

EXERCISE 8.6

PAGE NO: 8.17

Divide:

1. $x^2 - 5x + 6$ by x - 3

Solution:

We have,

$$(x^2-5x+6)/(x-3)$$

Let us perform long division method,

 \therefore the Quotient is x - 2

2. $ax^2 - ay^2$ by ax+ay

Solution:

We have,

$$(ax^2 - ay^2)/(ax+ay)$$

 $(ax^2 - ay^2)/(ax+ay) = (x - y) + 0/(ax+ay)$
 $= (x - y)$

 \therefore the answer is (x - y)

3. $x^4 - y^4$ by $x^2 - y^2$

Solution:

We have,

$$(x^4 - y^4)/(x^2 - y^2)$$

 $(x^4 - y^4)/(x^2 - y^2) = x^2 + y^2 + 0/(x^2 - y^2)$
 $= x^2 + y^2$

 \therefore the answer is $(x^2 + y^2)$

4. $acx^2 + (bc + ad)x + bd$ by (ax + b)

Solution:

We have,

$$(acx^{2} + (bc + ad) x + bd) / (ax + b)$$

 $(acx^{2} + (bc + ad) x + bd) / (ax + b) = cx + d + 0/ (ax + b)$
 $= cx + d$

 \therefore the answer is (cx + d)

5.
$$(a^2 + 2ab + b^2) - (a^2 + 2ac + c^2)$$
 by $2a + b + c$ Solution:

We have,

$$\begin{aligned} \left[(a^2 + 2ab + b^2) - (a^2 + 2ac + c^2) \right] / \left(2a + b + c \right) \\ \left[(a^2 + 2ab + b^2) - (a^2 + 2ac + c^2) \right] / \left(2a + b + c \right) &= b - c + 0 / (2a + b + c) \\ &= b - c \end{aligned}$$

 \therefore the answer is (b-c)

6. $1/4x^2 - 1/2x - 12$ by 1/2x - 4

Solution:

We have,

$$(1/4x^2 - 1/2x - 12) / (1/2x - 4)$$

Let us perform long division method,

 \therefore the Quotient is x/2 + 3