 1 | anZ x| < Pt

) L T
Solution = Let x = ten, O € (_T'?)'

1 1 1
R M Tt

_= Fid

= zan[ -5) {ranﬂcirarrﬁ

_I g
= ﬁ-c:ﬁrcﬁ

_r I
= 2<3B<2

= 1
Naw, y = fan 5 - 29

A= _, [ an® —1an 8
a2 T e V| T e

= tan” {an3®

d—'y =_L
ax l+x

x € R

(since O € [—12:'%). tan is T)

(0 e (-3.3))
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. Find G- o) 2 L
Example 32 : Find PRl 2x41— x%, | x| =< 7

Solution : Let B = sin 1y, —% o R % So x = 5inB.
xle Lt oL oreL
42 vz V2

Now, sm(—%J < sinQ < sink

4
n n i i L2
_T{B{T (s:nlsTin(4,4))
_n n
< 20 < g
y o= sin 1 2x f1 - 2
= sin"1 (25in@ cosB) (Jl—;z - Jl—s:‘nzﬂ =cosO as O € (—%.%}}
= sin~! (sin20)
=20 (26 € (“%“35))
¥y - 25in Iy
dy _ 2
oA o
L
Example 33 : Find -g;sec_l o1, 0<x< f
Solution : Let 0 = cos™lx. B € (0, 7). So x = cos. (Why @ = Dor m ?)
— =1 ; -1 _ 1 -1 ;
Y T C T gad g T SOC D aenelf 1 T SEC sax 2@
y = sec ! (sec2@)
Now, @ < x < ﬁ = cos% < cosl < cos%
=L cp<c (cos is ¥)
4 2
=L <20<m
y = sec” ) (sec28y = 20 = 2co0s" x {23 € (%.R] < [0, &] - {Ez"})

dy =2

de  1-x°

Example 34 : Find ﬁcas_] (4x3 — 3x) for (i) % <x<l (D0<x< %
Solution : Let O = cos x so that x = casB, 0< B < =
Sy = cos (4R = 3x) = cos D {4eos?0 — Teas)

y — cos 1 (cox30)
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{0y -%Cx-C:l =>cas%<casﬂ<{:asﬂ

>0<0<E (cos is 1)
=0<38<T
y= pos ! {cns3B) = 30 = Yeas 1x 30 € (0, m)
d_y =3

dx ~ Ji-a?

i) D<x< % = ca.r% < cosf < cas%
=>%<B<‘:% (cos is ¥)
=>r<3g<il
=0<30-n<d

y = cos | (cos3B) = cos —cos(K — 38))

=R — cos eos(TT — 30))
=T — cov (ens(30 — M)

= — (30 - W (30 - m e (0.F) < [o, )
=2 — 30
=21 — 3cos Ix

&y _ __a

dx 1-x?

5.8 Derivative of an Implicit Function

Sometimes we encounter equations of type f(x, ¥} = 0 from which we may or may not get y as

2

a fonetion of x. Functions of type y» = sin“y are called explicit functions of x. Bot 3y — 52z = 0

H — ] H -~
ves v = —sifly.

Bl Y 3 il
This is an example of y being an implicit function of x. / \
Consider the circle x2 + 3% = 1. * \
It is not a graph of a function. But p = ‘h_ +2 and \‘\H_AJ_,//

v = —J1 -2 two implicit functions can be defined from the Figure 5.24

relation ¥ + v2 — 1 = 0.

S0 we get two implicit functions. See that any vertical line meets the circle in two points but
mects the scmicircles in cach scmiplane of X-axis in only one point. So, cach scmicircle is a graph
of an impligit function,

Bt some equations are not casy to solve,

a

x4y = 3axy is such a relation, 1low to find for such implicit functions ¥ ¥ We use the chain

dx
rule and differentiate the relation assuming that y is an implicit function of x.
. A 4 _ 4.3
For example y dx
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doa_ 4 oady ady
PR A il g~
S0, when we differentiate a term involving variable » wrt x, we follow usuval rules of
differentiation and multiply the result by i_y

Let us zolve some examples.

Example 35 : Find gx—y from x + v = sinxy
Solution @ Differeniiating the ¢gualion,
%.x + % y = % inxy
dy _ - .
1 + Jr T COSxy 4o {xv) (chain rule)
- cosxy {x %y + p- 1 (product rule)
dy  _ dy )
1+ Fe | ROy —o + yoosxy

S (L — xeos xv) % = yeusxy — |

dy _ yoossy —1
dx 1 - xrosxy

Example 36 : Fimnd % for x¥ + p* = 3axy

Solution @ 32 + 3;1% = 3a (x% +y-1)

EERY TR,

oy ay— x*
dr ~ Y -ax

Example 37 : Find jx—y from ax? + 2hxy + 57 = 100

solution ; dy 4y _
Solution : 2ax + 2h{x =2 +y)+2.’)ydr -

S the + by}% = —{ax + )

] dy ux+hy
o dx Mhx+by

Example 38 : Find % from sinix + sinzy =1,

Solution : 2sinx cosx + 2siny cas‘y% =0
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.oody —sin2x
Tt de SNy
or
smzy = 1 — sin’x = cos?x
siny = L cosx (Two functions)
cmyﬂ = — sinx
¥ =
dy _  Ssinx
dr  — Cosy

Note : If sin®x + sin?y = 2, then sin®x = siny = 1 as |sinx| £ 1, |#iny | £ 1. No such

—3in 2x
dx 2y

function exists. If sindx + smzy = 3, then can we write

No. sielx + sy < 2. No implict function exists if sin’x + sir?y = 3. We assume existence

of implict function and ditferentiate. But an implict function may nat exist.

Excrcise 5.4

Find g}‘l - (1 to 10)

o2+ =1 1. x + sinx = siny sy + ) =x—yv
2
4. 2P+ 3w+ 2 =1 5. sinx + siny = ranxy G.XT?—}?=1
2
7. ¥ =10x S.f—;+;—j=1 9. 22 +32 —dx— 6y —25=90

10. simx = siny

Find the derivative : {11 to 16)

2x
11, p=sin"! B3x — 42%), Df:.r{% 12, y=ran ' T3 x#2x1
—1 1-x* .-1—21
13. ¥ = coys 1+ 2 M. y=sm t 2
3
15, y = s o >+ 16. y=sin ' 2% 2, —cx<l
C ¥ Tdan T, x> 5 . Y = sin L—x. 2z <X
*
5.9 Parametric Differentiation

Somctimes x and ¥ arc given as functions of another variable, say r, called a paramcter.

Let x = f(t) y= g

Assuming that we can obtain r = f~1(x) and substituting in y = g{r), we get y = g(f ' (x)).
So, y is a function of x.

But this type of solving and differentiating would be cumbersome. We have the fellowing rule :
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Rule for differentiation of parametric functions :

.
dy dr £'(1)

dx

7

i

= = i where ['(r) # 0

Example 39 : If x = acos®, v = bsinB, find %

Sulnﬁnn:%=—mfnﬁ,%=bcm9
= boos B
Loy 48 s0_ _p
S ST Td T Tl T g cotd
a6
X
dy _ _beos®  _pl W |_ Bx
d asin® T g | ¥ |7 &'y
b

2
or dlrectly + = = cos’® + sin8 = 1

bz

_:Pﬂ
bzdx

Example 40 : If x = a#?, y = 2at, find %
dx _ 2t L 2a

Solution : i Sy
L]
dy g 2 1
L= =lgzo
dr o ab 1

Fxample 41 : If x = gsin’0, y = bcos®8, find =

Solution : % - 3uxin®@ cos, % - 3bcor’® (—sin0)

. dy —3bcos 0 yin@
R T Jasin W eans®

=2 cotB
a

cos 0 o

cnfge =

[* [%]
|_

=
=] W

E

e
-
—
B =
L fra
+
-
= ol B
RS
wa |

}’ oy
B B S0 oo = (Fu:)

= cos20 + sinfD =1
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il
2x? 4,2
1z 73

aj

-

PN

2 1
Iiy _ b3 }!3

EE I

]Exercise S |
— - . dx . dx
Find =3 {wherever y is defined as a function of x and ar "7 an =0
1. x = aveeB, y = b1anB = R—[{(zk— nE ‘k = z} U AR | & £ 2}]

2. x=vcos8 —cos28 v =sikB — sin20 O R—{fR | kc Zi, cosO # %
3. x=a(f — sinh), ¥ = a(l — cosh)

4. x = a{cost + log fan%'}., ¥ = asint

5. x = aflcosd + B5in0), ¥ = afsinl — BeusO)

6. x= !% ¥ =0

7. Mx= a,u'ﬂ_]! , y= amv']r, prove % = _—:' t o<1

*

5.10 Logarithmic Differentiation

Sometimes we have to differentiate a product of several functions or a8 complicated product or
[F (3] form.

In such a case, it is customary to find % by taking logarithms.

e dy _ JEX+33x—4)
Example 42 : Find r if y = T )

Solution : logy = % log (2x + 3} + log (3x — 4) — log (4x + 9) — lop (x — 8)]

L1 dr 2 4 3 _a 1

¥ dr E[2x+3 ix—4 4x +9 x—S]
dy _ ¥y 2 3 4 1
il [mt w7~ 755 — 75|

Example 43 : Find % if y = xSinx

Solution : logy = sinx log x

1dy _ . 1

y g M + cosx log x
&y _ rsinx

= [ ~ + cosx log x] ¥
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Example 44 : If x¥ + »" + & + 22 = 1, ﬁnd%_

Solution :

[etuw=x v=3 w=0d"

Now, lopu =y lop x

Ldu _ Y 4

o dx x+lngxdx

du _ (¥ a4y
O e AT £
Now, ¥ = 1*

log v=x log y

1dv _ & dy

v x_}’zix+lﬂgy

dv _ (x dy .

dx (J’dx+lngy)y
Now, e +v+w=1

ﬂ+ﬂ+d_w=|]

dx

(%Hogxd—y]»w(‘jd

(

x

&
dx

dx dx

dy
dx dx

log x + ?y") day:_(x’x-y

+ x°

+ log ¥) ¥ + & log,a + axi=1 =0

+yx|ngy+a""lﬂga+czra_'}

—Ox? 14 ¥ g y+a¥loga +ax®

o x¥ lag x

Example 45 : Find 2 if 3 = (sinx)® + simy®

ey

Solution : Let & = (sinx)y® = o 0gsins
. | i :
(since a = & e yiny = g |08 sinxy

du
dx

dx

E:

dx

(Note :

= lag sinx 4 :
-l I {x log sinx)

o~ log sinx (1 - log siny + x(:n.i'x)

sinx

(sirx)* (log simx + xcot x)

4 sinx® = rcosx¥ ?%xx

cosxt T3 et log x
dx

x* cosx™ (| + logx)

cogx” - e¥ log x (x% + log x)

(siaxY (log sinx + xcof x) + x* cosx® (1 + logx)

a = ¢l%e? helps to avoid taking logarithms.)
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Exercise 5.6

o

Find o

x L
i y=(x+§] +[1+i)1 2.y = cosx* + sinx®
_ fex 1Y dx +3)° - nsx
3.oy= P 4.y ={log x)°
5. y=@+1Px+22E+3)0 6. y=(ogx) + logx*
. (++3)
T, y=x"3% 1 (sinx) B. p==x *
1 (L el .

9. y=Gsinxy + (L) 10, y = 35 4 geoss
1. y* -2 12, xy — et~
13, 2y =1 14, »= (1 + X1 + £ + H(1 + 2B

15 If y = (% — 2x + (x2 — 3x + 15), find %

by (1) Product rule
(2) Multiply and using rule lot polynomials.
(3) Logarithmic differentiation

and compare.

5.11 Second Order Derivative

If fis a differentiable function of x on (@, b) and if f'(x) is also a differentiable function

d": §

of x on (a, b), ils derivative is called second derivalive of f and is denoted by f"(x) or dx_i
or y, where y = f(x).

2
Thus f"(x} = % F{x) or fix—f or ¥,. Here 3, denotes f'(x) or %

We can use chain rule as follows

Lp-LpB 5% 9,

o y_d o d _ dy, _
e T @ N =N T 2y [T; = 2y,

d . =
Remember — - » =2y, -f; ¢ = Wy,

2

FExample 46 : If y = acosx + bsinx, prove j‘—f +y=10

Solution @ y = acosx + bsinx
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Seo ¥ = —asinx + boosx

So ¥ = —acosx — bsinx = —y
dy
it i +y=

Example 47 : ¥ = ae™ + be™, prove ¥ — W+ 20y =0
Solution : y = ge™ + be™¥
4ae™ + 5he’F

L6ae?™ + 25pe’™

gl
T
oo Yo — 9+ 20y = (16ae™ + 256277} — 9(dae?® + 5b2%) + 20(ae™ + b
= (16 — 38 + 20) g™ + (25 — 45 + 20) pe™* = D
Sy =9y + 20y =0

a%y

Example 48 : y = ¥} + sin’x Find PR

Solution @ y = x* + sindx

ix—y = 4x? + 3sim’x cosx
dzy = 12x2 65i Y| Asint '
i + bsinx costx + 3Isincx (—sinx)

= 1252 + Gsinx cos?x — 3sin’x
., dty
Example 49 : Find s for y = log (log x).

Solution : ¥ = log {log x)

d _ L1 _ L
E]GE (Jog x) = lopx x xlogx

(xlog x)0 |-(11:;gx+x-i)

.oodl
N log {log x3 xlog 17

—{1+log x)
x lag x)°

Example 50 : If y = aces (log x) + bsin (log x), prove that x%y, + xp; + y = 0.
Solution @ y = acos (log x) + bsin (log x)

_ —asin (logx) " beos (log x)

] x x

Soooxpy = —awin (log x) + beos (log x)

—aces (log X} bsin (logx)
X x

4 =
L)

S xlxyy + 1.y = —acos (log x) — bsin(log x) = —y
xzyz + X +p=1
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Example 51 : If y = cos 'x, prove (1 — xz)yz —x =0

1

Solution @ y = cos 'x

{1 - leylﬁ =1
La-—ap?=o0

{1 = xH2ry, + (29,5 =10
{1l —xp, —xp; =0 o = 0)
Example 52 : If y = tan 1z, prove (1 + x2)y, + 2xp, = 0.

1

Solution @y — fun 'x

= 1+ x?

{0 +x%y, =1
{0+ x2y, + 2, =0
Example 53 ¢ If y = aeP* + be¥", prove that y, — (p + g)y; + pygy = 0.
Solution @y, = apeP* + bge™
Yo = aptePt + bgle®*
ape™ + bge®™ — y; = 0 (i)
PP+ P — 3 = 0 (i)
Solving (i) and {1i) for &P and 9,

_ —bgy, +hg°y __-apy +apty,
aPx = = = e = ——ma—
abpg - - abp *q abpg {q - p}
&r.?.f = M eqx — ___}JziﬂL
ap (g - p) bgig—p)

Suabstituting in ¥ = qef* + he?¥

_ [-J’z+6‘}‘|] _ [-}'2+P.‘HJ
Y=\rie-pm ¢ (G- p
polg — oy = =gy, + g%y, + pvy — Py,
{P_ff}'yz_{Pz_Qzlyl
Yo~ @+gh tpgy=10

5.12 Mean Value Theorems

There are some important theorems in differential calculus called mean value theorems.

Rolle's Theorem : If f is continuous in [a, b] and differentiable in (a, &) and if /(a) = f(B),
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then there exists some ¢ € (a, #) for which f'(c) = 0 Y

Geomeirical Interpretation : If the graph of
¥ = f(x) is continuons in [q, #)] and if it has a non-vertical
tangent at all points (x, f{x)) where x € (a, §) and if ¢

< > X
{7} = F(P), there is some ¢ € (o &) such that tangent at (8]
{c, f(e)} to thecurve v = fF(x) is horizontal or we can say
it is X-axis or parallel to X-axis.

Mean-value Theorem (Lagrange) : If f is +
continuwous in |2, &) and differentiable in (@, 5), then Figura 525
[ — flay y
e f'(c) for some ¢ € (a, b). 1:: Mg, ()

Geametric Interpretation : If the graph of v = f(x)

is continuous in [z, ] and if ¥ = F(x) has a non-vertical

tangent at all points, (x, #(x)) where x € (a &), then

€ > X
Je € {a B) such that tangent at (c, f{c)) is parallel to the 9
secant line joining Alz, f(a)) and B{d, F{b)).
. € w-¥ _ - i@
We koow slope of AT Yo X, b _a 1}
Slope of tangent at {c, f{c))} = f'(c) Figure 5.26

Hence the result.
Example 54 : Verify Rolle's theorem for f(x) = x* — 4x + 3 in [1, 3].
Solution ¢ fis continuous in [1, 3] and differentiable in {1, 3) as it is a polynomial in x.
FI =0, /() =9-12+3=0
e e (1, 3 such thal ) =0
Now, f{c}=2c—4=0=>c=2and 2 € (I, 3)
c=2,ce{l,}
Exaumple 55 : Verify Rolle's theorem for f(x) = x* — éx2> + 11x — 6 in [1, 3].
Solution : f is continvous in [1, 3] and differentiable in (1, 3} and f¢1} = 0 = £{3)

f'(x)=3x2—12x+ll=ﬂ=x=w
1
x=ziﬁe (1, 3)
The are two value ofcnamelyc—Ziﬁ. (e € (1, 3)

Example 56 : Verify Rolle's theorem for f(x} = sinx in [0, T].
Solution : sime is continuous in [0, U] and differentiable in {0, M) and sir (0 = sinm = §

Fix)=cosx =10 :>x=% in [0, T].

¢ = % and %e {0, T (c € (0, m)
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Example 57 : Apply the mean value theorem to f(x) = cosx over [0, ).

Solution : ¢cos is continuous in [0, ] and differentiable in {0, )

a=0,b="m
B = fla) . o8 T — cos ) .
=z - Jfcypgives, —F—p— = —sine
-1-1

o S

R 2
sine = R'A]SGG{ - < 1.

Since J e, 0 < ¢ < T such that sire = %
[]n fact, there will be two value of ¢ in each of (U_%) and (%JT) such that simc = %
If we take ¢ = sin_I%, wc will get only enc valuc of ¢ in (ﬂ,%)]
Example 58 : Apply the mean value theorem to #(x) = ° in [0, 1].
Solontion : f{xy = €% is continuous in [0, 1] and differentiable in (0, 1}. a =0, 5 = 1.
7}’{&;:;'((3] = f'(c) gives, ‘:T_[l' = g*
ef =g —1
c=log,(e = 1)
MNow, 2 << g < 3
l<e—1<2
O<logle—D<log, 2<log,e=1 (e > 2)
c € (0, 1)and e = log (e — 1}
Example 59 : Apply the mean-value theorem to f(x) = log x in |1, e].
Solution : leg function is continuous in [1, €] and differentiable in (1, ).
a=1b6=ef(x)= 'i‘
loge — lap 1 _1
e—1 o
%:ﬁ (log 1 = 0, log e = 1)
c=e—1
Also 1l Se—1<¢e as e > 2
(c € (1, &)

c=eg—1

Example 600 : Can you apply the mean-value thecrem and Rolle's theorem (o f(x) = [x] in [-Z, 2].

Soletion : fis discontinuous at —1, 0, 1 and 2 (why not a1 —2 7)
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Fis not differentiable at —1, 0, 1 in (—2, 2). Y
E
fo={-=2 —25x<-1 3
2l
—1 —1Z£x=<0
1 —C)
< 0 D=x<] %
32 100 1 2 3
1 1=x<2 —) g
L 2 x=2 =% T2
13
But f'(x) =0, x € (=2, -1) U -1, B (0, 1) (], 2) ¥

b b
(Constant Tunction) Figitn 323

s Conditions of Rolle's theorem are sufficient but not necessary.

Also ﬂ?__{i{.;z] = 2—:—2) =1 # f'(c) for any ¢ in (2, 2).

(Infact either f'{c) does not exist or () — 0 for e € (-2, 2))

[n any interval [, #] not containing an integer, f is a constant function and Rolle's thecrem and

mean-value theorem can be verifiad but not otherwise.)

Exercise 5.7

Verify Rolle's theorem : (1 to 8)

1. Fix) = x{x — 3)? x € [0, 3]

. fy=x—6x2+1lx—6 x € [1, 3]

fm = o2 x € [-3, 3]

4. FO) = log [;?fgj x € [a 4] 0<a<h

5. f(x) = sinx + cosx — | x € [o, Z]

6. F(x) = e (sinx — cosx) xe [E, 3K

7. fix) = gt € |0, M,a>0

8. f(x) = &cosx x € [—%, %]
Verify Mean Value Theorem : (9-10)

9. flx)=x— 2sinx, x € [, @]

10, f(x) = log,x, x € 1,2
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11.

12,

13.

14,

xX—¥ x-

Prove —— < log, ; < 2. 0« ¥ < x using Mean Value theorem and taking f(x) = logx.

Apply Mean Value theorem and find ¢
(M fy=x+1 xe,3]

(2) fx)y=tan 'x x € [0, 1]

fand — fana

Prove seciu < ~h-a < seclh D= g b %

Find a point on the graph of ¥ = (x — 4)? where tangent is parallel to the line joining A4, 0),
B(5, 1).

Miscellaneous Example :

e

Example 61 : Find . log; (Jog,x).

Fxample 62 : Find 55— fan™

L
Solution : ¥ = log, [%) = log,(log ) — logy(log 7}
d&y _ d

o= = 7z log; (logx). f*cf; log, (log7) = 0)
d Yoz {logx)
dx log 7

]n}g? -ﬁ; log (log £

1 1
log7 logx

1
Xlogxlop?

-
X

d

—

Sinx
dx [I+C05-IJ T <x< 2T

T e | SEnX
Salution : y = tan [1+msx)

25inx % cos &
_ —1 ——
= dcn

2w L4
2

MNow, v
& _ 1
ar 2
_ I
Example 63 : If f{x) = cos™! ot find f{x), x € R

Solution : Let { = 3*
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Example 64 : If x = a (cost + tsint), ¥ = alsing — tcost), find 4y

2

: oy 1 124
i) — coy

7 1412

Let 8 = run L, —% < B < % So ¢ = temB

¥ >0, 50:=ran3>0.5n,0<9<%

0<20<m
I L _I[l—mnzﬂj

COS T4 T L s an®e
= cos ! (cos2®
=20 (0 <28 < m)
= 2ar 4t

cos | :zi = 2tem 13 (Taking ¢ = 3%)

_ Xk
Fx) = cos™! Tro% 2ean 13¥

X X
2:3%l0g,3  2-3%log,3

1+(3%2 1 +F

HOE

2

dx*’

Solution : 4% = a{—sint + reost + sint) = at cost

ot

dy Lo .
- dlcost — cost + sinf) = af siné
dy _
dx fami
d’y _ 4 (4
dc dx \dx

= f; {tant)

a gt
ar Vant)

.i'e.'r:2r
= s
ot
2 3
st ser
afoost at

Example 65 : If'y = gm":"_lx, | x| <] prove that {1 — xz)yz e aly =

Sululiun:d—y=yl =g ! =

edx
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L=yl =aY

(0 = xM2yy, + (2302 = a2y, {% » =2y, ﬁyﬁ = 2y, ete)
(1 =%y — xp; — Py = 0 oy = 0)

Example 66 : Does there exists a function coentinuous everywhere but not differentiable at exactly
n real numbers ?

Solution : Let fF) = |x = 1|+ | =2 |+ |x=3|+.F |x—n|

S | x| is continuous on R, So |x — 1), |x — 2|, |Xx — n| all are continuous on R,

becanse composite function of continnous functions is continwous.

Sa, f(x) is continuous on R, because it is a sum of continucus functions.

|x— 1], |x—2|,.., | x — n| are differentiable except at x = 1, x = 2,..., * = n respectively.
|lx — 2|, |x — 3|,..., |x — n| are dilferentiable at x = 1.

Sogxy=|x— 2|+ x— 3| +. + |x— #a]|is differentiable at x = 1.

If fix)=|x—1|+|x—2|+...+ |x— »n| i=s differentiable at x = 1, then
Fix} — g(x) = |x — 1] is differentiable at x = 1.

But | x — 1| is not differcniiable at x = 1.

S Fxy=lx— 1|+ x— 2| +..+ |x— a|is not differentiable at x = 1.

Similarly |x — 1|+ |x— 2| +.. + x— r| is not differentiable at x =2, 3, n.

fis continuous on R but not differentiable at x = 1, 2, 3,.., n.

i . . dy st a + ¥
E le 67 : = -+ ., P —_—
xample siny = xsin(a + ). Prove [ v

Solution : cosij—y = gin{a + ) + xcos(a + ¥) %

[cosy — xeos(a + ¥ % = sin{a + ¥}
dy sm{a+ ¥y
dxr  cosy—aos(a+ y)
B sin(a + ¥)
B (rusy—% cos(a+ v)
sin¥a + ¥

T osin{a + ¥yeosy—cos(a+ y) siny
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_ sinla+y
Fina

(sin(a + ¥) cosy — cos(a + y) siny = sin(a + y — ) = sina)

or
Lyi Y
X = sin (u+»)
dx sinie + VI cesy— sinyoeos(a + y) F31:17)
tody T sirt (e + y) T sint (g + y)
dy _ sinta+ )
dx Sina
2292

Example 68 : If (x — a)> + (v — &Y = 2, prove thal %

Solution @ 2x —a) + 200 — £, = 0

-l -ay
N (y = by

CX - - 6]

(¥ -by+ ===
(y-mt

(x —ay +{y -&?

(y - by
= — _;-2
(y - by
5 q
(- |2
2 1+
. (L+ yIZ}Z |: f)’—blz:l_
.. Vs _r2
iy By
3
| Hx—al <ty — 871
= —
r? ;
= _F = | 7| is a constant.
2
{11 3’2

(

a cyrve having ‘unitorm’ radius of curvature at every point.)

Yz

i a consiani.

is called the radins of curvature of curve y = f(x) at any point {x. f(x)). Circle is

ConTInuTY AND [MFFERENTIABILITY
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Example 69 : Find i (log x)°8* wherever defined.

Solution @ p = {log x)lnex

log ¥ = log x {log {log xN

L
¥

log x 1
log x x

% = i log (log x) +

_ logilogx) +1
X

1—log (]
dy _ (DETWW] (log x)98 *

ifx

Example 70 : Find [£ sec™lx], - _, by definition. (First principle)

Solution : [ﬁ Fec” lx]

ey — secW(=2)

x— =2 x -2

= — Ly
= lim { sec ' 2

‘_’% xecth + 2
o i(n-3]
TSk T
1
- Im, w2

Py

AT
! k|

lim pa
[ % 2zect (casf — o8 T]

_zimn
! 3

lim
PR--. 4 ,oe+EL g ZE
3 2sect | —2sin — sin —

[r—%]jz

= lm i %
A 2K ;2%
TS _2sact - sin 3 sin—2
=1
zsec%sh%
]
= il
2{—2}T
I
= 3
R N [ 1 _ L
\"anf}'. a.x.'n'EC i xl xz—l I—ZIin—l Zﬁ

%

(t = sec x)
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11.

13.

15.

17.

19,

21.

23,

\______—-——_\

| Exercise 5 l

Find points of discontinuity, if any, for following functions (1 to 4)

xs_z'jr Siﬂ(.r—l)
Fx) = = x# 3 2. f(x) = o x £ 1
3 x =73 2 x=1
} 2-x-2 e’* ¢t
_f(x) = = +1 ¥r# —1 4. f(x] = e _ g2 x#* 2

Find &, if following functions are continunous at given value of x : (5 to B)

fo) = % x# 3 6. Flxy= | ka2 x<1
& x=3 atx =3 X2+ 1 x21, atx=1
f(x)=[2x+3 x< 2 8. f(x]=[ cOsX 0<x{%
F x=2 atx=2 K — a4 x=% atx=%
13_1:+I x> 2 sinxy — 1 xb%
Find a and b, if following Tunctions are continuous (2 to 10) :
Fflx) =¢ asinx + b ﬁ‘_:xi% 10. f(x) = ax + b 0<x< 1
COSX %{xim Zx + 3 1= x=<2
1 fanx + b Ir.f:x{%t x+a ¥x=22
Find -z-:- for following functions y where ever defined :
¥ = log o (2 + 1) 12, y=ear T x# #1
v = sin (log (cosx)) 14. xﬁ +ydi-x? =a x| <1y <]
v = (sinx)" 16. y = {(sinx — cosx)ples — cosx
y=x‘+[x+i)x 18. y:x[IJr-ﬂ
y = cos(x™) + (tanxy* 200 y=sinlx+ S:‘n_lJ-l__x?, x| <1
y=taw 'x+co 'xxe R 22. x=(cost) y= (sim) O<t< %

Prove -g; eros (hx + ¢) = re™eos (bx + ¢ + Q) where r = 1’42 +bt, cosQt = -f-, sinlt, = {Jj

z
and % eTcos (bx + c) = 2 eeos (bx + ¢ + 20)
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24,
25.

26.

27.
28,

29.

30.

al.

3.

3a.

34.

35,

36.

37.

3a.

39.

40,

41.

42.

43.

44.

Z
Find -f; a1 e R — o)

X
d ‘|'1+J:—‘,‘1—
Find dx G Jl+x+J] 0 [xl <1
o, o LA sinx T
Find dx tan | vinz 0< x < )

If y = {cos 'x)?, prove (1 — xz)yz —xy =2
If ¥ = sinpt, x = sint prove (1 — 1:21}12 —xy + sz =10

Ify = Em.ran_lx; prove (1 + xzjyz +(2x—my, =0
1 _1
If2x =y +y ™ (x 2 1), prove (&2 = 1y, + 20, = m%y

Iy = (et JET prove (€ — 1y, + 13y - iy

lou.x

- X dy _ 8%
If ¥ = e* ), prove dx Oogx+1)?

If y = &% sinbx, prove y, — 2ay, + (& + by =0

B _ s Ja -b?
If (@ — beosyila + beosx) = & — b2, provc gy —
If y = (raw 'x02, prove (1 + xD%y, + 2x{1 + x2y, = 2

X
Il y = xlog 3 px PrOvE x3y2 = {xy, — 12

If »

asiné — beost, y = acost + bsint, find y.

If y = sin{sinx), prove y, + tamx +y, + ycos’x = 0

v = cos! 3 + Se05x dy _ 4
Y =008 T acsg v PIOVE = = Tracaan-

Find the derivative of fam! ﬁ wrz st (2xd1-x2 ).
—

2
|
T Wl sin |

Find the derivative of cos ! 7.

1+x + X

4 [L(casec 10| _—
Find [ dx(cosec x) = s by defination.

g A | sinT =4 oosT —=—

Find dx{ m 1+x ) x>0
- o g —4x

Find - 2 B N x = i}

X < =

ﬂ{x{ﬁ
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. od o atbx
45. FlIld d_x fein b —ax
d J1+x +‘||1—
46. Find d'_
J1+.r —Jl %
47. Find % tan~ Wseex — tanx).

48. Select a proper option (a), (b), (¢) or (d) from given options and write in the box given
on the right so that the statement becomes correct :

Section A (1 mark)

(1) [%sec_lx]: _ .=

@ T &) = © =5
) %x* = (x> 0)

{a) x*~ ! (b) x* (c)
(3) % iy + cosm W)= o (2] < 1)

(@ 0 ® o ©
(4) i @A = ... (@ > 0)

(@ a“(l + loga) ()0 (c) o
(5) % e = .

{a) &% (b) 5™ {c) 5x &~ |
{ﬁ]%log|x|= ...... L2

(a) Th ) L (c) does nat exist
(7 ?% simlx = ... .

{a) 3sinlx (b) 3cosix {c) 3sinix cosx
(8) i tany =

(a) nran” ~ lx (b} ntan’ ~ lxsec?x () n secx

@k

{d¥ 21 + logx)

{d) does not exist

{d) doecs not cxist

(d)0

(d) &

(d) —3costx sinx

(d)y ntan® ~ lx sech — Ix
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D Irfxy=§ ax+ b 1 <x<5 1
Tx—5 5x< 1D
bx + 3a x2 10
is continuous, (@&, &) = ...
(a) (5, 10) (k) (5, 5) (c) (10, 5) (d) (&, 0}
(LI Fx) = %—a < a
0 x=a
a- i x>a  then..
(a) . li)ma +f (x) = a (b} x“i,naf (x) = —a
(<) Fis continuous at x = ¢ (d) f is differentiable at x = &
NI FE) = ( x x e (0, 1)
1 x =1

(a) S is continuous at x = 1 only

(e) f is continucus on R*

d _ 1
U225 Tagix

1
w ®

(L3Il y = asiny + brosx, ¥+ (yl}2 =

(a) acosx — bsinx
da .2 0N
t'|4".'dx {xc + xim<x) e

(8) 3(x2 + sinix)

(b) (asinx — beost)? (©) a* + b2

(b} £ is discontinuous at x = | only
(d) fis not defined for x = 1

(© !

 x(log | x 2 (@) &

A2+ B E O

(d) 0

(b) 3(x2 + sinx)® (2x + sinlx)

() 2x + 2sinx cosx (dy 0
U594 o = e - 0< < W
XSIRX + COSX YOOSX acnsx + sinx 1
() xsinx {b) 2o xxinx (© 24 xsinx () 2 xxina
Section B (2 marks)
4 , 1-x _
(16) =t =
1 1+x 2
(@) =11 2 (b) T () T-% (d) 1457

190
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d . Jl-cosx _
(17) £ van 1’1+cosx_ ...... LM< x <2 L]

1 _1 1 -1
A p— ) 1+¢as 2x (€ 3 @ =3
(18) If x = gtan”! y_.r:-, then % = . _ =3
{a} 2x (1an {log x) + 1) {b) 2x {tan (log x) + 1) + x? sec (log )

(c} 2x (ran {log x) + 1) + x%sec{logx)  (d) O

(19) -j; sin ! [%h%,h-f) = o ©w<xr<d) —
@2 + 7= by & == () —T= () 7
5 Jl—xz 5 fr-x2 ,l|l—,1:2 Jl—x2
(20) & tan | (f__:;) = . (, a€ RY, xa > 1) 3l
1 1 1 1 1
(8 752 (b T2 S B S C) P
(21) If fix} = log, (logsx), then f"(x) = ...... . ]
1 1 1 1
{a) XxlogTlop 3 (b) leg3 log x (c) Xlegx log 7 (d) Xlogx
e =
(22) dxx|x| ...... (x < 0) ]
{a} 2x (b) —2x {c} | x| {d} 0
2t 1-¢2 d
(23) i x = T, 7, ¥ = T2 then 25 = . -]
242 2t —2t
({a} -2 (by T 2 {c) 2¢ {dyT_2
d logx —
(24) -- grloEx = ]
(a) X (1 + logx) (b} x* (c) 1 + logx {dy x*~!
-1
(25) ﬁ T nt i = =
1 S S —1 —1 _
(A) | run'x (b) 1+ e~ x)? ©) 1+ 22 dy . 2

Section C (3 marks)
2

=
@ 2 (b} % ©

(26) If x = af?, y = 2at, then

]

-1 1
daf () 2t
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@7 L cor st o (x € R — {0}) "
X
—1 1 2
(@) 732 {b) 201+ x%) (©) 75 52 ()_1+x
2
(28) ﬂ;f‘ ...... 1
1 ] 1Ay
(a) ﬂ (b) (dy\? [ﬂf (d) [2]3 oy ?
dx? ex i
(29) Far the curve fix) = (x — 3)%, applying mean value thcorem on [2, 4] the tangent at ...... is
parallel to the chord joining A(2, 1) and B(4, 1). E ]
(a) (1, O) (b} (4, 3) (e) (2. 3) (d) (3, 0}
(30) The walue of ¢ for the mean-value theorem for f(z} = ¥ in [—1, 1748 oo . El
@+ 7= DERE @© *1 (d) 0
{31y If we apply the Rolle's theorem to f{x) = ¢*sinx x € [{, ], then ¢ = ...... . .
(a) (b) 3 () & (@ I
(32) If we apply the Rolle's thcorem to f(x) = x> — 4x, x€ [0, 2], then ¢ = ... . ]
@ V3 (b) 2 © & (& —2
Section D (4 marks)
(230 If x = secB — cosB, ¥ = sec™@ — cos®0, then... 1]
( x2+4[ﬁ]2=2{}1+4) b) (x? N E A =n? 2 —
a2+ 9 L] =n ) 7 - | ==
w2
(e) (2 + 4)(%} =1 (d) (x + 4}(ﬁj =y2 44
o -1 ‘h +x* - Jl -
(34) 5= tan D +J1+.r ...... x| <1 |
—1 —_ N x*
@ fi (b fi_xt © 3fi- @ T3
enL(xfr 2+ i E)= L @>0) -
1
(@) f2_ .2 (b) Ja? - x° () ‘sz —a? (d) fx? +a”
(36} Conditions of Mean Vazlue Theorem are not applicable to ...... in [—1, 1]. E==1
(@) f(x) — x| h fix) — x* (€) f(x) — sinx (d) f(x) — =2
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(37) For fix) = x + i, x € [1, 3] the value of ¢ for mean-value thecrem and for

Fix} = x2 — 4x + 3 for Roll's theorem are ...... . L1
(@) V3, 1 (b) 2, 1 () V3,2 ()2, V3
J8) If the tangent to the curve ¥ = x lop x at (o, £(x}) is parallel to the line-segment joining
All, 0) and B{e, «), then ¢ = ...... . 1l
L -
(@) =+ (b) log <+ ©) e'° e’
(39) T we apply the mean value theorem 1o fix) = 2siex + sin2x, then ¢ = ... . -
g jin )L
(ay 7 (b) 3 © & @ 2
(40) Tf we apply the mean value theorem to fix) = (2 +x° x<1 -
3x x>1 xe [-1, 2]
then ¢ = ...... .
{a) 2 (b) 0 {c) 1 (d) #

We have siudied the following points in this chapter :

1. Continuous functions 2.  Algebra of continuous functions
3. Differentiation and continuity 4. Chain rule

5. Rules for derivative of inverse function . Derivative of Implicit function
7.  Derivative of parametric function 8. Logarithmic differentiation

9.  Second order Derivative 10. Mean value theorems

Prehistory

Excavations at Harappa, Mohenjo-daro and other sites of the Indus Valley Civilization have
uncavered evidence of the use of "practical mathematics". The people of the IVC manufactured bricks
whose dimensions were in the proportion 4:2:1, considerad favourable for the stability of a brick struchire.
They used a standardized system of weights based on the ratios: 1520, 1/10, 1/5, 1/2, 1, 2 5. 10, 20,
50, 100, 200, and 500, with the unit weight equal 1o approximately 28 grams (and approximately equal
1o the English ounce or Greck uncia). They mass produced weights in regolar geometrical shapes, which
included hexahedra, barrels, cones, and cylinders, thereby demonstrating knowledge of basic peometry.

The inhabilams of Indus civilizalion also tried Lo slandardize measurement of length Lo a high degree
of accuracy. They designed & mler—the Mehenjo-dare ruler—whose vnit of length (approximartcly 1.32
inches or 3.4 centimetres) was divided into ten equal parts. Bricks manufactured in ancient
Mohenjo-daro often had dimensions that were integral multiples of this vnit of length.
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INDEFINITE INTEGRATION

Whet we fmow is not much, what we do not now s immense.
{Allegedly his last words)
— Laplace

A mathematics teacher is midwife fn ideas.
— George Polya

6.1 Introduction

In the chapter on derivatives, we have already learnt about the differentiability of a function
on some interval 1. If a function is differentiable in an interval 1, we know how to find its unique derivative
F"' at each point on [L Now, we shall study an operation which is ‘inverse’ to ditferentiation. For example
we know that the derivative of x? with respect to x is 3x2. Now if we raise the question, derivative
of which function or functions is 3x2 ? Then, it is difficult to find the answer. It is a question of

an operation inverse to the operation of differentiation.

Let us frame a general question, “Is there a function whose derivative a given function can be and
if there is such a function, how to find it 7 The process of finding answer to this question is called
‘antiderivation’. It is possible that this question has no answer or il may have more than one answer.
For example, (i} i{x3) = 3x2, i{xj — 15) = 3x? and in general X (x3 + &) = 3x2, where ¢ is any

dx idx dx
constant. (i) %(&r’nx} = Cosx, %{smx — 3) = cosx. In general %{sr’m + £) = cosk.

Thus, antiderivatives of the above functions are not unique. Actually, there exist infinitely
many antiderivatives of these functions which can be obtained by choosing ¢, from the set of real
numbers, For this reason, such a constant is called an arbitrary constant,

6.2 Definition

If we can find a function g defined on an interval I such that %Cg(x)) = f(x), ¥x € I, then g(x)
is called a primitive or antiderivative or indefinite integral of f{x). It is denoted by J F(x)edx.
j-f(x}dx iz called an indefinite integral of £({x) with respect to x. The process (operation) of finding
2(x), given F(x) is called indefinite integration. This ‘indefiniteness’ is upto arbitrary constant.

Thus, the question whelther we can [inod primilive of F is ool easy o answer. There are some

sufficient conditions such as continucus functions and monotonic functions have primitives. % is
continuons, I% dx is defined, but cannot be expressed in terms of known clementary functions.

Similarly, | secx dx and _[ \II.‘!C3 +1 dx cannot be expressed as a known function.

In [ f()de, [ ...dx indicates the process of imtegration with respect to x. [ f(x)dx

denotes, integral of f(x) with respect to x and in If(.‘r)d.t, S(x) is called iniegrand.
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6.3 Some Theorems on Antiderivative :

Theorem 6.1 : If f and g are differentiable on (a, 5) and if f'(x) = g'(x), Vx € (a, b), then
JFix) = p{x) + ¢, where ¢ is a constant,
Proofl @ Let Mx) = f(x) — glx}, x € (a b).
fand g are differentiable on (s, ») and hence f and g are continuous on (@ &)

It x. x, € (&, b), x; < Xy, then & is continuous on [x, x,].
Now, h is differentiable on (. x5) as [x,, x3] < {a &)
By mean value theorem,

7“’1;2 :j;;[xl) = H{c) for some ¢ € (x|, x3).
Alxy) — Blxq) = H(c)xy = x;). (0)

Now ¢ € (%, x3) = ¢ € (a, §)
But it is given that ¥x € (a. 5), /'(x) = g'{x).

Fie} = gie)

Fe) —ger=10

Ale)y =10 (hix) = fi(x) — plx) = h'(x) = f'(x) — g'(x))
hx) — hix)=0 Vx,x, € (a b (by (i)

hix() = h(x,)

Flx) — gla) = flx) — glxp), Vx.x, € (o b)
f— g is a constant function on (&, 4).

Fix) — plx) = ¢, wherc ¢ € R ig a constant.
fx)=gx)+ ¢, Vxe (a b

General Antiderivative : If < (7)) = 4 (gx)) = h(x), then [h(x)dx = f(x) and
| By = gx).

But f(x) = g{x) + ¢. So Ih[x].:.‘.’r = fx) = pix) + c¢. Here g(x) is a differentiable Tunction
on (a, &) with -f; (g(x)) = j':;f[x} = h(x). Hence if one integral of A(x) is g(x), any other integral
of h(x) is g(x) + c. Also if -jf—r-m{x}} = h(x), then -r% le(x) + €] = ;j; g(x) = h(x).

Thus g(x) + ¢ is also an integral of f(x).

Thus, il one primitive of k(x) is gi(x), then all its primitives are given by g{x) + o
where ¢ is a constant. As ¢ is any constant, it is called an arbitrary coustant.
Lel us perform the operation of dilferentiation and mtegration successively i any order.

By definition of antiderivative, we know that,
fx—g{x} = f(), Vx € 1 & [Fx)dr = g(x) + c.
Now, L ([ reax] = £ [g00 + o] = £().

If we first integrate f(x) and then differentiate the integral, we get the same function f(x)
as a result.
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But, _[[% g(x)] dx = [ Fde = g + c.
If we first differentiate the function g{x) and then integrate its derivative, we get gix) + .
Theorem 6.2 : If f and g are integrable on (a, b), then _[(f{x) + g{x)dx = Jf{x}dx + J-g'(_t)dx.
proof L [[reoar + [ gax] = L [ rooar + 4 ] gy
= Jx) + glx)

Using the definition of antiderivative,

Jre) + gtande = [Fde + [ glodx

In general il /|, f5, &..... f, are imegrable over an intetval, then
FLAGY + A0Y +ot 0] = [ Al + [ 008+t [ £(x)dx.
Theorem 6.3 : If f is an integrable function on (g, §) and & € R, then Iﬁf[x)dr =k ff(.\:}dx.
Proof L &[] = k L[ firx
= kf{x}

Using the definition of antiderivative,
[ R (x)dx = & | fx)dx.
Corollary 1 : If f and g are integrable functions in (a, #), then

[ — glxddx = [fx)ax — [glxydx
Proof : [{F(x) — gl)dr = [{f(x)dr + (—=Dg(x)dx
= [FEdx + [ (—)glxyde
= [f@dx + (1) [ )
— [F@xydr — [ glxdeds
Thus, [{F(x) — g(ax = [f(xax — [ glxax
In general, J[k, A& + Ry fHx) ot k£
=k A + &y [ ) dx ot [ & (0

Theorem 6.2, 6.3 and corollary | arc known as working rules for integration.

6.4 Standard Integrals

|
(1 I.tﬂtitfi? +e,n e R-[-1), x € R".
A+ i+l
L is differentiable for all x € R* and f} (‘hj = nil [(m + 11"] = x*
. e ] n
By the defimmtion of antiderivative, Jx"dx aalie-wre plie gl N ¥x e RT.

(Also let us remember that if g(x} is one primitive then g(x} + ¢ is the peneral primitive.}

o+
Thus, forn=0,J.dex=‘ET +ec=x+c¢

Idt:.r+c
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(2) J-—_i_-d.t = log|x| + ¢, x € R — {0).

1

log | x| is a differentiable function, Vx € R — {0} and if x > 0, ix {log x|3= % logx = e

Wx=10 Jr]{:ugl.:nr| dxlog( X) s x
. =41 _

loglx| =< ¥x e R— {0)

By the definition of antiderivative,

J.ia'x= log x| +c, ¥xe R— {0}

We Wl'ifﬂ_[% =log|x| +e,xZ 0
(3) jca.rxd_r =ginx + ¢, Vx e R

sin is a differentiable function ¥x € R and ﬁ (sinxd) = casx, ¥xe€ R

By the definition of antiderivative,
_[c:u.sxr..[x —sinx+e, Yxe R
In the same way, we can prove that
(4) [sinxdx = —cosx + ¢, Vx € R
(5) [secixdx = jamx + ¢, x # 2k — l;%}, ke Z

tan is differentiable on any interval not containing (2% — l}-zﬁ, k€ 7 and % (tanx) = sec’x.

By the definition of antiderivative, fseczx de=wamx+ec,x22k—1DE ke Z
In the same way, we can prove that

(6) [cosecixdx = —cotx + e, x # kn, k € Z

(7) j.iccx fanx dx = secx + ¢, x # 2k — 1)%. ke Z

(8) jcaa‘scx cotxdy = —coseex + ¢, x F kn, k € L

&
9 fatax=357 +e,aeR" - {1}, xeR
&

I P 1
_];;'ea is differentiable Vx € R and % (1”‘;2‘1] = Yoz, a (& loga) = &, Yy R

a*
log, a

By the definition of antiderivative, Ia’f dx = +e¢ ae RY — {1}

Now, for a = ¢

[erds = 5= + ¢

log_ e
[efde = e + ¢, Vx € R
L) S S G | 4 = -
[I[I]Jx:_'_a: dx = tan (n) +¢ @ €R [0}, x € R
n—ﬂlcﬂrl[-g") +¢, egeR—{0}, xeER

f{m_ltf) is differentiable for ¥x € R and for any non-zero constant .
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O I‘mf'(ﬁ) is differentiable for Va € R — {0} and

i
g7, —fxy] = 1. i I B
dx [a fari (a)] a X2 g 2 +a?
a?.
" By the definilion ol antiderivalive, _ﬂé.;_z =1 far ("’L) +c¢, ¥xe R
A+ £1 7]
Thus, lmn IZ and —Emr L4 2 both can be taken as integrals of +a2 .

Let us iry 1o undersiand the reason behind (his.
Let f(x) = —:.rm_l = and g(x) = —Ecm “1E

HEA

Now, we know that fan™! ﬁ- + cof) ,{f -
s omtan M E g oot £ = B
S0 - g = A

- g+ £

n L - L,

As antiderivative is not unique, _I-fr(x}dr = gl(x) and _[ﬁ(x)dr — 7(x) does not give £(x) = gx).

We can say that there is a constant ¢ such that £{(x) = g(x} + c.

(11) l—d—‘—a& - log |

+ ¢, a € R — {0} (on any interval not containing —a and &)

On any inlerval nol containing —a and @, ﬁ log ﬁ is dilTerenuable and
' ( x—2a ) _ _ _
e log |% de [luglx gl — log|lx+al]

_ 1 [ 1 _ 1 ]

T ag lx-a x+a
[x+a—x+a

~za l(x—a)(x+a)

-1 | _2a
2a |2 —af
_ 1
T -d
Je Using the delintien of antiderivalive, J.x 27 dx = —L log x;a +c.uwe R— {0}
i J ! 1 x+a ; o
(12) g = log |s—%| + ¢;a € R— {0} (on any interval not containing —a and a)
We have, J-a_zi? dr = —1 J‘x_zl?dx
__ x—a
= 3a g |5541 + ¢
- L tra
= Za log [7—%| + ¢
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(13) jﬁdx= sin ! £ 4 ¢, x € (-a, a) a>0.

1L

= —pa§ % + 'y x € (—a, a), a > 0.

sin | (ﬁ) 15 a differentiable function for x € (—a, ) a = 0
d ( =1 (X ) ] .1
elx s (tz) ¥z

l-ﬂ_2

lezl

(a>0 |a| =a)

4 1
Jaz—f i
1
Jaz—xz

1 -
- " TR —Ll s _ -1 ) _
Using the defimition of antidenvative. j r—dz — dx = zin 5 +e, x €E (=g ), a0,

. 1 -1 X
Ax shown in {10) we have J‘ = —cox ' E2 + ¢, x € (—a a)
vat -x* a
i L gl X o 1A P—
A]sulfaiﬁ,men.[m(k S ir a+(' CON a+c. (as |a| )

We shall usually use the formula for & > 0.

] =-J.- _l.:{ -
Il4jjmdx . vec +¢ |x|>|al>0

— L cosec V£ + ¢, fx| > |a] = 0O,
o &

Hae R— {0} and |x| > | 2], é sec ! (f) is differentiable and

— 1
R R Ry i
@ x| J2f
a a?
_ 1 la
2
a lxlyf x* —&®

lxlyf 2% —a®

. . . . . 1 1 -1 X
Using the definition of antiderivative, J._ dx==sec” =+ ¢ (x|>|a|>=0
lxlyx* —a* & a

. . 1 1 -1 X
As shown in {10) we can write j e = — cosee ' — + ¢
Ix 1y x? —a? a a
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J_L‘d.l—lug|.1+ 'J,;-_ta|+r:, Yxec R
e z I S z
i ('08|X+Jx +q’ |) x+JF o et *+at)

s
1

1+ —mii
.1:+\‘!'.r2 tat X szial

{ (szia2+xJ
- :c+JJ4:""ia2 \ \‘{xzi“2

¥tat

- Using the definition of antiderivative, j 7% =log|x+ Jil+ta? | +c. Fx€ R

xta

(Mote : For existence of ﬁ, it is necessary that |x| > |a|)

Generally, if gix) iz any primitive of f(x), we will not write If(x}dx = g(x)+ c. But instead, we
will write J-f(x]dx = gl(x) assuming that ¢ is included in g(x}). According to this, in an equation like
[ fix)dx = | gx)edx + | hix)dx, there is no need to write c. It is included in the symbol [ ...dx. But it
is necessary to write _l-xzdr = %3 + . Hers -%3 is not the gengral integral. It is one integral,

Thus, we may intreduce ¢ when all symbols J ....dx are removed after carrving out integration.

Again, it is not necessary to write J'xzdx + _[ dy = — +e + ﬁ + ¢y a8 ¢ + ¢, i8 also an

. . k|
atbitrary constant. Thus, we can write | x2dx + Jx3dx = IT + IT + e

For the following examples, we will assume that integral is defined on some appropriate domain
of R. We use symbol T for an integral.
Example 1 : Obtain the integral of the following functions wri x,

L

2x + 1)’ : T+<os 2
@) B sy (3)§+§+x"+a" ) Tocos 2x

1
U TR

5 1= x2z29 (6 ==
Jx2 -4

92
J6F 443 - L)

2
(1) x2 + 4.3% —

x> 2

Solution : (1) I

Ix%dx+4j3xa&—j}f_&

=x%+] + 4 - lo
£ " Tog 3 g|x|+¢
I 3
=%x + o3 log |x| + ¢

200 MATHEMATICS 12



m

@) 1= J{ZJ:F|)3 dr = Jﬂxﬂ+11;rL2x2+ﬁx d
I X

I

=8_[x dx +

[l
L

£ 4
X

2z
+ 12x 4 6x)dx

I—-|
b
e

[
:-e
k| =

x2

4
]

x ‘a4 lzjx cix+6jx2dx

[N
—_—

-

a
+ +12. +6.£;—+c
2

[ ]

g:.q_ ”‘_r:d-—
X i ek

+ + dx* + ¢

Il
[~ -]
Hul-q MHP:'*"‘

16 24
7 +5"

(3) 1=J'(ﬁ+%+xﬂ+m)dx= Jx s+ a [+ e+ [ 3%+ [ oo

1
a

e
_ 1 a+1 _a*
—E—+alog|.r|+ 1T T T g bea * ¢
Py
=42L alog |x|+ 7 +]nga + ¢
1 . _ 1
(4) ]__[1+c0.5'21 dx_Izco.szx
_ 1
—E_[seczx x
=1
21‘anx+r:
5 1= [—= &« I A
. g 32 a3y - (o
_ .x+3-
= 75 log |3=3| + ¢
1 X+3
—Elog 3 e
6) 1= L dy = L dx
.[ %2 _4 .[I'I'xz_zz
=log | x+ [.r}z—(Z}z | + ¢
—log |x+ 2 4 | +¢
Example 2 : bvaluate the following :
dt dx (x* + a0+ ndx (xt + Spedx
(1) .I-,q,'t'l_|_9 (Z}J-gxz_zjyxz?‘:zg_s (3) W (4) W,xziﬁ

ax
(5) J- fﬁm (6) | secx « cosec?x dx

I
4xi+9

Soelution : (1) l=_[

=%,[.x2+2ak
Fl
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]
—_
]

n
L
ol
Lh

1l
|—
S
R [

@ 1=

" (x? —35)+10
J -5

Jax + lﬂf(x}z i

2=
X+

10
x+ 25 log

x + 5 log

(6) I = Jsects - cosecix

1
.[ costx sin®x

s Zx + cos 2x
o sin 1x -cos ’x

x—v5
x+95| T€¢

3) 1

5) 1

Ix“+x1+3
AT+ 1)

J‘ 22+ +3
x4+ 13

] ) 3
EJ[I +x2+|]dx

1 I [
EJ'IzdI'F EJ.x2+12 tix

1lx 3 —1
2[3]—1-2:::1" x+tec
d

A 1
6+2mn X+

SILL e

J 1+ sy
> -
SEHY 1 — sirex e
1+ sinx 1— sinx

" sinx — sin °x

1— sin 2x

* tinx — sin Cx
I S—

J ooy X
. . .
L L zx L‘US?I

I(.s’ec:x tarx — tanx) dx

[ secx tanx dx — [(sec®x — 1) ax
| seex temx dx — [seex dx + [ 1 dx

secx — jaux + x + ¢

202
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X Cy

Xin x
= N -+ =
sin tx cos 2x sin *x cos Ix

= _f(seczx + cosecix) dx

Jseczx dx + _[coseclx ax
=ifanx — coix + ¢

. €08 2x — cos 200
Example 3 : BEvaluate : py—————
Cos 2X — cos 20

Solation : 1 =I COSK — o ol

Zeosix—1)—{2cas o —1
J‘(r:asx Y—{2cos )dx

(cosx— cosol}

cosix—cos’n
SOSX—rCasOl

2 I(msx + cos(l) o«
= 2 [ cosx dx + 2cos0t [ 1 dx
=2sinx + 2cos¢ - x + ¢

= 2 (sirnx + xcoslf) + ¢

1 — sinx

F . —1
Example 4 : Evaluate : chm‘ T

dx, —% < x €

S

Selution : [ = J.f.tm_] 1- sinx ex

1+ sinx

m
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2

Esample 5 : If f'(x) = 322 — =5

and F(1) = 4, find f(x).

Solution :

s =2 -y a

' _ 2
We have, f'{x) = Ix? — =

A =3 -2 4o
oFmER e

Now, f{1) = 13+ & + ¢

4d=1+1+e
c=12

1
f(x]=x3+F+2

Excreise 6.1

@

) = 4

(Substituting ¢ = 2 in (i)

Integrate the following fumctions w.rf. x considering them well defined and integrable
over proper domain :
3
sxt+ 2t 42 ;
132 +sc—a+ Ly L —_— 3.[J;+#]
x o x vx Vx
4. (@ + bx + cWfx 5.8 465 + et 6. ¢ologx 4 gxloga
-8 . 1 P+ 1ex—1
T o s xI_g x+09
x4+ 707 +64% ¥+ xl e+l x® 42
. 2 +2x e SR Y
x4 4. 339 5 ? 2 2
13. = +1 14. 3sinx + dcosx + s Ix o Ix T fARX
2+ 305X
15, i, 16. (2tanx — 3cotx)? 17. Giglox
[ ] -}
- & X +oos X
18. c;:xxil 19. 1+4:1*osx in 2 1
SIXOO8 X
21, Tosecx — ok 22, Sore+ danx 23, (atanx + heotx)?
2
24. xf —3 25, I F'(x) = 8xF — 2x, £(2) = 8, then find f{x).
e
6.5 Method of Substitution for Integration

If the integrand f(x} i5 in one of the standard forms or it can be put in one such form, it can be
easily integrated. But if the integrand £{x) is not in one of the standard forms or cannot be easily
converted in one such form, then we may use a very useful method of substition.

In this method _[f[x)rix' is converted into _[g{r)a'r by a proper substitution x = ¢ (£), where _[g(.r)d'f

can be obtained by using standard forms or some known method. Now, let us prove the theorem
which is called the rule of substitution for integration.
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Theorem 64 : g : o, B] — R is continuous on [0, B] and differentiable on (&, P). g'() is
continuous on (&, B) and g'(n) = 0, Vr € (o, B). Iix C Ja, b] and f : [@, b] — R is
continuous, then x = g(/), gives

[feadxe = [fg@®) g'Wat.

Proof ¢ Since f is continuous on [a. ], [ f(x)dx exists. Now, x = g(/ is continuous on [0, B] and
Fix} is continuous on [ 5]

So f(g(#})} is also continuous on [o, B] and g'(#) is given to be continuous. Hence f{g(#)} g'(?)
is continuous. So,

.[ Flgl)y - gl also exists.
Let &ix) = [f (x)yx

Hixy = f{x)
Nince x = g(#)

Rgla)y = fg)

As k15 a differentiable function of x and x is a differentiable function of ¢, & is a differentiable
function of &.

L g = L (hog)e))

- fi'(g(f}] g6
= flgs) g@®
4 hgn = i) g0
He®) = [F(gln) gdt
Hx) = [ 1 {gt) goa:
[FG)dx - [£(e@) g@at
Here on the left hand side, we have a function of x. On the right hand side, we have a function

of +. Since g'({) is continuous and non-zere, x = g(f) is one-one functicn. Hence ¢ = g L{x) can convert
the function on the right hand side into a function of x.

In this rule, 4 new variable is introduced replacing the vanable x. Hence, it is called the method
of change of variablc also.

Note : (1) In the formula for the method of substitution, g{f) = x converts the right hand side
acgording to If{x}dx = jf(x) -ﬁ.‘f dt.

(2) According to the definition, for y = f{x3, f'i{x} =

)

Here, % is not ratio of dv and Jx.

But f'(x) = Ej}r; where dx and &y are “differentials’ of x and v respectively. Thus, we can write

dy = f{xkdx. Hence, if { = sinx, then df = cosx dx. (We will study this in the next semester)

(3) Commaonly used functions %, sinx, cosx, secx satisfy the conditiong of the theorem on some
interval. Thus we will not verify these conditiens every time.
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Theorem 6.5 ; Il If{x}n‘x = F(x), then If{n.:‘ + b)dx = ﬂLF{a:r + b) where f: 1 — R iz continunous

on some interval L. (a # 0).

I'rﬂnl’:l_.etf=at+h_$ox=%_

Hence, x = g(f) is continucus and differentiable and % =g = j # 0. Also ) is

continuous.

 Irex ¥ pas = [ro Lla

o a
o [Fwar

- LR

iﬂm+m

+1 . bﬂ-l—l
Thus, (1) Ix’*dx = Eshis + ¢ gives f(ax + B)'dx = —{aﬁ; __]]}

"+l e

1 o, g 1 -1 :
(zlf?dx—]ug|x|+¢gwesjax+bdr—ulog|m—+b + ¢
3) _[cas_rdit = xinx + ¢ gives _rcas(a:c + Adx = alsfn{m: + 5+«

g [t @
(4).[ o dr=glog .[tpx+q}2 “@r U 2@ R (v g r @)

We can also uze all standard forms stated earlier in this manner,

1FeatT?

n+1

+ogives +c

X+£I

Theorem 6.6 : [f(x)]" S (x)dx =
S'(x) = 0.
Proof - Lett = f{x). So 1 = f'(x]-f{f

o [ # =1, f(x) > 0) where f, f' are continuous and

Again £'(x) # 0 and is continyous implies f = £(x) is one-one and

[irear rewds = [ren (fedsa

=[¢. 1dt
I!.1|I+1
“ntl 7€
e+l
Jreor roga =L 4o = 1@
Thes, (1) Jon coe s = [ ( sme) = T o o
5, ) SR CGSX IR ax FInx Z+1 c 3 c
1
vt 1 4 sanxy?
(’lem{::; de = I(lﬂm:)i secdy dx =J(Iﬂnr)2 (% ramf) dx =(El7 + e

9 2
= Flanx)* +¢
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x _ 2x
Sl el it el

L
_1 262t
(x2 +5)
-1je+s 7L (x2+5)dx=%T+C=Jx2+5+c

Theorem 6.7 : If [ is continnons in |a@, #] and differentiable in (@, b) and /' is continuouns and

non-zero, Vx € |a, B] and f(x) # 0, Vx € |a, b], then _[ f(,{: =log|fx)| + ¢

Proof : 118 cottinuous and not-zero. Hence, fis monotonic {increasing or decreasing) lunclion.
Substitution ¢ = f(x) gives x =f n

f‘(x}%z]
f'ex) ) dx
Naow, [ e = J'f(x) " ¥
=11
[ 4 a
=log|#|+c
Fied]
f{x}dx =log|fix)|+c
Thu
:—l
2 -[x —15
=1 dr =+ 2 ]
zj —— Liog 22— 15| +c
2c08x — Asinx —hsinx + 4casx
) IGcosx Fasmx & T E Goosx +dsiny | ©F

1 ‘I‘%{ﬁcﬂsx+4sinx}
(BCESX + 45X )
= % log 6Gcosx + dsinx |+ ¢
6.6 Some More Standard Forms
(16) On any interval T = (m, Qk + 1}33!"«) or (@k — DE, kn). k € Z
Imn.t dx = log | secx | + c.

lere, _[r.cmx dx = IMQ& {secx = )

On given interval, { = secx is continuous and differentiable and non-zero and -g:% = secx lanx is
alsc continuows and non-zerc.
Taking, + = secx, df = secx fonx dx

fecx lanx

J-Iamccér J-—afx
=I:l ot
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=log|f|+e
=log | secx |+ ¢
(17) On any interval I = (Jm, 2k + 1)-’%] or [(2&- -2, kn) k€ Z
fcm:r ix = log | sinx | + c.
Here, Jcofx e = J.% o

snx
On given interval, ¢ = siex is continuous and differentiable and non-zero and -‘%XL = coxx is also
continuous and non-zere.
Taking ¢ = sinx, dt = cosx dx

. — cOosY
o [cots dv =[SO g

=i
[+ ar
=log|r|+e
=log sinx|+c
(18) On any interval 1 = (m:, 2k + :)a}] or (Elk - 1)4’1!. .m), kezZ
_fcosecx tx= log | cosecx — cotx | + e, x Zhkm, k € X

i r
= log |rm:43-|+c

On given interval, 1 —cosa 2 0 and siexc 7 0
1— cirsx . .

e opsecx — cofy = ——— # 0 in the domain.

¥iRX
COSECK {COSECX — cofx)

Now, I = Ica.sec:x cdx J. rT0secY — Cob) x
_ J‘ coserix — cosect cotx P
- COSECY — COte x

MNow, £ = casecy — cafx  is continuous and differentiable and non-zern and

-gi = coseclx — cosecx cotx is continuous and non-zera on given interval.
1
Sl =] - a
I+
=log|¢|+c¢

= log | cosecx — cotx |+ ¢

Again, | | — log |
gain, log | cosecx — cotx | % | i
a2
| 2sin 3 |
= Dg . X X
Esm? oS 5
- X
=log |tan 2|
Thus, _[casecx dx = log| cosecy — cotx | + ¢

= log Im%l +¢
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(19) On any interval | = (k'ﬂ:, (2k + 1)%) or ((2& - 1}%, ;nt) keZ
J'.iem- dx

L]

log | secx + tanx | + ¢

i
]

i
log lmn(T+ %} | +¢

secx + fanx = l:‘ﬂ;‘? iz delined and non-zero as x & {4k — l)%, ke £

On given interval, 1 + sinx 2 0 and cosx £ 0

NECK (XD + fanx)
s&rx + fonx

Mow, ] =Isem:dx =I

Now, ¥ = secx + ranx  is continucus and differentiable and non-zero and

ﬂ:

g Secx tanx + seclx is continucus and non-zero on given interval.

] _[ Secix + secx fanx
.- = I

seex+ lang
=[1
[+ a
=log|¢|+e
= log | seex + tanx +c
. 14+ sinx
Again, log | seex + fanx | = log T

L2 X 2x . X X
SR 2+COS 2+23m2m32

= log
X -1 X
£y - Sin 2
(ros % + 5in %)2
= log
3 ST I §
(cos S — sk S
cm;%+sin%
=log —
COS?—SIH-?
1+ san
= log (—=
l—km-%

- EL+E
e (212
'Ihus,fsecxdx = log | #ecx + ranx | + ¢
— BoX
—luglﬂm(4+2J ‘ +ec
2al e sxl+3x+1

2x—1 dx

Fxample 6 : Evaluale : J

2xt 4 5at +3x 41
2x—1

Solution : 1 =j o

:J(zx—l)(x1+3x+3j+4 .
2x -1
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J(xz+3x+3+ T ).:ivc

[ Rar+3 [xac+3 [+ 4 [F

k|

=IT+3“‘T+3x+4>(—log|2x—l|+c

=& + 3243+ 20g|2x—1]+ec

Example 7 : Evaluate : J(Jlﬁ—ll}f + 25 _]gxz ) o

e [ 1 )
Solution : [ I(Jls—gxz + Pra—— ax

N I S S SR
- I (8% - 3xy? drr -[ @ -on?

1

=4 sin (3] + 355 % § log 575

5+ 3x
5—13x

sin! ?'x + l lo g‘

1
3 +c

Example 8 : Evaluate ; [ (7x + 5)f3x+2 dx

Solution : We will find #z and = such that
Tx+5=m3x+2)+n
Tx+5=3mx+2m+n

Comparing the coetficient of x and constant tecrm on both sides,

3m=TFand 2m+ =35
-z 14 - - 14 _ 1
m=and=+n=35Thsn=5— ==

I =[[m3x+2)+nlf3x+2 dx

- [[Zex+ 2+ L] Fre2 o

- [[26x £2) +16x +2:FI] i
=%J.[3x+2}§dr+% J.(3x+2)% dx
3
2

3
7 3x+2) 3x+ 2]2

]
3:-4- 3 3:-:3

(3x+2}2 + 55 (3x+2)= +c

N

210
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Example 11 :

e+ d

Example 9 : Evaluate : Jﬁ dx

_ lr+d
- J yadx +3 dx
J—(4x+5J+—

Fx+s

_[(4x+5)2dx+ 1 J'(4x+ 5) %

3 1
(4x + 52 | (dx+ 32 o
axi 4 axdt «

[
ffu

2 L
=@+ + 1@+ +e

Example 10 : Cvaluate [ sinx cos®s d.

Solution : [ = Isindx cosx dx.

= Tlﬁ_ I(Es:‘nx cosx) dx

= & [ (sin2x)? ax

2
1 1—coydx
TGI( 3 ] dx

L — 2
= I(l 2co5 dx + cosdx) dx

1 1+cos Bx
=ﬁ.[(l —2cosdx + | —=— )dx

— J(3 — deor d4x + cos 8x) &x

_ 450 4x SinEx
lza [3 4 + ) ]+

123 [3x — sin 4x + —sm Ex] + ¢

Evaluate : [ sinax coshx dx, a = t b

: I = J{s:’nax coshxy dx

% f(?s:‘mxx cosbx) dx

% _[ [sin {ax + bx} + sin{ax — Hx)] dx

=2 [[sin (o + b)x dr + 1 [ sinfa = b)x dx

p cos(atb)x B cosia—b)x

D Wit ol S Wit Tl il
3 a+b a3 “«—b te

_ | [oosla+b)x cos(a—h)x
__E[ a+ b t w—b

J+e

m
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Example 12 : Evaluate : Isfnx sin2x sindx dx

Fxample 13 : Evalvate : _[

Example 14 : Evaluate : .[

Solution : T = _[ Simx iRy sindx dx

3 [ (2sin 2x - sinx) sindx dx

= -% I (cosx — cos3x} sindx dx

4l I(Es:‘n 3x cosx — 2sin 3x cos3x) dx

?1 _[{.s‘in dx + xin 2x — sin 6x) dx

cosdx CoOS2X ca

_1[_ _ sﬁx]
4[ ) st —5—|*¢

_ 1 _ 1 _1
>d coshx T cosdx 5 casdx + ¢
1

sn{x —ayeas(x —h)

clx

e _ 1
Solution : 1 = J. S % —a) rox (x — By 4X

1 cos (g — &)
T rosta—& J.sz'n(.t—a}mx(x—b]

dx

1 coslix —a)—tx— b
T cosfa=b) | sinx—a)cos(x—b) dx (cos(b — a) = cos(a — b))

1 COS(x —a)casix M+ rintx—a) sin(x—M
cosia — by ,[ sin(x —a)-cos(x—M

= oy (r.lr —B) [ [cotx — a) + tan(x — b)) dx

= —ste—T; Log sin(x — a)| = log | costz — &) [] + ¢

_ 1 MALX — )
T ooos(d—m log casix —b) ¢
Xirx cosx

asintx —deosx

FiAX cosX
awinix — deoy x

Solution : [ =.[

Let 3sin?x — dcos?x = ¢
oo [B(Zsinx cosx) + 4(2cosx sinx)|dx = ¥
ldsinx cosx dx = 4t
sinx cosx dx = ﬁ ar
Lrl
14 .[ 4 dt

1
ﬁlng|r|+c

I

= ﬁ log | 3sin’x — dgin’x | + ¢
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Example 15 : Evalavte J-m dx

Solution : T = _[ m dx

1 oy

14 danly

_j sec?x dx
Ty 20+tanixy—34 dtanx

sectx dx
StanZx -1

Taking tanx = 1, sectx dx = dt

—dt

S ] PE

\_____——-—-—\

I Y S
_.[ 527 = (1)?

st -1
Y

1

A

V5 tanx —1
o5 framx + 1

+ .

24’_ log

@
Example 17 : Evaluate _[ m?‘ £ dx
sinx

uy
ooy X
sinx

Solution : [ =

Taking sinx = ¢, cosx dy = dt

2 L]
S 1= jM COsx ax
LInx

I — gin 2yt

U STX osx dy
SILX

(1- 5t
t

odt

=J‘1—4r*+ﬁr“—4r5+:3
t

=J'(%—4:+ﬁ:3—4r5+:?)dr

2 | ]
=Iog|t|—4%+%— AL

= log | siax | — 2sintx + %sirr"x - %

&
+f-+-c

L08X

Example 16 : Evaluate : J-Tm dx (sinx < -l}‘_.

Solution : |

-

Taking | — 9sinx = £, —9 cosx dy = 32 dr

S cosx dx = ——; 2 de
—r%ﬂ
1=

=1
L[ear

2
-4 (2) -

Z
= —% (1 — 9sin0)® +¢

x% sin Vrx?y
Example 18 : Evaluale J‘—f5 clx
I 2 gin~gx? x* sin”l(x)
Soluti : I =
olution : [ = Jl—_
Taking sin 123 = £, 224 —
1-x
. xz dx 1
ie. — - Edf
x2 dx

Il
Tl |t
| p— |
¥ |'“‘lu
el
+
L¥]

% [.s'in_l(x3)]2 +c

sinbx + és:’nsx + ¢
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10.

13.

16.

19.

22.

15.

28.

31.

33.

38.

41.

44,

47.

50.

Exercise 6.2

Integrate the following functions defined on proper domain w.rs x.

5x—3
SUF 3 — 34np(2x + 3)

L, 1

Jﬁxz +31  9-4x?

Pl
x+1

cof? (3 + 3x)

l+cosx, 0<x<T

x+2
(x + 3%

xe+3

dx+13

Jixes

sint(2x — 1}

cos2x - cosdx - costx

1+ cersx
1-rcosx

0= x< T
Si X
Rin{x —a)

a
(Gx2—4x+ 52 (3x—2)

S -1(1% x)
X

1 — farx
1+ frx

xflyer-!

x% 4 ¥

T bt @< H)

11.

14.

10.

23.

26.

51.

e T4 4 (52— 3)8

sin? (3x + 5)

1
Jix+a - f3x+1

a2+l
(x+ ¢

. cos2x - cosdx

1 - o5y

1
sinis— ) ¥yini{x—BH

X+ 3
X+ 6x 4
."‘l + logXx
X
51 + x)
cos Yixe®)
(3tan’x +2) sec *x
(tan ’x + Zanx + N2

amin 't

J1-x

12.

15.

18.

11.

4.

27.

30.

. X mx-sinnmx, mEnn mnrne N

37.

7255 sin 22 x 4 cos T2x
sin*1x

1

J16—ox?

(2x 4 1P
x—2

1

5x—12 —_—
3% t ooy

1 — ¢0s 3%
sin 23x

1
Vi-2x 4+ f3-2x

¥ rax? a2x 4
x-1

L+1

,f'ix +1

sintx costx

iR dx
—_—
S X

x+2
1-2x

40. x5t 43

43.

46.

49,

5Z.

fin2x
(m+hn c:oa'zx}z

¢ cosect (2¢ + 3)

¥iR2x
(Beos 2x + asin 1x)?

3
ftan 'x) 2

1+ x?

214
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eTlopisine') Iog(x + 1) — lopx

' 5 5 3
53. — 54. T i D 55, tan'x
—_—
56. secx tanx 57. tanx 58, Trev+yral
2 1 ]
59. 1 60, aleos?y + b2sinlx 61, 3 25in 2y
(x+ 23
EIRX 1 —_1
62. Finax 63, “gcos 2x + 3sin 2x +1 64, ‘35in ®x + cos 2x

s
6.7 Trigonometric Substitutions

Sometimes using proper trigonometric substitutions, we can transform given integrand into a form
whose integration can be easily obtained. Particularly, when expressions like x2 — a2, @ — x2, ¥2 + &2
ogcur ynder square root in integrand, trigonometric substitutions are very useful.

Ii!

4-x?

Suppose our aim is to obtain [ dxe, (x >0

Let x = 2sinB. Then dx = 2c00@ 48, B 2 (D,%)

1=I L o

4— x*
4sin *0
= | Foame 20050 a6

_ J‘ 45in*0-2005030
2c050

(('{JJH' >0as 0 e {L]%))
=4[ sin’B 46
=4I |-c§rﬂﬂ 40

=2[9— Smfe] +c

=20 — 2sim0 cosB + ¢

m
——
e
(8] ]

Now, x = 2s5in8. Hence B = sin"[%], 5]

25in8 00.59=2-% X2 = Ly 4y

1= 25:’&’1(%) - -%-x.qfq__xz +c
TFellowing is a list of some frequently used substitutions. Mostly they are nsed to remove radical

sign frem the integrand. Usually we will take 0 < 8 < %
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Integrands Substitution
2+ g2 x = atanB or x = acotd
x2 — a2 x = asech or x = acosech
a® — x2 x = asin® or x = acos®
Z ;i x — acos2B
m x = 2asin‘B
JZa.x—.tz —JQZ_[I_H)E x —a = asinB or acosh

—
Example 19 : Evaloate : Ix‘m dx

L
Solution : Here, 1 = J.xm dx
Let x2 = h2sech

2x dx = HlsecB tan8 2D
2x cx

Now, T = J-—
o Zx'z“x"—b"’

_ j B secOtanBd 6
2* sec OB sec 70— b*

1
=7 [ 8
1
=7 O+ ¢
a i
Bui, since x¢ = Asec, secl = 'g?, 0 = sec l'g?

2
I = #sec_l(;—z) + e
FExample 20 : Evaluate ; J_.;S—x gy, 0 < x =<3
x
Solution : Here, 1 = J._‘H Fe iy
X

Let x = 3s5in20

Then dx = 3(25in8 cosB) 6

T
0©<8 <

<90 < %)

©<0<3)

216
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= J—‘M“nzﬁ ésin8 cos8 48
I5in 9

- J' 243 cas 70

sinfl
_ 1- 3in 0
=243 J sin@ 9
=23 [(cosecd — sinD) 4O

= 243 [log | cosecd — cofB| + cos@] + ¢

But, since sin2@ = 3 LcostD =1 — -%- S0 cosB =

cosec?® = <. So cosech = 1’1
xX X

Albu]+cotzﬂ='i'.50catﬂ=1‘%—] R ki
I—ZJ_[logl J_ ‘P x \+J3 x]+

2
Example 21 : Evaluate J' i :1 dx, (x < 0)
X

2
Solation : 1 = I yx 4” dx
X

Let B = tanx, —% <8 <0 S0, x=tan 8

dx = et 0, B € (—%_U)

=-|'.|||tdﬂ2E|+1 SEC

nte

=I% 49 (secﬁ >0a 6 € (—“125'19])

_ J‘ cosh
im"ﬂ

[ (sin@)™2 j%{.ﬂ'nﬁ] 40

_ (sin®)? | .
=3
1 1

3 sin’G

+ £

= —% cosec® + ¢

Now, tanB = x. S0 co® =

f' 241 g 1
and cosec® = —Jf1 1+ cor?6 = —JH— ,J;f' = fo“ = J":x” -Z<06<0)
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Example 22 : Evaluate : Jl—;—l ax, {x > 2}
(F—D2 (x-2)2

el

3 L
(x -1} (x- 232

Solution : [ =

Let x — 1 = se¢?B, dx = 2sec8 secB wunb 0 <O < _'zn")

S ody = 2 sec?B janl B

25ec B 1anB d 0
L= 3 I
(vec?B)Z (sec?®—1)2
_ J‘ 28e¢ “DronBd 0
sec 0 - tand
=2 I cas50 76
=25m0 + ¢
Now, sec2® = x — 1. So cos?0 = ﬁ
-2
and sin?@ =1 — cos?B =1 — ﬁ = ;—1
S s = ii? (ﬂ <0 < -T:}:[—)
i x-2
I ~—7 t ¢
6.8 An Important Substitution
If the integrand is a+!i51‘nx= a+i:l|casx or a+bsin;:+cco.§x: then &m% = ¢ is a vseful

substitution. Using this substitution, we can transform integrand into a standard form of ¢.

Taking fand = 1, sec?L - Lo =t

2 2
2 2dt 2t
- - - S
sec% 1+ Iartz% L+
Aan: 2 1t g _p
Xinx = I+tan2%= 1+ 2 and cosx = ]+mz% =T

This will transform the integrand into a function of ¢
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Esample 23 © Evaluate : | 1

2udr
Solution : Let fard: = £ So, dx = T+, and sinx =

2

1442

-] =J.+'l+r2
1—2[—2‘ ]

__ 1
=2_[t1—4r+1

_z,l.rz-:u+4

2 sinx

e

2t

dt

S dt

1
-2 -[ -2

- . f—2-43]
—'2)(2‘5 lng 2_H.’r-|+.'.:
tant-2-43

L
73 log m‘}

Example 24 : Evaulate Jm@fm, o= (D’T]

Solution : | = msudf_

let r-:m% =f Sody =

1+ 2 COSX =

I

Ji¥

COoSx

2t 1—#
1+ 42

Fedt

. _ 1
A e [—r

cosl +

1rd

1+ 2

> dt

:Jlm.mn+12-msm+l—r2

Prid

:2.[{1+m30t}

—(1— coso)e?

di

= 2_{2{:052%—2.

£t

i'in'z%- gt

1

-[ [cos ';]2 ~ (¢ sin ‘2‘}2

mc%+ £in “*r

Zﬁin% Foe] .v%

1+

im0l OB [

log

. + ¢
c‘as%—sm%r

rang-rani

:‘an mn- te

2t

1472
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6.9 Integrals of the type fJiu'"x cos"x de m, n € N

If m, 2 € N, the following cases may occur :

(1) m, nare odd
(3) mis even and & 15 odd
Let I — Isin”’x cosx dx

Case 1 @ m, on oare odd.

(2) m iz odd and 2 is even.

(4) m and »n both are even.

We may takc simx = ¢ or cosx = . Usually if m > n, sinx = rand if 1 > m, cosx = ¢ will

be convenient.
Clase 2 @ m is odd and & is even.
We take cosx = 1
Case 3 : m is even and x is odd.
We take sinx = o,

Case 4 : m and » both are even.

In this situation, we transform sin"x cos"x using sinéx =

1—coalx 2 1+ cesZIx
f and cos<x = f

For small values of m and », these methods are simple. For larger and negative values of
m and #, other methods are availables, but at this stage we will not study them.

Example 25 : Evalvate [ cos?x sin®x dx
Solution : Here, m — 5 15 odd. » — 2 is cven,
S Let cosx = £ So —siax dx = dt
S simx dy — —dF

1

_[cmzx sindx dr

2

J- sinx - cas®x - sinx dx

J{1 = cosx}? . cosix sinx dx
= [ =22 2=

=J1 =22 + Y-y dr

A - & =Aydr

b ] 7 ;

5 7 3
2. 5 _ 1.7 _1_ 3 )
SLUS.'-\'.' ?L(J.\ X 360.!\1 + [

Example 27 : Evaluate _[sinzx costx dx
Solution : T = [ sin®x cos*x dx

Here, m and » both are even.

Example 26 : Fvalvate | sinZx - cos’x dx

Solution = [ = Jsim®x - cos™x dx
Here, wt = 23, » = 3. m and # both are odd.
But mr > 1. Let sinx = 4, 50 cosx dx = ot

2y cosx dx

I = Jsin¥xcas
= J'.vinza'x(l — sin®x) casx dx

=830 -2 dt
= [ 2 — 25 dr
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sindx costx = %(455:121' cos®x) costx

= %sfﬂzzx - pos?

1 1-cosdx L+cowix
Y 2 2

= % 1 — cosdx + cos2x — cosdx cos2x)

X

{(2e054X CR 32X

=L[l — cosdx + cos2xy — 3

16
= 3_12 [2 — 2cosdx + 2cos2x — cosbx — coslx)
= 3—12 {2 — 2rosdx + cos2x — costx)

1 = %J’ [2 + ¢cos2x — 2eosdx — cosbx] dx

1 sin2x _ 2sindx siuﬁx]
= [21 + 3 -+

2 4

TE]]E [12x + 3sin2x — 3simdx — sinbx] + ¢

]Exercise 6.3 |

Integrate the following functions defined om proper domains using trigonometric

substition :
1 I
N {lx| < 1) 2. - 0<x< 3
s, —— 4. RJO6_6. (0<x<a
(a® + x%)?
1 2-x
5 T 0<x<la B. D<x<2
¥2ax- x* ( ) ( )
a=-XxX IZ
7. 1‘a+,:: O <x<a b TR O<x<a)
_ L X 4
E R yra Y 10, —*— 0<x<%)
(16 - 9x232
xz a?_x:!
1, ——= {|x| > |al) 12. x5 (0 <x < a)
e at+ x
xs a2
—_1 -x?
13. - = (x> 2) 14, ¥2-X g <x <)
(x-1pTix-22 x
1
15. 1+ sinx+ oasx 16. I+ 250X+ CO8Y
1 1
17. S7acosx 18, T¥ cosw cosx
S S S @
19. T=vomx 20, s (0<x<E)

INDEFINTTE INTEGRATION
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6.10 Integration of the type (1) I

m

Z1.
23.
25.

sintx cosix 22. si’x coslx

cosix siHix 24. sin’x costx

sinx 26. sinlx cosix
&

A
ax® + bx +¢

dx

. -[ yax +bx +¢

Ax+B
[lj il dxandj—dr
axr +bx+c yax® + bx +¢

(1)

two squares.

To evaluate this type of integrals, we express ax? + hx + ¢ as the sum or difference of

al+bx+c=a x2+£x+£]
X a a
= 2+£x+_‘f_ L+
4 aq? 4a” r:
r 2 2 .
_ by _ B —4a(.]
al(s+£& =
2 21 if A2 5 _ B —dac
=a [(x + @ — P2, if 82 — 4ac > 0, where P =—
B — dac
=a [(x + )2 + [2], if #2 — dac < 0, where 2 = -

Thus, ax? + bx + ¢ = a [(x + 00 + ). Hence

—_dx —dx
,[a.x1+bx+c and‘[ [ + bxs o Can beevaluated

using previous standard forms. Now let us understand the method by the following examples :

Example 28 : Evaluate : I

(Nutl: : If B2 = dac, then e + 6x + ¢

—_dr
x4+ 13x - 10

dx

Solution : T = J 2t 1 13x — 10

elx

I frersremn
- 2 3. _ 1
3 XrFr-3

ot e

L e

]

ofz+ L))

222
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(Nnte 1 =L lag

I
|~

[l{:g|3x—2|—|ng3—|ng|x+5|] t+c

1T
— 1 3x-2 " [
=5 log‘ — ‘ + ¢ where ¢’ = ¢ — 1053)
1
Example 29 : Evaluate : J.m dx (ﬂ <x < J;)

Solution : [ =J.‘m ofx

sl vl
Rl =k

-L ! 5
EJ‘J%_[J_J_%_,_ﬁ)
L [ —L—
BRI TR

x-—<4
_ L .—1[ 4]
= sin =+ ¢
2 I

- % sin~1 fdx — 3 + ¢

(2) In order to evaluate this type of integrals, first we find constants m and 7z such that,

Ax + B = m(derivative of aix2 + bx + &) +
Ar+B=m2ax + b+ n

Ax+ B =(2max + (mb + n)

Comparing, the coefficient of ¥ and constant term on both sides, we get

A=2Zmgand mb+u=DB

andl m = B — mb

3
I
R[>
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At+B [ mzax+b)+n
Now, _[mz+b.x+¢ ) af +hx+e
B Qax+ b 1
" Jaf+bx+c de + "_I-a.xz+£zx+c ax

1
=mlog | ax?2 + bx +e| +n dex

For the first integral, we use ‘[ ‘;;fj; de = log | f{x)| and for the second intepral, we have to use

method (1) of making perfect square in the denominator.

AT+ B mi2ax +8)1+n
Now for [ e ™ [ T vmare
_mizZax+b) 1
.[ axt +bx +c¢ dx+".[ ax +bx+c &

_1
ax +bx+c

-1l
=m_[(ax2+bx+cjz{2m:+b}dx+n‘l. dx

L
(ax? + by 402
g i TR

_
?1 +"_|. al +hx+c dx

1

ax +bx+c olx

1
=2m(m1+bx+c)2+nf

_ L™

For the first integral, we use j-[f(x} 7 fi(x)dx = ==

and to evaluate the second integral,
we have to use method (1) of making perfect square in the denominator.

2x+3
Fxample 30 : Evaluate : J..Mz taxt+5 A%

Solution : First, we will find constants # and » such that 2x + 3 =m % (32 + 4x+5)+n
2Zx+3=mbx+ 4+ n
2x+3=(bmx+4m+ n

Comparing coefficient of x and constant term on both sides, we get ém = 2 and 4m + n = 3.
=1 4 = =2
m 3anu:i_,!‘+n 3. Thus, » N

2x+3 (ﬁx+4)+5
= .|.1x T4x+s .[ Prax+s

[ sxt4 5 ]
-3 .[1IZ+4X+1 de + 3 .[3x2+4x+5 ol
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Lt f—

6% + 4 L
) ,J-3x2+4x+5 de + 5 Jl~;rx2+12x+4+11 dx

ol |

0x +4 1
T3 _[3x2+4x+5 dr + 5.[(3x+2)2+(m}’ dx

lop |3x2 +4x + 5| + — ! a2 +c
W11 Vi1

|
L —

2x+3

Example 31 : Evaluate : ‘[m dx

Solution : Here, the derivative of denominator x2 + 4x + 1 is 2x + 4, Thus 2x + 3 in the
numerator can be written as 2x + 3 = 2x +4) — 1,

2x+ 3
| = [——
X +4x 41

(2x +4) - ()
I 2 +ax+1 dx
_J (2x + 4 J
JI +4x +1 ,,‘x +4x +1

dx
2_(&)2

[ + 4x + 1)_7 (2x + 4) dx — J Toos

1
(x2 +4x+1) 2

- : —log | x+ 2+ Jirr2)2 (32| e

41

2t +ax+1 —loglx+2+ Sy paxs1lte

2

Fxample 32 : Evaluate J o ax
g x*
Solution : 1 =‘[x4+1 dx

2xE
=y )y &

X +n+ixt—n
2 x*+1
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Let x — i = u for the first integral and x + i = v for the second integral.

Sa (H%J dx=a‘uand[

x

1—%] dx = dv
X

. _ 1 dis
v I _EJHZ'F(JE]Z +

1
x—L] x+L_J7
— = ! (-3 + == 10g [—F
22 Nz a2 x+;+«5
(X 1 2% +1-42x
o TR )Y as B [ v

1., L= 1 1
2:>~zﬁmm [2]+2X2J§I0g

v
jvz—(ﬁnz

v =43
V+||"EI + £

Exercise 6.4

Integrate the following w.rf x.

1
Lo ¥ y3x+3

1
4- -‘;+2x_x2

1

g —
y7—3x—2x°

1
2. 4x? _ax+3

1

5. JEowes
1

8 Tmm———
Jx=+3ix+7

—1 Axt1l
R e ez
2x 43 A+
13, ——— 14. Jiz
Ix2+4x+5 5—2x—x
et _x
16. !5—43"‘—;3“ 17. {xﬁ+2x3+3
xt+1 x+4
9 20 e
1 x -1
11- Id+l 13. x4+x2+l
*
Miscellaneous Examples
Sin2x
Example 33 : Evaluate : J - 7wy dx
SM[X—T]S!H-\I+T]

30 ek _ox?

1
6. -
25"+ 3x—2

1

9. Jix —Dix—2;

Jx+2

12 9 rx+l

252X — cosX
R g R

X = A8irx

2x

8. f o,

x2 41

2. S

2 T Rl

226
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Solution : 1 =J. - '::mzx o dx
Xin [J:——] i'm( +T}

str2x
- .[ sinfx — Tl.i'lzn dx

I SIJ’IZI
sty —

‘[ dx .s*mzx ——
- sinfx — 2

=lug|sfn2_a:—%|+c

1
Example 34 valuate T x (x>0
Solation : [ = | —L—
XX

Let x" + 1 = ¢ Then mx® " ldx = ot

s
I = e (xf e )

I (t— 1

L
- I .I'r“—r+%—% di
='1‘J. 2 et
i —a—{a .
m 1))
log ki

b ()
n OBl <

Fin (x —8)
Example 35 : Evaluale : J.]J s ity &
: s . ’sin{x—ﬂ]
Solution : 1 —J- Sinir+ 81 (x+8) dx

_J gin{x — El) Finn(x— 03
Sm(x+B) Fin(x— By dx

sin(x — B)
a .r \fsm x — sin ?

Second Method :

I .[(r—m

J‘[z—::r—l)]d:
T oF — Lif

w4

=L log |t —1l—log|#|1+¢

=1
—nlug
_1 L
n log{xn+l}+c
b<x<Z+0,0<x<E

(sin(x — @) = O
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_ J sinx cos 9 —cosx sin @

dx
ysin Zx — sin 26
— cosB J' sinx _ S!'HBI COsx
JSH! —S!ﬂ JSH’I I—Slﬂ
= cosD J- 215 dx — sinb J' LS dx
\fi—n:?s r—1+rosQ J.sm ‘x—sin’d
sinx dx oSk dx
= ensB J— — xinB I—
cors 20 — cos? x Jsinzx—sinzﬂ
Let cosx = u in the firsl integral and sinx = v in the second integral.
S —sinx dy = du and cosx dx = dv
I = cmﬂj — sl J
COS 2B—u 1‘ - smzﬁ
— —cosO sin ! (E}%] sinB log | v+ Jv2—sinde |+ ¢
= —cosB sin [Es‘;g] — sin0 log | sinx + 1’.5‘!'!121’—5‘!'?!29 |+ ¢
sinx
FExample 36 : Evaluate : J_m dx D x< T
inx+1)—1
Solution : T = Ju
Jl+.§'lﬂx
— I
= [ T+ sinx dx—.[mdx
JJsm —+r:os +25m—cas— ix — _[ 1 dx
J +r:o.'; +zsfn%cos-§-
J 5m—+ms—| dy — _J-
| Sh’!— +C(J'.'.i'—
= J-(.sm?+co.s— ax — _[ dx (ﬂ < & <« &y
[JIE Cﬂ.’i7+ﬁ sm%] - -

= _ll(.sin%+ms%) dx — Jm

=J'(sfn%+m332:-] dx — ﬁjsec (%—%] ax

X FrS
= _{:Sl + ”_Ez — f x [T:]l:] log|sec [%—%) + tam (%—%) |+c
=2(sin-§—(.vsg“) - J2 log sec(; ) + fum {——— |+C
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11.

13.

14,

Integrate the following with respect o x.

Jx

Vi ¥x

(x > 0)

1

{:4:+1}2 x +2x+2

X+3
xX+2

(x> =2)

.1'2

T (52

SR (x +a
stnix+ by

Jtanx

1
l—2acoss + o

< a<l

log (x + l+x2}

2z

1+
1-4x c (0. 1
l+\‘r;‘x (‘ )
X +5x+3
X +3x+2 (x= -2, -1)

1

8.

10, x(1 — 0t

-
"sintx+costx

castax —a)cosic —b)

m

Exercise b

Select a proper option (a), (b), (¢) or (d) from given options and write in the box given
on the ripht so that the statement hecomes correct :

Section A

(1) If ] iy = M + ¢, then f{x) =

(a) 1"431 (b) Eluix)
(2) [e¥logagide = .+ ©

@ e ®)
(3) J@ dx= ... +e¢

(a) {log x)2 (b) L0
(4) J..s'ecz (5-%) dr = o + ¢

{a) {an [5 - l]

......

lorpicdey

(c) 5 Uog x)*

(9] —2mn‘(5 - %)

© o (3)

{logx)®
(d) ”‘JT
X
(d) l+?ugea
(d) £ (og x)°
() —ran(5-3)

@ $onm (3]

INDEFINTTE INTEGRATION
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f‘ﬁ}_[ L—eosx dy = ... + o, 2 < x < 3T
{a} _ZE oy % (b:l —5 cos %
dx
(7) JW = b o
2
{a) 21p|3+ log x (b m
] pr—
(8) Jlm dr = .. + c
N 1
(a) —5(4 — 3x) 24+
1
(c) =2(4 — 3x)”
-2
© [T dem ot c

{a}log|x2—4x+5|+c

(¢} 22— dx + 5

1
Il“}.[ ?I'I_'_q dI BT +c

@ (%)

1 —f A3
(€} 5 5 fom [ 5 ]
1
(lllj_l_m_ﬂ dr = ... + ¢
(a) cosecr + corr (D) —cm%
ll35I=J[',J|: _ 4]ngx
|12}_|. Tha % _gIbg ¥ G% = .o + ¢
(a}y e- 37 (b) & logx
Il;i}_[ sec?x - cosec’x dx = ... + ¢

{a} funx + cotx (D) funx — coix
(i etloex .o o 1y e = L +c

(a) log (x* + 1) by —log (x* + 13

4
us}_[@ &= . + ¢

(log x)*
@ =

(cy 242 cos % (d) —% cos (%)

{c) 1|r‘3+ log x

(dy =2 J3+ log x

_2 T
() —2(4 + 3x)

L
(d) 24 + 3x)°

(b} log sz —4x+5
(@) log (377

1+2
-2

!
(b L log |7

[
o —

@ 55 o (3

{c) —4::0!% {d} cosect + cort

x* x*
(c) X (d) %
(¢} secx + coseclx (d) cotx — tanx

—_—
{c) } log(x)+ 1) (d} 7,

]ung
C
(€) =

N

-

]

1]

(dy log x - {log x}* + %

230

MATHEMATICS 12



(@) sinlfx +¢ (M =2f1—x+¢

) —sin Wx+e WD2fl-x+¢

[lT}J. {can‘}m] R D
(a) (umx) (b) fm:;x}z () Lanxs (d) (fm;.?x)w
2
(18) _[I‘"‘Tx dr = ... =l
(a) log |x%| + ¢ (Blog x+ ¢ {c) (log x¥¥ + ¢ (d) Llog 02 + ¢
2
Xyinx
I:lg)'[ (msx—sm.pj} dx = surras + ¢ D
(a) log | xcosx — six + 5 | (b) —log | xcosx — sinx + 5 |
(c) log | xsimx — cosx + 5 | (d) —log | xvinx — cosx + 5 |
(2] (1 = cosxIcosecx dx = ...... + ¢ - |
(a) san 3 (b) cot £ () % tan (d) 21am %
Section B
(2T () = 22 + 5, then jf{x}dx = ..... . {c and k arc arbitrary constants) L]
4 2 4
@&+ 2 4otk 0 —& — 3 —ex+ &
(c)%—f’li+cx+i: (d)x+51 +oex + &
10x7 + 107 log 10
[12;IW o = ... + ¢ ]
(a) 1X — x!0 {by 10% + x!0 (e) (10r — 2171 (d) log | 105 + 210
|4
(23)] cosx - elogsimn gy = + ¢ -
s d SiRx COSX
(@) -2 by = © < (¢) Zoe s
{zd)J. T gy = -
(a) log | 1 + dcosx | (bY —4 log | 1 + dcosx |
(c) =5 log | 1+ dcoxx | () —log | 1 + dcosx |
IXDEFINTTE INTEGRATION 231



(a) 3(x + 2?7 + + 23

mgu+mz + 357
1
g

L

(©) 2(x + :s)z + &2 (d) 0x + 2]2 +

[16}_[ sin2xcos Ix dx = Acosx + BeosSx + o, then A+ B = ... ]
@) % (b) & () 2 (dy 2

Cos 4% +1

{I"}J. e dx = A rovdy + ¢, then A= .. ... |:I

@ — ) — © —§ ) g
1+ casx

[ZS}J —onr T + ¢ |
{a) log | sinx |+ log | cosx| {b) log |mmr ton= |
{c) log ‘ 1+ e‘an%| {d) log |.sec— + Hm—l

(00| EE_COK g+ -
(a) ———= ®) o

SINX+ COSX SinX— COSX
(c} log | sinx + cosx | {d} log m
— AT

(3¢ J')J COSX [1+ COsx} de = te .
(a) 2 log | cosx| + mn% (b) log | secx + ranx| — Emrn%
(c) log | eaex | + Zrcm% (d) log | secx | — mni

ST Erpper R ]
(a) log |&* — e™| (h)log |&5+ e*| () tan™" (¢ (d} ran=! (e¥%)

: dy _

{32}.'. x+xlogx ~ 77 +e -
(aylog |x+ xlog x| ftbixlog |1+ log x|
(c) log |1 + log x| (d) 22

: Jranx .

{EJ}J Jm.ua.!rx vt -

(a) _*”‘;”x (b) _“L‘g”‘ (c) 2Jcorx (d) 2+ranx

232
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Section C
)] g = e T €

R N

{c) 57 log ““”[%‘STRH (d} log |cos £
tmj—*ﬂ—i =t C

{1+ sinx)?

(a) V2 log M(?'Tx‘%] (b) ¥2 log wsec[%+%)—cm[%+§]

(€} ¥2 log |an (%+1} (d) ¥Z log |sec [%+§)+mn(%+%]l
o= e

(a) xcosa + sinalog| sin(x — a) |
{c) sina log| sin(x — a)Y| + cova x

yin2x

(3E]J 2 P dx = +

peos ix + ¢ 5in ’x

{a) 4 log| pain2x + goos 2x|
7

{c) g lp log | pcmx + gsin Zx |
[ivls ke _
{39]‘[4_‘_ng de = .. +c

{a) % L (% tanx]

{c} Ing |4 + Ytanix |

{.ﬂ.l:J 22 de= +e
4 sin 1 (i) — Ja? — x?

@ sin™' (£] + Jo2 -2

(]
e

(b} % fem (% wan

[x1 o
|

(d) £ tam! [Bm:n

ib) (x — a)cosa — sinalog | sin(x — a) |

(d) ying-x + cosa log| sinlx — &) |

(b) (¢ — ) log| peosix + gsintx|

(d) P+ g log | pcmzx + q.‘ifﬂle

(©) 2 ! (3 mmc)

(d} ﬁ log | 4cos?x + Osinx |

() L sin! (

L
T

(d) @ sin~
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+ gsin 2x + rcof x + ¢, then -
@p=—2 g=—F, r=—1 (byp=—F, g=—2,r=-I
@p=1,q=—Fr= p=39=—fr=1
(42)_[—&4‘L e ]
+et +1
(a) 75 sec l[kﬁﬂ] (b) far L (1 + 5
(@ - tan ][23"+1] o L _1{e‘+lJ
73 7 ) 73 tan " | T
(43)_[ 2_;_1:2 = ... +c ]
(a) sin (EEI] (b) sin! [%) {c) sin”! [zj%jJ (d} sin1 [3; f;)
Section D
O] Par - —
{(a} x tan ][12+I] {b) ran_l(xz_l]
X x
e 2+l I x-1
{c) 2 tan r {d) 4z feor Sz
45)] (Janx + ooy de = o + ¢ =
e + 1 tanx — 1
@ ot (] ® V2o (e
ferx +1 " -1
©} ¥2ran™! (J:;WJ () J_ tan~ ! [ﬁ;t:am ]
1-Vx dr
{dﬁ)J- —r A = +¢ i
() 2103[ :J;:] 2sin~ 1 x (b} log [—"l:;:} + 2sin7] [ﬁj
- Ji= J-x-11
() 21-:.5[:“,1—;] + %cm‘_ldlx"'l (b Iog[ :_f+1) — 2sin I x
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un[—E5 -+ -
G- x*y?

(a) —=X (b) — =

—X — (c) —5—,—2 by —=—
f'-! q_xz EJ 9+X !J 9—.x (q_xi)g

1 r
(43)Ifjx3‘/ltzg dx = peos—1x? + q1’1_x4 + rxz.'}]_x“ +c thenp+g+r=... (=3

(@) 0 (b} —3 () 3 (b) =1

¢ SummarE D

We have studied the following points in this chapier :
1. Definition of primitive or antiderivative or indefinite integral.
Working rules for integration.
3. Standard integrals :
+1
(1) [xdx=3"7 +cne R- =1}, xe R
2 _de= log|x| + ¢, x € R — {0}
(3) [cosxdx = sinx + ¢, Vx € R
{4) _[sim:dx = —cosx + ¢, Vx € R
(5) |sectxdx = tamx + ¢, x = 2k — L. ke Z
{G) _[ca.seczxdx =—ecatx te,x F AN, ke £

(7 [ secx tanx dx = secx + ¢, x # 2k — I]%, ke 2

(%) _[cosec:x cofxde = —cosecx + o, x AN, A e Z

X
® Jade-1E5 +ec,ae RY - {1}, xe R

(il

l _ A —1{ X
(lﬂ)Ix1+azdx—Efﬂn (E)+C’ ae R— {0}, xe R
(1) f%j“azdpggmg | +cae R— {0}, x# *a
J' 1 1 X+a

(12) | 77 Lix=alﬂg el b &2 E B HOE S ta

S | e e . -
(13)‘[de sin LI+.5, x e (—a a), a> 0
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S — _ 1 -1
(14} j e = —sec” ' =+ 2, |x| = |a] =i
lxlyf 2% —&? = G ==

1
(15) Jﬁdx =log|x+ Jr2+4i| +c ¥xe R
4. Rulec of substitution for integration.
If I FGxydx = F(x), then j Jlax + Bydfx = iF(ax + &) where / : I — R is continuous on some

interval [ {a # 0).

6. | " N e _ ' ] ) !
. FON™ Flix)dy = =T {n #= —1, f(x) = 0) where /, " arc continuous and f'(x) 7 0.

Lh

7. Tf f i5 continuous in [q, 5] and differentiable in {a. 5} and /' is continueus and

Jix
Fix

non-zero, ¥x € [g, 4] and /() # 0, ¥x € [a &], then J dx = log | fixy| + <.
{16} Immc dx = log | secx| + ¢,
i A ) (!m (2% + 1}%) i ((Zk _ DBE, krl:) ke z
(17 [eotx dx — log | sinx| + ¢,
on any interval [ = (kﬂ: 2k + |}%) or ((2k - |)12E, k:l'l:) ke Z
(18} Imsecx dx — log |cosecy —ecotx | + o, x £ XM, kK € 7,

on eny interval [ = (Jcrt 2k + 1}%) or ((2;; ~ D&, kr:) ke 7

(19} I.ﬁ'e:c.x dx = log ‘ t‘an(%"";‘) | S (r

on any interval T = (.rcr: 2k + 1}%) or ((zfc - nE, kﬂ:) ke 7

Classical Period (400 — 1200)

This peried iz often known as the golden age of Indian Mathematics. This period saw mathematicians
such as Aryabhata, Varahamihira, Brahmagupta, Bhaskara 1, Mahavira, and Bhaskara 11 who gave
broader and clearer shape (o many branches of mathematics. Their contribulions would spread o Asia,
the Middle East, and eventually to Europe. Unlike Vedic mathematics, their works included both
astronomical and mathematical contributions. [n fact, mathematics of that period was included in the
"astral science' {jyolisha-shatra) and consisled ol three sub-disciplines: malhemalical sciences (ganila
or tantra), horoscope astrology (hora or jataka) and divination (samhita). This tripartite division is seen
in Varahamihira's 6th century compilation—DPancasiddhantika (literally panca, "five," siddhanta, "conclu-
sion of deliberation”, dated 575 CE)}—of five carlicr works, Surya Siddhanta, Romaka Siddhanta, Paulisa
Siddhanta, Vasishtha Siddhanta and Paitamzaha Siddhanta, which were adaptations of still earlier works
of Mesopolamian, Greek, Egyplian, Roman and Indian asironomy. As explained earlier, the main texis
were composed in Sanskrit versc, and were tollowed by prosc commentarics.
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PROBABILITY 7

The description of right fines and circles upon which geomelry is
SJounded helongs 1o mechanics. Geomelry does not teach us to draw these lines
but requires them to be drawn.
— Newton

7.1 Introduction

We have already siarted our study on probability. Recall that the set of all possible outcomes of
a random experiment is the sample space and any subset of a sample space is an event. We
know the axiomatic definition of probability and related thecrems on it. 'We may also recall the
classical definition of probability that if 2 fimite sample space associated with a random experiment

has # cqually likely outcomes and of these #(0 £ ¢ £ #) cutcomes arc favourable for the
occurrence of an event A, then probability of event A namely P(A), is given by i Now we elaborate

these ideas further.

7.2 Conditional Probability

As we have defined probability, it is meaningless to ask for the probability of an event without
referring 1o a sample space. As an example, il we ask for the probabilily thal an engineer earns at least
Z 4,00,000 a vear is meaningless. We must specify whether we are referring to all engineers in the India,
all those in a particular industry, all those in academic field, all those werking in a government departtnent
and so on. Thus, when we use the symbol P(A) for the probability of an event A, some sample
space U must be associated with il. Now we introduce the symbol P(A | B), read as "he probability
of A, piven B".

The symbol P(A | B) is used to make it clear that the underlying sample space is B. tlere, P{A | B)
iz called the conditional probability of A relative to B. Thus, every probability is a conditionzl probabilicy.
Of course we use the simplified potation P{A) whenever the underlying sample space is U, But
whencver the samplec space {5 reduccd 10 some proper subsct B, then we write the conditional
probakility of A, given B as P{(A | B). Thus, a conditional probability is the probability of an event given
that another event has cccurred.
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Let us illustrale some ol the ideas connected with conditional probabilities. Let us consider the
experiment of rolling a pair of balanced dice. We try to find the probability that the total of numbers
appearing on the upper face of twe dice is greater than 8, given that the number on the first die is 6.
Lzt A be the event that total of the number on top fage of two dice is greater than 8 and let B be the
event that the first die has 6 on the top face. We wish to find P{A | B). This probability can be computed
by considering only those outcomes for which the first die has a 6. Then, determine the favourable
outcomes of these. All the possible cutcomes for twa dice are shown below :

U={1,23,4,5 6} x{1,2, 3, 4,5, 6

Die 1 | Dic 2 | Total Dvic 1 | Dic 2 | Total
| 1 o 4 l 5
| 2 g 4 2 &
1 3 4 4 3 7
1 4 5 4 4 8
1 5 b 4 ] o
| & 7 4 6 10
2 1 3 5 1 6
2 2 4 5 2
2 3 3 3 3
2 4 b o] 4
2 5 7 5 5 10
2 & g k] 6 11
3 1 4 6 1 T
3 2 3 6 2 8
3 3 6 6 3 g
3 4 7 & 4 10
3 3 B 6 5 11
3 & 9 6 ] 12

Fig. 7.1

There are 6 outcomes for which the first die shows 6, and out of these, there are four outcomes
whose total on two dice is more than 8 (6, 3; 6, 4; 6, 5; 6, 6),

=4_2 i
PA|B) - 2 -2 )

Let us look at this example in another way. Note that with respect to the sample space U,
we have P(A M B) = & (n =36, r = 4)
and T(B) = £ i oG

4
PACE _ 36 _4_2 i
PB) £ T % 3 &
From (i) and (i) we see that
PiA O B

P(A|B) = P{H)
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Following these observations, lel us now make the [ollowing dediniiion :

Conditional Probahility : If A and B are any events of S, where § = P(U) and P(B) = 0,
the conditional probability of A given B is

P(A N B)
A B ="FEy

Let us first prove that the set function P(A | B) which is a function of A, is infact a probability
function with respect to fixed event B.

Let us recall the axiomatic definition of probability.

Let U be a fnite sample space and 8§ be its power set. Suppose that set function
P : 8 — R satisfies following axioms :

Axiom 1 : P(A)2 0 YA € 8

Axiom 2 : P(IH) =1

Axiom 3 : Whenever A;, A, € S and A, A, are mutually exclusive,

P(A; W A, = P(A)) + P(A;)

Then I is called a probability function on S.

A result : For a fixed event B the set function P(A|B) which is a function of A is a
probability function where P(B) > 0.

(1) P(A v B)y=0 and P(B) > 0.

A M B)
S PA B = BT 20

Hence, for 2tach A € $§ and for fixed event B of S, we have P(A|B} = 0. So, conditional
probability satisfies the axiom | ol the probability function.
(Z) Tf A = U, then by the definition of P(A | B),

P(U i B) P{B]
We have D(UIB) = —F55 = FE) ~ !

Thus, conditional probability satisfies the axiom 2 of the probability function.
(3) If A, and A, are mutually exelusive evenis, then by the definition of conditional probability,

Pl(&) '\ Ag) ™ B]
We have Pi{A, U A |B) = : PfB? @

Now, (A; U Ay) M B = (A, M B) U (A, N B) (Distributive law)
Since A| and A, are mutvally exclusive events, A; M B and A, M B are also mutually exclusive.
Pl(A, U A)) M B| = P(A; M B) + P(A, N B) (Axiom 3) (ii)

Pla, M By +PlA;, B " "
P((A, U Ay |B)= TR OO (by () and (ii))

FiA B PiA, M B)
PF{B) F{B)

= (A, |B) + P(A,|B)

50, conditional probability satizfies axiom 3 of the probabilty function.

Thus, conditional prebability satisfies all axioms of a probability function.
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Properties of Conditional Probability :
(1) T A, and A, are any two evenis of a sample space and B is an event of U such that P(B) = 0,

then P(A| U A, | B) = P(A,|B) + P(A,|B) — P((A; MA,) | B)
P{A) i Ay) (1 B)

We have P((A, WA, |B) = o)
_ P{A; N BYLIP(A, MB))
- ¢ B)
_ P&y MY B)+ P{A; 1 B) - PlA, M1 Ao M B}
N P(R)
_ P{A; M B) PlAg M B) PlA; M A3 M B)
F(B} PB) P{E)
= P(A,|B) + P(A,|B) — P({A, MA,) | B)
(2) P(A'|B) = | — P{A|B), where P(B) # ¢
We have (U |B) = 1
P(A W AY|B) = 1 (AU A' =)
P(A|B) + P(A'|R} = 1 (A and A' are disjoint events)

P(A'|By =1 — P(A|RB)
Example 1 : In a box of 100 memory curds of mobile phones, 10 cards have defects of type A, 5 cards
have defects of type B and 2 cards have defects of both the types. Find the probabilities that
(1) a card to be drawn at random has a B tvpe defect under the condition that it has an
A type defect, and

(2) a card to be drawn at randem has no B type defect under the condition that it has no
A type defect.

Solution : Let us define the following events :

A : The memory card has A type defect.

B : The memory card has B type defect.

Then by given information

P(A) = s = 0.10, P(B) = 75= = 0.05, P(A N B) = 7% = 0.02

(1} The required probability is given by,

_FBOA) ;e _
PB|A) = —fa - — o5 =02

(2) The required probability 15 given by

bl oan o DOB'MAY  PA LY EY)

1- PlA U B)
1- P(A)

L - [P{a)+ PiB)— P{A ™ BY
1—PrA)

1— (0.0 + 0.05 — D02}
1—0I0

— 1-013 _ ppy _ 87 _ 29

244 MaTHEMATICS 12



N

Example 2 : The probability that a tegularly scheduled flight departs on time is 0.83; the probability
that it artives on time s 0.82; and the probability that it departs and arrives on time 15 0.78,
Find the probability that a plane (1) arrives on time given that it departed on time, and (2) departed
on time given that it has arrived on time.

Solution : Let D be the event that a plane departs on time and A be the event that a plane
arrives on time. By the given information we have P(D) = 0.83, P{A) = 0.82, (D A) = (L78

(1) 'The probability that a plane arrives on time, given that it departed on time is

_HAMDN g _ 78
PAID) = —5m ~ s~ ®

{2) The probabilily thal a plane deparled on Lime given Lhat il has arrived on lime is

P(D|A}=M=m=1&=ﬂ

P{AD 082 82 41
Fxample 3 : For a biascd dic the probabilitics for different intcgers to turn up on top face arc given
below :
Face 1 2 3 4 3 6

Prabability | 0.10 .32 0.21 013 0.5 0.17

The die is tossed and 1 or 2 has wrned upen top face. What is the probability that it is face 1 7
Solution : Let A : The event that face 1 tums up
B : The evemt that face 2 turns up.
From the table, we see that P{A) = 0.10, P{B} = 0.32.
Now, P(A ' BY = P(AY + P(B) (A and B are mutually exclusive events)
- 010+ 032 - 042
We bave to find P{A |{A ' BY
PAI(A U B) - prrm

B{A}

- SheE (Why 7)

= big _ 10 _ 5

042~ 42 21
Example 4 : A survey of 300 adults inquired about monthly expenses of their child. The survey asked
questions about whether or not the person has a child studying in a college and about their monthly
expenses. The probabilities are shown in the table below :

Probability of monthly expenses
Expenie ton much Just right Too low
Child stodying in college .30 013 .01
Child not studying in college 0.20 025 0.11

Suppose a person is chosen at random. (iiven that the person has a child studying in a college,
what is the probability that he or she ranks the expense as “too much™ ?
Solution : Let B be the event that randotnly chosen person's child studying in a college.
P{I3) =930+ 0.13 + 0.0]1 = 0.44
Let A be the event that randomly chosen person's child's monthly expense is “too much’®.
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From the table, we see that P{A ™ B) = P{expense toc much ™ child in a college) = 0.30

FlAMmB
Hence, required probability P(A|B) = — - = 230 — 15

Example 5 : A family has two children. What is the probability that both the children are girls piven

F T

th

that at least one of them is a girl 7
Solution : Let » denote a boy and g denme a girl.
The sample space of the experiment is
U = {(h, b), (g b}, (b, 2), (g, @)}
Let A : The event that both the children are girls.
B : The event that at least one of the child is a girl.

Then A = {{(g, g)} and B = {(4, ), (g. &), (g, g)}

ANB={{g g
Thus, P(B) = 2, P(A N B) = ¢
PCA M1 B)

The required probability is P{A | BY = OB

I
-:-|n..:|n-|--
Il
=

Exercise 7.1

If P(AY = 035, {BY = 0.45 and P(A U B) = 0.65, then find P(B| A).

If P{A} = 0.40, P(B} = 0.35 and P{A \J B) = 0.55, then find P{A|B).

If B{A) = 0.3, B(B} = 0.5 and P{A|B) = 0.4, then find P{A M B) and P(B | A).

A balanced die is thrown twice and the sum of the numbers appearing on the top face is observed
to be 7. What is the conditional probability that the number 2 has appeared at least once 7

A balanced die is rolled. If the outcome is an odd number, what is the probability that it is
a prime 7

From the table of example 4, find (1} the probability that a person thinks monthly expense of his
child is too low given that she is not in a college. (2) The probability that a person thinks
monthly expense of his child is just right piven that she is in a collepe.

100 cards numbered 1 to 100 are placed in a box, shuffled thoroughly and then one card is
deawn randoinly. Il 11 18 known (hat the oumber on the drawn card 1s a perlect square, what
is the probability that it is an odd perfect square ?

In a certain town, 40 % residents have computers, 25 % have interngt connections and 15 %
have both computer and internet connection. A resident is selected at random from the town.
(1) If he has a computer, then what is the probability that he has internet connection also ?
(2) If he has an inlernet conneclion, then determine the probability that he doeg not have a
computer.

A balanced die is thrown three times. Let A be the event that 4 appears on the third toss and
B be the event that 6 and 3 appears respectively on first two tosses. Find P(A | B).

242
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10. A fair coin is tossed three times. The events A, B, E, F, M, N are described as given {1} A : head
on third toss, B : head on first toss. Find P{A | B). (2) E : at least two heads, F : at most two
heads. Find P(E | F). {3) M : at the most twa tails, N : at least one tail. Find P(M | N).

*

7.3 Multiplication Theorem on Probability
We know that the conditional probability of event A given that event B has occured is given by

PlA ™ B)
P(A|B) = —pg - P(B) # 0

From this result, we can write P(A ™ B} = P(B) . P(A | B) (i)
Alsn, we know that P(B| A) = %, P(AY= 0
_ P(AMB) =
P[B|A}——P(A} (AN B=B N A)
P(A ™ B) = BiA)-P(B|A) (ii)

Combining {i) and {ii) we get,
PCAm B) = PAY-B(B|A) PAYZD
=PFB)-P(A|B)y 1if P(B)#2¢0
The sbove result is known as the Mulfiplication Rule of Probability.

Multiplication rule of probability for more than two events : If A, B and C are three
events of sample space, we have

PlAMNMBMNC=PMAMNBYMC)
= P{A ™ B) P(C| (A M B)) (Multiplication rule of two events)
= P(A) P(B| A) P(C | (A M B))
Theorem on total probability :
Theorem 7.1 : If B, and B, are mutunally exclusive and exhaustive events and P(B,) # 0,
P(B,) #0, then for any eveat A of S,
P(A) = P(B,) P(A|B;) + P(B;) P(A|B,)
Proof : Since B, and B, are mutually exclusive and exhaustive events, we have
B,V B,=Uand B, "B, =10

A =AU
=AM (B, \J B,
={A M B)W{AMB,) (Distributive law) (i)
Now, (A M B,) M (A M By = A (B, M By

=AMf (B, "B, =)
=§
A M B, and A M B, are mutually exclusive events
By (i), P(A) = P(A M B + P(A M By)
P(Ay = P(B,) P(A|B,) + FB,) P(A|B,} (Multiplication Rule of Probability)
Similarly, if B, By, By are mutually exclusive and exhaustive events and P(B )} £ 0, P(B,) = 0,
P{B,} # 0, then for any event A of 5,
P(A) = P(B;) P(A|B;) + P(B,) P(A|B,) + P(By) P(A|B,)
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Bayes' Theorem :
Bayes' theorem is a theorem ol probabilily theory originally slated by the malthemalician
Reverend Thoamas Bayes (1702 - 1761).
Theorem 7.2 : If B;, B, and B; are mutually exclusive and exhaustive events and A is any
event such that P(A) # 0, then

P(A I B;) P(B;)

P(B;|A) = HRATE, B(B,) T P(AIB,) P(B,) 1 (A By B(By)? 1= L 23
Proof : By the definition «f conditional probability,

P(B;| A) = w ()
Now, using multiplication rule of prebability and theorem on total probability we have

P(A M B) = P(A|B)P(B,) (i)
and P(A) = P(A|B)P(B) + P(A|B,) P(B,} + P(A|B,) P(B;) (iif)

Hence by (i), {ii) and (iii} we get,

_ P(A 1B} P(R,)
F(B;| A) = F[ATB, F(B,) + P(A |B,) P(B,) + F(A [B;) F(B) *

i=1,23

P{A | B;} P(B;)

- . i=1,273
3 P(AIBy) P(B;)

=1
Independent Events :

If the probability of occurrence or mnon-occurremce of event B does not affect the
probability of occurrence of A i.e. if P(A|B) = P(A) then A and B are said to be independent
events.

As an example, the evenl ol gelling number é when a die is rolled first titne and the event ol
getting number 6 when a die is rolled second time are independent events. By contrast, the event of
petting number & when a die is rolled first time and che evene thar the sum of the numbers seen on
the first and second trials is 8 are not independent.

Now, by the definition of conditional probability,

AMB
P(A|B) = ~pr (P(B) + 0)

If A and B are independent events, then
P{A | B) — P(A)

P{A M B)
PiB)

P(A ) B) = P(A)- P(B)

- P(A)

Flarm®
Then P(B) = ~ 5y (P(A) # 0)

FB) = KB |A)
Thus, if events A and B are independent and P(A) > 0, P(B) > 0, then P(A M B) = P(A) . P(B)
and P{(A |B) = P(A) and P(B | A) = P(B).
Also, if P(A M B) = P(A) - P(B), then we can say thai A and B are independent events.
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Sp, if A and B are independent events, P(A M B) = P(A) . P(B).
Theorem 7.3 : If A and B are independent events, then A and B', A' and B and A' and B'
are also independent.

PFroof : Events A ™ B and A M B' are munially exclusive and A = (A ™ B} w {A M B
P(AY = P{A m B} + (A ™ B")
P(A) = P(A).P(B) + P(A M B) (A and B are independent)
P(A M B} = P{A) {1 — P(BY)
F{iA M BY = F{A) P(B"

A and B' are independent events. Similarly, we can prove that A" and B are independent

cvents.
MNaw, P(A' 1 B = P[{A W/ BY] (De Morgan's law)

=1 —FA' B)
=1 —=(PA) + KB} — PlA ™ B}}
=1 — P(A) — F(B) + P{A m B)
=1 — P(AYy — P(B} + P(A) P(B) (A and B are independent)
= (1 = P(AY) — P(B) (1 — P(A))
= ({1 = FiAp(d — P(B))

P(A' ™ B = P{A"YPFBY

A' and B' are independent £vents.
Remark : (1) Three events A, B and C are said to be muotually independent, il
P(A M B) = P(A) P(B)
P(B N C) = B(B) P(C)
P(A M C) = P(A) P(C)
and P(A M B M C) = P(A) F(B) P(C)
If at least one of the above is not true for three given events, we say that the events are not
mutually independent.
(2) Three cvents A, B and C are said to be pairwise independent, if
P(A M B) = P(A) P(B)
P(B M C) = P(B) P(C)
and P(A M C) = P(A) P(C)

Example 6 : Three cards are drawn in succession, without replacement, from an ordinary deck of
52 playing cards. Find the probability that the event A| M A; M A; occurs, where A, is the
evenl thal the first card 15 a red ace, Az i5 lhe evenl thal the second card 1s a len or a jack,
and A, is the event that the third card is greater than 3 but less than 7.

Solution : Here, events A, : the first card is a red ace, A, : the second card is a ten or a jack,

A- : the third card is greater than 3 bur less than 7.

MNow, P{A,) = 5—22 (Ace of heart and diamond)
PlA, | A = 7% {(Without replacement, 4 cards of 10 and 4 jacks)
PlAs | (A M A - & (Why ?)
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By multiplication rule of probability,
DA, ™ Ay AL = PAD - PIAS TA) - TAL (A M AL

_ 2.8 12
52 51 50
_ _%

5525

Example 7 : A bag contains 8 red and 5 white balls. Two successive draws of 3 balls are made in such
a way that (1) balls are replaced before the second trial, (2) the balls are not replaced

before the second trial. Find the probability that the first draw will give 3 white balls and the second
draw will give 3 red balls.

Solution : Lelt A denote the evenl of drawing 3 white balls in the {irst draw and B denoie the
event of drawing 3 red balls in the second draw. We have to find P(A M B).

(1) Draw with replacement : I the bhalls drawn in the {irsi draw are replaced back in the

bag beforc the 2nd draw, then the cvents A and B arc independent and the required probability is
given by the expression :

P(A ™ B) = P(A) P(B)

st draw : 3 balls can be drawn out of 8 + 5 = 13 balls in {133j ways.
(%)
=13
3
If all the 3 balls drawn are white, then » = (3]
5
, (3
PiA) = Py = (1—3
)

Zod draw @ When the balls drawn in the first draw arc replaced before the 2nd draw, the bag

again contain 13 balls. Now, if all the 3 drawn balls are red, then » = [g)

)
"J.
=L - 7
P(B) n 13
kK
Hence, P(A ¢ B) = P(A)- K(B)
5 )
_ i}l CA3) 880 44
13} " 713 (286)2 ~ 20449
) (5)
(Z) Draw without replacement : If the balls drawn are not replaced back before the second
draw, lhen the evenis A and B are nol independent and the required probability is given by :
P(A M B) = P{A)-P(B| A)
)
E!
Asx discussed in part (i) P(A) = (T (i)
’)

If 3 white balls which were drawn in the first draw are not replaced back, then there are
13 — 3 = 10 balls left in the bag. (3 red, 2 white)
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g
Hence, P{B | A) = [[IEJ]] (ii)
Thus, from {i) and {i1)

o

P(A M B) = P{A)-P{B|A) = m[—] = ﬁ?

| r—
i OR

10
3 3}

Example 8 : A and B are two independent events such that P{A ‘2 B) = 0.5 and P(A) = 4.2,
find P(B).
Solation : Since A and B are independent events, we have P{A m B) = P(A)- P(B)

P{AY + P(B) — P{A ™ B)

P(AY + P(B} — P(A} P(B)

Now, P{A ' B)

P{A) + P(B) (1 — P(A))

05 =02+PBE) QA -02)
03 = P(B) X 0.8
P(B) = %

Example ¢ : A machine manufactured by a finm consists of two parts A and B. Out of 100 A's
manufacturcd, 9 arc likely 1o be delective and out of 160 B's manulaciured, 5 arc likely
to be defecctive. Find the probability that & machine manufactured by the firm is free of
any defect.

Solution : Let event E ; Part A of the machine is defective
and event F : Part B of the machine is defective.

By the piven conditions,

P(E) = &5, POM) = 335

Event E' : Part A is not defective and

EvenlL F' : Parl B 15 not defective.

PE)=1-PE) -1 — 2 = 2L

L]
P(F)=1—PF) =1 — 7% = =

Since E and F are independent events, E' and F' are also independent.

Now, machine manufacturaed is free of any defect is the event E' ™ F'.

P(E' ™ F) = P(E) - P(F)

_ 91 95 _ B645 _
100 100 10006 0-8643

Fxample 10 : A purse conlains 6 silver coins and 3 pold coins. Ancther purse conlains 4 silver coins
and 5 gold coins. A purse is selected at random and a coin is drawn from it. What is the
probability that il is a silver coin ?
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Solution : Let the event B, be the first purse is selected and the event B, be the second purse
is selected.

_ 1 _ 1
P(B]) = E ﬂ.ﬂd p{BZ) = E
Event A : Selected coin is a silver coin.
P{A | B} = LI % {Total coinz 9, silver coins &)

. 4
Similarly, P(A | B,) = ry
Required probability

P(A) = P(B,) F(A|B,) + P(B,) P(A|B,)

= 1 & 1 4 _ 10 _ 5
2X9+2X9 18 9

Example 11 : In a class of 75 students, 15 students have taken AB group. 45 have taken A group and
the rest of them have taken B group. The prabability that an AR group student fails in a KVPY
(Kishor Vigyan Protsahak Yojana) examination is 0.005; an A group student failing has a
probability 6.05 and the corresponding probability for a B group student is 0.15, If a student
is known to have passed the KVPY examination, what is the probability that she is a student
of B group ?

Solution : Let us define the following cvents

B, : The student has taken AB group

B, : The student has taken A group

B : The student is of B group

A The student passes in the KVPY cxaminatio.

By the yiven information :

P(B,) = % =02, P(By) = -;% = 0.6, P(B;) = -% =02

P(A|B)) =1 — D.005 = 0.995, P(A|B,) = 1 — 0.05 = 0.950, P(A |By) = 1 — 0.15 = 0.850
Now, P{A) = P(A |B)P(B|) + P(A|B,) P(B,} + P(A|B,) P(B;)

(0.995)(0.2) + (0.95K0.6) + (0.85)0.2)

= 0.1998 + 0.570 + 0.170

= 0.939 @)

We have to find P(B; | A).
By Bayes’ theorem,

P{A1Bq) P(Bs)
P(B, | A} . 3 3

i PlAIB) FMB)

P(A |Bs) P{By)
PLA)
(027 {0xR500

- (by (i)

alrAa _ 170

0639 30
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Exercive 7.2|

A card is drawn from a well shuilled pack ol 52 cards. Evenls A and B are delined as [ollows :

A : getting a card of spade

B : gctting an ace

Deternune whether the events A and B are independent or not.

If (B = 0.65, A B) = 0.85 and A and B are independent events, then find P{A).

10 boys and 5 girls study in a class. Three students are selected at random, one after the other.
Find probability that,

(1) First two are boys and the third is a girl,

(2) First amd third are boys and second is a girl,

(3) First and third are of same sex and the second is of opposite sex.

Police plan to enforee speed limits by using radar system at 3 different locations within the
city limits. The radar systerm at each of these locations are operated for 40 %, 30 % and
20 % of the time, If a person whe is speeding on his way to work has probabilitiss of 0.2, 0,1
and 0.5 respectively of passing throupgh these locations, what is the probability that he will be

lined ?

Suppose coloured balls are distributed in three boxes are as fellows ;

Colour Box 1 Box 2 Box 3
Red 2 4 3
White 3 1 4
Blue 5 3 3
Total 10 5 10

A box is selected at random from which a ball is selected at random. What is the probahilicy

that the ball selected of red colowr ?

Three machines A, B and C produce respectively 50 %, 30 % and 20 % of the total number of

items of & factory. The percentage of defective output of these machines are 2 %3, 4 % and 5 %

respectively. If an item is selected at random, find the probability that the item is non-defective.

In a certain college 25 % of boys and 10 % of girls are studying mathematics. The girls

constitute 60 % of the stmudent body.

(1) What is the probability that mathematics is being studied 7

(Z) If & smadent is selected at random and is found to be studying mathematics, what is the
probahility that the smdent is a girl ?

There arc two therapics By and B, available for curing a patient suffering from a cortain discase.

The patient can choose any one ol the two therapics. I he sclects therapy B, the probability of

his recovery from the disease is %

from the disease is % (i) what is the probability that the patient is cured from the disease ?

(i) Given that the patient is cured, what is the probability that he has selected therapy B, ?

3

and if he selects therapy B, the the probability of his recovery
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7.4 Random Variable and Probability Distribotion

We have studied how we can determine probability of various events using probability
function defined on the power-set § of a sample space associated with all possible outcomes of a
random experiment. [n many real silualions we are nol iolerested in studying the details ol all
outcomes of a random experiment. For instance, in a sample space with possible outcomes bb, bg,
gh, gz of a random experiment of having two children in a family, we are interested in knowing the
number of boys (or number of girls) rather (han the outcomes themselves. Similarly, in case of
a randomly selected electric bulb from a lot of electric bulks produced in a factory, we are
interested in determining the life in hours. Thus, we associate a real number, in one way or another,
with an outcome of each of the random experiments described above. In other words, we defing a
real-valued function on a sample space associated with a random experiment and we shall call this
real valued function a ‘random variable’. We shall study a random wvariahle and its probability
distribution in this section.

Let us understand the idea of a random wvariable by considering a simple example. Suppose
we select a family having two children. 5 represents a boy. g represents a girl. The sample space
associated with the random experiment 15 U = {65, by, gb, g},

If the omcomes of U are equally likcly, we have by the classical definition of probability,
Pi{bb}) = P{{bg}) = Piighi) = P(igg}) = %

Suppose X : IJ — R is a real valued function defined by, X() = number of boys in «.

[f & = hb, then X{(bh) = 2. If & = gg, then X{gp) = 0 and for u = bg or gh, X{bg) = X{gh) = 1.

Hence, the range of function X : U — R is the =et {0, 1, 2}. We now take the subset {13} of the
range of the funclion X. Pre-image set of {1} is {e e U | X{u)y = 1} = {bg, &b}

Similarly, pre-image set of {2} is {Ab} and pre-image set of {0} is {gg} and pre-image set of
{0, 1, 2} is £hh, g, gh, gz} = L.

Thus, commesponding to any walue in the set {0, 1, 2} assumed by X there corresponds some
event of sample space U.

As an example for X{w) = 0 for « € U there corresponds the event {gr}. Hence, the probablity
that X(x) = 0 is equal to the probability of the event {gg}. Therefore P(X() = 0) = P({ggl) = -ji-

In the table below the values of probabilities associated with the elements of the range set of the
function X are shown ;

Element # of U Probability of event (&, P(|x}) X(uw)=x P{X(a) = x)
hb P({bb}) = + 2 1
bg P({pgh = 1
| — 1 i+4-=1
gb P({gh}) = +
gg P({gg}) = ¢ 0 T

We shall call a real valued function on the sample space as a random variable, denoted by X and
its value by x. The probabiliiy with which X assumes a value x shall be denoted by p{x).

That is p(x) = P(X = x) = P(X(u) = x)
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The various real values assumed by a random variable X and its corresponding probabilities,
as shown in the table above, can be expressed as follows :

X=x 0 1 2

L 4
2 4

bl

plx)

2
Obviously, 3 p(x)=p(0) +p()+p2)=1 +5 + =1
=0

This table gives the probability distributicn of randem variable X and p{x) is called the
probability function of random variable X.

Mow, we shall define a random variable X and its probability distributicn.

Random Variable : Let U be the sample space associated with a8 random experiment. A
real valaed function X defined on U je. X : U — R is called a random wvariable.

There are two kinds of randem variables in the study of statistics, namely discrete random variable
and continuous random variable, [f the range of the real function X ; U — R is a finite 52t or an
infinite sequence of real numbers, then it is called a discrete random variable. If the range of X contains

interval of R, then X is called a continuous random variable. We shall consider a discrete random

variable with finite range and its probability distribution only. ‘I'hus, we shall assume the range of

random variable X : U — R as {x|. x3..... X,}.
Probability Distribution of Random WVariable :

Let X : U — R be a random variable. Suppose X has range {x;, x3,..., x,} which is a
subset of R. Further suppose that X assumes a value x; with probability p(x) = P(X = x).

]
(i) plx) 20, =1, 2,.., m and (i) X p(x) = 1, then the set {p(x,), p(x;)s.s P(x,)]
t=1

is called a probability distribution of the random variable X.

We can write probability distribution of the random variable X in tabular form as follows :

X=x x4 Xy Xy e

pix) Plxy) | plxa) | pixy) e | Plx

FExample 12 : A random variable X : U — R, where U is a sample space associated with tossing of

a fair coin three times, is defined as : For # € U , X(«) = number of heads in . I the

outcomes of U are equally likely, then obtain probability distribution of X.

Solution : The sanple space associated with tossing of a fair coin three times is
U = {HHH, HHT, HTH, THH, THT, HTT, TTH, TTT}

If ¥ = HHH, then according to the definition of the random variable, X{HHH) = 3.,

If ¥ = HHT or HTH or THH, then X{x) = 2

If # = THT or HI'T or TTH, then X{z) = 1

If 4 = TTT, then X(#) = 0
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Thus, the range of random variable X is the set {0, 1, 2, 3}. Since the elementary events of U
are equally likely, we have

P({HHH}) = P({HHT}) = P({HTH}) = P({THH}) = P({THT}) = F({HTT}) = P({TTH}}
= BHTTT)H = ¢

The probabilities associated with various values assumed by random wvariable X are given in
the following table :

Elemcot & of U Probability P{{u}) X(u) = x MX = x)
HHH B 3 1
L 1 !
HTH - > > 2 Gl =
THH 1 !
TTH B :
THT % 1»——% 1 %+%+%=%
HIT = )
TTT T 0 o
Thus, the prebability distribution of the random variable X is as follows :
X=x ] 1 2 3
o | 3] 3] 33

Example 13 : Four raw mangoes are mixed accidently with 16 ripe mangoes. Find the probability
disttibution ¢l the number of raw mangoes in a draw of twoe mangoes.

Solution : Let X dencte the number of raw mangoes in a draw of 2 mangoes drawn from the
group of |6 ripc mangoes and 4 raw mangocs. Since there are 4 raw mangocs in the group,
X can take values 0, 1 and 2.

Now, P{X = 0} = Prabability of getting ¢ raw mango

[126] 1615 ., 2

_(2_01_ 2 xmxm_%
'\2.)'

P(X = 1} = Probability of getting one raw mango

L)

_AAY) aX1EX2 3
200 2019 03
2]

and P{X = 2} = Probability of getting two raw mangos

B
&

4wz 3
== X T/x0
= 2

95

—
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Thus, the probability distribution of X is given by

X=x 0 L 2
12 32 Al
P) 19 G5 o5

5
Fxample 14 : Find the constant ¢ for the probabilily distribulion pix) = ¢ (xj’ x=0,1,2,3 4,5
Solution : Here, p(x) = ¢ [i), x=0 1,23 4,5

Since, p(x) represents probability distribimtion of X, we should have

PO+ p(ly+ p2) + pB3Y+ pld) + p(5) = 1

(@) + )+ +3)+(3)+ ()]

e =1

T3

Also, for sach value of x, p(x) = 0.
Required value of ¢ is %
Example 15 : Probability distribution of a discrete random variable X is given in the following table :

X=x =3 3 -1 G 1 2 3

Plx) .08 0.14 0.19 027 | 017 0.09 0.06

(1) Find the probability of random variable X assuming negative values.
(2) Find the value of P{0 < x < 3).
Solution @ (1) Probability that X assumes negative values is
PENFH 2+ p(—1) =008+ 0.14 + 0.19 = 041
(Z) PDEx<3)=p0+ p(l)+ p(2)
=027+ 017+ 0.09
= (.53

I Exercise 7.3

1. Find the constant ¢ for cach of the following probability distribution :
(1) plxy —ex,x—1,2,3. 4
2) pA=ex?, x=1,2,...,10
(5 py=c-3F, x=0,1,2,3

@ pw =1 x=1,273

4
(3) P(I) = E[I): r= 01 I:- Za 31 4
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Examine whether p{x} defined for a random wvariable X s below iz a probability distribution :

2
pxy = r:(n_erU= x=1,23..,»n

Lei X denole ithe oovmber o hours you study during a randomly selected school day.
The probability that X can take values x, has the following form, where & is some unknown

constand.
1, ifx=10
kx, ifx=1or2
MX=x)=
M5 —x), ifx=3cor4
0, otherwise

(1) Find the value of &,

What is the probability that you study.

(Z) for at least two hours (3) for cxactly ™we hours (4) for at most two hours ?

Two balanced dice are tossed once. A random wvariable X is defined on the sample space U
associated with this random experiment as follows :

For # € U, X(u) = sum of integers in .

Find the probability distribution of 3.

A box contains 4 distinct balls of which 2 are white and 2 are black. Two balls are selected at
random with replacement, If X denotes the number of black balls in the two balls selected
from the box, then find the probability distribution of X.

From a lot of 10 bulbs, which includes 3 defectives bulbs, a sample of 2 bulbs is drawn at random.
Find the probability distribution of the number of defective bulbs.

The probability distribution of a discrete random variable X is given in the following table :

X=x 1] 1 2
px) 3¢} dc — 102 | 5 —1
where ¢ > 0. Find () ¢ (I PX <2} (DI <X <2)

We take ¥ identical slips of paper, write the number 0 on one of them, the number 1 an three of
the slips, the number 2 on three of the slips and the number 3 on one of the slips. The slips
are folded. Put in a box and throughly mixed. One slip is drawn at random from the box. If
X is the random variable denoting the number written on the drawn slip, find the probability
distribution of X.

Mathematical Expectation

Supposc that the fellowing is the probability distributicn of a random variable X :

X=x Xy Xa X3 Xy _ 1 Ay
7(x) plx)) | plxg) | plxg) - | Blxg _ )| PUx,)
where p(x,) 2 0 [or each x; and i plx)y — 1 61}

i=1
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Mean : X is a random variable with probability distribution given by (i}. We denote marhematical
expectation of X by E(X) and it is defined as :

EX) = X x; plx) (i)
=1
Mathematical expeetaticn of a randem variable X iz called the expected value of X or mean of X.
E(X) is also denoted by the symbol L. Mean of X is infact the weighted average of the possible
values of X, each value being weighted by its probability with which it occurs.

Suppose ¥ = g(X) iz a real funclion ol a discrele randoin variable X. Then Y = ga(X) will also
be a discrele random variable and ils mean 15 defined as

F(Y} = Elg(X)] = _Z] g(x;) pix;) (iii)
i=

e.g. if g{X) = X2, then
Flg(X)] = F(X?) = ,Z] x2 p(x) (iv)
=

Variance of Random Variable :

The mean or expected value of a random variable X is of special importance in statistics because
it describes where the probability distribution is centered. [lowever, the only mean does not give
adequate description of the shape of the distribution. We need to characterise the variability in the
distribution. In figure 7.2 we have the histograms of two discrete probability distributions with the
same mean |l = 2 that differ considerably in the variability of their observations about the mean.

o

._.
[N S e
3

=

N-}d

[

i

Fig. 7.2
The most important mcasuore of variability of random variable X is rcferred to as the

variance of the random wvariable X. We shall denote it by the symbol G‘xz or ¥{X). If the probability

distribution of a random variable X is given by (i), then variance of X is defined by :

V(X) = 0y = E(X?) — [EX)]?
Using formula (ii} and (iv} the formula for sz 15 written as

"

I,'l pix) — [Z Xy F‘f.-f;)]L )

2 -
o= 3 |
= I=

i=1
Standard Deviation of Random Variables :
The positive square root of wvariance sz of a random wvariable X is called the standard

deviation of X. Tt is denoted by the symbol Gy, or JV(X).
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Some Results About Mathematical Expectation :
Suppose that the mathematical expectation and variance of a random variahle X are E{X} and
ze respectively. For real constants &, b and ¢, let ¥ = aX + b and Z = aX? + bX + ¢ be the new

random wvariables. We shall assume the following results on expectation without proof.

E(Y) = E(aX + ) = aE(X) + b (vi)
G2 = V(Y) = V(aX + 5 = & V(X) = & 5,2 (vii)
O, = JV(Y) = la| Oy (viii)
E(Z) = B{aX2 + bX + ¢) = aB(X?%) + BE(X) + ¢ (ix)

Example 16 : Probability distributien of a random variable X is as follows :

X=x -2 —1 0 1 2 3
px) 005 | 014 | 023 | 031 | 016 | 0.11
Find E(X) and Oy.

Solution : E(X} = Zx, p(x)
= (—2}0.05) + (—1){0.14) + (0X0.23) + (1X0.31) + (2K0.16) + (3K0.11)
=—0.10 — 0.14 + 0 + 0.31 + 0.32 + 0.33
=0.72
E(X) = 0.72
67 = Zx? px) = [BEOP
= {4(0.05) + 1{0.14) + 0(0.23) + 1{0.31) + 4(0.16} + 90.11}} — (0.72)2
=228 — 0.5184 = 1.7616
Gy® — 1.7616 and

Gy = JL7616 = 13272

Example 17 : The mean and the standard deviation of a random variable X are given by E(X) = 5 and
O, = 3 respectively. Find E(X%), C((3X + 2)). Also find the standard deviation of 2 — 3X.
Solution : Nere, B(X) = 5 and Gy = 3
We know that, G, = E(X?) — [ECOI?

E(X% = 0,2 + [BE(X)]?

=0+ 25

F(X%) = 234

E(3X + 23 =EOXZ2+ 12X +4)
= 9E(X?) + 12E(X) + 4
=89.34+ 1254+ 4
= 306 + 60 + 4

E(GX +2¥) =370
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Now, V(2 — 3X) = 32V(X) = 9V(X) =9 6,2 =9-9 = 81
- The standard deviation of 2 — 3X is &1 = 9.

If the expected gain of two players playing a game is zero, then the game is said to be
fair. If the expected gain of any player is positive, the game is said to be in his favour. If the
cxpecied gain of a player is negative the game is said to be against him.

Example 18 : A player playing a game of tossing a balanced die receives T 10 from his oppenent if
he throws an integer 3 or 4. If he throws 1 or 2 ar 5 or 6, then how much should be pay to
his opponent, so that the game becomes fair ?

Solution : Sample space associated in the game of tossing a die is U = {1, 2, 3, 4, 5, 6}. We
define a random variable X on UJ as follows :

X)) = [ 10 w=73,4

{ a u=1,2,5 6
where @ 18 the amount in rupecs which the player has to pay to his opponent.
The probability distribution of X is as follows :

X=x 10

> | B

P(x) =

Now, E(X) = 10- 2 + a.

420

[+

Since the game is to be fair, we must have E(X) = 0.

da + 20
= -0

4+ 20=10

a=—5

Hence, the player has 1o pay ¥ 5 to his opponent if =1, 2, 5 or 6.

Exercise 7.4

1. Determine the discrete probability distribution, mathematical expectation, wvariance, standard
deviation of a discrete random variable X which denotes the minimum of the two numbers that
appear when a pair of fair dice is thrown once.

2. A player tosses 3 fair coins. e wins T 500 if 3 heads oceur, T 300 if 2 heads occunr, ¥ 100 if
one head occurs. On the other hand, he loses ¥ 1500 if 3 tails occur. Find the expected value
of the game tor the player. 1s it favourable to him ?

3. The probability distribution of a random variable X is as follows :

X=x 1 2 3 4 k

p(x) 0.1 k 02 3k | 023

(1} Find the value of &

(2) Find the mean and variance.
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4. The probabilily distribution of a randotn variable X s as [bllows :

X==x -1 0 1 2 3

Pix) 02 1 k 2k 1

(1} Find the value ol &
(2) Calculate the mean, variance and standard deviation.
5. Find the variance of the numbers obtained at the throw of an unbaised die.

6. Probability distribution of a random variable X is as fallows

X=x -2 -1 0 1 2
pilx) 0.2 0.1 0.3 03 | ol

Find (1} E(X) (2) V(X) (3) E(3X + 2) (4) V(3X + 2)

7. A bakcry owner finds from his past cxpericnec that sale of number of chocolate cakes
produced in his bakery on any day 18 a random variable X having the [ollowing probabilily
distribution :

MNo. of cakes sold X = n 1

pi) + < :

He pets a profit of ¥ 5 per each cake sold and incurs a loss of ¥ 2 per cake not being sold. It
the bakery owner produces 3 cakes on a given day what is the value of his expected profit ?

3 3
L 4

i | =
| b2
| &

8. The mean and standard deviation of a random variable X are 10 and 3 respectively. Find

E(X2), E[X(X + 1)]. E [x;“’] and E (X;"’)z_
7.6 Binomial Distribution

We have studied a random variable and its probability distributions in the earlier sections of this
chapter. In this section we shall study & special distribution, a binomial distribution,

Binomial distribution is also known as the “HBernolli disiribution’ after the Swiss mathematician
James Bernoulli (1654-1705) who discovered it in 1700.

Let us consider an expetiment of tossing a coin. If we toss a coin, we get two outcomes
namely, “Head® or “Tail'. For the sake of delinileness we shall call “Head” @ success and *Tail” a failure.
Hence sample space associated with the experiment is UJ = {8, F} where 8 denotes success and F
denotes failure. Svuppose that probability of petting a success is p and that of petting failure is g
That is P{{5}) = p and P{{F}) = 4. Sincc therc arc two outcomes of the cxperiment we must have
p+g¢=1and hence g = 1 — p,

Suppose a coin is tossed # times under identical conditions. Alternatively we can say that an
expenment of tossing a coin 15 repeated s times under dentical conditions. Since the expenment is
performed under identical conditions, the probability of getting success *S” at each of the 5 trials remains
the same i.e., p. Trials of a random experiment possessing this property are called Bernoulli trials. We
now define Bernoulli trials as follows :

Bernoulli trials : Suppose a random experiment has two possible outcomes namely
success (S) and Failure (F). If the probability p(0 < p < 1) of geiting success al each of
the n trials of this experiment is constant, then the trials are called Bernoulli trials.
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Bernoulli trials have following properties :

(1) There is a constant probability of snecess (5) or failure (F) at each Bermoulli trial.

{2) Bernoulli trials are mutually independent

{(3) If the constant probability of getting a suceess (S) at any Bernoulli trial is
p(0 < p < 1), then probability of getting a failure (F) is g =1 — p.

Suppose X denotes number of successes in a sequence of n Bernoulli trials of a random

experiment having a constant probability p of success. Suppose that the probability
distribution of random wvariable X is given by

where 0 < p<land g=1-—p

Probability distribution of random variable X given hy (i) is called a Binomial distribution
and random variable X is called a binominl random variable. The positive integer n and
probability p of success 'S’ are called the parameters of the binomial distribution.

The formula of p{x) given by (i} for x =0, 1, 2,..., ® can be obtained from the binomial expansion
of {p + ¢)7. The general term of the binomial expansion of (g + 4)7 1s (;j 7" ¥ which is cqual

to the [ormola (i) Henee, the probability distribution of random wariable is called the binomial
distribution. Also, sum of all probabilities is

M

() reizorar=1r=

x=0

The binomial distribution ocours in games of chance (g.g. rolling & dice), quality inspection {e.g.
count of number of defectives), opinion polls (e.g. number of empolyees favouring certain schedule
changes), medicine (e.g. number of patients recovered by a new medication) and so on.

Resuit : The mean and variance of binomial distribution with parameters n and p are
np and npg respectively.
Example 19 : It has been claimed that in 60 % of all solar-light installations, the utility bill is

reduced by at least one third. Accordingly, what are the probabilities that the wtility bill will be

teduced by at least one third in

(1) four of five installations;
(1) at least four of five mstallations.

Solution : Let X denote the number of solar-light installations in which the wtility bill is
reduced by at least one third out of § solar-light selected at random from a lot.

Here, X is a binomial random variable having hinomial distribution with parameters # = 5 and
7 = 0.60. Hence, the probability distribution of X is given by

po= (&) E) Lreo a4

(1) The probability of the wtility bill is reduced by at least one third in four installations by
putting x = 4 in p{x).
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po = (3]
= 5(0.6Y! (0.4)
= (.2592 (i)
(2) The probability that atility hill is reduced by at least one third in at four installations is
A} + p(3). Now,
po - (38 (%)
= (0.6)°
= 0.07776
Hence, required probability = @(4) + p{5)
= 02592 + 0.07776 (by (i)
=0.337

Example 20 : The mean and variance of a binomial distribution are 3 and 2 respectively. Find the
probability that the variate takes values less than or equal to 2.

Solution @ II' # and 7 are the parameters of the binomial distribution, then we know (hat

Mean = np = 3 ()
and Variance = npg = 2 (i)
Dividing (i) by (i) we get, #ﬂ = %

Substituting in (i) we pet, » % =3 So,n=29

The probability distribution of binomial random variable X is given by

p(x) = (3][%]*[%]9_”, x=0,1,2,..,9

The probability that the variable takes the value less than or equal to 2 is given by P(X < 2).

PxE)=DTX=0O+TPX=1+PX=2)

= p(0) + p(l) + p(2)

O e Bwe
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[Exercise 7.5 ]

An edovcauonist claims that 8¢ percenl of the stodents passing a higher sccondary cxamination
take admission to colleges for university education. What is the probability that out of 10
students (1) 5 students (1) 8 or more students take admission to a collepe ?

It has been found from an experiment that 40 percent of rats get stimulated on administering a
particular drug. If 5 rats are given this drug, what is the probability that (1) exactly three and
(2) all eats pet stimulated ?

In a city of some western country, 70 percent of the married persons take diverce. What is the
probability that at least three among four persons will take divorce ?

Harit participates in a shooting competition. The probability of his shooting a target is 0.2,
What is the probability of shooting the target exactly three times out of five trials ?

The mean and standard deviauon of a hinomaal random variable X arc 8 and 2 respectively.
Find the parameters of the probabilty distribution of X and obtain the value of (X = 0) and
Pl =X < 3).

In a book of 500 pages, there arc 50 printing crrors. Find the probability of at most two
printing errors in 4 pages selected at random from the book.

If 4 of 12 scooterists do not carry driving licence, what is the probability that a traffic inspector
who randomly selects 4 scooterists will catch (1) 1 for not carrying driving licence. (2) at least
2 for not carrying driving licence.

In 2 sheoting competition, the probability of a man hitting a target is % If he fires 5 times, what
is the probability of hitting the 1arget (1) at least twice (2) a1l most lwice,

A quality control engpineer inspects a random sample of 3 calculators from a lot of 20
calculators. If such a lot containg 4 slightly defective caleulators, what is the probability that
the inspecior's sample will contain (1) ne slighily defeciive caleulators, (2) one slighily defeciive
calculators, (3) at least two slightly defective calculators.

If the probability of selecting a defective bolt is 0.1, find (1) the mean (2) the variance for the
distribution of defective bolts in a total of 400,

ES

Miscellaneous Examples :

Example 21 : Suppose E and F be two independent events such that P(E) << P(F). If P(E M F) = %

and P(T' ™ F) = L, then find P(T) and P(F),

Solulion : 'We are given P(E M F) = % and PKE' M F'} = %
As E and F are independent events, E' and F are also independent events.

P(E M F} = 7= = P(E) P(F) = &> and
P(E' N\ F) = Jf = P(E} P(F) = Ji

(' =-PEID -PE] =3

1 — B(E) — P(F) + P(E) P(F) = 1
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P(E) + P(F) = &

We know that the guadratic equation whose roots are @ and & is x2 — (g + dlx + ab = 0
The equalion whose roots are P(E) and P{F} 1s
x2 — [P(E} + B(F}lx + F(E) P(F) = @
xt — %x + ﬁ =0
122 —Tx+1=10
(3x— 1Kdx— 11 =10

— 11
T3y
Since P(E) < P(F), we have P(E) = + and P(F) = 1.

Example 22 : Find thc number of times a fair coin must be tossed so that the probability of getting
at least one head is at least 0.93,

Solution @ Let » be the required number of tosscs, and X be the number of heads obtained in
i tosses. Then X is a binomial random variable having binomial distribution with parameters 5 and

p= % Hence, the probability distribution ol X is given by

pl(x) = [ﬁ][%)x(—,‘&)”_” =0, 1,2, n

Now, P(at least one head) = P(X = 1)
=1—PFX=0
=1-p®

0 -0
- 1= (3) (3 (&Y
-G
(iiven P{at least one head) = (.93
1— (1) z 095
(L) <o0.05

1

75w
2% = 20

n=a

The leasi value of » is 5.

Hence, under the given conditions a fair coinm must be tossed at least 5 limes.
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Example 23 : For a random experiment the sample space is U = {{0, 0, 0), (1, &, 0, {0, 1, 0), (0, &, 13},
Events A, B, C arc defined az follows :

A=H0,0,0,(1,00 B={0,00,{0,1,0), C= {00030 0 13

Prove A, B, C are pairwise independent but not mumsally independent.

Solution : Here, P(A) = P(B) = P(C) = £ = 1
ANB=BNC=ANC={000=ANBNC

PFBAMBI=HBNQO=PRKANCI===PFHAMNBMNCQC)

1
4
Now, P{A M B) = % = ‘é% = P(A) I(B)

PBNC=1-= %-i = P(B) P(C)
— -1- — l L -1- —
PANC) =4 =41 =PA)PC)
A, B, C are pairwise independent events,
But PLA M B M C) =1 # 1 = P(A) P(B) P(C)

A, B, C are not mutually independent.

Note : If we select any vertex of tetrahedrom OABC

randomly, then sample space
U= 40,0, 00, (0, 0, 0, (0, 1, 0), (0, 0, 1)}.
Fvent A : Vertex is on X-axis.
Event B @ Vertex is on Y-axis.

Event C : Vertex is on Z-axis.

Fvents A, B, C are as in Fxample 23,

Exercise 7

I. Ten cards numbered | to 10 are placed in a kox, mixed up thoroughly and then onc card is
drawn randomly. I0 1t is known that the number on the card drawn 15 more thao 3, what 15 the
prabability that it is an gven number ?

A couple has 2 children. Find the probability that both arc boys, if it 15 known that (1) onc of
the children is a boy; (2) the older child is a boy.,

e
M

3. An urn contains 14 hlack and 5 white balls. Two balls are drawn from the urmm one after the
other without replacement. What is the probability that both the balls deawn arc black ?

4. An urn contains 4 red and 7 blue balls. Two balls are drawn at random with replacement.
Find the probability of pgetting (1) both red balls (2) both blue balls (3) one red and one
blue ball.

PropapiLiTy 263



w

10.

11.

A can hit a target 4 times in 5 shots, B can hit it 3 times in 4 shots and C can hit it 2 times in
3 shots. Calenlate the probability that,

(1) A, B, C all can hit the target. {2} B, C can hit and A cannot hit.

(3) Any two of A, B and C will hit the target (4) None of them will hit the target.

A general insurance company insuring vehicles for a pericd of one vear classifies its policy
holders into three mutually cxclusive group.

Grouwp T, : Policy holders with very high risk factor

Group T, : Policy holders with high risk factor

Group T, : Policy holders with less rick factor

From the pasi experience of the company, 3¢ % of ils policy belders belong 1o group Ty, 30 %
belong o group T, and the rest belong 1o group T, 1f the probabilitics that policy helders
belonging to groups Ty, T, and T, meet with an accident are (.30, 0.15 and 0.05 respectively,
find the proportion of policy holders having a policy for one year will meet with an accident.
If a randomly selected policy holder does not meet with an accident, what 15 the probability that
he belongs to group T,7

Rajesh agrees to play a game of tossing a balanced die. If an integer 1 or 2 is obtained on the
die, he loses ¥ 2. If an integer 3 or 4 or 5 is obtained, he gets ¥ 5 and if integer &6 is obtained,
he gets ¥ 10, If the amount of ¥ X received by Rajesh is treated as a random variable, then
obtain probability distribution of X.

A random variable X assumes integral values from integers 1 to 100 with equal probahility.
Find E(X), E(X?) und G,2.

Nine balanced coins are tossed together once. Find probability of getting (1) four heads and
(2) at least six heads.

The probabiliy function of a binamial distribution is

pxy - [fj Fg® N x-0,1,2..,6.

If 3p(2) = 2p£3), then find the value of p.

If each ¢lement of a second order determinant is either zero or cne, what is the probability
that the wvalue of the determinant is positive ? (Assume that the individual entries of the
determinant are chosen independently.)

. A restaurant serves two special dishes — A and B t0 its customers consisting of 60 %

men and 40 % women. B} % of men order dish A and the rest order B. 70 % of woman
order B and the rest order A. In what ratio of dishes A to B should the restaurant prepare
the two dishes ?

. In a railway reservation office, two clerks are enpaged in checking reservation forms. On

an average, the first clerk checks 33 %% of the forms, while the second checks the
remaining. The [rst clerk has an error rae of 0.03 and second has an error rate of 0.02.
A reservation {orm is selecled at random [rom ihe lotal number of forms checked during
a day, and is found to have an error. Find the probability that it was checked by the
second clerk.
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14. A fair coin tossed two times. Events A, B, C defined as follows ;

Event A : First toss shows head

Event B : Second toss shows head

Evenl C : Same result on both 1oss

Show that events A, B, C are pairwise independent but not mutually independent.

15. Select a proper option (a), (b), (c) or (d) from given options and write in the box given

on the right so that the statement becomes correct :

(1)

(2)

(3)

(4)

(6)

(7)

)

Section A : (1 mark)

Two cards are drawn in succession from a standard well shuftled pack of 32 cards.
What is the probability that both the cards are aces if the cards are drawn without

replacement ? =1

(a) 0.0045 {b) 0.0385 (c) 0.045 (d) 0.0059

A circular wheel with numbers 1 to 20 on its surface is rolled twice. What is the

probability of getting two 13's 7 =1
L L L L

® 5 ®) % © 755 @ 355

Let A and B be two events such that P(A) = 0.4, P{A W B) = 0.7 and P(B) = p. For

whal choice of p are A and B independent ? =1
1 1 3 5

(@) 3 (b) 3 © 3 (G-

Two unbiased coins are tossed. If one coin shows head, the probability that the other also

shows head is... -
1 1 1

(@ 1 b L © 1 @1

A problem in mathematics is given to three students A, B, C and their respective

probability of solving the problem iz 1, & and %. Probability that the problem is solved

2’3
is... -1
3 1 2 1
(a) 2 (b L © 2 @ 4
A die is tossed 5 times. Gelling an odd oumber s considered a success. Then the variance
of distribution of success is... ]
5 2 4 3
(a) 3 (0 5 (e) 3 @ 3
The probability that A speaks truth is %, while this probability for B is % The probability
that they contradict each other when asked to speak on an event is... L1
2 1 3 4
(@) % ® 1 © 2 @ 4
If A and B are bwo events such that P(A) > 0 and P(B) £ 1, then P(A | B is.. 1
' PlAY Ry
(@) 1 —PA[B) (b) 1 - T(A|B)} ©) Fmy (d) 1 — PA"|B)
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(9) The probability that a student is not a swimmer is %. The probability that out of 5 students

exactly 4 are swimmers is... 1
3 a 4 4
1 1 4 4
@ (%) ®) 4(3) © Cq (3) @ (3)
(10)Let X be a random variable with probability distribution L1
X=x | 0 1 2 [ 3
o | 4] 1] 2] 4

Then E{2X + 3) is...
(a) < (b 1 (© 3 (d) 6
Section B : (2 marks)

(11) A study has besn done to determine whether or not 2 certain drug leads to an improvement
in symptoms for patients with a particular medical condition. The results are shown in the

following table 1
Improvement | No improvement Total
Drug 270 530 RO
No drug 120 280 400
Total 390 810 1260

Based on this table, what is the probability that a patient shows improvement if it is known
that the patient was given the drug ?

(a} 0.4375 (b) 0.225 {c) 0.3375 (d) 0.3265

(12) Suppose it is known that the patient shows improvement. Based on the table of example 11,
what is the prohahility that the patient was pgiven the dmg ? -
{a} 0.225 (b) 0.667 {c) 0.792 (d) 0.692

(13) A box containg four red, two white and three green marbles, all of which are the same
size. Two markles are selected one after the other from the box, without replacement
What is the prebability that the marbles are of the same colour ? 1

{ay 0.67 (b)y 0.5 {c) 0.14 (d) 0.28

(14) A company has three plants at which it produces a certain item. 30 %% are produced at
plant A, 30 %% at plant B and remaining at plant . Suppose that 1 %, 4 %5 and 3 % of the
items produced at plants A, B and C respectively are defective. 1f an item is selected at
randem from all of those produced, what is the probability that the item was produccd at

plant B and is defective ? -
{(a) 0.5 (b) 0.2 {c) 0.02 (d) 0.04
{15) The mean and variance of a random variable X having a binomial distribution are 4 and 2
respectively, then P(X = 1) is... =
1 1 o 1 1
(a) L O () 1 ) %
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(16) Tt is given that the events A and B arc such that P(A) = 1, P(A|B) = % PB|A) =<

Then P{B) is... :3|
(a) 3 (®) + () 5 (d) £

(17) If two events A and B are such that P{A" = 0.3, P(B) = 0.5 and P(A ™ By = 0.3, then
PB A\ B is... L.
(a) 0.375 (b} 0.32 (c) 0.31 (d) 0.28

(18) If parameters of a binomial distribution are # = 5 and p = 030, then the mean is ...
and variance is ....... . £ 1
(a) 1.5, 1.5 (b} 1.5, 1.05 (c) 1.5, 1.40 (dy 1.5, 1.15

Section C : (3 marks)

(19 A company has three plants at which it produces a certain item. 30 % are produced
at plant A, 50 % at plant B and 20 % at plant C. Suppose that 1 %6, 4 % and 3 % of the items
produced at plants A, B and C respectively are defective. If an item is selected at random
from all those produced, what is the probability that the item is defective 7 1

(a) 0.029 (L) 0.28 () 0.025 (d) 0.08

(20) The probability that an event A occurs in a single trial of an experiment is 0.4. Three

independent trials of the experiment are performed. The probability that A occurs at least

once is._. .
{a) 0.936 (b} 0.784 (c) 0,904 (d) 0.874
(21) The variance of g{X) = 2X + 3. where X is a random variable with probability distribution
X=x o L 2 3 = |
pix) % % % % 5.
(a) 6 (b) 36 (c) 4 (d) 8

Section I} : (4 marks)

(22) A random variable X has the probability distribution : om
X 1 2 3 4 5 6 7 3
p{x) 0.15 0.23 12 0.10 0.20 | 0.08 0.07 .35

For the evenis E = {X is a prime number} and F = [X < 4}, the probability P(E 2 F) is...

(a) 0.35 (b} 0.77 () 0.87 (d) 0.50

(23) 1f a random variable X can take all non-negative intepral values and the probability that
X takes the value » is proportional to ©" (0 < O < 1), then P(X = 0} is... 1
@1 -« (h) o ©) = (d) o
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(24) The mean and standard deviation of a random weriable X are 10 and 5 respectively. Match

the following : ]
A B

(i)  EX? (p) O

(i) F(XX+ 1) fq) 133

X-10

{Lii} E[( 3 ]J (r) 125
X — 10y

(iv) E[( 3 )] (5) 1

(5 () : (), (iD): @), (i) : (), (i¥): (p)
() () = (p), G = (@) GG (1), Giv): ()

(@) (i) @), ()= (1), G (), (iv): (s)
(@) ()2 (), Gi): €@, Gid:(p), (iv): ()

1.

=

We studied the following points in this chapter :

The conditional probability of an event A, given the occurrence of the event B is given by

P{A M B)

F(A|B) = —Fm

, P(B) = 0.

DSPAIB)YS L, IA'|BY=1 — (A|B}

(A OUBC=MA|CY+ B | C) — P{{a ™ B)Y | C)

FA M B) = PA)-P(B|A), PAY =0

F(A ™ B) = P(B). P(A|B), P(B) £ 0

If B, and B, are mutually exclusive and exhaustive events and P(B,} # 0, P{(B,) # 0, then
for any event A of §,

P(A) = P(B))P(A|B)) + P(By)P(A|B)

If B, and B, are mutually exclusive and exhaustive events and A is any event such that

P(A I B;} P(B;) N
F(A 1B,) PF{B;) + F(A | B,) P(B;) + F(A 1By} P(B5)" '

P(A) # 0, then P(B,| A) = o=

E ¥

If A and B are independent events then P(A ™ B) = P{A) P{B)

If A and B arc independent cvents then A and B, A" and B and A' and B' arc also
independent.

A random wvariable is a real valued function whose domain is the sample space of a random
experiment.

The probability distribution of a random variable X in tabular form is

X=x x X, X g

Plx)

px) | plxy) | plxq) pix,}
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10. Mean : E(X) = Z x; pix;)

Variance : V(X) = 6,7 = E(X?) — [E(X))?

i " 2
ze = E xfz .p(xj) - [Zl X p':-tg)]

i=1 I=
Standard deviation : Oy = JV{X)

11. E{@X + b) = aB(X) + b
12, Vi{aX + ) = a2 v{X)
13. Bernoulli Trials :

(1) There is a constant probability of success (8} or failure (F) at each Bernoulli trial.

(2) Bemoulli trials are mutually independent

(3) If the constant probability of getting a suceess (5) at any Bernoulli trial 15 p (0 < p < 1),

then probability of getting a failure (F} 15 ¢ = 1 — p.

14, Binomial Distribution : Soppose X denotes number of suceesses in a sequence of »

Bernoulli trials of a random experiment having a consiant probability p of success.
The probability distribution of random variable X is given by

pix) = (X = x) = (i] -5 x=0,1 2.1

where 0 < p << 1 and ¢ = 1| — p is a binomial distribution with parameters » and p.

15. The mean |} and variance ze of binommal distribution with parameters 7 and p are g and

apy respectively.

Ramanujan's motebooks

While still in Madras, Ramanujan recerded the bulk of his results in four notebooks of loose leaf
paper. These resnlts were mostly written up without any derivations. This is probably the origin of the
misperception that Ramanujan was unable to prove his results and simply thought up the final result
directly. Mathematician Bruce €. Bemndt, in his review of these netebooks and Ramanujan's work, says
that Ramanujan most certainly was able to make the procfs of moest of his results, but chose not ta.

This style of working may have been for several reasons. Since paper was very expensive,
Ramanujan would do most of his work and perchaps his preofs on slate, and then transfer just the resubts
to paper. Using a slate was common for mathematics students in the Madras Presidency at the time.
He was also quite likely to have been influenced by the style of G 8, Carr's book studied in his teenape,
which stated results without proofs, Finally, it is possible that Ramanujan ¢onsidered his workings to
be for his personal intercst alone; and therefore only recorded the results.

The first notebook has 35] pages with 16 somewhat crganized chapters and some unorganized
material. The second netebook has 236 pages in 21 chapters and 100 unorganised pages, with the third
nolebook containing 33 unorsanised pages, The resulis in his noiebooks inspired numerous papers by
later mathematicians trying to prove what he had found. Hardy himseltf created papers exploring material
from Ramanujan's work as did G. N. Watsen, B. M. Wilson, and Bruce Bert. A fourth notebook with
87 unorganised pages, the so-called "lost notebook", was rediscovered in 1976 by George Andrews,
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LINEAR PROGRAMMING

Nature is an infinite spherve of which the centre is evervwhere and
the circumference is nowhere.
— Blaise Pascal

In order to transiate a sentence from English to French, two things are necessary.
First we must understand thoroughly the English sentence.
Second we must be familiar with the forms of expression peculiar to French language.
The siiuation is very similar when we altempt (o express in mathematical symbols
a conelition proposed in words, First we must understand thoroughly the condition,
Second we must be familiar with the forms of mathemaical expression.
— George Polya

8.1 Introduction

Before discussimg the basic concepts and apphications of lincar progtarmmuing, lel us understand
the meaning of the words, ‘linear’ and “programming’. The word linear refers to linear relationship
among variables in a model. Thus, a given change in cne variable will always result into a proportional
change in another variable. For cxample, doubling the investment on a certain investment will
exactly double the return. The word programming refers to the modelling (plan of action) and
solving a problem mathematically. Lingar Programming was first developed by Leonid Kantorvich,
a Russian mathematician, in 1939, During world war TI, George B Dentzing while working
with the IS Air Force, developed lincar propramming model, primarily for solving military
logistics problems.

In earlier classes, we have discussed system of linear equalions and their applicalions in
some practical problems. Tn class XI we have studied linear inequaliries and system of linear
inequalidies in 1wo variables and their solutions by graphical method. In this chapter, we shall apply
the system of Lincar incqualitics to some ccal life problems. The type of problems which scck
to maximize {or minimize) profit (or loss) form a general class of problems called Optimisation
problems. Any optimisation problem may involve finding maximum peefit, minimum cost, or miniinum
use of resources ete,

A special bur a very important class of optimisation problems is Linear Programming Problems.

Linear programming problems are of much interest because they are heing used extensively in all
functional areas of management, airlines, apriculture, military operations, oil refining, education, energy
planning, pollution control, transportation planning and scheduling, research and development, health
care system ete.

In this chapter, we shall siudy some linear programming problems and their solutions by graphical
method only. There are many other metheds also to solve such prohlems.

8.2 A Linear Programming Problem and its Mathematical Formulation

We begin our discussion with the help of an example which will lcad us to a mathematical
formulation of the problem in rwo variables,

A dealer deals in only two items : AC {Air conditioners) and Coolers. 11e has capital finance T 5,060,000
to invest and has storage space of at most 60 pieces. An AC cosis ¥ 25,000 and a cooler costs ¥ 5000,
He estimates that from the sale of one AC, he can make profit of T 2500 and from the sale of one conler
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he can make profic of T 750. The dealer wants to know how many AC and coolers he should buy
from the available capital so as to maximise his total profit, assuming that he can sell all the items

which he buys.

In this cxample, we observe thal,

(1) The dealer can invest his money in buying AC or coolers or a combination thereof, Further
he would cam diflerent profils by following diffcrent investment strategies,

(2) There are certain constraints namely, his investment is limited to a maximum of T 5,00,000
and storage capacity for a maximum of 60 pieces,

Suppose he decides to buy AC only and no eollers, so he can buy 5,00,000 + 25,000 = 20 AC. His
profit in this case will be ¥ (25300 X 20) = ¥ 30,000,

Suppose he deeides to buy coolers only and no AC. With his capital of ¥ 5,00,000 he can buy
100 coolers. But he can store only 60 pieces. Therefore, he has to buy only 60 coolers which will
pive him a total profit of ¥ (60 X 7500 = T 45,000,

There are many other possibilities, for instance, he may buy 10 AC and 50 coolers, as he can
store only 60 pieces. Total profit in this case would be T (10 X 2300 + 50 X 730) = ¥ 62,500 and so
cn. This, dealer can eam different profits by following different investment strategies. So, the
problem is : How should the dealer invest hiz money in order to get maximum profit ? To angwer this
question, let us try to formulate the prablem mathematically.

Mathematical formulation of the problem :

Lei x be the number of AC and y be the number of coolers that the dealer buys.

Obvicusly, x = 0, » = D (non-negative constraints) (i)

Here, the cost of one AC is T 25,000 and cost of one cooler is § 5000. The dealer can invest at
the most T 5,000,000, Mathematically,

25,000 x + 5000 y = 5,00,000

S Sx+Hy 2100 (investment constraint) (ii)

The dealer can store maximum 60 items,

Lo x4y £ 6l (storage consiraint) (iii)

The dealer wishes to invest in such a way that he can earn maximum profit, say =

It is piven that the profit earn on selling of an AC is T 2500 and that on a cooler is T 750,
Su the profit function z is given by

z = 2500x + 750 y {called objective function) (iv)
Malhemalically, the given problem now reduces 1o ;
Maximise z = 2500 x + 750 y
Subjcet to the constraints ;
Sx+p < 100
x4+ p =60
x20,p=0
So, we have 10 maximise a linear [unction z subjecl 1o certain comdilions determined by a set of
lingar inequalities. The variables are non-negative, Therz are also some other problems where we
have 1o minumise 4 linear funclion (as an example, expemndilure) subject 1o cerain condilions delerminexd
by a set of linear inequalities with non-negative variables. Such problems are called Lincar
Propramming Problems.
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Before we proceed further, we now formally define some terms (which have been used above)
which we shall be vsing in the linsar programming problems :

The general stoucture of linear propramming medel consists of three basic components !

(1) Decision Vzriables : We need to evaluate various altermafives for arriving at the
oplimal value of the objective lunchon. The variables in a linear program are a sel of
guantities that need to be delermined inm order to solve a problem. iec., problem iz solved
when the best values of the variables have been identificd. These variables are called decision
variables. They are wpssally denofed by x, y (if there are two variables) or x;, x;,..., x, il
there are more variables.

In the example discussed above x, y are decision variables.

(2) The objective fupction : The objective function of cach linear programming problem
is expressed im terms of decision variables to optimize the criterion of optimality such as
profit, cost, ele. It is expressed as :

Optimize (maximize or minimize)

Z=cx + oy or
= ¢ex, + epx, o4+ ¢ . In this chapter, we shall find the optimal value of the given
ohjective function by the graphical method.
(3) The copstranints : There are always ceriain limitations on the use of resomrces, e.gg.
labour, raw material, space, money, time etc. such limitations are being expressed as linear
equaliiies or inequalities in terms of decision variables. The solution of a linear programming
model must satisfy these constraints.
Now on we will denote a linear programming problem as an LP problem.
Thus, the general mathematical model of LP problem is as follows :
Find the values of decision variables x, ¥ s0 as to optimize (maximize or minimize).
z=eox tooyy

subject 1o the linear constraints,
aps Tt apy (5= 2) 5
Gyt agyy (8 = 2) by
anX + ayay (S, =, 2) by
x20,y20

In general, we can write as the following :

Find the values of decision variables x|, x...., X, 50 as to optimize {maximise or minimise)

z=cop toegxy ttox,

Subject to the linear constrains,

ay Xy e, Hoax, (8= 2) b
Gy %)+ Gypky Fot Gyx, (5= 2) B,

Xy F o ox, ot a,x (X, = )b,
and x| 20, x, 20, ., x, =0

Here, ay;'s are coefficients representing the per unit contribution of decision variable
x; to the valme of ohjective fonction. aij's are called the imput-omtput coefficients and

represeni the amount of resouree. u,-j"s ean be positive, negative or zero. The b's represent

the total availability of the ith resource.
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Let us take an example of LP model formulation.
Example 1

¢ A fumiture {irm manulaciores chairs and lables. Each requires the use ol three

machines A, B or C. Preduction of one chair requires 2 hours on machine A, 1 hour on machine

B and 1 hour on machine C. Each table requires 1 hour each en machines A and B and 3 hours

on machine C. 'The profit realized by selling one chair is ¥ 300 while that from sale of a table is

¥ 600, The total time available per week on machine A 15 70 hours, the ume available on machine

B iz 40 hours and that on machine C is 90 hours. tHow many chairs and tables should be made

pet week so as to maximize profit ? Develop a mathematical formulation.

Solution : Let us represent the given data in & tzbular form as following :

Machine Chair Table Available time per week
numpber of hours | oumber of hours {in hours)
A £ | 70
B 1 1 40
(E; 1 3 90
Profit per unit T 300 T GO
Let the number of chairs and tables manufactured respectively x and .
let z denote the total profit. Then z = 30(x + &00v )]

It is given that a chair requires 2 hours on machine A and a table requires 1 hour on machine A.
Therefore, the total time taken by machine A to produce x chairs and yp tables is {(2x 4+ ) hours.

This must be less than or equal to total hours available on machine A.

S+ pET0 (i)

Tt is given that a chair requires 1 hour on machine B and a table requires 1 hour on machine I3,
Therefore, total time taken by machine B to produce x chairs and y tables is (x + ) hours. Tatal time
available per weck on machine B 15 40 hours.

S x+yE4D (iii)
Similarly, [rom the consideration of machine C we have the inequality

x+ 3y =9 (Why ?) (iv)
Since the number of chairs and tables cannot be negative.
Yo x20and y 20 (¥)

llence, the mathematical form of the given L.PP is a5 follows :
Maximize z = 300x + 600y
Subjectto Zx +y = 70
x+y= 40
x+ 3y =90
and x2=0,v 20,

We will now discuss how to find selutions to a lincar programming problem. In this chapter
we shall study only graphical method.
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8.3 Graphical Methed of Solving Lincar Programming Problems
In this section first we shall discuss some definitions related to the solution of a linear programming
problems.
Definition : The set of values of decision variables x; (/ = 1, 2,.., n) which satisfy the
consirainis of an LP problem is said to constitute solution to that LP problem.
As an example,
Consider the LP problem.
Maximize z = 300x + 600y
subject to 2x + p = 70
r+y<a0
x4+ 3y LoD
and x 20,y =0
Here, x =1,y =3, x=% ¥y =6, x = 10, y = 18 etc. are solutions of this LP problem as they
satisfy the constraints 2x + y 2 70, x +y =40 and x + 3y €90 and x 2 0, ¥ = 0. Note that x = 10,
» = 30 is not a solution because it does not safisfy x + 3y < 90,

Feasible Solution : A set of values of the decision variables x,, x;,..., x,, is called a feasible
solution of an LP problem, if it satisfies both the constraints and non-negativity conditions.

Infeasible Solution : An infeasible solution is a solution for which at least one constraint
is violated.

Optimal feasible Solution : A feasible soluiion of an LP problem is said io be an optimal
feasible solution, if it optimizes (maximizes or minimizes) the objective function.

Feasible region (solution region) : When we graph all the constraints, the feasible region

is the set of all points which satisfy all the constraints including non-negativity constraints.

:V Ai.’iS,ﬂ:l ":+}'|='m

Figure 8.1
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In figure 8.1, the region OABCD (yellow coloured) is the feasible region of Example 1.

The region other than the feasible region is called the infeasible region,

Mote that points within and on the boundary of the feasible region represent feasible solutions of
the constraints. In fig. %.1, every point within or on the boundary of the feasible region OABCD
represents feasible solution to the problem,

For example, the point (35, 0), (30, 10), {15, 25), {0, 200, (20, ), (0, 10), (20, 10} etc. are some
of the feasible solutions. The point (30, 203 is an infeasible solution of the problem. We see that every
point in the feasible region OABCD =atisfies all the constraints of example 1. We also observe that
there are infinitely many peints in the feasible region. Among them we have to find out one point which
pives a maximum value of the objective function z = 300x + 600y, To handle this situation, we use the
following theorems which are fundamental in solving linear programming problems. We shall not prove
these theorems, we just statc them.

Theorem 8.1 : Let R be the feasible region (convex polygon) for a linear programming problem
and let z = ax + by be the objective function. When z has an optimal value (maximum or
minimum), where the variables x and y are subject to constraints described by linear
inequalitics, this optimal value must oceur at a corner poinil (vertex) of the feasible region.

Theorem 82 : Let R be the feasible repgion for a linear programming problem amd let
z = ax + by be the objective function. If R is bounded, then the objective function z has
both a maximum and a minimum value on R and each of these oceurs at a corner point
(vertex) of R.

In the above example, the corner poinls {vertices} ol the bounded ([easible) region are ; O,
A, B, C, D and their coordinates are (0, 0}, (35, 0), (30, 103, {15, 25) and (0, 30) respectively. Let us
now compute the values of z at these points. We have z = 300x + 600y,

Vertex of the feasible region Corresponding value of z (in T)
(0, ) 0
A(35, 0) 10,500
B(30, 10} 15,600
C{15, 23) 19,300 e—Maximum
D{0, 30) 13,000

We observe that the maximmum profit is earned by the firm by producing 15 chairs and 25 tables.

Note : If B 15 unbounded, then a maximum or a munimurm valoe ol the objective [unetion may nol
exist. However, if it exists, it must occur at a cormer point of R. (by theorem 8.1}

This methed of selving lincar programming problem is known as Corner Point Method.

Following steps can be used to solve an LP problem in two variables graphically by using
carner-point method.

(1} Formulale the given LP problem in mathemeatical form, if it is nol given in mathemaiical

form.
(2) Find the feasible region of LP problem and determine its corner points (vertices) either by

inspection or by solving the two equations of the lings intersecting at the points.
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(3) Evaluate the objective function z = ax + by &t each comer point. Let M and s respectively

denote the largest and the smallest values of z at these points.

(4) When the feasible repion is bounded, M and s are the maximum and minimum
values of z.

(5) In gase, the feasible region is unbounded, we have.

1) M is the maximum value of z, il the open half plane delermined by ax + & > M has
no peint in common with the feasible region. Otherwise, z has no maximum value.
(if) mr is the minimum value of z, if the open half plane determined by ax + Ay < mr has
no point in common with the feasible region. Otherwise, z has no minimum value,
We will now illustrate these steps of coner point method in some examples :
Example 2 : Solve the following linear programming problem graphically :
Maximize =z = 20x + 15p
subject to 180x + 120y < 1500
x+y=10
and x2 0,210
Solution : Singe ¥ = 0 and p > 0, the solution region is restricted to the first quadrant and aleng

— >
0X, 0Y,
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(1)  180x + 120v < 1500

3% + 2y < 25 = 0 5 = 1
Draw the line 3x + 2y = 25 p 221 5 g 1

_ -3

2
Determine the region represented by 3x + 2v = 25,

(i) x+yr=10 X 0 10

Draw the line x + y =10
¥ 10 0

y=10—x

Determine the region represented x + ¥ = 10. Colour the intersection of the twe regions.
Also x 2 0, y 2 0. The yellow coloured region OABC in figure 8.2 is the feasible region. B(5, 3)
is the point of intersection of 3x + 2y = 25 and x + y = 1(.

The comner points of OABC are O(0, 0), A(Z.0), B(5, 5) and C(0, 10).

¥ertex of the feasible region Corresponding value of z = 20x + 15
00, 1) 0
25
A(Z,0) 166.67
B{5, 5) 175
C(0, 10} 150

z is maximom at x = 5 and ¥ = 5. Maximum value of z = 175,

Fxampie 3 : Find the maximum and minimum value of z = 2x + 5y,
subject to 3x + 2y < 6, 2x + 4 <8 x4+ y 21, x 20, ¥y 2 0 using cormner point method.
Solution : Since x = 0 and » = 0, the feasible region is restricted io the first quadrant and

- =
along OX., OY .

(1) 3I+2y£6 = 0 2
Draw the ling 3x + 2v = 6§
CaW ¢ IIng Ax ¥ y 3 0
_ 6-3x
2

Determine the region represented hy 3x + 2p £ 4.
() —2x+4v =8

-+ 2y 54 x ¢ 2

Draw the line —x + 2y = 4. ¥ 2 3
_ XxX+4

y==

Determine the region represented by —x + 2y < 4,
3) x+yp21

Draw the line x + y = ] and determine the regicn represemied by x + y 2 1,
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Figure 8.3
Colour the miersection of the three regions.
The yellow coloured region ABCDE in figure 8.3 is the feasible region, The point C{(L.5, 2.25)
is the point of intersection of 3x + 2 = 6 and —2x + 4y = 8.
The corner points of ARCDE are A(1, 0), B(Z, &, C{0.5, 2.25), D(0, 23, E(0, 1).

Corner point Value of z = 2x + Sy
A(l, ) 2 «—Minimum
B2, 0) 4

C0.5, 2.25) 12.25 «—Maximum
Do, 2) 10
E(Q, 1} 5

Hence, x = 1, ¥ = 0 mimimizes z = 2x + 5y and the minimum value is 2.

x =95 y = 2.25 maximizes z = 2x + 5y and the maximum value is 12.25,
Example 4 : Minimize 2x + dv subject tox + 2y 2 10; 3x + vy 2 10, x 2 0; p = 0.

Solution : Since x 2 0 and y Z 0, the feasible region is restricted to the first quadrant and
along CT)!‘(, 0_'{'

(1) x+2» =10 x o 10

Draw the line x + 2y = 10 5 0
= 10—z Y

¥ 3
Determine the region represented by x + 2y 2 10,

(2) 3x+y210 x a 2
Draw the line 3x + y = 10. 5 10 4
y=10—3x

Determine the region represented by 3x + y 2 10,
Colour the intersection of the three regions. The feasible region is as shown in the
figure 8.4 Observe that the feasible region is unbounded.
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The cotner poimts are (0, 10), (2, 4), (10, D).
Corner point Value of z = 2Zx + 4y
(0, 1) 40
Z,4) 20
(10, 0) 20

From the table, we find that 20 may be the smallest velue of z at the comer point (2, 43, (10, 0).
Since the feasible rewion is unbounded, 20 may or may nol be the minimum value of z. To decide this,

wo graph the inegquality 2x + 4p < 20 (scc step 5(ii) of comcr point method).
Now, 2x + 4v < 20
S x+H 2y <10

We have to check whether the resulting open half plane has points in common with
feasible region or not. If it has commen points, then 20 will not be the minimum value of z. Otherwise,
20 will be the minimum wvalue of 7. As shown in the figure 8.4, it has no common point with the

[easible region. Hence, 20 (s the minimum value ol z. Tn [ael, all the points on the line x + 2y = 10
give the same minimum value 20. Thus, there is an infinile number of points minimizing z = 2x + 4y
subject to the given constraints.
Example 5 : Determine graphically the minimum value of the chjective function z = —50x + 20y
subject to the constraints.

x—yZ—5

Ix+y =3

2x— 3y <12

x=Z0,v20,
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Solution : Since x 2 0 and y = 0, the feasible region is restricted to the first quadrant and

—
aleng X, OY.

x 0 1
(1) 2Zx—yp>—5
Draw the line 2x — y = —3 ¥ 5 7
: y=2x+5
Datermine the region represented by 2x — v =2 —5.
(2) 3x+y=23 5 0 1
Draw the line 3x + v = 3
Determine the region represented by 3x + y 2 3. J 3 Y
(3 2x—3y=12
Draw the line 2x — 33 = 12 x 9 6
x-12
- = ¥ 2 0

Determine the region represented by 2x — 3y = 12,
Colour the intersection of the three regions. The feasible region is as shown in the figure 8.5.
Observe that the feasible region is unbounded.
The comer points are {3, 5), (0, 3}, (1, 0) and {&, 0). We now evaluate z at the comer points.

Corner point Value of z = —50x + 20y
A(D, 5) 100
B(0, 3) 60
€L 0) —50
Di4, 0) =300 «—Smallest

' - Teasible region

®oyen

Figurc 8.5
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From the table, we find that —300 may be the smallest value of z at the comer point (6, 0}. Since

the feasible region is unbounded, —3{0{} may or may not be the minimum value of z. To decide this, we
graph the incquality —50x + 20y < —300 i.c. —5x + 2v < —30 and check whether the resulting open
half plane has points in common with feasible region or not. If it has common peintg, then =306 will
nat be the minimum walue of 2z Otherwise —300 will be the minimum value of z As shown in the

figurce 8.5, it has common points. Therefore, z = —50x + 20y has no minimum valuc subjcct to the

Eiven constraints.
[In the above example, can vou say whether z = —50x + 20y has the maximum value 100 at
0,5 7]
Fxample 6 : Maximize z = 3x + 4y, if possible, subject to
x—yp s -1
—x+y=0
x20rz20
Solution : Let us graph the inequalilies x —y < =1, —x+y < 0, x 2 0 and y = 0.

From figure §.6 we can see that there is no point satisfying all the constraints simultaneously,
Thus, the problem has ne feasible region and hence no feasible solution.

SR . P
/ W AR R RE A TR JReNS R §

Figure 8.6

From the examples which we have discussed so far, we observed the following :

(1) 'The feasible region is always a convex region.

(2) The maximum (or minimym} solution of the objective function occurs at the corner of the
feasible region. If two corner peints produce the same maximum (or minimum) value of the objective
function, then every point on the line segment joining these points will also give the same maximum
{or minitmum) value.
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Exercise 8.1

A company sells two different products A and B, making & profit of T 40 and T 30 per unit on

them respectively. ‘The products are produced in a common production process and are sold in

two different markets. The production process has a total capacity of 3,000 man-hours. Tt Lakes

three hours to produce a unit of type A and one hour to preduce a unit of type B. The market has

been surveyed and company officials feel that the maximum number of units of type A that can

be sold is B,000 and those of type B is 1200. Subject to these constraints, product can be

sold in any combination. Formulate this problem as an LP problem mathematically to maximize

the profit.

Vitamins A and B are found in foods ) and F;. One unit of food T, contains three units of vitamin

A and four units of Vitamin B. One unit of food F, contains six units of vitamin A and three units

of vitamin B. One unit of foed F| and F, costs T 4 and T 3 respectively. The minimum daily

requirement (for a person) of vitamins A and B is 80 onits and 100 units respectively. Assuming

that anything in excess of the daily minimum requirement of A and B is not harmful, fermulate

this problem as an LP problem to find out the optimum mixture of foods F| and F, at the minimutn

cosl which meets the daily minimum requirement of vilamins A and B.

A pension fund manager is considering investing in two shares A and B. It 15 estimated that,

(1) share A will earn a dividend of 12 percent per annum and share B will earn 4 percent
dividend per annun.

(2) growths in the market valoe in one ycar of sharc A respectively arc 10 paise per Re 1
invested and 20 paise per Re 1 invested in B.

He requires to invest the maximum total sum which will give,

(1) dividend income of at least ¥ 600 per annum; and

(2) prowth in one year of at least T 1000 on the initial investment.

Formnulate this problem as an LP medel to compute the minimum sum to be invested to meet

the manager's objective.

Solve the following linear programming problems graphically (4 to 12) @
Maximize z = 20x + 10w

subject tox + 2y <40, 3x +y 230, 4x+ 3y 26landx =20,y =0
Maximize z = dx + y

subject tox + ¥y <50, 3x + y < 9Wandx =280, y 20

Minimize z = 200x + 500y

subject to x + 2y 2 10, 3x+ 4 =24 and x 2 0, y 2 0

Minumize and maximize z = 3x + 9y

subjecttox + 3y 26, x+val0,x 2y x20,p210

Minimize z = 3x + 2y

subjecttex +y 2 B, x4+ 5v= 15, x20,y=210

Maximize z = 3x + 4y

subjecttox +p =4, xZ0, 20

Maximize = = 3x + 4y

subject to x + 2y £ 8, 3x+ 2y 212, x 20, p 20
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11. Maximize z = —x + 2y
subjectto x = 3, x+y 2 5 x+ 2y 2 6,y = 6
12. Minimize =z = 5x + 10v
subjecl to x + 2y T 120, x+ v 2 80, x— 2y 20, x20,yp20

8.4 Different Tyvpes of Linear Programming Problems

Diet Problems ; In this type of problems, we have to find the amount of different kinds of
constituents / nutrients which should be included in a diet so as to minimize the cosi of the desired
diet and such that it contains a certain minimum amount of cach constitvent / nutrient.

Example 7 : A housewife wishes to mix together two kinds of food, X and Y, in such a way that

the mixture contains at least 10 units of vitamim A, at least 12 wnits of vitamin B and at least
& units of vitamin C. The vitamin contents of one &g of food iz given below

Vitamin A Yitamin B Vitamin C
Food X 1 2 3
Food ¥ 2 2 1

One kg of food X costs T 60 and onc kg of food ¥ costs T 100 . Find the lcast cost of the
mixture which will produce the dict.

Solution : Let x kg of food X and y kg of food ¥ be mixed topether to make the required diet.

1 kg of food X cootains one unit of vitamin A and | kr of food Y contains 2 umits of
vitamin A.

Theretore, x &g of food X and p &g of foed Y will contain x + 2y units of vitamin A. 1t is given
that the mixturce should contain at Icast 10 units of vitamin A.

Therefore, x + 2y 2 10 (i)

Similarly, x kg of food X and y &g of food ¥ will praduce 2x + 2y units of vitamin B and 3x + y
units of vitamin €. The minimum requirements of vitamin B and C are 12 and 8§ units respectively.

S x4+ 2y 202 (ii)

and 3x + v =8 (iii)

Since the gquantidy of feod X and Y cannol be negative.

Lox20y20 (iv)

It is given that onc kg of food X costs ¥ 60 and onc kg of food ¥ costs T 100, 5o, » kg of
food X and y kg of food ¥ will cost T {60x + 100y). Thus, the given linear programming problem is

Minimize z = 60x + 100y

Subjecttox + 2y = 1, 2x+2v 212, Ix+y28andx 20,y 2 0.

Now let us solve this LP problem by graphical method.

To sclve this LP problem, we draw the lines x + 2y = 10, 2x + 2y = 12 ic. x + ¥ = 6 and

3x + y = & and obtain the feasible repion as shown in the figure 8.7, which is an unhounded one.
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Figure 8.7
The comer peints of the coloured region ABCD are A(1Q, Q), B2, 4}, C({1, 5 and D{0, 8).
These pomts can also be obtained by solving simultaneously the equations of the corresponding
intersecting lines,. The values of the objective function at these points are given in the following table :

Corner point Value of the objective Tunction z = 60x + 100y
A(10, 0) 600
B(2, 4) 520 «— Minimum
C(l, 5) 560
(0, &) BOO

Cleatly, z may be minimutn at x = 2 and ¥ = 4. Since the feasible region is unbounded, we have
to graph the inequality 60x + 100y < 520, ie. 6x + 10y < 32 and check whether the resulting apen half
plane has peints in common with feasible region or not. We see from the figure 8.7 that it has no
point common with the feasible region. So, z has minimum value equal to 520.

The minimum cost of the mixiure is ¥ 520,

Manufacturing problems : In these problems, we determine the number of units of different
products which should be produced and sold by a firm when each product requires a fixed man-power,
machine hours, labour howr per unit of product, warchouse space per unit of the output etc.,
in order to make maximum profit.

Exampie 8 : A small firm maoufactures gold rings and chains. The total number of rings and chains
manufactured per day is atmost 24. It takes 1 hour to make a ring and 30 mioutes to make

a chain. The maximum number of hours available per day iz 16. The profit on sell of a ring is

T 300 and that on sell of a chain iz ¥ 190. Find the number of rings and chains that should be

manufachured per day, so as to earn the maximum profit. Make it an LP* problem and solve

it graphically,

Solution : Let the mumber of gold rings to be manufactured be x and that of chains be y. We
construct the fallowing table :
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Item Number Time taken Profit ¥
Gold ring x 1x hour J00x
Gold chain ¥ %y hour 190y
Total x+y [_t +%y) honr 300x + 190y
Our problem is to maximize the profit z = 300x + 190y subject to constraints x 2 0, y 2 0 (i)
x + %y < 16
x + p < 32 (ii)
and x+ ¥y = 24 {iil)

We draw the lines 2x + y = 32 and x + y = 24 and obtain the feasible region as shown in the
figire 8.3

Comer points of the feasible region OABC are O{C, 0), A{1&, 0), B(8, 16), C{0, 24),
Let us evaluate z at these comer points.

B(H.16)

15 SRARS
feasible region
10 ERaER S
5
L g X
Lol s 10 1s5vao 2 fuiti
i Ictp=32 xHy=2:d
B o il - '
Figure 8.8
Corper point Value of z = 300x + 190y in ¥
0, 0} Q
(16, 0) 4800
(R, 16) 5440 ¢« Maximum
(0, 24) 4560

We observe that profit is maximum when x = 8 and y = 16 and maximum profit is ¥ 5440.

Thus, to get maximum profit a firm has to produce & rings and 16 chains per day.

Transportation problems : In this tvpe of problems, we have te determine transportation
schedule for a commodity from different plants or factories situated at different relations to
different markets in such a way that the total cost of transpertation is minimum.
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Example 9 : A brick manufacturer hag two depots, A and B, with stocks of 30,000 and 20,000 bricka
regpectively. He receives ordera from three constroction companies P, Q and R for
15,000, 20,000 and 15,000 bricks respectively, The cost in ¥ of transperting 1000 bricks to the
companies from the depots are given below :

From
To | 0 R
A 8 40 60
] 40 120 80

How should the manufacturer fulfil the orders so 23 to keep the cost of (ransportation minimum ?
Solution : The given information is ps shown in the following figure,

Figure 8.9

Let the depot A transport x thousand bricks to the company P and ¥ thousand bricks to the
company Q. Since the depot A has stock of 30,000 bricks, the remaining 30 — {x + j) thousand
bricks will be transported to the company R. The number of bricks is alway: non-negative.

Wehavex 2 0,y 2 0and 30 = (x+y) = D e, x+ y = 30 ()]

Now, the requirement of the company P is of 15,000 bricks and x thousand bricks are transported
from the depot A, s0 the remaining (15 — x} thousand bricks gre to be transported from the depot B.
The requirement of the company Q is of 20,000 bricke end y thousand bricks are transporied
from depot A. So the remaining {20 — ») thousand bricks are to be tramsported from depot B.
Now, depot B has 20 — {15 — x + 20 — ) = x + ¥ — 15 thonsand bricks whizh are to be transported
to the company R.

Alse, 15 —xZ20, 20—y 20adx+y—1520

S xS 1S, y<Wandx+y 2= 15 (i)

The transportation cost from the depot A to the companies P, (} and R are respectively ¥ 80x,
€ 40y and T 60{30 — {x + ¥)}. Similarly, the transporiation cost from the depot B to the companies
P, QQ and R are respectively T 40{15 — x), 120{20 — y) and 80x + ¥ — 15} reepectively. Therefore, the
total iransportation cost z is given by
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z = 80x + 40y + 6030 — x — y) + 40(15 — x) + 120020 — 3} + 80(x + y — 15)
z = 60x — 60y + 3600

Hence, the above LP problem can be stated mathematically as follows :

Minimize z = 60x — 60y + 3600

Subjecttox +y 230, x = 15,y €20, x+y215andx 20, y 2 0

Here, x and ¥ arc in thousands,

Let us selve this problem graphically. We draw the lines x + p = 30, x = 15,

y =20 and x + y = 15 and obtain the feasible region as shown in the figure 8.10.

: 58
M

L P

, ] S s o ;/'.L ._

AQ15,0)

> X
s 10 0p 2“__25,30\,\..x;+y.=30. il
r | x+p=15
Figure 8.10

Comer points of the feasible region ABCDE are A{15, 03, B(15, 15), C{10, 20), Dx0, 209, E(0, 15).

Let us evaluate z at these comer points.

Corner point Value of z = 60x — 60p + 3600
(15, 0) 4500
(15, 15) 3600
{10, 20) 3000
(G, 20} 2400 ¢« Minimum
(G, 13} 2760

Clearly, z is minimum at x = 0, y = 20 and the minimum value of z iz 2400.

Thus, the manufactrer should supply 0, 20 and 10 thousand bricks to company P, () and R from
depot A and 15, 0 and 5 thousand bricks to company P, (), R fram depot B respectively.

In this case the minimum transportation cost will be T 2400,

Marketing Problems : Linear programming can be used to determine the right mix of media
exposure to use an advertising campaign. Suppose that the available media are radio, television
and newspapers. The goal is to determine how many advertisements to place in cach medium where
the cost of placing an advertisement depends on the medium. Of course, we want to minimize the
total cost of the advertising compaign and maximizing the mass where advertisement reaches,
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Example 10} : An advertising agency wishes to reach two types of probable customers with
annuval income greater than one lakh rupees (target audience A) and customers with annual
income less than one lakh rupees (target audience B). The total adverising budget is . 2,000,000,
One programme of TV advertising costs ¥ 50,000; one programme of radio advertising costs
T 20,000, For contract reasons, at least three programmes osught to be aired on TV and the number
of radio programmes must be limited to 5. Surveys indicate that a single '1'V programme reaches
4. 50,000 prospective customers in target audience A and 50,000 in target audience B. One radio
programme reaches 20,000 prospactive customers in target audience A and B0.000 in target
awdlience B. Determine the media mix w0 maximize the 1otal reach.

Solution : Let us define the following decision variables :

Let x and y be the number of programmes to be aired on TV and radio respectively.

We are given that a single TV programme reaches 4,350,000 in target avdience A and 50,000 in
target aodience B. One radic programme reaches 20,000 in target audience A and 30,000 in
target audience B.

Henge, we have to maximize,

z = {4,50,000 + 50,000 + (20,000 + 80,000
= 5,00,000x + 1,00,000y (i
According to budget constraint we have
50,000x + 20,000y < 2,00,000
i.c, fx + 2y =20 (ii)

Also, there is number of programme constraints as at least 3 TV programmes and at the most

3 radio programme.
x=3and y = 5 (iii)
Also, number of programmes is non-negative,

1

A

BLS4ERA EREREN

i) Sl e

feasible region |

A

Figure .11
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S ox20and y 20 (iv)
Thus, LP problem is maximize z = 5,000,000y + 1,000,000y
subject to Sx+ 2y =20, x =23, py=Sandx =0 v =20

Let us solve this problem graphically. We draw the lines 5x + 2y = 20, x = 3, » = 5 and obtain
the feasible region as shown in the figure 8.11.

Comer puints of the feasible region ABC are A(3, ), B{4, 0} and C[S.%).

Let us evaluate z at thest corner peints.

Corner point Yaloe of z = 5,00,000x + 1,00,000y
(3. 0) 15,00,000
4, 0) 20,00,000 € Maximum
3
(-3) 17,50,000

Since the maximum value of z = 20,00,000 occurs at the point B(4, 1), therefore, the agency

must release 4 programmes on TV and no propramme on radio to achieve the maximum target

Use the graphical method fo solve the following LP problems : (1 to 6)

andiences.

1. Maximize z = 2x + y

subjectto x + 2y S I x+ v =6, x — v 22 x—2y=landx 20, p=210
2. Minimize z = —x + 2y

subject to —x + S W0, x+yvEHx—pySZandx 20, y21)
3. Minimize z = 3x + 2y

subjectto Sx+y 2 10, x+y =6, x+d =2 12andx 20, 3 20

4. Maximize z = 7x + 3y
subjectmx+y323,x+y54,DSxS%,DSyS%

5. Minimize z = 20x + 10y

subject to x - 2p S 40, 3x + =30, dx+ 3y 260 and x = 0, ¥y 2 6
6. Maximize z = x + ¥

subjecttox +r S ], =3xtyp2Fandx =0, y20

7. A factory owner purchases two types of machines A and B for his factory. The requirements
and limitations for the machines are as folows :

Machine Area occupied Labour force Daily out-put umits
A 1000 m2 12 persons 60
B 1200 m? & persons 40
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He has maximum area of 9000 m?* available and 72 skilled labourers who can operate hoth the
machines. How many machines of each rype should he buy to maximize the daily outputr 7
Formulate and solve the problem graphically.

8. A diet for a sick person must contain at least 4000 units of vitamin, 30 units of minersls and
1400 units of calorics. Two foods A and B arc available at a cost of § 5 and T 4 per unit
respectively. One unit of food A contains 200 units of vitamins, | unit of minerals and 40 units
ol calories, while one unit of the feod B comtains 100 units of vilamins, 2 unils of minerals and
40 units of calories. Find what combination of the foods A and B should be used to have
minimum cost, but it must satisfy the requirements of the sick person. Formulate as an LP
problem and salve it graphically.

9. A shopkeeper wishes to purchase a number of 5 f oi] tins and | &g ghee tins. He has only T 5760
to invest and has a space to store at most 20 {tems. A 5 { vil tin costs him T 360 and a | iy yhee
tin cost him ¥ 240, His expectation is that he can sell an oil tin at a profit of ¥ 22 and
a ghee tin at a profit of € 18. Assuming that he can sell all the items he can buy, how should
he invest his money in order to maximize the profit ? Formulate this as a linear programming
problcm and solve it graphically.

10. Omne kind of cake requires 300 g of flour and 15 g of fat. Another kind of cake requires 150 g of
flour and 30 g of fat. Find the maximum number of cakes which can be made from 7.5 &g of
flour and 600 g of fat, assuming that there is no shortage of other ingredients used in making
the cakes. Formulate it as an LP problem and solve it graphically.

11. An oil company has two depots A and B with capacitics of 7000 f and 4000 [ respectively. The
company is to supply oil lo three petrol pumps, T, E and F, whose requiremenis are 4500 I,
3000 § and 3500 { respectively. The distances {in Am) between the depots and the petrol pumps
is given in the following table : {(Distance in &)

To
A B
From
D 7 3
E 6 4
F 3 2

Assuming that the transportation cost of 10§ of cil is ¥ 1 per k. How should the delivery be
scheduled in arder that the transportation cost is minimum 7 What i3 the minimam cost ?

12. An acroplanc can carry a maximum of 200 passangers. A profit of ¥ 1000 occurs on cach
executive class ticket and a profit of T 600 occurs on each economy class ticket. The airline
reserves at least 20 seats for executive class. However, at least 4 times as many passangers
prefer to travel by economy class than by the executive class. Determine how many tickets of
each type must be sold in order to maximize the profit for the airline. What is the maximum
profit ?

13, A manufacturer produces two different models : X and ¥, of the same product. Model X
generates profit of T 50 per unit and model ¥ penerates profit of ¥ 30 per unit. Raw materials
ry and ry are required for production. At least 18 &g of | and 12 kg of r, must be used daily.
Also al most 34 hours of labout are to be utilized. A quantity of 2 kg ol r, is needed for model
X and 1 &g of r| Tor model Y. For cach of X and Y, | &g ol r5 i5 required. It lakes 3 hours 1o
manufacture model X and 2 hours to manufacture model ¥. How many units of each model
should be produced to maximize the profit ?
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14. Select a proper option (a), (b), (c) or (d) from given options and write in the box given
on the right so that the statement hecomes correct :

Section A (1 mark)

(1) Objective function of an LP problems is s
(a) a conslanl (b) a funciion to be oplimized
(c) an incqualily {(d) a quadratic cquation

(2) Let x and y be optimal solution of an LP problem, then L]

(a) z=dx + (1 — Ay, A € R is also an optimal solution
(Byz=Ax+ (1l — Aw, 0 £ A < | gives an optimal solution.
@z=Ax+ (1 + Ay, 0 <A < | gives an optimal solution.
(dz=2x+ {1+ Ay, A € R gives an eptimal solntion.
(3) The optimal value of the objective function is attained at the points =
(a) given by intersection of lines representing inequatons with axes only
(b} given by intersection of lines representing inequations with X-axis only
{c) given by comer points of the feasible region
{d) at the origin
(4) The corner points of the feasible region determined by the system of linear constraints are
(0, 100, (5, 3), (15, 15), (0, 200. [.et z = px + gv, wherg p, g > 0. Conditicn on p and g so

that the maximum of z occurs at both the pooints (15, 15) and (0, 20) is ..... 1
(@ p=g (h) p = 24 (c) g = 2p (d) g = 3p
(5) Which of the following statements is correct ? L1

{a) Every LP problem has al leasl one oplimal solulion.
(b} Every LP probhlem has a unique optimal solution.
(¢) If an LP problem has two optimal solutions, then it has infinitely many solutions.
{d) If a fcasikle region is unbounded then LP problem has no solution.
(6) In solving the LLP problem ; =1
“Mimmize z = bx + 10y
sibject to x 2 6,3y = 2, 2x + ¥ = 10, x = 0, y = 0.” redundant constraints are

(alxz26,p22 ibb2x+y210,x20,y20
clx =6 xz263y21
(7) A Peasible solulion to an LP problem, =1

{a) must satisfy all of the problem's constraints simultaneonsly
(b} need not satisfy all of the constraints, only some of them.
{c) must be a corner point of the feasible repgion.
{d} must optimize the value of the objective function,
Section B (2 marks)
(8) For the L.P probklem ]
“Maximize z = x + 4y
subject to 3x + &y = 6, dx + By 2 l6and x =0, y Z 0.7
(a) 4 {b) 8
{c) feasible region is unbaunded (d) has no feasible region

LINEAR PROGRAMMING 291



N

(9) For the LP problem -
Maximize z = 2x + 3y
the coordinates of the comer points of the bounded feasible region are A(3, 3), B{20, 3),
C{20, 10}, IN18&, 12) and E{12, 12}. The maximum value of z is ......
{a) 72 (b) 80 {c) B2 (dy 70

(11} For the LP problem ]
Minimizc z = 2x + 3y
the coordinates of the comer points of the bounded feasible region are A3, 3), B{2{, 3),
(20, 10), D(18, 12} and E(12, 12). The minimmm value of £ is ......
{a) 49 (b) 15 {cy 10 (d) 03

Section C (3 marks)
(11) Sclution. of the following LP problem ]
Maximize z = 2x + &y
subjectto x + y = 1, 2x+y=2Zandx 20,y 207 is
(a) % (b) % {c) 2—{’ (d) no feasible region
(12) Rolution of the following LP problem ]
Minimize z = —3x + 2y
subject to DS xS 4, 1 Sy <6, x+ys5is
fay —10 by 0 {c) 2 <y 10
Section D (4 marks)

{12) The following graph represents a feasible region. Mininmum value of z = 5x + 4y is ... 1
{a) 150 (b) 145 {c)y 160 (dy 250

| fessible region

Figure 8,12
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{14) Corner poinis of the bounded feasible region [or an LP problem are {0, 43, {6, 0}, (12, 0),
{12, 16) and (&, 10). Let z = 8x + 12y be the abjective function. Match the following : [ |
{i} Minimum valig of z occurs at ... (i) Maximum value of z ocours at ...
(iii) Maximum of z is ... (v) Minimum of 2 is ...
(a) (i) (6, 0y () (12, 0)  (iiiy 288 (iv) 48
(b)Y (i) (0, 4)  (i1) (12, 16} (iii) 288  (iv) 48
(c) (i) (0, 4} (i} (12, 16) (iii) 288 (iv) 96
() M6, & (02,0 (i) 288 (v} 96

We have studied the following points in this chapter :

I.  Mathematical formulation of linear programming problems.

2. Meaning of the terms : Decision variables, the objective function, the constraints.
3. Graphical method of selving linear programming problems
4

Meaning of the terms : feasible solution, infeasible solution, optimal feasible solution, feasible
region, infeasible region.

Fields of Indian mathematics

Some of the areas of mathematics studied in ancient and medieval India include the following :

Arithmetic : Decimal system, MNegative numbers (Brahmagupta), Zero {Hindu numeral
system), Binary numeral system, the modetn positional notation nnmeral system, Floating point
numbers (Kerala school of astronomy and mathematics), Number theory, Infinity (Yajur Veda},
Transfinite numbers

Geometry : Square rools (Bakhshah approximation), Cube rools (Mahavira), Pythagoerean
triples (5ulba Sumras; Baudhavana and Apastamba) statement of the Pyihagercan theorem without
proof), Transformation {Panini), Pascal's triangle (Pingala)

Algebra : Quadratic equations (Sulba Sutras, Aryvabhata, and Brahmagupia), Cubie equations and
Cuartie equations (biquadratic equations) {Mahavira and Bhaskara 1I)

Mauathematival logic : Formal grummars, [ormal language theory, the Panini-—Backus Form
{Panini), Recursion (Panini)

General mathematics : Fibonzeei numbers (Pingala), Earliest forms of Morse code (Pingala),
infinite seties, Logarnthms, indices {Jain mathematics), Algorithms, Algorism (Aryabhata and
RBrahmagupta)

Triponometry @ ‘[rigonemetric functions (Surya Siddhanta and Aryabhata), ‘lrigonometric
series {Madhava and Kerala school)
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 ANSWERS |

(Answers to questions involving some calculations only are given.)

Exercise 1.1

(1) Not Reflexive, not symmetric, not transitive (2) Reflexive, not symmetric, transitive
(3) Reflexive, not symmetric, transitive (4) Reflexive, symmetric, transitive

(5) Not reflexive, not symmetric, not transitive

Ap=1{..1,7,13,19,.}

A, ={.... 2,8, 14, 20,....}

Equivalence classes :

Ay ={..3,9 15 21..}
A, ={.... 410, 16, 22,...}
Ag=1{..5 11,17, 23,..}
Ag=1{..6,12,18, 24,.}
Reflexive, antisymetric, transitive 4. (1) {1}, {2}, {3}...., (2) {0}, {1, —1}, {2, —=2},...

{(1, 2)} 6. X-axis and Y-axis and lines parallel to them.

Exercise 1.2

f is one-one and onto 2. fis one-one and onto
fis not one-one and not onto 4. fis not one-one, not onto
£ is not one-one, onto 6. fis one-one and onto
fis not one-one, but onto 8. fis one-one and onto
f is one-one, not onto 10. fis one-one, not onto

. fis not one-one, not onto 12. n! one-one functions

. Number of onto functions on A| = 1
Number of onto functions on A, = 2

Number of onto functions on A; = 6, in general number of onto functions on A, = n!

(1) (goN) = x%, (fog)x) = x*

4. (fof)(x) = x*
6. (fog)(x) =

(fof)(x) = x
(foNx) = x

(fog)(n) ={2n + 2, n even
n+3

2 b

n—2, nodd, n

n odd, n

xX—3
2

@) = 2. 7l =

Exercise 1.3

(2) (goHx) = x, (fog)x) = x
— 263 — 4xr + 5x + 4
I, x=21 (goH(x) = I, x>0
0, xe€ [0, 1) 0, x=0,gof =1
-1, x<0 -1, x<0
(gof)(n) = { 2n + 4, n even
=4k + 1, ke Z n—1, n odd
=4k +3, ke Z
Exercise 1.4
x+7 3w = x% 4. f7lm) = &
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5.
9.

10.

14

16

18.

19.

20.

21.

1.

N, 0) =2n, f~Yn 1) =2n+1 6. f~! does not exist

(1) £71 does not exist (2) f~Vdoes not exist (3) f~"does not exist
(4) 71 does not exist G =17 (6) £~ !does not exist
@) £ m) = (ma ), [TV = f

Exercise 1

S is not reflexive, not symmetric, not transitive

(1) not one-one, not onto (2) not one-one, onto
(3) not one-one, not onto (4) not one-one, onto
(5) not one-one, onto (6) one-one, not onto
(7) one-one, onto (8) one-one, onto

(9) not one-one, not onto (10) one-one, onto

(11) not one-one, not onto

(gof)(n) = n if 5|n, (fog)(n) = n otherwise (fog)(n) = 0
fog does not exist

1+ x
is one-one, onto, f~1(x) = 1y — 17. 71 does not exist. fis not onto.
> 10810\ T—x

Ifa* b=a+ b+ ab, then * is commutative and associative. If a * b = a — b + ab, then

* 1s not commutative and not associative.

(1) not associative, not commutative (2) commutative, associative

(3) not commutative, not associative (4) not commutative, not associative

(5) commutative and associative (6) not commutative, not associative

(7) commutative, not associative (8) not commutative, not associative

(9) commutative, associative (10) not commutative, not associative
(1)e=0,a_1=—lfa (2)e=2,a_1=% B)e=2,al=4—-a (4)e=0,a_1=a_1
(5) e does not exist (6) e does not exist (7) e does not exist (8) e does not exist

(9) X is the identity, X~! = X  (10) ¢ is the identity, ! = @

Section A : (1)d ()b @)b 4a ()a 6)c (b @B a @O b (10)a
Anb (12)c (1A3)c (14 a (15 a

Section B :(16) a (17) b (18)a (19 a (200 b (2I)b (22)d (@3)a (4 b
25)a (26)b (27) a

Section C :(28) ¢ (29 b @0)b (@Bl c (32)b (33)a @4)a (B5a ((36)d
3Hd @38 c 39d

Exercise 2.1

mE @O-%F 0F @9-F 0F ©-F 20F 0F F @F

6
7-3/5

2

mF ot % o $B 4L,

Exercise 2.2

mo @»F 32 @m 2 ©1 D3E
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10.

Exercise 2

M {if} ol &F @i eou ol ow

Section A :(I)a ()b (3)a @b (G)d ®d (b @b (©a (10)c
(I)a (12)c @13)d @149b (@15d

Section B :(16) ¢ (17)b (18)d (19c (@0)b (@2)d (@2)d @23)b (4)a
25 a (26)c @7)d (28 a (29d @30)b

Section C :(31)b (32)a (33)a (4)d @(35d @6)d (@7)b (38)b (3%a
@)c @hc @2)c

Section D :(43)d  (44)c (@45 b @6)b @b @8 b @b (B0)b (51)b

Exercise 3.1

M43 @1 (3 2212 @6-2 3.10 (@) 131

Exercise 3.2

=23 Im  1n
4, = 5. 51 5n 7.4

Exercise 3.3

M 0. 7 o)} of1d)] 2-8 3-3
125 @4 5k=3%7 6.aeR

M3x+2y—5=0 @2)x=5 @B)x—4y—13=0 8.1

Exercise 3

x=—75 2.x=—-1,—-2 3.x=2 4.x=-7
Mb @c Gd @b GHd ©d TDec GBb b @@0)c ()b

(12)a (13)d (14 d (15 d (16)b

Exercise 4.1

-1 -3 5 =5 1 -7 8 -6
A+B=|3 7|, A—-B=|3 3|, 2A+B=|6 9|, A—-2B=|3 -8
3 -1 -5 3 2 0 -9 5

T 2s5in0 0 T 0 —2cos0
A+AS = 0 2sin0 |’ A—-A = 2c0s0 0

B—A=diagl2 3 —1], 2A+3B=diag[ll 4 7] 4.x=1lor7, y=-2or6

296
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-1 1 7. x=2,y=4 x=4y=2
-7 2 —4
2 3
4 4 -2 1 U
8. a=d4b=1lc=2,d==2 9 A=|, (. B=|s o 10./4 -4
25 28
3 3
17 -1 3
1S P i i ] IS M Sy A 3
-7 1 0
Exercise 4.2
2 2 4 -5 -1 -3
2. a=2,b=4,c=1,d=3 4. AB=]1], BA=|3 -3 6 5.|-1 -7 -10
1 -1 2 -5 4 =2
7 0 00 i ‘5‘ > 02 3 2
6. _O 7 800 9. X = 137,Y=— _53
5 808 2 20
1 -4 .
10. 3 2 Lx=t7 =y 12. =2, —14
Exercise 4.3
-22 11 -11] -5 11 6
-3 2 d -c
LDy 5| @O, 4| &[4 2 2] @+ 2
16 -8 8 -8 17 10
1 1
5 0 3
2. |2 -3 -+ 7 x=3
1 1 _1
4 2 4
1 _1 1
1 2 2 2 2 32 6
505 73 4 3 -1 11 2
8. M|, 7 @, )N - @
5 75 5 3 1 2 25
2 2 2
11 1 9 2 7
9. -2y oL wowzy o)
Exercise 4
= 4 52 26 -21 {0 N 1—345
L3 o o 4|2 21 17| 50, o 6AT' =3 5 o 84719 -1 4
2 2 83 —41 -34 5 =3 -1
36 0 L
9. 1o 36| 10-M{R. D} @ {-L2} 1O L-D @ {(g,g,g)}
ANSWERS 297



,\/

2 _ _
{a ab ] 13. (x, y) = {(ncé _;211 , an2 _’:111% )} 14.x=6 15 x = 143

12.

24.

10.
15.

L I W A =

13.

15.

ac bc+1
IMHd @2)c Bc @Hd BSb ®)a (()d 8) b @b @0)a @ADL
12) ¢ (13)c (A4 b A5 c @d6)b (17) a

Exercise 5.1

Discontinuous for x = 2 5. Continuous 6. Continuous 7. Discontinuous for x = 0

Continuous 9. Discontinuous for x = 0

Discontinuous for x = 0 11. Continuous 12. Continuous 13. k=3 14. k=5

k=1 16. k=0 17.a =4, b = —1 26. Discontinuous 27. k = ﬁ 28.n=15

Exercise 5.2

(1) 2sinx cosx (2) 2tanx sec’x (3) 4x3 (4) —4cos3x sinx

Exercise 5.3

6sin*(2x + 3) - cos(2x + 3) 2. 3tan®x - sec’x 3. sin’x - cos*x (3cos*x — 5sin’x)
—2sin(sin(sec(2x + 3))) - cos(sec(2x + 3)) - sec(2x + 3) . tan(2x + 3)

—(3x2 — 1) - sec(cot(x® — x + 2)) - tan(cot(x> — x + 2)) - cosec*(x3 — x + 2)

@x + 3"~ 1. .Gx+ 2y~ L.[6(m + n)x + 4m + 9n]

1 1 2 3

X - cos2x = = sin®2x cos 2x

n(sin = 'x . cosx + cos" ~ ' . sinx) 9. 3sinx - cos 7}

. 6sin*(4x — 1). cos?(2x + 3) [2cos(2x + 3) cos(4x — 1) — sin(4x — 1) sin(2x + 3)]

Exercise 5.4

X 1+ cosx X+ 4x + 3y ysec *xy — cosx 9 5
= 2XTY X 2
y 2. cosy 3. tan 5 “ TIxt2y " cosy — xsec 2xy 6. 4y 7. y
~25x x—2 COSX. 3 2
16y 9. 3=y 10. cosy 1. [[_,2 12. 77 2
o) =—2=, x>0 14. f'(x) = 2 x| <1
1+x%° 1+ x%°
2
— < — >
T+ 0 1_|_xza|x| 1
at x = 0, f'(x) does not exist. at x = £ 1, f'(x) does not exist.
3 —2
1+ x? 16. [ _y2

Exercise 5.5

b cos 0 —2co0s20 9

cosec® 2. s —sime 3 cot 4 tant 5. 1an® 6. —bL

a 2 ' 2a

Exercise 5.6

1

(x+i)x(;i;i +10g(x+§)) + (x+%); (%—#log(x+i)j
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x* e (1 + logx)(—sinx* + cosx”)

10.

14.

10.

15.

17.

19.

20.

22.

40.

46.

48.

6 20 ) .
%[u oy R R o 1] 4. (log x)=*** (—Smx log(log x) + xclo(,?x )

2 3 4
(et ats) 6 dow o (phy + loglogm) + 1+ logx

X% (sinx logx + xcosx logx + sinx) + (sinx)* (log (sinx) + xcotx)

1
x(x+x) -(1 + ? + logx — x—lzlogx)

CoSx

S.
(sinx)* (log (sinx) + xcotx) + (%) (_Lxsx + sinx - logx)

y> —xylog y Xy -y (xlogy+y)y
= 12. ——= 13. — 77—/
x> —xylogx xy +x (ylogx +x) x

3 7 15x'0 —16x1 +1
y( 1, _2x o 4x | 8x )or— 15. 4x3 — 15x% + 48x — 39

38inx . cosx log3 — 4905% . sinx log4 11.

+x 1422 1+x* 1+x8 (x-1?

Exercise 5.7

c=1 2.c=2+ﬁ 3.¢c=0 4.c=@ 5.c=% 6.c=T 7.c=%

2 |
=L 9.c=%2L q0.c=loge 12.()c=V3@c=y2-1 14.(3,4)

Exercise 5

Discontinuous at x = 3 2. Discontinuous at x = 1 3. Discontinuous at x = —1
Discontinuous at x =2 5. k=5 6. k=2 7. k=1 8.k=22 9.a=1,5b=-1

2X 2 1-y

a=55b=0 11 (X2 + Dlogl0 12. 772 13. —tanx - cos(log (cosx)) 14. — — 2

(sinx)S"* . cosx - (log sinx + 1) 16. (sinx — cosx)s"™ =<0 . (cosx + sinx) (1 + log (sinx — cosx))

x* -1

xx(1+10gx)+(x+%)x (log(x+é) N ) 18.xx+§-(1+x—12+logx— lo;gzx)

1+ x?

—sinx® - x* (1 + logx) + (tanx)* (log tanx + x secx cosecx)

dy _
- = 0, 0<x<1 21. 0

2
12> —1 < x < 0, not differentiable for x = 0.

(sint)! (logsint +1t cot t) 1 1 | a’ +b?
(cost)! (=t tant + log (cos 1)) 24. 2(1+ x%) 25. 2‘/1 —x2 26. 2 37. = y?

1

1 —=L 2 7 _ 3
> 41. 1 42. 3 43. s 44. T Tox 5. T 2
— 47. 5

Section A: ()¢ (2)d ()a @Hb ()b Gb (DHc @Bb @b 10)c
() c (12)c (13)c (A4H)b 15 ¢
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Section B: (16)a (17)d (18)b (19)¢c (20)a (1)c (22)b (23)d (24)a (25 b
Section C :(26)c  (7)b (28)d (29d @0)a @la @32)c
Section D :(33)a (34 b (35 b (36)a (37 c (38d (39)d @0)d

11.

14.

16.
19.

22.

25.

11.

14.

17.

19.

21.

23.

Exercise 6.1

z S 1
X432 —dx+ Tlog | x|+ 44x + ¢ 2.17—0x2+%x2+4x2+c

5 3 7 5 3
2.7 2 2 20.7 . 2b. 3 2.7 o
5X + 2x +6Jx+J;+c 4.7x +5x +3x +c

e+1 a+1 ax

X e X
+ e+ efx + ¢ 6. ES] +

X
e+1

2 / 2 _ 11X 234 3.2
log62+10g|x+ 2-9|+c 9. x% — gtan” = + ¢ 10. 2x° + 3x% + ¢

2
logea+c 7.x7+2x+4log|x|+c

3 2 5 3 3
LS txte 12.%—%+x+tan_1x+c 13. xT—x+2tan_1x+c

—3cosx + Ssinx + 8tanx + 4cotx — x + ¢ 15. —2cotx — 3cosecx + ¢

4tanx — 9cotx — 25x + ¢ 17. —%(cotx + tanx) + ¢ 18. cosecx + cotx + x + ¢

—cotx + cosecx + ¢ 20. tanx — cotx — 3x + ¢ 21. —cosecx — cotx — x + ¢
2 2 ) ¥l x—3
secx — tanx + x + ¢ 23. a“tanx — b*cotx — (a — b)y*x + ¢ 24.x+710g P + ¢
2%t — x2 — 20
Exercise 6.2
%log|5x—3|+c 2.%e7"+4+%+c 3_2712:g:37_c02tz)c_x+c

54x+3

1
e R A 1R ey
= 1

Lo (3) + e 7. 75 log | f5x + f5x2 43| + Fylog

. 1 i [ V1x
5 2 — 1| XX
ﬁlog|\/5x+\/2x +3 |+ oy tan (,/3)-'_0

4

5 3 2
22+ 12x+ 25 log [x — 2| + ¢ 10.%—%+%—x7+x+log|x+l|+c

2x+3
2x -3

1
—%(5—3x)2 +e 123553 + +c¢ 13 —%cot(3 +5x) —x+c
e

402x + 1)?

- %sin (6x + 10) + ¢ 15. %(cosec3x — cof3x) + ¢ 16. 2ﬁsin % +c

X
2

3 3 3 3
FBx+ 42 + Gx+ D21 +c 18 —£(5 =207 + £(3 — 20 +¢

1

log|x+1|—537+c 20.x—2log|x+1]|— 2

x+1

+ c

3

3 3
2 -2x+3)? +c¢

3
L +22+6x+Tloglx—1]+c 22. 2(x + 3)

1 3 1
—2x+ D24 24. %(2x + 1)+ 2@+ D+

3
2 2
2(x + 1)
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3
2

25.

27.

29.

31.

33.

35.

37.

39.

42.

45.

48.

51.

5S.

58.

59.

61.

64.

10.

12.

%(4x + 7)) — —(4x + 7)2 +c 26. —x + —sm2x + 5 sindx + ¢
=3 cos2x + L cosbx + ¢ 28, &2 ex-b _ cos@x—l) +c

64 192 ’ 6 2

% sinéx + L sm2x +c 30. 2 sm 3x + 2sinx + ¢

1
YT sinl2x + Esm4x + 5 sin8x + +c 32. J2log | cosec % - cot%| +c

L x | [ sinim—mx  sin(m+n)x
2log |sin| + ¢ 4. - m—n__  m+n c
. . 1 sin(x —b)
xcosa + sina log |sin(x — a)| + ¢ 36. Sinb—a) 192 [max—ay| T ¢

3
—3& — Dlog |3 —2x| +¢ 38.%(3x2—4x+5)2+c

3
‘/xz +6x+4 +c 40 3(5x +3)2 +c 41. 2 log x — 1 sin(2 logx) + ¢

3
2 1 .
%(logx + 1) + ¢ 43. Inmtncosix) T ¢ 44. log | sinx + cosx | + ¢

tan(xe®) + ¢ 46. %cot(?.e_x +3)+c 47. é log |x¢ + €| + ¢

1 1 log | a?cos®x + b2sin’x | + ¢
50. 22 — a)

—1
Tan’x + 2tanx + 9 +c 494 — ayasin’x + beosx)

2
1 o —1.2\2 -2 1 . ) _1 xX+1 }
4(sm x> +c¢ 52, T e +c¢ 53 2[log (sine")]* + ¢ 54. > {log (—x ) +c

5 3
57 lan’x _ tan’x

4
Lianx + log |cosx| + ¢ 56, ££€X + ¢
2 4 5 3

+ tanx — x + ¢

1 1 1 1
2+ D2 =3+ DP+6(x+ 1D —6log|(x+ 1D +1|+¢c
3 5 12 3 3 b
3 _ 12 3 3 1
30 +2° -2 @+2)7 +6(x+2)7 + ¢ 60. L ran (atanx)+c

1+V3cotx
1—3cotx

tan

J—ta (J-xj +c¢ 62 2‘/— log
ﬁ tan_l(ﬁtanx) +c

tan_l(% tanx) + ¢

+c 63.%

Exercise 6.3

i fo_ 2 3
o AR T LAubu N g I R 3.%%+c
X X 3 a \/x+a

6 3 B _
%[Sll’l lx—3+—a_x]+c 5. 2sin 1"% +c 6. 2sin 1@+m+c
3
\/ 2 — acos & + ¢ 8. %sinﬂ% + ¢ 9. —i - %tan_lx - 2(lfx2) + c

X
| —

Mlog x+ 2 g2 |- —=X— +¢
‘/16 9x2 x* —a?
x2
_aT cos 1(?) + %"a4—x4 +c 13 2og | Jx-1+ Jx-2|+c¢
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14, —— — sin_I% +c 15. log |tan% +1|+c¢ 16 tan_l(l + tan%) + c

tan—
2 1 2 112 X Z 1 X
17. 3 tan [ 3 ] + c 18. ST tan (tan > tanz) + ¢ 19. & tan (\/gtanz) + ¢

tant +1++2
L il B e Simx _ sin'x cosx _ cos'x
20. 5 log tan£+1—ﬁ +c 21 e +c 22. 3 T +c
23. sinfx _ sin'%x c 24. cossx + cos7x— cos"x + ¢
8 10
_ 2 . 3. _ COSX _ 1 _ 1 1
25. —cosx + 3cos X == + c 26. (2x 2sm2x 2sm4x + sm6x) c
Exercise 6.4
|2 223 T | 3x+1— V2|
. ﬁtan 7 + c .Zﬁtan 7 +c 3. o2 log 3erH_‘/—|+c
1 X +1 1 >
4 Zlog x| T ¢ 5.10g|x—5+‘,x —x+5|tc
1 2.3 L. (4x+3
- +‘, +=x-1 - 1
6 \51 XTt5x ‘+c 7.ﬁsm (,/@)+c
1
8. 5 log x+2+x+3x+2 ¢ 9. log x—%+\/x2—3x+2 +c

+c

—4
10. sin_l(xs )+c 11. 2log [ + 3x + 2| — S log |

12. 310 |2x2 +x+ 1] + tan 1(4x+1)+c
S g \/7 ﬁ
[2 2 [ 2 [ x£!L
13. 2¢yx"+4x+5 —log|x+2 + yx " +4x+5|+ ¢ 14. —345-2x—-x" — 2sin 1( e j+c
B _[eF+2
15. 2log | sin*x — 4sinx + 5| + Ttan '(sinx — 2) + ¢ 16. sin”! 3 +c
| . - 2x2 +1 1 4 X2 -1
17. Slog |x* + 1+ ‘,x6+2x3+3|+c 18. sin™ | T |+ 19 ian | T [t

2 2
1 N 1 [ x=t
20. 5 tan o G 21. S tan ' | —3x |+

1 . x? -1 X —J_x+1|
22. 7 lan Vx )~ 4J_ log 3 +J_x+1|
| X2 -x+1 1 (X | Xt -x+1
23. Elog _x2+x+1 + c 24. _2J§ tan _ﬁx +Zlog —x2+x+1 + c

Exercise 6

2 2z 1 1l L L
oox=2x°+ 37 —2.x2 +3.x3 —6-x° —6log| 1 +x°| +¢

5 2
Jxr+2x+2
2. %[log|x+‘h+x2|]2+c 3o ———57  tc
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4. 2J1—x + cos Wx + Jx—xz +c¢ 5. 1,x2+5x+6 + %log | x + % + 1,x2+5x+6 | + ¢
log | X2+ 3x + 2| — 2 log | 7 jog | x2 0]+ 2 log |32
6. x+log|x*+3x+2[—2log|337|+¢ 7.x—50g|x +7x+1|+?og ~15| T ¢
1 cos(x—a)| _ )
8. sin(a —b) log cos(x—b)| +c 9. xcos(a — b) + sin(a — b) log | sin(x + b)| + ¢
10 = (=0t == (-0t 24
1y [anx— 1 tanx —~/2tanx +1
1. 75 tan J2 tanx TR log tanx +2tanx +1| 1€
L —1 @ 2 —1 l+a X
12. 5 lan D | T ¢ 13. =gz lan T—g fany | +c¢
14. Section A: (1) ¢ 2)b @B)c @HDc B)c OGc (MHa @Bc HG)b 1AO)c
(IHb (12)c (13)b (4 c (15 a (16)b (17)a (18 c (19)b (20)a
Section B :(21)d (22)d (@23)d (@2Hc (25 c¢c 26)d 27)c (@28 b (29d
BOb @Bl)e (2)c (33)d
Section C :(34)a (35 c (36)d (37)a (38)c (39d @0)d @)a @2)c
43) ¢
Section D :(44) b (45 b (46)d (@7)c (48)d
Exercise 7.1
3 4 12 1 2 11 13 1 3 2 1
L2 2.4 342 41 52 sl 98 71 s @22 9.
1 3 5
0. )3 @2 @
Exercise 7.2
10 15 15 5 1
1. Yes 2. = 3. o1 Q) o1 A3) 3T 4. 021 5. 3 6. 0.963
4 3 a1 36
7. mE @2 sl o
Exercise 7.3
1 1 1 64 1
L N3y @35 Oz @Dy O3
3 3 3 11
2. MYes 322 @2 @2 @i
4. X =x 2 3 4 5 6 7 8 9 10 11 12
L 2 3 4 R 5 = 4 3 2 L
PX) | 3 36 36 36 36 36 36 36 36 36 | 36
5. X =x 0 1 2 6. X =x 0 1 2
1 1 1 42 42 6
px) T > 7 p(x) il 20 il
=1 1 2
7. We=% @31 03
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E
k)
0 |—
o0 |w
o0 |w
00 |—

Exercise 7.4

X =x 1 2 3 4 5 6
11 9 7 S 3 L
p(X) 36 36 36 36 36 36

Mean = 2.53, Variance = 1.96, Standard deviation = 1.4

25 Yes 3.(1) k= % (2) Mean = 3.6, Variance = 1.64

1) k= % (2) Mean = 1.1, Variance = 1.69, Standard deviation = 1.3
% 6.(1HO0 216 (32 ) 144 7.3 8 8.125,135,0, 1
Exercise 7.5
63 X 45 47 X 14 144 )
O O 20g O35F
0.6517  4.0.0512 S.n=16,p= %, 2—}6, % 6. 0.9963 7. (1) 0.3950 (2) 0.4074

(1) 0.6630 (2) 0.6826 9. (1) 0.512 (2) 0.384 (3) 0.104 10. (1) 40 (2) 36

Exercise 7

4 1 1 3 16 49 36
7 M5 @5 33 L Mnr Do O

2 L B L 17
M o+ o8 @i 6075 L

X=x| 2 5 10

2
&
w|
0=
=

101 © 6767 3333 9, (1)% (2)% 10.% 1. = 12.3:2  13. 035294

M a 2 ¢ B a @b (5)a 6 d (7)) a 8 d 9 b (10)d
() c (12)d @13)d (4 c (15 d (16)c (17)a (@18 b (19 a (20) b
Q) c (22)b (23)a (4) ¢

Exercise 8.1

800 5. 120 6. 2300 7. 60, 180 8. Feasible region does not exist
16 10. 18 11. Maximum value does not exist 12. 400
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_ O Q0 3 =

13.
14.

Exercise 8

10 2.—=2 3.13 4.22 5.240 6. Feasible region does not exist

A type machines 6, B type machines 0, maximum output 360

A type food 5 units, B type food 30 units, least cost ¥ 145.

57 oil tins 8, 1 kg ghee tins 12, maximum profit T 392.

30 11.Ato D : 5007 AtoE=3000/ AtoF:3500/ BtoD: 4000/

40 executive class tickets, 160 economy class tickets, maximum profit ¥ 1,36,000

6,6

Mb @2 b 3 ¢ @ d (B()c @®GDbL (MHa @BGd H»a 10D
(I)c (12)a @1A3) b A4 Db

departed from Madras. He arrived in London on 14 April, with E. H. Neville waiting for him with a
car. Four days later, Neville took him to his house on Chesterton Road in Cambridge. Ramanujan
immediately began his work with Littlewood and Hardy. After six weeks, Ramanujan moved out of
Neville's house and took up residence on Whewell's Court, just a five-minute walk from Hardy's room.
Hardy and Ramanujan began to take a look at Ramanujan's notebooks. Hardy had already received
120 theorems from Ramanujan in the first two letters, but there were many more results and theorems
to be found in the notebooks. Hardy saw that some were wrong, others had already been discovered,
while the rest were new breakthroughs. Ramanujan left a deep impression on Hardy and Littlewood.
Littlewood commented, "I can believe that he's at least a Jacobi", while Hardy said "he can compare
him only with [Leonhard] Euler or Jacobi."

published a part of his findings there. Hardy and Ramanujan had highly contrasting personalities. Their
collaboration was a clash of different cultures, beliefs and working styles. Hardy was an atheist and
an apostle of proof and mathematical rigour, whereas Ramanujan was a deeply religious man and relied
very strongly on his intuition. While in England, Hardy tried his best to fill the gaps in Ramanujan's
education without interrupting his spell of inspiration.

March 1916 for his work on highly composite numbers, which was published as a paper in the Journal
of the London Mathematical Society. The paper was over 50 pages with different properties of such
numbers proven. Hardy remarked that this was one of the most unusual papers seen in mathematical
research at that time and that Ramanujan showed extraordinary ingenuity in handling it. On 6 December
1917, he was elected to the London Mathematical Society. He became a Fellow of the Royal
Society in 1918, becoming the second Indian to do so, following Ardaseer Cursetjee in 1841, and he
was one of the youngest Fellows in the history of the Royal Society. He was elected "for his
investigation in Elliptic functions and the Theory of Numbers." On 13 October 1918, he became the
first Indian to be elected a Fellow of Trinity College, Cambridge.

Srinivasa Ramanujan : Life in England

Ramanujan boarded the S.S. Nevasa on 17 March 1914, and at 10 o'clock in the morning, the ship

Ramanujan spent nearly five years in Cambridge collaborating with Hardy and Littlewood and

Ramanujan was awarded a B.A. degree by research (this degree was later renamed PhD) in
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TERMINOLOGY

(In Gujarati)

Antiderivation
Antiderivative
Arbitrary Constant
Binary Operation
Binomial Distribution
Chain Rule

Cofactor

Column

Composite Function
Conditional Probability
Consistent
Constraints

Decision Variables
Determinant
Equivalence Relation
Event

Feasible Region
Feasible Solution
Implicit Function
Indefinite Integral
Independent Events
Infeasible Solution
Integrable

Integral

Integrand

Inverse Function

PIRIEECE]
ulalaslaa
2 AN
D)

(gugl [adwt
AlsnAL [HuH
ALAHAYY

™

AU [k
1l el
oL
Hylglll
[Falius AR
BTV

ALY HolY
gl

AU B3a-l ULl
Asy B34

o [abiy
wi[HUd As[Ad
EROERCESTEN]
2954 B3¢
ylalasala
AslAd

A

ulalaty

Linear Programming
Many-one Function
Mathematical Expectation
Matrix

Method of Substitution
Minor

Non-singular Matrix
Objective Function
One-one Function

Onto Function

Optimal Feasible Solution
Optimum Value

Order

Primitive

Random Variable
Reflexive Relation

Row

Sample Space
Skew-symmetric Matrix
Standard Deviation
Symmetric Matrix
Symmetric Relation
Transitive Relation
Transpose of a Matrix
Universal Relation

Variance

L REENRILE]

w525 (AU
auBilas »ual
Al®s

28] Ad
GulAalys
AHIL ABLs
eqaall [8y
wis-os [A8y
Al [Q8y
SredH asd B
Sredd Hed
58l

ydol

Y12 (2495 A
AAIAS HoiY
B2
Mealasia
ERIERIBIEE
yHIRld [dad-
AMA slbs
A Aol
uuRd Hoiy
uRad AlkLs
ALABLS Aoik
(G281
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