# NBSE Class 12 Physics Previous Year Question Paper 2018

Total number of printed pages : 4

2018/XII/PHY

# 2018 PHYSICS

Total marks : 70

## Time : 3 hours

1

1

1

#### **General instructions:**

- *i)* Approximately 15 minutes is allotted to read the question paper and revise the answers.
- *ii)* The question paper consists of 30 questions. All questions are compulsory.
- *iii)* Marks are indicated against each question.
- iv) Internal choice has been provided in some questions.

#### N.B: Check that all pages of the question paper is complete as indicated on the top left side.

- 1. An electric bulb is rated 220 volt, 100 watt. Power consumed by it when 1 operated on 110 volt is
  - (a) 50 watt (b) 75 watt
  - (c) 90 watt (d) 25 watt.

### 2. The material of a permanent magnet should have

- (a) high retentivity and low coercivity
- (b) low retentivity and high coercivity
- (c) low retentivity and low coercivity
- (d) high retentivity and high coercivity.
- 3. In a circular coil if number of turns is doubled and resistance becomes
  - $\frac{1}{4}$ th of the initial value, then inductance becomes
  - (a) 4 times
  - (b) 2 times
  - (c) 8 times
  - (d) no change.

4. A convex lens is dipped in a liquid whose refractive index is equal to the refractive index of the lens. Then, its focal length will

- (a) become zero
- (b) become infinite
- (c) remain unchanged (d) become small, but non-zero.

|     | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2018/XII/PHY                      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 5.  | The typical ionization energy of a donor in silicon is(a) 10.0 ev(b) 1.0 ev(c) 0.1 ev(d) 0.001 ev.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                 |
| 6.  | The resistivity of a constantan wire is 49 x $10^{-8} \Omega$ m. What is its conductivity? 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |
| 7.  | Define angle of declination at a place.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                 |
| 8.  | What is displacement current?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                 |
| 9.  | If the intensity of incident radiation on a metal is doubled, what happens to the kinetic energy of emitted photoelectrons? 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |
| 10. | What are the majority and minority charge carriers in a p –type semiconductor? 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |
| 11. | <ul> <li>a. Establish an expression for the electric field at a point along the axial line of an electric dipole.</li> <li>Or 2</li> <li>b. Establish a relationship between electric potential and electric field.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |
| 12. | <ul> <li>a. Derive an expression for self-inductance of a long solenoid cross-sectional area A having number of turns N.</li> <li>Or</li> <li>b. Explain how Lenz's law supports the law of conservation of the la</li></ul> | 2                                 |
| 13. | Show that the speed of propagation of an electromagnetic wave<br>the speed of light.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e is equal to 2                   |
| 14. | Define atomic mass unit. Find the energy equivalent to 1u (atomic mass unit). 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
| 15. | <ul> <li>a. Mass of an electron is 9.11x10<sup>-31</sup>kg. Calculate mass-energy of in Joule as well as electron volts. Given that speed of light in C = 3.0x10<sup>8</sup>ms<sup>-1</sup> and 1 ev = 1.60x10<sup>-19</sup>J.</li> <li>b. Calculate the binding energy per nucleon for <sup>20</sup><sub>10</sub>Ne. Given the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n vacuum $2$ nat m <sub>H</sub> = |
|     | 1.007825u, $m_n = 1.008665u$ and mass of ${}^{20}_{10}Ne$ atom = 19.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |
| 16. | What are line communication and space communication? Give each.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | examples of <b>2</b>              |

3

3

3

3

3

3

3

- 17. Using Gauss theorem, deduce an expression for the electric field at a point due to a uniformly charged infinite plane sheet.
- 18. Two point charges of  $+1.5 \,\mu$  C and  $+2.5 \,\mu$  C are placed 30cm apart. Calculate the magnitude of electric potential and electric field at the midpoint of the line joining the two charges.
- 19. **a.** With the help of a circuit diagram, explain the use of a potentiometer for comparison of emf's of two cells.
  - Or
  - **b.** Two cells of emf  $E_1$  and  $E_2$  having internal resistances  $r_1$  and  $r_2$  respectively are connected in parallel. Deduce the expression for the equivalent emf and equivalent internal resistance of this parallel combination.
- 20. An electrical network is shown in figure. Applying Kirchoff's rules, determine the values of  $I_1$ ,  $I_2$  and  $I_3$ .



- 21. With the help of a diagram, explain the principle and working of a moving coil galvanometer.
- 22. **a.** Derive an expression for force per unit length between two long straight parallel current-carrying conductors. Hence, define one ampere.
  - Or
  - **b.** Derive an expression for the torque on a rectangular current-carrying loop suspended in a uniform magnetic field.
- 23. Draw a labelled diagram of an astronomical telescope and explain its working.Give an expression for its magnifying power. 3
- 24. **a.** Use Huygen's principle to verify the laws of refraction.

Or

**b.** Define polarizing angle. Derive the relation connecting polarizing angle and the refractive index of a medium.

| 2018/XII/PHY |
|--------------|
|--------------|

3

3

5

5

5

- 25. Draw and explain the graph showing the variation of stopping potential with frequency of incident radiation in relation to photoelectric effect. 3
- 26. **a.** Define the terms "half-life period" and "decay constant" of a radioactive sample. Derive the relation between them.

Or

- **b.** Explain the process of release of energy in a nuclear reactor. Draw a schematic diagram of a nuclear reactor and write the function of each part.
- 27. Distinguish between sky wave and space wave propagations. Explain with the help of suitable diagram indicating how these waves are propagated.
- 28. **a.** Define power in an A.C circuit and obtain an expression for the average power over a complete cycle in case of a circuit containing inductance, resistance and capacitance. What is meant by wattless current?

#### Or

Or

- **b.** With the help of a labelled diagram, explain the working of a transformer. Write any two sources of energy loss in a transformer.
- 29. **a.** Explain Young's double slit experiment to produce interference pattern due to monochromatic source of light. Deduce an expression for fringe-width.
  - **b.** Explain diffraction of light due to a single slit and illustrate formation of a pattern of fringes obtained on the screen and plot a graph showing variation of intensity with angle  $\theta$  in single slit diffraction.
- 30. **a**. Explain with the help of a labelled circuit diagram, the use of the transistor as an oscillator.
  - Or
  - **b.** With the help of circuit diagram, explain the action of an n-p-n and p-n-p transistor.

\*\*\*\*\*\*