NATIONAL TESTING AGENCY

Excellence in Assessment

Sample Questions for Section on Numerical Value

Q.1: A particle moves in the $x-y$ plane under the influence of a force such that the linear momentum Is $\mathbf{P}(\mathrm{t})=\mathrm{A}[\mathrm{î} \cos \mathrm{kt}-\hat{\jmath} \sin \mathrm{kt}$]

Where A and k are constants. The angle in degrees between force and momentum is \qquad .

Answer : 90
Q.2: A power line lies along the east - west direction and carries a current of 10 A . The force per meter due to earth's magnetic field of $10^{-4} \mathrm{~T}$ is $10^{-x} \mathrm{~N} / \mathrm{m}$. The value of x is \qquad .

Answer : 3
Q.3: The sun's disc subtends an angle of 10^{-2} rad at the earth. The radius of curvature (in meters) of the mirror which will produce on a screen an image of the sun 2 cm in diameter is \qquad .

Answer

 :4
NATIONAL TESTING AGENCY

Excellence in Assessment

Q.4: The binding energy of deutron $\left({ }_{1} \mathrm{H}^{2}\right)$ is 1.15 MeV per nucleon and an alpha particle (${ }_{2} \mathrm{He}^{4}$) has a binding energy of 7.1 MeV per nucleon. Then in the reaction ${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{2} \mathrm{He}^{4}+\mathrm{Q}$ The energy Q released in MeV is \qquad

Answer : 23.8

Q.5: Light of wavelength 0.6 mm from a sodium lamp falls on a photo cell and causes the emission of photoelectrons for which the stopping potential is 0.5 V . With light of wavelength 0.4 mm from a mercury lamp the stopping potential is 1.5 V . Then, the work function in eV of the photocell surface is \qquad .

Answer : 1.5

