

Exercise 5(D)

Solve, each of the following equations, using the formula:
 (i) x² - 6x = 27
 Solution:

Given equation, $x^2 - 6x = 27$ $x^2 - 6x - 27 = 0$ Here, a = 1, b = -6 and c = -27By quadratic formula, we have

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-27)}}{2(1)}$$

$$x = \frac{6 \pm \sqrt{36 - -108}}{2}$$

$$x = \frac{6 \pm \sqrt{144}}{2}$$

$$x = \frac{6 \pm 12}{2}$$

$$x = \frac{6 \pm 12}{2}$$

$$x = \frac{18}{2} \quad x = -\frac{6}{2}$$

$$x = 9$$

$$x = -3$$
Therefore, x = 9 or -3

(ii) $x^2 - 10x + 21 = 0$

Solution:

Given equation, $x^2 - 10x + 21 = 0$ Here, a = 1, b = -10 and c = 21By quadratic formula, we have Page No: 59

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(21)}}{2(1)}$$

$$x = \frac{10 \pm \sqrt{100 - 84}}{2}$$

$$x = \frac{10 \pm \sqrt{16}}{2}$$

$$x = \frac{10 \pm \sqrt{16}}{2}$$

$$x = \frac{10 \pm 4}{2}$$

$$x = \frac{14}{2} \quad x = \frac{6}{2}$$

$$x = 7 \quad x = 3$$
Therefore, x = 7 or x = 3

(iii) $x^2 + 6x - 10 = 0$ Solution:

Given equation, $x^2 + 6x - 10 = 0$ Here, a = 1, b = 6 and c = -10By quadratic formula, we have

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-6 \pm \sqrt{6^2 - 4(1)(-10)}}{2(1)}$$

$$x = \frac{-6 \pm \sqrt{36 - -40}}{2}$$

$$x = \frac{-6 \pm \sqrt{76}}{2}$$

$$x = \frac{-6 \pm 2\sqrt{19}}{2}$$

$$x = \frac{-6 \pm 2\sqrt{19}}{2}$$

$$x = -3 \pm \sqrt{19}$$
Therefore, $x = -3 \pm \sqrt{19}$ or $x = -3 - \sqrt{19}$

(iv) $x^2 + 2x - 6 = 0$ Solution:

Given equation, $x^2 + 2x - 6 = 0$ Here, a = 1, b = 2 and c = -6By quadratic formula, we have

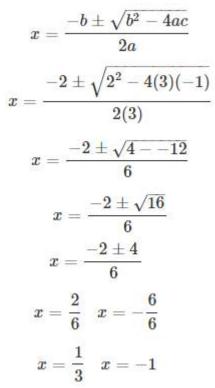
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-6)}}{2(1)}$$

$$x = \frac{-2 \pm \sqrt{4 - -24}}{2}$$

$$x = \frac{-2 \pm \sqrt{28}}{2}$$

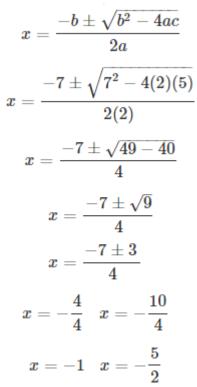
$$x = \frac{-2 \pm 2\sqrt{7}}{2}$$


$$x = \frac{-2 \pm 2\sqrt{7}}{2}$$

$$x = -1 \pm \sqrt{7}$$
Therefore, x = -1 + $\sqrt{7}$ or x = -1 - $\sqrt{7}$

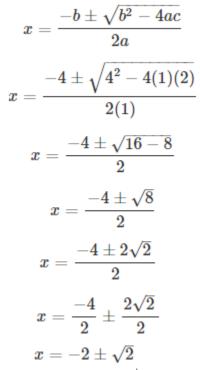
(v) $3x^2 + 2x - 1 = 0$ Solution:

Given equation, $3x^2 + 2x - 1 = 0$ Here, a = 3, b = 2 and c = -1By quadratic formula, we have


```
Therefore, x = 1/3 or x = -1
```

(vi) $2x^2 + 7x + 5 = 0$ Solution:

Given equation, $2x^2 + 7x + 5 = 0$ Here, a = 2, b = 7 and c = 5By quadratic formula, we have




```
Therefore, x = -1 or x = -5/2
```

(vii) $2/3 x = -1/6 x^2 - 1/3$ Solution:

Given equation, $2/3 x = -1/6 x^2 - 1/3$ $1/6 x^2 + 2/3 x + 1/3 = 0$ Multiplying by 6 on both sides $x^2 + 4x + 2 = 0$ Here, a = 1, b = 4 and c = 2By quadratic formula, we have

Therefore, $x = -2 + \sqrt{2}$ or $x = -2 - \sqrt{2}$

(viii) $1/15 x^2 + 5/3 = 2/3 x$ Solution:

Given equation, $1/15 x^2 + 5/3 = 2/3 x$ $1/15 x^2 - 2/3 x + 5/3 = 0$ Multiplying by 15 on both sides $x^2 - 10x + 25 = 0$ Here, a = 1, b = -10 and c = 25By quadratic formula, we have

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(25)}}{2(1)}$$

$$x = \frac{10 \pm \sqrt{100 - 100}}{2}$$

$$x = \frac{10 \pm \sqrt{0}}{2}$$

$$x = \frac{10}{2}$$

$$x = 5$$
Therefore, x = 5 (equal roots)
(ix) x^2 - 6 = 2 \sqrt{2} x
Solution:
Given equation, x^2 - 6 = 2 $\sqrt{2} x$
Solution:
Given equation, x^2 - 6 = 2 $\sqrt{2} x$

$$x^2 - 2\sqrt{2} x - 6 = 0$$
Here, a = 1, b = $-2\sqrt{2}$ and c = -6
By quadratic formula, we have
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-2\sqrt{2}) \pm \sqrt{(-2\sqrt{2})^2 - 4(1)(-6)}}{2(1)}$$

$$= \frac{2\sqrt{2} \pm \sqrt{32}}{2} = \frac{2\sqrt{2} \pm 4\sqrt{2}}{2} = \frac{2\sqrt{2} \pm 4\sqrt{2}}{2} \text{ and } \frac{2\sqrt{2} - 4\sqrt{2}}{2}$$

$$= \frac{6\sqrt{2}}{2} \text{ and } \frac{-2\sqrt{2}}{2} = 3\sqrt{2} \text{ and } -\sqrt{2}$$
Therefore, x = $3\sqrt{2}$ or x = $-\sqrt{2}$
(x) $4/x - 3 = 5/(2x + 3)$
Solution:

Given equation, 4/x - 3 = 5/(2x + 3)(4 - 3x)/x = 5/(2x + 3)On cross multiplying, we have (4 - 3x)(2x + 3) = 5x $8x - 6x^2 + 12 - 9x = 5x$ $6x^2 + 6x - 12 = 0$

Dividing by 6, we get $\mathbf{x}^2 + \mathbf{x} - 2 = \mathbf{0}$ Here, a = 1, b = 1 and c = -2By quadratic formula, we have $x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$ $x=rac{-1\pm\sqrt{1^2-4(1)(-2)}}{2(1)}$ $x=rac{-1\pm\sqrt{1--8}}{2}$ $x=rac{-1\pm\sqrt{9}}{2}$ $x=rac{-1\pm 3}{2}$ $x=rac{2}{2}$ $x=-rac{4}{2}$ x = 1x = -2Therefore, x = 1 or x = -2(xi) 2x + 3/x + 3 = x + 4/x + 2Solution:

Given equation, 2x + 3/x + 3 = x + 4/x + 2On cross-multiplying, we have (2x + 3) (x + 2) = (x + 4) (x + 3) $2x^2 + 4x + 3x + 6 = x^2 + 3x + 4x + 12$ $2x^2 + 7x + 6 = x^2 + 7x + 12$ $x^2 + 0x - 6 = 0$ Here, a = 1, b = 0 and c = -6By quadratic formula, we have

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{0 \pm \sqrt{0^2 - 4(1)(-6)}}{2(1)}$$

$$x = \frac{0 \pm \sqrt{0 - -24}}{2}$$

$$x = \frac{0 \pm \sqrt{24}}{2}$$

$$x = \frac{0 \pm \sqrt{24}}{2}$$

$$x = \frac{0 \pm 2\sqrt{6}}{2}$$

$$x = \frac{0}{2} \pm \frac{2\sqrt{6}}{2}$$

$$x = 0 \pm \sqrt{6}$$

Therefore, $x = \sqrt{6}$ or $x = -\sqrt{6}$

(xii) $\sqrt{6x^2 - 4x} - 2\sqrt{6} = 0$ Solution:

Given equation, $\sqrt{6x^2 - 4x} - 2\sqrt{6} = 0$ Here, $a = \sqrt{6}$, b = -4 and $c = -2\sqrt{6}$ By quadratic formula, we have

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^2 - 4(\sqrt{6})(-2\sqrt{6})}}{2(\sqrt{6})}$$

$$= \frac{4 \pm \sqrt{64}}{2\sqrt{6}} = \frac{4 \pm 8}{2\sqrt{6}} = \frac{4 + 8}{2\sqrt{6}} \text{ and } \frac{4 - 8}{2\sqrt{6}}$$

$$= \frac{6}{\sqrt{6}} \text{ and } \frac{-2}{\sqrt{6}} = \sqrt{6} \text{ and } \frac{-\sqrt{6}}{3}$$

Therefore, $x = \sqrt{6}$ or $-\sqrt{6/3}$

(xiii) $2x/x - 4 + (2x - 5)/(x - 3) = -8\frac{1}{3}$ Solution:

Given equation, $2x/x - 4 + (2x - 5)/(x - 3) = 8\frac{1}{3}$

$$\Rightarrow \frac{2x(x-3) + (x-4)(2x-5)}{(x-4)(x-3)} = \frac{25}{3}$$

$$\Rightarrow \frac{2x^2 - 6x + 2x^2 - 5x - 8x + 20}{x^2 - 3x - 4x + 12} = \frac{25}{3}$$

$$\Rightarrow \frac{4x^2 - 19x + 20}{x^2 - 7x + 12} = \frac{25}{3}$$

$$25x^2 - 175x + 300 = 12x^2 - 57x + 60$$

$$13x^2 - 118x + 240 = 0$$

Here, a = 13, b = -118 and c = 240
By quadratic formula, we have

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-118) \pm \sqrt{(-118)^2 - 4(13)(240)}}{2(13)}$$

$$x = \frac{118 \pm \sqrt{13924 - 12480}}{26}$$

$$x = \frac{118 \pm \sqrt{1444}}{26}$$

$$x = \frac{118 \pm 38}{26}$$

$$x = \frac{118 \pm 38}{26}$$

$$x = \frac{156}{26} \quad x = \frac{80}{26}$$

$$x = 6 \quad x = \frac{40}{13}$$
Therefore, x = 6 or x = 40/13

(ix)
$$\frac{x-1}{x-2} + \frac{x-3}{x-4} = 3\frac{1}{3}$$

Solution:

From the given equation,

 $\Rightarrow \frac{(x-1)(x-4) + (x-2)(x-3)}{(x-2)(x-4)} = \frac{10}{3}$ $\Rightarrow \frac{x^2 - 4x - x + 4 + x^2 - 3x - 2x + 6}{x^2 - 4x - 2x + 8} = \frac{10}{3}$ $\Rightarrow \frac{2x^2 - 10x + 10}{x^2 - 6x + 8} = \frac{10}{3}$ $10x^2 - 60x + 80 = 6x^2 - 30x + 30$ $4x^2 - 30x + 50 = 0$ $2x^2 - 15x + 25 = 0$ Here, a = 2, b = -15 and c = 25 $x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$ $x = rac{-(-15) \pm \sqrt{(-15)^2 - 4(2)(25)}}{2(2)}$ $x=rac{15\pm\sqrt{225-200}}{4}$ $x = rac{15 \pm \sqrt{25}}{4}$ $x = rac{15 \pm 5}{4}$ $x = \frac{20}{4}$ $x = \frac{10}{4}$ x = 5 $x = \frac{5}{2}$ Therefore, x = 5 or x = 5/2

2. Solve each of the following equations for x and give, in each case, your answer correct to one decimal place:
(i) x² - 8x +5 = 0
(ii) 5x² + 10x - 3 = 0

Solution:

(i) $x^2 - 8x + 5 = 0$ Here, a = 1, b = -8 and c = 5By quadratic formula, we have

(ii)

Selina Solutions For Class 10 Maths Unit 2 – Algebra Chapter 5: Quadratic Equations

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(5)}}{2(1)}$$

$$x = \frac{8 \pm \sqrt{64 - 20}}{2}$$

$$x = \frac{8 \pm \sqrt{44}}{2}$$

$$x = \frac{8 \pm \sqrt{44}}{2}$$

$$x = \frac{8 \pm 2\sqrt{11}}{2}$$

$$x = \frac{8}{2} \pm \frac{2\sqrt{11}}{2}$$

$$x = 4 \pm \sqrt{11}$$

$$x = 4 \pm 3.3$$
Thus, x = 7.7 or x = 0.7
$$5x^2 + 10x - 3 = 0$$
Here, a = 5, b = 10 and c = -3
By quadratic formula, we have

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-10 \pm \sqrt{10^2 - 4(5)(-3)}}{2(5)}$$

$$x = \frac{-10 \pm \sqrt{100 - -60}}{10}$$

$$x = \frac{-10 \pm \sqrt{160}}{10}$$

$$x=rac{-10\pm4\sqrt{10}}{10}$$

$$x = rac{-10}{10} \pm rac{4\sqrt{10}}{10}$$
 $x = -1 \pm rac{2\sqrt{10}}{5}$

Thus, x = 0.3 or x = -2.3

3. Solve each of the following equations for x and give, in each case, your answer correct to 2 decimal places: (i) $2x^2 - 10x + 5 = 0$ Solution:

Given equation, $2x^2 - 10x + 5 = 0$ Here, a = 2, b = -10 and c = 5 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(2)(5)}}{2(2)}$ $x = \frac{10 \pm \sqrt{100 - 40}}{4}$ $x = \frac{10 \pm \sqrt{100 - 40}}{4}$ $x = \frac{10 \pm 2\sqrt{15}}{4}$ $x = \frac{10 \pm 2\sqrt{15}}{4}$ $x = \frac{10}{4} \pm \frac{2\sqrt{15}}{4}$ $x = \frac{5}{2} \pm \frac{\sqrt{15}}{2}$ x = 4.43649x = 0.563508

Therefore, x = 4.44 or x = 0.56

(ii) 4x + 6/x + 13 = 0Solution:

Given equation, 4x + 6/x + 13 = 0Multiplying by x both sides, we get $4x^2 + 13x + 6 = 0$ Here, a = 4, b = 13 and c = 6

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-13 \pm \sqrt{13^2 - 4(4)(6)}}{2(4)}$$

$$x = \frac{-13 \pm \sqrt{169 - 96}}{8}$$

$$x = \frac{-13 \pm \sqrt{73}}{8}$$

$$x = \frac{-13 \pm \sqrt{73}}{8}$$

$$x = \frac{-13 \pm \sqrt{73}}{8}$$

$$x = -\frac{13}{8} \pm \frac{\sqrt{73}}{8}$$

$$x = -\frac{13}{8} \pm \frac{\sqrt{73}}{8}$$

$$x = -0.557$$

$$x = -2.693$$
Therefore, x = -0.56 or x = -2.70

(iii) $4x^2 - 5x - 3 = 0$ Solution:

Given equation, $4x^2 - 5x - 3 = 0$ Here, a = 4, b = -5 and c = -3

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(4)(-3)}}{2(4)}$$

$$x = \frac{5 \pm \sqrt{25 - -48}}{8}$$

$$x = \frac{5 \pm \sqrt{73}}{8}$$

$$x = \frac{5 \pm \sqrt{73}}{8}$$

$$x = \frac{5 \pm \sqrt{73}}{8}$$

$$x = 1.693$$

$$x = -0.443$$
Therefore, $x = 1.70$ or $x = -0.44$
(iv) $x^2 - 3x - 9 = 0$
Solution:
Given equation, $x^2 - 3x - 9 = 0$
Here, $a = 1, b = -3$ and $c = -9$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-9)}}{2(1)}$$

$$x = \frac{3 \pm \sqrt{9} - -36}{2}$$

$$x = \frac{3 \pm 3\sqrt{5}}{2}$$

$$x = \frac{3 \pm 3\sqrt{5}}{2}$$

$$x = 4.8541$$

$$x = -1.8541$$

Therefore, x = 4.85 or x = -1.85

(v) $x^2 - 5x - 10 = 0$ Solution:

Given equation, $x^2 - 5x - 10 = 0$ Here, a = 1, b = -5 and c = -10 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-10)}}{2(1)}$ $x = \frac{5 \pm \sqrt{25 - -40}}{2}$ $x = \frac{5 \pm \sqrt{65}}{2}$ $x = \frac{5 \pm \sqrt{65}}{2}$ $x = \frac{5 \pm \sqrt{65}}{2}$ x = 6.53113x = -1.53113

Therefore, x = 6.53 or x = -1.53

4. Solve each of the following equations for x and give, in each case, your answer correct to 3 decimal places:

(i) $3x^2 - 12x - 1 = 0$ (ii) $x^2 - 16x + 6 = 0$ (iii) $2x^2 + 11x + 4 = 0$ Solution:

(i) Given equation, $3x^2 - 12x - 1 = 0$ Here, a = 3, b = -12 and c = -1

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(3)(-1)}}{2(3)}$$

$$x = \frac{12 \pm \sqrt{144 - -12}}{6}$$

$$x = \frac{12 \pm \sqrt{156}}{6}$$

$$x = \frac{12 \pm 2\sqrt{39}}{6}$$

$$x = \frac{12}{6} \pm \frac{2\sqrt{39}}{6}$$

$$x = 2 \pm rac{\sqrt{39}}{3}$$

 $x = 4.08167$

$$x = -0.081666$$

Therefore, x = 4.082 or x = -0.082

(ii) Given equation,
$$x^2 - 16x + 6 = 0$$

Here, $a = 1$, $b = -16$ and $c = 6$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-16) \pm \sqrt{(-16)^2 - 4(1)(6)}}{2(1)}$$

$$x = \frac{16 \pm \sqrt{256 - 24}}{2}$$

$$x = \frac{16 \pm \sqrt{232}}{2}$$

$$x = \frac{16 \pm 2\sqrt{58}}{2}$$

$$x = \frac{16 \pm 2\sqrt{58}}{2}$$

$$x = \frac{16}{2} \pm \frac{2\sqrt{58}}{2}$$

$$x = 8 \pm \sqrt{58}$$

$$x = 15.6158$$

$$x = 0.384227$$

1-0

Therefore, x = 15.616 or x = 0.384

(iii) Given equation, $2x^2 + 11x + 4 = 0$ Here, a = 2, b = 11 and c = 4

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-11 \pm \sqrt{11^2 - 4(2)(4)}}{2(2)}$$

$$x = \frac{-11 \pm \sqrt{121 - 32}}{4}$$

$$x = \frac{-11 \pm \sqrt{89}}{4}$$

$$x = \frac{-11 \pm \sqrt{89}}{4}$$

$$x = \frac{-11 \pm \sqrt{89}}{4}$$

$$x = -\frac{11}{4} \pm \frac{\sqrt{89}}{4}$$

$$x = -\frac{11}{4} \pm \frac{\sqrt{89}}{4}$$

$$x = -0.391505$$

$$x = -5.1085$$

Therefore, x = -0.392 or x = -5.110

5. Solve: (i) $x^4 - 2x^2 - 3 = 0$ Solution:

Given equation, $x^4 - 2x^2 - 3 = 0$ $x^4 - 3x^2 + x^2 - 3 = 0$ $x^2(x^2 - 3) + 1(x^2 - 3) = 0$ $(x^2 + 1) (x^2 - 3) = 0$ So, $x^2 + 1 = 0$ (which is not possible) or $x^2 - 3 = 0$ Hence, $x^2 - 3 = 0$ $x = \pm \sqrt{3}$

(ii) $x^4 - 10x^2 + 9 = 0$ Solution:

Given equation, $x^4 - 10x^2 + 9 = 0$ $x^4 - x^2 - 9x^2 + 9 = 0$ $x^2(x^2 - 1) - 9(x^2 - 1) = 0$ $(x^2 - 9)(x^2 - 1) = 0$

So, we have $x^2 - 9 = 0$ or $x^2 - 1 = 0$ Hence, $x = \pm 3$ or $x = \pm 1$

