Exercise 5(A)

1. Find which of the following equations are quadratic:
(i) $(3 x-1)^{2}=5(x+8)$
(ii) $5 \mathrm{x}^{2}-8 \mathrm{x}=-3(7-2 \mathrm{x})$
(iii) $(x-4)(3 x+1)=(3 x-1)(x+2)$
(iv) $x^{2}+5 x-5=(x-3)^{2}$
(v) $7 \mathrm{x}^{3}-2 \mathrm{x}^{2}+10=(2 \mathrm{x}-5)^{2}$
(vi) $(x-1)^{2}+(x+2)^{2}+3(x+1)=0$

Solution:
(i) $\quad(3 \mathrm{x}-1)^{2}=5(\mathrm{x}+8)$
$\Rightarrow\left(9 \mathrm{x}^{2}-6 \mathrm{x}+1\right)=5 \mathrm{x}+40$
$\Rightarrow 9 \mathrm{x}^{2}-11 \mathrm{x}-39=0$; which is of the general form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$.
Thus, the given equation is a quadratic equation.
(ii) $5 x^{2}-8 x=-3(7-2 x)$
$\Rightarrow 5 \mathrm{x}^{2}-8 \mathrm{x}=6 \mathrm{x}-21$
$\Rightarrow 5 x^{2}-14 \mathrm{x}+21=0$; which is of the general form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$.
Thus, the given equation is a quadratic equation.
(iii) $(x-4)(3 x+1)=(3 x-1)(x+2)$
$\Rightarrow 3 \mathrm{x}^{2}+\mathrm{x}-12 \mathrm{x}-4=3 \mathrm{x}^{2}+6 \mathrm{x}-\mathrm{x}-2$
$\Rightarrow 16 \mathrm{x}+2=0$; which is not of the general form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$. And it's a linear equation.
Thus, the given equation is not a quadratic equation.
(iv) $x^{2}+5 x-5=(x-3)^{2}$
$\Rightarrow \mathrm{x}^{2}+5 \mathrm{x}-5=\mathrm{x}^{2}-6 \mathrm{x}+9$
$\Rightarrow 11 \mathrm{x}-14=0$; which is not of the general form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$. And it's a linear equation.
Thus, the given equation is not a quadratic equation.
(v) $7 x^{3}-2 x^{2}+10=(2 x-5)^{2}$
$\Rightarrow 7 \mathrm{x}^{3}-2 \mathrm{x}^{2}+10=4 \mathrm{x}^{2}-20 \mathrm{x}+25$
$\Rightarrow 7 \mathrm{x}^{3}-6 \mathrm{x}^{2}+20 \mathrm{x}-15=0$; which is not of the general form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$. And it's a cubic equation.
Thus, the given equation is not a quadratic equation.
(vi) $\quad(x-1)^{2}+(x+2)^{2}+3(x+1)=0$
$\Rightarrow \mathrm{x}^{2}-2 \mathrm{x}+1+\mathrm{x}^{2}+4 \mathrm{x}+4+3 \mathrm{x}+3=0$
$\Rightarrow 2 \mathrm{x}^{2}+5 \mathrm{x}+8=0$; which is of the general form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$.
Thus, the given equation is a quadratic equation.
2. (i) Is $x=5$ a solution of the quadratic equation $x^{2}-2 x-15=0$?

Solution:
Given quadratic equation, $\mathrm{x}^{2}-2 \mathrm{x}-15=0$

We know that, for $\mathrm{x}=5$ to be a solution of the given quadratic equation it should satisfy the equation.
Now, on substituting $x=5$ in the given equation, we have
L.H.S $=(5)^{2}-2(5)-15$

$$
\begin{aligned}
& =25-10-15 \\
& =0 \\
& =\text { R.H.S }
\end{aligned}
$$

Therefore, $x=5$ is a solution of the given quadratic equation $x^{2}-2 x-15=0$
(ii) Is $x=-\mathbf{3}$ a solution of the quadratic equation $2 x^{2}-7 x+9=0$?

Solution:

Given quadratic equation, $2 \mathrm{x}^{2}-7 \mathrm{x}+9=0$
We know that, for $x=-3$ to be solution of the given quadratic equation it should satisfy the equation.
Now, on substituting $x=5$ in the given equation, we have

$$
\begin{aligned}
\text { L.H.S } & =2(-3)^{2}-7(-3)+9 \\
& =18+21+9 \\
& =48 \\
& \neq \text { R.H.S }
\end{aligned}
$$

Therefore, $x=-3$ is not a solution of the given quadratic equation $2 x^{2}-7 x+9=0$.

