

EXERCISE 3.5

PAGE NO: 3.33

1. Construct the composition table for \times_4 on set $S = \{0, 1, 2, 3\}$.

Solution:

Given that \times_4 on set $S = \{0, 1, 2, 3\}$

Here,

 $1 \times_4 1$ = remainder obtained by dividing 1×1 by 4

= :

 $0 \times_4 1$ = remainder obtained by dividing 0×1 by 4

= 0

 $2 \times_4 3$ = remainder obtained by dividing 2×3 by 4

= 2

 $3 \times_4 3$ = remainder obtained by dividing 3×3 by 4

= 1

So, the composition table is as follows:

× ₄	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	2	2
3	0	3	2	1

2. Construct the composition table for $+_5$ on set $S = \{0, 1, 2, 3, 4\}$

Solution:

 $1 +_5 1$ = remainder obtained by dividing 1 + 1 by 5

= 2

 $3 +_5 1$ = remainder obtained by dividing 3 + 1 by 5

= 2

 $4 +_5 1$ = remainder obtained by dividing 4 + 1 by 5

= 3

So, the composition table is as follows:

+5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

3. Construct the composition table for \times_6 on set $S = \{0, 1, 2, 3, 4, 5\}$.

Solution:

Here,

 $1 \times_6 1$ = remainder obtained by dividing 1×1 by 6

= 1

 $3 \times_6 4$ = remainder obtained by dividing 3×4 by 6

= C

 $4 \times_6 5$ = remainder obtained by dividing 4×5 by 6

= 2

So, the composition table is as follows:

× ₆	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

4. Construct the composition table for x_5 on set $Z_5 = \{0, 1, 2, 3, 4\}$

Solution:

Here,

 $1 \times_5 1$ = remainder obtained by dividing 1×1 by 5

= 1

 $3 \times_5 4$ = remainder obtained by dividing 3×4 by 5

= 2

 $4 \times_5 4$ = remainder obtained by dividing 4×4 by 5

= 1

So, the composition table is as follows:

x ₅	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

5. For the binary operation \times_{10} set S = {1, 3, 7, 9}, find the inverse of 3.

Solution:

Here,

 $1 \times_{10} 1$ = remainder obtained by dividing 1×1 by 10

= 1

 $3 \times_{10} 7$ = remainder obtained by dividing 3×7 by 10

= 1

 $7 \times_{10} 9 = \text{remainder obtained by dividing } 7 \times 9 \text{ by } 10$

= 3

So, the composition table is as follows:

× ₁₀	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

From the table we can observe that elements of first row as same as the top-most row. So, $1 \in S$ is the identity element with respect to \times_{10} Now we have to find inverse of 3

 $3 \times_{10} 7 = 1$

So the inverse of 3 is 7.