

Selina Solutions For Class 10 Maths Unit 2 – Algebra Chapter 5: Quadratic Equations

Exercise 5(C)

Page No: 59

Solve equations, number 1 to 20, given below, using factorization method:

1.
$$x^2 - 10x - 24 = 0$$

Solution:

Given equation, $x^2 - 10x - 24 = 0$

$$x^2 - 12x + 2x - 24 = 0$$

$$x(x - 12) + 2(x - 12) = 0$$

$$(x + 2)(x - 12) = 0$$

So,
$$x + 2 = 0$$
 or $x - 12 = 0$

Hence,

$$x = -2 \text{ or } x = 12$$

2.
$$x^2 - 16 = 0$$

Solution:

Given equation, $x^2 - 16 = 0$

$$x^2 + 4x - 4x + 16 = 0$$

$$x(x + 4) - 4(x + 4) = 0$$

$$(x-4)(x+4)=0$$

So,
$$(x - 4) = 0$$
 or $(x + 4) = 0$

Hence,

$$x = 4 \text{ or } x = -4$$

3. $2x^2 - \frac{1}{2}x = 0$

Solution:

Given equation, $2x^2 - \frac{1}{2}x = 0$

$$4x^2 - x = 0$$

$$x(4x - 1) = 0$$

So, either x = 0 or 4x - 1 = 0

Hence,

$$x = 0 \text{ or } x = \frac{1}{4}$$

4. x(x - 5) = 24

Solution:

Given equation, x(x - 5) = 24

$$x^2 - 5x = 24$$

$$x^2 - 5x - 24 = 0$$

$$x^2 - 8x + 3x - 24 = 0$$

$$x(x - 8) + 3(x - 8) = 0$$

$$(x + 3)(x - 8) = 0$$

So,
$$x + 3 = 0$$
 or $x - 8 = 0$

Hence,

$$x = -3 \text{ or } x = 8$$

5.
$$9/2 x = 5 + x^2$$

Solution:

Given equation, $9/2 x = 5 + x^2$ On multiplying by 2 both sides, we have

$$9x = 2(5 + x^2)$$

$$9x = 10 + 2x^2$$

$$2x^2 - 9x + 10 = 0$$

$$2x^2 - 4x - 5x + 10 = 0$$

$$2x(x-2) - 5(x-2) = 0$$

$$(2x - 5)(x - 2) = 0$$

So,
$$2x - 5 = 0$$
 or $x - 2 = 0$

Hence,

$$x = 5/2 \text{ or } x = 2$$

6.6/x = 1 + x

Solution:

Given equation, 6/x = 1 + x

On multiplying by x both sides, we have

$$6 = x(1 + x)$$

$$6 = x + x^2$$

$$x^2 + x - 6 = 0$$

$$x^2 + 3x - 2x - 6 = 0$$

$$x(x+3) - 2(x+3) = 0$$

$$(x-2)(x+3)=0$$

So,
$$x - 2 = 0$$
 or $x + 3 = 0$

Hence,

$$x = 2 \text{ or } x = -3$$

7. x = (3x + 1)/4x

Solution:

Given equation, x = (3x + 1)/4x

On multiplying by 4x both sides, we have

$$4x(x) = 3x + 1$$

$$4x^2 = 3x + 1$$

$$4x^2 - 3x - 1 = 0$$

$$4x^2 - 4x + x - 1 = 0$$

$$4x(x-1) + 1(x-1) = 0$$

$$(4x + 1)(x - 1) = 0$$

So,
$$4x + 1 = 0$$
 or $x - 1 = 0$

Hence,

$$x = -1/4$$
 or $x = 1$

8. x + 1/x = 2.5 Solution:

Given equation, x + 1/x = 2.5

$$x + 1/x = 5/2$$

Taking LCM on L.H.S, we have

$$(x^2 + 1)/x = 5/2$$

$$2(x^2+1)=5x$$

$$2x^2 + 2 = 5x$$

$$2x^2 - 5x + 2 = 0$$

$$2x^2 - 4x - x + 2 = 0$$

$$2x(x-2)-1(x-2)=0$$

$$(2x - 1)(x - 2) = 0$$

So,
$$2x - 1 = 0$$
 or $x - 2 = 0$

Hence,

$$x = \frac{1}{2}$$
 or $x = 2$

9. $(2x - 3)^2 = 49$

Solution:

Given equation, $(2x - 3)^2 = 49$

Expanding the L.H.S, we have

$$4x^2 - 12x + 9 = 49$$

$$4x^2 - 12x - 40 = 0$$

Dividing by 4 on both side

$$x^2 - 3x - 10 = 0$$

$$x^2 - 5x + 2x - 10 = 0$$

$$x(x-5) + 2(x-5) = 0$$

$$(x + 2) (x - 5) = 0$$

So,
$$x + 2 = 0$$
 or $x - 5 = 0$

Hence,

$$x = -2 \text{ or } 5$$

10. $2(x^2-6)=3(x-4)$

Solution:

Given equation, $2(x^2 - 6) = 3(x - 4)$

$$2x^2 - 12 = 3x - 12$$

$$2x^2 = 3x$$

$$x(2x - 3) = 0$$

So,
$$x = 0$$
 or $(2x - 3) = 0$

Hence,

$$x = 0 \text{ or } x = 3/2$$

11.
$$(x + 1) (2x + 8) = (x + 7) (x + 3)$$

Solution:

Given equation,
$$(x + 1)(2x + 8) = (x + 7)(x + 3)$$

$$2x^2 + 2x + 8x + 8 = x^2 + 7x + 3x + 21$$

$$2x^2 + 10x + 8 = x^2 + 10x + 21$$

$$x^2 = 21 - 8$$

$$x^2 - 13 = 0$$

$$(x - \sqrt{13})(x + \sqrt{13}) = 0$$

So,
$$x - \sqrt{13} = 0$$
 or $x + \sqrt{13} = 0$

Hence,

$$x = -\sqrt{13} \text{ or } x = \sqrt{13}$$

12. $x^2 - (a + b)x + ab = 0$

Solution:

Given equation,
$$x^2 - (a + b)x + ab = 0$$

$$x^2 - ax - bx + ab = 0$$

$$x(x - a) - b(x - a) = 0$$

$$(x - b) (x - a) = 0$$

So,
$$x - b = 0$$
 or $x - a = 0$

Hence,

$$x = b \text{ or } x = a$$

13. $(x + 3)^2 - 4(x + 3) - 5 = 0$

Solution:

Given equation,
$$(x + 3)^2 - 4(x + 3) - 5 = 0$$

$$(x^2 + 9 + 6x) - 4x - 12 - 5 = 0$$

$$x^2 + 2x - 8 = 0$$

$$x^2 + 4x - 2x - 8 = 0$$

$$x(x + 4) - 2(x - 4) = 0$$

$$(x-2)(x+4)=0$$

So,
$$x - 2 = 0$$
 or $x + 4 = 0$

Hence,

$$x = 2 \text{ or } x = -4$$

14. $4(2x - 3)^2 - (2x - 3) - 14 = 0$

Solution:

Given equation,
$$4(2x - 3)^2 - (2x - 3) - 14 = 0$$

Let substitute
$$2x - 3 = y$$

Then the equation becomes,

$$4y^2 - y - 14 = 0$$

$$4y^2 - 8y + 7y - 14 = 0$$

$$4y(y - 2) + 7(y - 2) = 0$$

$$(4y + 7)(y - 2) = 0$$

So,
$$4y + 7 = 0$$
 or $y - 2 = 0$

$$y = -7/4$$
 or $y = 2$

But we have taken
$$y = 2x - 3$$

Thus,

$$2x - 3 = -7/4$$
 or $2x - 3 = 2$

$$2x = 5/4$$
 or $2x = 5$

$$x = 5/8$$
 or $x = 5/2$

15. 3x - 2/2x - 3 = 3x - 8/x + 4

Solution:

Given equation, 3x - 2/2x - 3 = 3x - 8/x + 4

On cross-multiplying we have,

$$(3x - 2)(x + 4) = (3x - 8)(2x - 3)$$

$$3x^2 - 2x + 12x - 8 = 6x^2 - 16x - 9x + 24$$

$$3x^2 + 10x - 8 = 6x^2 - 25x + 24$$

$$3x^2 - 35x + 32 = 0$$

$$3x^2 - 3x - 32x + 32 = 0$$

$$3x(x-1) - 32(x-1) = 0$$

$$(3x - 32)(x - 1) = 0$$

So,
$$3x - 32 = 0$$
 or $x - 1 = 0$

Hence.

$$x = 32/3 \text{ or } x = 1$$

16. $2x^2 - 9x + 10 = 0$, when:

(i) $x \in N$

(ii)
$$x \in Q$$

Solution:

Given equation, $2x^2 - 9x + 10 = 0$

$$2x^2 - 4x - 5x + 10 = 0$$

$$2x(x-2) - 5(x-2) = 0$$

$$(2x - 5)(x - 2) = 0$$

So,
$$2x - 5 = 0$$
 or $x - 2 = 0$

Hence.

$$x = 5/2 \text{ or } x = 2$$

- (i) When $x \in N$
 - x = 2 is the solution.
- (ii) When $x \in Q$

x = 2, 5/2 are the solutions

17.
$$\frac{x-3}{x+3} + \frac{x+3}{x-3} = 2\frac{1}{2}$$

Solution:

Selina Solutions For Class 10 Maths Unit 2 – Algebra Chapter 5: Quadratic Equations

$$\frac{x-3}{x+3} + \frac{x+3}{x-3} = 2\frac{1}{2}$$

$$\Rightarrow \frac{(x-3)^2 + (x+3)^2}{(x+3)(x-3)} = \frac{5}{2}$$

$$\Rightarrow \frac{x^2 - 6x + 9 + x^2 + 6x + 9}{x^2 - 9} = \frac{5}{2}$$

$$2(2x^2 + 18) = 5(x^2 - 9)$$

$$4x^2 + 36 = 5x^2 - 45$$

$$x^2 - 81 = 0$$

$$(x-9)(x+9) = 0$$
So, $x-9=0$ or $x+9=0$
Hence,
 $x=9$ or $x=-9$