

EXERCISE 3.4

PAGE NO: 3.25

- 1. Let * be a binary operation on Z defined by a * b = a + b 4 for all a, $b \in Z$.
- (i) Show that * is both commutative and associative.
- (ii) Find the identity element in Z
- (iii) Find the invertible element in Z.

Solution:

(i) First we have to prove commutativity of *

Let a, $b \in Z$. then,

$$a * b = a + b - 4$$

$$= b + a - 4$$

$$= b * a$$

Therefore,

$$a * b = b * a, \forall a, b \in Z$$

Thus, * is commutative on Z.

Now we have to prove associativity of Z.

Let a, b, $c \in Z$. then,

$$a * (b * c) = a * (b + c - 4)$$

$$= a + b + c - 4 - 4$$

$$= a + b + c - 8$$

$$(a * b) * c = (a + b - 4) * c$$

$$= a + b - 4 + c - 4$$

$$= a + b + c - 8$$

Therefore,

$$a * (b * c) = (a * b) * c, for all a, b, c \in Z$$

Thus, * is associative on Z.

(ii) Let e be the identity element in Z with respect to * such that

$$a * e = a = e * a \forall a \in Z$$

$$a * e = a \text{ and } e * a = a, \forall a \in Z$$

$$a + e - 4 = a$$
 and $e + a - 4 = a$, $\forall a \in Z$

$$e = 4, \forall a \in Z$$

Thus, 4 is the identity element in Z with respect to *.

(iii) Let $a \in Z$ and $b \in Z$ be the inverse of a. Then,


```
a * b = e = b * a
a * b = e \text{ and } b * a = e
a + b - 4 = 4 \text{ and } b + a - 4 = 4
b = 8 - a \in Z
Thus, 8 - a is the inverse of a \in Z
```

2. Let * be a binary operation on Q_0 (set of non-zero rational numbers) defined by a * b = (3ab/5) for all a, b \in Q_0 . Show that * is commutative as well as associative. Also, find its identity element, if it exists.

Solution:

```
First we have to prove commutativity of *
Let a, b \in Q<sub>0</sub>
a * b = (3ab/5)
= (3ba/5)
= b * a
Therefore, a * b = b * a, for all a, b \in Q<sub>0</sub>
Now we have to prove associativity of *
Let a, b, c \in Q_0
a * (b * c) = a * (3bc/5)
= [a (3 bc/5)]/5
= 3 abc/25
(a * b) * c = (3 ab/5) * c
= [(3 ab/5) c]/5
= 3 abc / 25
Therefore a * (b * c) = (a * b) * c, for all a, b, c \in Q_0
Thus * is associative on Q<sub>0</sub>
Now we have to find the identity element
Let e be the identity element in Z with respect to * such that
a * e = a = e * a \forall a \in Q_0
a * e = a and e * a = a, \forall a \in Q_0
3ae/5 = a and 3ea/5 = a, \forall a \in Q_0
e = 5/3 \forall a \in Q_0 [because a is not equal to 0]
Thus, 5/3 is the identity element in Q_0 with respect to *.
```

3. Let * be a binary operation on $Q - \{-1\}$ defined by a * b = a + b + ab for all a, b $\in Q - \{-1\}$. Then,

- (i) Show that * is both commutative and associative on $Q \{-1\}$
- (ii) Find the identity element in $Q \{-1\}$

(i) First we have to check commutativity of *

(iii) Show that every element of $Q - \{-1\}$ is invertible. Also, find inverse of an arbitrary element.

Solution:

Let a, b \in Q $- \{-1\}$

a * b = e = b * a

a * b = e and b * a = e

Then a * b = a + b + ab

```
= b + a + ba
= b * a
Therefore,
a * b = b * a, \forall a, b \in Q - \{-1\}
Now we have to prove associativity of *
Let a, b, c \in Q - \{-1\}, Then,
a * (b * c) = a * (b + c + b c)
= a + (b + c + b c) + a (b + c + b c)
(a * b) * c = (a + b + a b) * c
= a + b + a b + c + (a + b + a b) c
= a + b + a b + c + a c + b c + a b c
Therefore,
a * (b * c) = (a * b) * c, \forall a, b, c \in Q - \{-1\}
Thus, * is associative on Q - \{-1\}.
(ii) Let e be the identity element in I<sup>+</sup> with respect to * such that
a * e = a = e * a, \forall a \in Q - \{-1\}
a * e = a \text{ and } e * a = a, \forall a \in Q - \{-1\}
a + e + ae = a and e + a + ea = a, \forall a \in Q - \{-1\}
e + ae = 0 and e + ea = 0, \forall a \in Q - \{-1\}
e(1 + a) = 0 and e(1 + a) = 0, \forall a \in Q - \{-1\}
e = 0, \forall a \in Q - \{-1\} [because a not equal to -1]
Thus, 0 is the identity element in Q - \{-1\} with respect to *.
```

(iii) Let $a \in Q - \{-1\}$ and $b \in Q - \{-1\}$ be the inverse of a. Then,

$$a + b + ab = 0$$
 and $b + a + ba = 0$
 $b (1 + a) = -a Q - \{-1\}$
 $b = -a/1 + a Q - \{-1\}$ [because a not equal to -1]
Thus, $-a/1 + a$ is the inverse of $a \in Q - \{-1\}$

- 4. Let $A = R_0 \times R$, where R_0 denote the set of all non-zero real numbers. A binary operation 'O' is defined on A as follows: (a, b) O (c, d) = (ac, bc + d) for all (a, b), (c, d) $\in R_0 \times R$.
- (i) Show that 'O' is commutative and associative on A
- (ii) Find the identity element in A
- (iii) Find the invertible element in A.

Solution:

(i) Let X = (a, b) and $Y = (c, d) \in A$, $\forall a, c \in R_0$ and $b, d \in R$

Then, X O Y = (ac, bc + d)

And Y O X = (ca, da + b)

Therefore,

 $X O Y = Y O X, \forall X, Y \in A$

Thus, O commutative on A.

Now we have to check associativity of O

Let X = (a, b), Y = (c, d) and Z = (e, f), $\forall a, c, e \in R_0$ and $b, d, f \in R$

X O (Y O Z) = (a, b) O (ce, de + f)

= (ace, bce + de + f)

(X O Y) O Z = (ac, bc + d) O (e, f)

= (ace, (bc + d) e + f)

= (ace, bce + de + f)

Therefore, $X O (Y O Z) = (X O Y) O Z, \forall X, Y, Z \in A$

(ii) Let E = (x, y) be the identity element in A with respect to O, $\forall x \in R_0$ and $y \in R$ Such that,

 $X O E = X = E O X, \forall X \in A$

X O E = X and EOX = X

(ax, bx +y) = (a, b) and (xa, ya + b) = (a, b)

Considering (ax, bx + y) = (a, b)

ax = a

x = 1

And bx + y = b


```
y = 0 [since x = 1]
Considering (xa, ya + b) = (a, b)
xa = a
x = 1
And ya + b = b
y = 0 [since x = 1]
Therefore (1, 0) is the identity element in A with respect to O.
(iii) Let F = (m, n) be the inverse in A \forall m \in R_0 and n \in R
X O F = E  and F O X = E
(am, bm + n) = (1, 0) and (ma, na + b) = (1, 0)
Considering (am, bm + n) = (1, 0)
am = 1
m = 1/a
And bm + n = 0
n = -b/a [since m = 1/a]
Considering (ma, na + b) = (1, 0)
ma = 1
m = 1/a
And na + b = 0
n = -b/a
Therefore the inverse of (a, b) \in A with respect to O is (1/a, -1/a)
```