

EXERCISE 8.5

PAGE NO: 8.15

1. Divide the first polynomial by the second polynomial in each of the following. Also, write the quotient and remainder:

(i)
$$3x^2 + 4x + 5$$
, $x - 2$

(ii)
$$10x^2 - 7x + 8$$
, $5x - 3$

(iii)
$$5y^3 - 6y^2 + 6y - 1$$
, $5y - 1$

(iv)
$$x^4 - x^3 + 5x$$
, $x - 1$

$$(v) y^4 + y^2, y^2 - 2$$

Solution:

(i)
$$3x^2 + 4x + 5$$
, $x - 2$

By using long division method

$$\begin{array}{r}
3x +10 \\
x-2 \overline{\smash)3x^2 +4x +5} \\
- \\
3x^2 -6x \\
\hline
10x +5 \\
- \\
10x -20 \\
\hline
\end{array}$$

 \therefore the Quotient is 3x + 10 and the Remainder is 25.

(ii)
$$10x^2 - 7x + 8$$
, $5x - 3$

By using long division method

: the Quotient is 2x - 1/5 and the Remainder is 37/5.

(iii)
$$5y^3 - 6y^2 + 6y - 1$$
, $5y - 1$
By using long division method

$$y^2 - y + 1 \over 5y^3 - 6y^2 + 6y - 1$$

: the Quotient is $y^2 - y + 1$ and the Remainder is 0.

(iv)
$$x^4 - x^3 + 5x$$
, $x - 1$

By using long division method

$$x-1$$
 $x - 1$ $x - 1$

 \therefore the Quotient is $x^3 + 5$ and the Remainder is 5.

(v)
$$y^4 + y^2$$
, $y^2 - 2$

By using long division method

$$y^2 - 2$$
 $y^2 + 3$ $y^2 - 2$ $y^4 + 0y^3 + y^2 + 0y + 0$ $y^4 + 0y^3 - 2y^2$ $y^2 + 0y + 0$ $y^2 + 0y + 0$ $y^3 +$

 \therefore the Quotient is $y^2 + 3$ and the Remainder is 6.

2. Find Whether or not the first polynomial is a factor of the second:

(i)
$$x + 1$$
, $2x^2 + 5x + 4$

(ii)
$$y - 2$$
, $3y^3 + 5y^2 + 5y + 2$

(iii)
$$4x^2 - 5$$
, $4x^4 + 7x^2 + 15$

(iv)
$$4 - z$$
, $3z^2 - 13z + 4$

$$(v)$$
 2a - 3, $10a^2$ - 9a - 5

(vi)
$$4y + 1$$
, $8y^2 - 2y + 1$

Solution:

(i)
$$x + 1$$
, $2x^2 + 5x + 4$

Let us perform long division method,

Since remainder is 1 therefore the first polynomial is not a factor of the second polynomial.

(ii)
$$y - 2$$
, $3y^3 + 5y^2 + 5y + 2$

Let us perform long division method,

Since remainder is 56 therefore the first polynomial is not a factor of the second polynomial.

(iii)
$$4x^2 - 5$$
, $4x^4 + 7x^2 + 15$
Let us perform long division method,

Since remainder is 30 therefore the first polynomial is not a factor of the second polynomial.

(iv)
$$4 - z$$
, $3z^2 - 13z + 4$

Let us perform long division method,

$$\begin{array}{rrrrr}
-3z & +1 \\
-z + 4 & \overline{\smash{\big)}\,3z^2} & -13z & +4 \\
- & & \\
& & -z & +4 \\
& & -z & +4 \\
\hline
& & -z & +4 \\
\hline
& & 0
\end{array}$$

Since remainder is 0 therefore the first polynomial is a factor of the second polynomial.

(v)
$$2a - 3$$
, $10a^2 - 9a - 5$
Let us perform long division method,

Since remainder is 4 therefore the first polynomial is not a factor of the second polynomial.

(vi)
$$4y + 1$$
, $8y^2 - 2y + 1$
Let us perform long division method,

Since remainder is 2 therefore the first polynomial is not a factor of the second polynomial.