

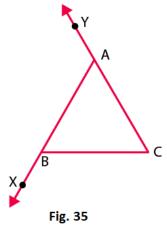
# EXERCISE 15.3

# PAGE NO: 15.19

**1.** In Fig. 35,  $\angle$ CBX is an exterior angle of  $\triangle$ ABC at B. Name

- (i) The interior adjacent angle
- (ii) The interior opposite angles to exterior ∠CBX

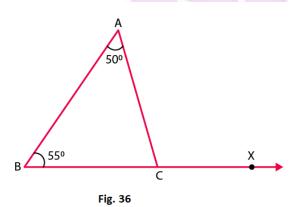
Also, name the interior opposite angles to an exterior angle at A.



# Solution:

- (i) The interior adjacent angle is ∠ABC
- (ii) The interior opposite angles to exterior  $\angle$ CBX is  $\angle$ BAC and  $\angle$ ACB
- Also the interior angles opposite to exterior are ∠ABC and ∠ACB

2. In the fig. 36, two of the angles are indicated. What are the measures of  $\angle ACX$  and  $\angle ACB$ ?



# Solution:

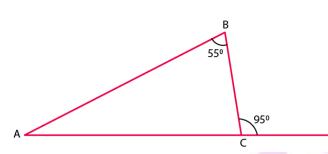
Given that in  $\triangle ABC$ ,  $\angle A = 50^{\circ}$  and  $\angle B = 55^{\circ}$ We know that the sum of angles in a triangle is  $180^{\circ}$ 



Therefore we have  $\angle A + \angle B + \angle C = 180^{\circ}$   $50^{\circ} + 55^{\circ} + \angle C = 180^{\circ}$   $\angle C = 75^{\circ}$   $\angle ACB = 75^{\circ}$  $\angle ACX = 180^{\circ} - \angle ACB = 180^{\circ} - 75^{\circ} = 105^{\circ}$ 

3. In a triangle, an exterior angle at a vertex is 95° and its one of the interior opposite angles is 55°. Find all the angles of the triangle.

Solution:



We know that the sum of interior opposite angles is equal to the exterior angle. Hence, for the given triangle, we can say that:  $\angle ABC + \angle BAC = \angle BCO$   $55^{\circ} + \angle BAC = 95^{\circ}$   $\angle BAC = 95^{\circ} - 95^{\circ}$   $\angle BAC = 40^{\circ}$ We also know that the sum of all angles of a triangle is 180°. Hence, for the given  $\triangle ABC$ , we can say that:  $\angle ABC + \angle BAC + \angle BCA = 180^{\circ}$   $55^{\circ} + 40^{\circ} + \angle BCA = 180^{\circ}$   $\angle BCA = 180^{\circ} - 95^{\circ}$  $\angle BCA = 85^{\circ}$ 

# 4. One of the exterior angles of a triangle is 80°, and the interior opposite angles are equal to each other. What is the measure of each of these two angles?

# Solution:

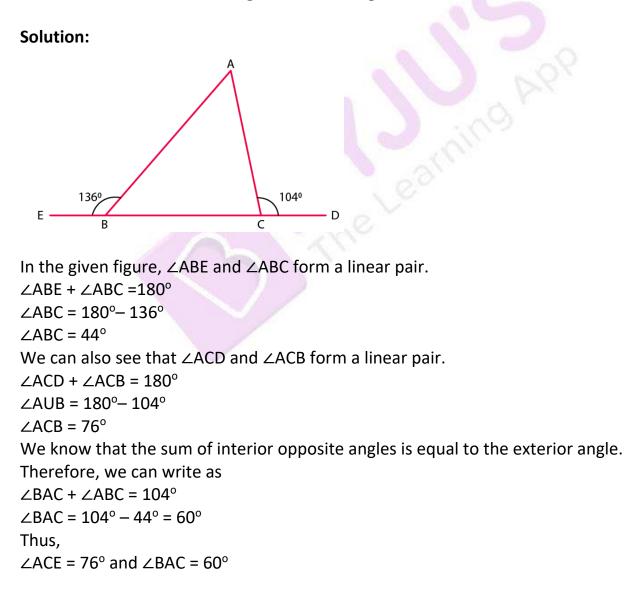
Let us assume that A and B are the two interior opposite angles. We know that  $\angle A$  is equal to  $\angle B$ .



We also know that the sum of interior opposite angles is equal to the exterior angle. Therefore from the figure we have,

 $\angle A + \angle B = 80^{\circ}$   $\angle A + \angle A = 80^{\circ}$  (because  $\angle A = \angle B$ )  $2\angle A = 80^{\circ}$   $\angle A = 40/2 = 40^{\circ}$   $\angle A = \angle B = 40^{\circ}$ Thus, each of the required angles is of  $40^{\circ}$ .

5. The exterior angles, obtained on producing the base of a triangle both ways are 104° and 136°. Find all the angles of the triangle.





6. In Fig. 37, the sides BC, CA and BA of a  $\triangle$ ABC have been produced to D, E and F respectively. If  $\angle$ ACD = 105° and  $\angle$ EAF = 45°; find all the angles of the  $\triangle$ ABC.

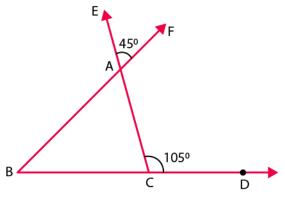


Fig. 37

# Solution:

In a  $\triangle ABC$ ,  $\angle BAC$  and  $\angle EAF$  are vertically opposite angles.

Hence, we can write as

 $\angle BAC = \angle EAF = 45^{\circ}$ 

Considering the exterior angle property, we have

 $\angle BAC + \angle ABC = \angle ACD = 105^{\circ}$ 

On rearranging we get

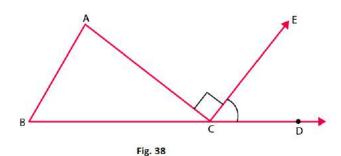
 $\angle ABC = 105^{\circ} - 45^{\circ} = 60^{\circ}$ 

We know that the sum of angles in a triangle is 180°

 $\angle ABC + \angle ACS + \angle BAC = 180^{\circ}$ 

Therefore, the angles are 45°, 65° and 75°.

7. In Fig. 38, AC perpendicular to CE and C  $\angle A$ :  $\angle B$ :  $\angle C$ = 3: 2: 1. Find the value of  $\angle ECD$ .



# Solution:

In the given triangle, the angles are in the ratio 3: 2: 1. Let the angles of the triangle be 3x, 2x and x. We know that sum of angles in a triangle is 180°



 $3x + 2x + x = 180^{\circ}$   $6x = 180^{\circ}$   $x = 30^{\circ}$ Also,  $\angle ACB + \angle ACE + \angle ECD = 180^{\circ}$   $x + 90^{\circ} + \angle ECD = 180^{\circ} (\angle ACE = 90^{\circ})$ We know that  $x = 30^{\circ}$ Therefore  $\angle ECD = 60^{\circ}$ 

8. A student when asked to measure two exterior angles of  $\triangle$ ABC observed that the exterior angles at A and B are of 103° and 74° respectively. Is this possible? Why or why not?

Solution:

We know that sum of internal and external angle is equal to 180°

Internal angle at A + External angle at A = 180°

Internal angle at A + 103° =180°

Internal angle at A = 77°

Internal angle at B + External angle at B = 180°

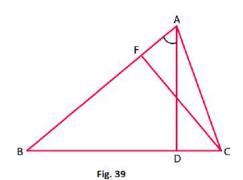
Internal angle at  $B + 74^\circ = 180^\circ$ 

Internal angle at B = 106°

Sum of internal angles at A and B =  $77^{\circ} + 106^{\circ} = 183^{\circ}$ 

It means that the sum of internal angles at A and B is greater than 180°, which cannot be possible.

9. In Fig.39, AD and CF are respectively perpendiculars to sides BC and AB of  $\triangle$ ABC. If  $\angle$ FCD = 50°, find  $\angle$ BAD



# Solution:

We know that the sum of all angles of a triangle is  $180^{\circ}$ Therefore, for the given  $\triangle$  FCB, we have



 $\angle$ FCB +  $\angle$ CBF +  $\angle$ BFC = 180°  $50^{\circ}$  +  $\angle$ CBF + 90° = 180°  $\angle$ CBF = 180° - 50° - 90° = 40° Using the above steps for  $\triangle$ ABD, we can say that:  $\angle$ ABD +  $\angle$ BDA +  $\angle$ BAD = 180°  $\angle$ BAD = 180° - 90° - 40° = 50°

10. In Fig.40, measures of some angles are indicated. Find the value of x.

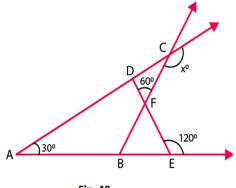
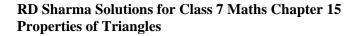


Fig. 40

#### Solution:

We know that the sum of the angles of a triangle is 180° From the figure we have,  $\angle AED + 120^\circ = 180^\circ$  (Linear pair)  $\angle AED = 180^{\circ} - 120^{\circ} = 60^{\circ}$ We know that the sum of all angles of a triangle is 180°. Therefore, for  $\triangle ADE$ , we have  $\angle ADE + \angle AED + \angle DAE = 180^{\circ}$  $60^{\circ} + \angle ADE + 30^{\circ} = 180^{\circ}$  $\angle ADE = 180^{\circ} - 60^{\circ} - 30^{\circ} = 90^{\circ}$ From the given figure, we have  $\angle$ FDC + 90° = 180° (Linear pair)  $\angle$ FDC = 180° - 90° = 90° Using the same steps for  $\triangle$ CDF, we get  $\angle CDF + \angle DCF + \angle DFC = 180^{\circ}$  $90^{\circ} + \angle DCF + 60^{\circ} = 180^{\circ}$  $\angle DCF = 180^{\circ} - 60^{\circ} - 90^{\circ} = 30^{\circ}$ Again from the figure we have  $\angle$ DCF + x = 180° (Linear pair)  $30^{\circ} + x = 180^{\circ}$ 

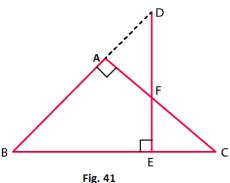




 $x = 180^{\circ} - 30^{\circ} = 150^{\circ}$ 

11. In Fig. 41, ABC is a right triangle right angled at A. D lies on BA produced and DE perpendicular to BC intersecting AC at F. If  $\angle AFE = 130^\circ$ , find

- (i) ∠BDE
- (ii) ∠BCA
- (iii) ∠ABC



#### Solution:

(i) Here,

 $\angle$ BAF +  $\angle$ FAD = 180° (Linear pair)  $\angle FAD = 180^{\circ} - \angle BAF = 180^{\circ} - 90^{\circ} = 90^{\circ}$ Also from the figure,  $\angle AFE = \angle ADF + \angle FAD$  (Exterior angle property)  $\angle ADF + 90^{\circ} = 130^{\circ}$  $\angle ADF = 130^{\circ} - 90^{\circ} = 40^{\circ}$ 

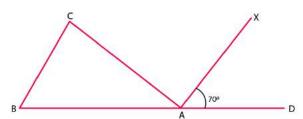
(ii) We know that the sum of all the angles of a triangle is 180°. Therefore, for  $\triangle$ BDE, we have  $\angle BDE + \angle BED + \angle DBE = 180^{\circ}$  $\angle DBE = 180^{\circ} - \angle BDE$  $\angle BED = 180^{\circ} - 90^{\circ} - 40^{\circ} = 50^{\circ} \dots$  Equation (i) Again from the figure we have,  $\angle$ FAD =  $\angle$ ABC +  $\angle$ ACB (Exterior angle property)  $90^{\circ} = 50^{\circ} + \angle ACB$  $\angle ACB = 90^{\circ} - 50^{\circ} = 40^{\circ}$ 

(iii) From equation we have  $\angle ABC = \angle DBE = 50^{\circ}$ 



12. ABC is a triangle in which  $\angle B = \angle C$  and ray AX bisects the exterior angle DAC. If  $\angle DAX = 70^{\circ}$ . Find  $\angle ACB$ .

Solution:



Given that ABC is a triangle in which  $\angle B = \angle C$ Also given that AX bisects the exterior angle DAC  $\angle CAX = \angle DAX$  (AX bisects  $\angle CAD$ )  $\angle CAX = 70^{\circ}$  [given]  $\angle CAX + \angle DAX + \angle CAB = 180^{\circ}$   $70^{\circ} + 70^{\circ} + \angle CAB = 180^{\circ}$   $\angle CAB = 180^{\circ} - 140^{\circ}$   $\angle CAB = 40^{\circ}$   $\angle ACB = 40^{\circ}$   $\angle ACB + \angle CBA + \angle CAB = 180^{\circ}$  (Sum of the angles of  $\triangle ABC$ )  $\angle ACB + \angle ACB + 40^{\circ} = 180^{\circ}$  ( $\angle C = \angle B$ )  $2\angle ACB = 180^{\circ} - 40^{\circ}$   $\angle ACB = 140/2$  $\angle ACB = 70^{\circ}$ 

13. The side BC of  $\triangle$ ABC is produced to a point D. The bisector of  $\angle$ A meets side BC in L. If  $\angle$ ABC= 30° and  $\angle$ ACD = 115°, find  $\angle$ ALC

1150 300 в D

Solution: Given that  $\angle ABC = 30^{\circ}$  and  $\angle ACD = 115^{\circ}$ From the figure, we have



 $\angle$ ACD and  $\angle$ ACL make a linear pair.  $\angle ACD + \angle ACB = 180^{\circ}$ 115° + ∠ACB =180° ∠ACB = 180° - 115°  $\angle ACB = 65^{\circ}$ We know that the sum of all angles of a triangle is 180°. Therefore, for  $\triangle$  ABC, we have  $\angle ABC + \angle BAC + \angle ACB = 180^{\circ}$  $30^{\circ} + \angle BAC + 65^{\circ} = 180^{\circ}$  $\angle BAC = 85^{\circ}$  $\angle LAC = \angle BAC/2 = 85/2$ Using the same steps for  $\triangle$ ALC, we get  $\angle$ ALC +  $\angle$ LAC +  $\angle$ ACL = 180°  $\angle ALC + 82/2 + 65^{\circ} = 180^{\circ}$ We know that  $\angle ALC = \angle ACB$  $\angle ALC = 180^{\circ} - 82/2 - 65^{\circ}$ ∠ALC = 72 ½°

14. D is a point on the side BC of  $\triangle$ ABC. A line PDQ through D, meets side AC in P and AB produced at Q. If  $\angle$ A = 80°,  $\angle$ ABC = 60° and  $\angle$ PDC = 15°, find (i)  $\angle$ AQD

(ii) ∠APD

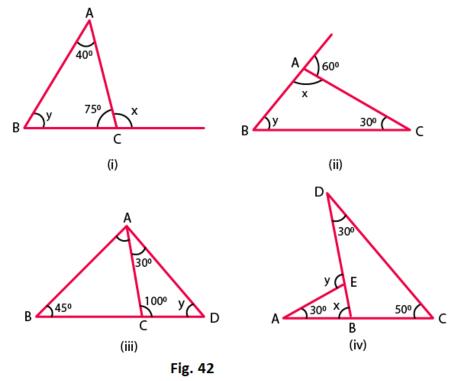


From the figure we have  $\angle ABD$  and  $\angle QBD$  form a linear pair.  $\angle ABC + \angle QBC = 180^{\circ}$  $60^{\circ} + \angle QBC = 180^{\circ}$ 



```
\begin{array}{l} \angle QBC = 120^{\circ} \\ \angle PDC = \angle BDQ \text{ (Vertically opposite angles)} \\ \angle BDQ = 75^{\circ} \\ \text{In } \triangle QBD: \\ \angle QBD + \angle QDB + \angle BDQ = 180^{\circ} \text{ (Sum of angles of } \triangle QBD) \\ 120^{\circ} + 15^{\circ} + \angle BQD = 180^{\circ} \\ \angle BQD = 180^{\circ} - 135^{\circ} \\ \angle BQD = 45^{\circ} \\ \angle AQD = \angle BQD = 45^{\circ} \\ \text{In } \triangle AQP: \\ \angle QAP + \angle AQP + \angle APQ = 180^{\circ} \text{ (Sum of angles of } \triangle AQP) \\ 80^{\circ} + 45^{\circ} + \angle APQ = 180^{\circ} \\ \angle APQ = 55^{\circ} \\ \angle APD = \angle APQ \end{array}
```

15. Explain the concept of interior and exterior angles and in each of the figures given below. Find x and y (Fig. 42)



# Solution:

The interior angles of a triangle are the three angle elements inside the triangle. The exterior angles are formed by extending the sides of a triangle, and if the side of a

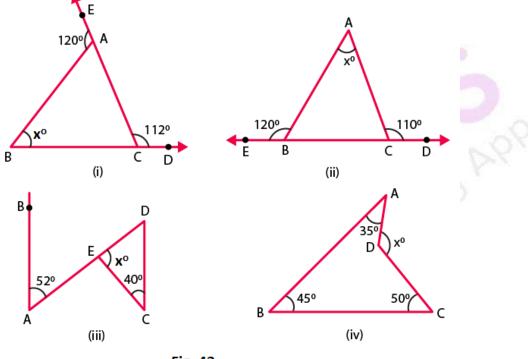


```
triangle is produced, the exterior angle so formed is equal to the sum of the two interior
opposite angles.
Using these definitions, we will obtain the values of x and y.
(i) From the given figure, we have
\angle ACB + x = 180^{\circ} (Linear pair)
75^{\circ} + x = 180^{\circ}
x = 105^{\circ}
We know that the sum of all angles of a triangle is 180°
Therefore, for \triangle ABC, we can say that:
\angle BAC + \angle ABC + \angle ACB = 180^{\circ}
40^{\circ}+ y +75° = 180°
y = 65^{\circ}
(ii) From the figure, we have
x + 80^{\circ} = 180^{\circ} (Linear pair)
x = 100^{\circ}
In \triangle ABC, we have
We also know that the sum of angles of a triangle is 180°
x + y + 30^{\circ} = 180^{\circ}
100^{\circ} + 30^{\circ} + y = 180^{\circ}
y = 50^{\circ}
(iii) We know that the sum of all angles of a triangle is 180°.
Therefore, for \triangle ACD, we have
30^{\circ} + 100^{\circ} + y = 180^{\circ}
y = 50^{\circ}
Again from the figure we can write as
∠ACB + 100° = 180°
\angle ACB = 80^{\circ}
Using the above rule for \triangle ACD, we can say that:
x + 45^{\circ} + 80^{\circ} = 180^{\circ}
x = 55°
(iv) We know that the sum of all angles of a triangle is 180°.
Therefore, for \triangle DBC, we have
30^{\circ} + 50^{\circ} + \angle DBC = 180^{\circ}
\angle DBC = 100^{\circ}
```



From the figure we can say that  $x + \angle DBC = 180^{\circ}$  is a Linear pair  $x = 80^{\circ}$ From the exterior angle property we have  $y = 30^{\circ} + 80^{\circ} = 110^{\circ}$ 

# **16.** Compute the value of x in each of the following figures:





# Solution:

(i) From the given figure, we can write as  $\angle ACD + \angle ACB = 180^{\circ}$  is a linear pair On rearranging we get  $\angle ACB = 180^{\circ} - 112^{\circ} = 68^{\circ}$ Again from the figure we have,  $\angle BAE + \angle BAC = 180^{\circ}$  is a linear pair On rearranging we get,  $\angle BAC = 180^{\circ} - 120^{\circ} = 60^{\circ}$ We know that the sum of all angles of a triangle is  $180^{\circ}$ . Therefore, for  $\triangle ABC$ :

 $x + \angle BAC + \angle ACB = 180^{\circ}$ 



 $x = 180^{\circ} - 60^{\circ} - 68^{\circ} = 52^{\circ}$  $x = 52^{\circ}$ 

(ii) From the given figure, we can write as  $\angle ABC + 120^{\circ} = 180^{\circ}$  is a linear pair  $\angle ABC = 60^{\circ}$ Again from the figure we can write as  $\angle ACB + 110^{\circ} = 180^{\circ}$  is a linear pair  $\angle ACB = 70^{\circ}$ We know that the sum of all angles of a triangle is 180°. Therefore, consider  $\triangle ABC$ , we get  $x + \angle ABC + \angle ACB = 180^{\circ}$   $x = 50^{\circ}$ (iii) From the given figure, we can write as  $\angle BAD = \angle ADC = 52^{\circ}$  are alternate angles We know that the sum of all the angles of a triangle is 180°. Therefore, consider  $\triangle DEC$ , we have  $x + 40^{\circ} + 52^{\circ} = 180^{\circ}$ 

x = 88°

(iv) In the given figure, we have a quadrilateral and also we know that sum of all angles is quadrilateral is 360°.

Thus,  $35^{\circ} + 45^{\circ} + 50^{\circ} + \text{reflex} \angle \text{ADC} = 360^{\circ}$ On rearranging we get, Reflex  $\angle \text{ADC} = 230^{\circ}$   $230^{\circ} + x = 360^{\circ}$  (A complete angle)  $x = 130^{\circ}$