

EXERCISE 21.1

PAGE NO: 21.8

1. Find the volume of a cuboid whose (i) length = 12 cm, breadth = 8 cm, height = 6 cm(ii) length = 1.2 m, breadth = 30 cm, height = 15 cm(iii) length = 15 cm, breadth = 2.5 dm, height = 8 cm. Solution: (i) The given details are: Length of a cuboid = 12 cm Breadth of a cuboid = 8 cmHeight of a cuboid = 6 cm By using the formula Volume of a cuboid = length \times breadth \times height $= 12 \times 8 \times 6$ $= 576 \text{ cm}^3$ (ii) The given details are: Length of a cuboid = 1.2 m = 120 cmBreadth of a cuboid = 30 cm Height of a cuboid = 15 cm By using the formula Volume of a cuboid = length \times breadth \times height $= 120 \times 30 \times 15$ $= 54000 \text{ cm}^3$ (iii) The given details are: Length of a cuboid = 15 cm Breadth of a cuboid = 2.5 dm = 25 cmHeight of a cuboid = 8 cmBy using the formula Volume of a cuboid = length \times breadth \times height $= 15 \times 25 \times 8$ $= 3000 \text{ cm}^3$ 2. Find the volume of a cube whose side is

2. Find the volume of a cube whose side is (i) 4 cm (ii) 8 cm (iii) 1.5 dm (iv) 1.2 m (v) 25 mm Solution:

(i) Given details are, Side of cube = 4 cm Volume of cube = (side)³ = $4^3 = 64$ cm³

(ii) Given details are, Side of cube = 8 cm Volume of cube = (side)³ = $8^3 = 512 \text{ cm}^3$

(iii) Given details are, Side of cube = 1.5 dm Volume of cube = (side)³ = $1.5^3 = 3.375 \text{ dm}^3 = 3375 \text{ cm}^3$

(iv) Given details are, Side of cube = 1.2 m Volume of cube = (side)³ = $1.2^3 = 1.728 \text{ m}^3$

(v) Given details are, Side of cube = 25 mm Volume of cube = $(side)^3$ = $25^3 = 15625 \text{ mm}^3 = 15.625 \text{ cm}^3$

3. Find the height of a cuboid of volume 100 cm³, whose length and breadth are 5 cm and 4 cm respectively. Solution:

Given details are, Volume of a cuboid = 100 cm^3 Length of a cuboid = 5 cmBreadth of a cuboid = 4 cmLet height of cuboid be 'h' cm We know that, $1 \times b \times h = 100$ cm $h = 100/(1 \times b)$ $= 100/(5 \times 4)$ = 5cm

4. A cuboidal vessel is 10 cm long and 5 cm wide. How high it must be made to hold

300 cm³ of a liquid? Solution:

Given details are, Volume of a liquid in the vessel = 300 cm^3 Length of a cuboidal vessel = 10 cmBreadth of a cuboidal vessel = 5 cmLet height of cuboidal vessel be 'h' cm We know that, $1 \times b \times h = 300 \text{ cm}^3$ $h = 300/(1 \times b)$ = $300/(10 \times 5)$

= 6cm

5. A milk container is 8 cm long and 50 cm wide. What should be its height so that it can hold 4 litres of milk?

Solution:

Given details are, Volume = 4 litres = 4000 cm³ Length of a milk container = 8 cm Breadth of a milk container = 50 cm Let height of milk container be 'h' cm We know that, $1 \times b \times h = 4000$ cm³ $h = 4000/(1 \times b)$ = 4000/(50×8)

```
= 10cm
```

6. A cuboidal wooden block contains 36 cm³ wood. If it be 4 cm long and 3 cm wide, find its height.

Solution:

Given details are, Volume of wooden block = 36 cm^3 Length of the wooden block = 4 cmBreadth of a wooden block = 3 cmLet height of wooden block be 'h' cm We know that, $1 \times b \times h = 36 \text{ cm}^3$ $h = 36/(1 \times b)$ = $36/(4 \times 3)$

= 3cm

7. What will happen to the volume of a cube, if its edge is

(i) halved (ii) trebled? Solution:

Let us consider edge of a cube be 'a' cm Volume of a cube will be 'a³'cm (i) When halved Edge = a/2Volume = $(a/2)^3 = a^3/2^3 = a^3/8 = 1/8$ times

(ii) When trebled Edge = 3aVolume = $(3a)^3 = 27a^3 = 27$ times

8. What will happen to the volume of a cuboid if its:

(i) Length is doubled, height is same and breadth is halved?(ii) Length is doubled, height is doubled and breadth is same?Solution:

Let us consider, Length of a cuboid be 'l' Breadth of a cuboid be 'b' Height of a cuboid be 'h' So, Volume of a cuboid $= 1 \times b \times h$ Now, (i) Length of a cuboid becomes = 21Breadth = b/2Height = hVolume of cuboid $= 21 \times b/2 \times h = 1 \times b \times h$ (remains same)

(ii) Length of a cuboid becomes = 21Breadth = b Height = 2hVolume of cuboid = $21 \times b \times 2h = 41bh$ (four times)

9. Three cuboids of dimensions 5 cm \times 6cm \times 7cm, 4cm \times 7cm \times 8cm and 2 cm \times 3 cm \times 13 cm are melted and a cube is made. Find the side of cube. Solution:

Given details are, Volume of First cuboid = $5 \times 6 \times 7 = 210 \text{ cm}^3$ Volume of second cuboid = $4 \times 7 \times 8 = 224 \text{ cm}^3$

Volume of third cuboid = $2 \times 3 \times 13 = 78 \text{ cm}^3$ So, Volume of a cube = $210 + 224 + 78 = 512 \text{ cm}^3$ Let side of a cube be 'a' $a^3 = 512$ $\therefore a = 8 \text{ cm}$

10. Find the weight of solid rectangular iron piece of size $50 \text{ cm} \times 40 \text{cm} \times 10 \text{ cm}$, if 1 cm³ of iron weights 8 gm.

Solution:

Given details are,

Dimension of rectangular iron piece = $50 \text{cm} \times 40 \text{cm} \times 10 \text{cm}$

Volume of solid rectangular = $50 \times 40 \times 10 = 20000 \text{ cm}^3$

Weight of $1 \text{ cm}^3 \text{ iron} = 8 \text{ gm}$.

 \therefore Weight of 20000 cm³ iron = 8 × 20000

```
= 160000 gm.
```

$$= 160 \text{ kg}$$

11. How many wooden cubical blocks of side 25 cm can be cut from a log of wood of size 3 m by 75 cm by 50 cm, assuming that there is no wastage?

Solution:

Given details are, Dimensions of log of wood = $3m \times 75cm \times 50cm$ Side of cubical block = 25cmWe know that, Number of cubical block that can be made from wooden log = Volume of wooden block / volume of cubical block = $(300 \times 75 \times 50) / (25 \times 25 \times 25)$ = 72 blocks

12. A cuboidal block of silver is 9 cm long, 4 cm broad and 3.5 cm in height. From it, beads of volume 1.5 cm³ each are to be made. Find the number of beads that can be made from the block.

Solution:

Given details are, Length of a cuboidal block of silver = 9cm Breadth = 4cm Height = 3.5cm Volume of a cuboid = $1 \times b \times h$ = $9 \times 4 \times 3.5 = 126$ cm³

So, Number of beads of volume 1.5 cm³ that can be made from the block = Volume of silver block/volume of one bead

 $= 126 \text{ cm}^3 / 1.5 \text{ cm}^3$

= 84 beads

13. Find the number of cuboidal boxes measuring 2 cm by 3 cm by 10 cm which can be stored in a carton whose dimensions are 40 cm, 36 cm, and 24 cm. Solution:

Given details are,

Dimensions of cuboidal boxes is $= 2 \text{cm} \times 3 \text{cm} \times 10 \text{ cm}$ Dimensions of carton is $= 40 \text{cm} \times 36 \text{cm} \times 24 \text{cm}$ So,

Number of boxes that can be stored in carton = volume of carton / volume of one box

 $= (40 \times 36 \times 24) / (2 \times 3 \times 10)$

= 576 cuboidal boxes

14. A cuboidal block of solid iron has dimensions 50 cm, 45 cm, and 34 cm, how many cuboids of size 5 cm by 3 cm by 2 cm can be obtained from this block? Assume cutting causes no wastage.

Solution:

Given details are,

Dimensions of cuboidal block of iron is = $50 \text{cm} \times 45 \text{cm} \times 34 \text{cm}$

Size of small cuboids cutting from it is = $5 \text{cm} \times 3 \text{cm} \times 2 \text{cm}$

So,

Number of small cuboids that can be cut =

Volume of large iron cuboid/ volume of small cuboid

 $= (50 \times 45 \times 34) / (5 \times 3 \times 2)$

= 2550 cuboidal blocks

15. A cube A has side thrice as long as that of cube B. What is the ratio of the volume of cube A to that of cube B?

Solution: Given details are, Let side of cube B be 'x' cm Then, side of cube A = 3x cm So now, Ratio = volume of cube A / volume of cube B $= (3x)^3 / (x)^3$ $= 27x^3/x^3 = 27/1 = 27:1$

16. An ice-cream brick measures 20 cm by 10 cm by 7 cm. How many such bricks can be stored in deep fridge whose inner dimensions are 100 cm by 50 cm by 42 cm? Solution:

Given details are,

Dimensions of ice cream brick = $20 \text{ cm} \times 10 \text{cm} \times 7 \text{cm}$

Dimensions of fridge is = $100 \text{ cm} \times 50 \text{cm} \times 42 \text{ cm}$

So,

Number of bricks that can be put in fridge = volume of fridge / volume of one ice brick = $(100 \times 50 \times 42) / (20 \times 10 \times 7)$

= 150 ice cream bricks

17. Suppose that there are two cubes, having edges 2 cm and 4 cm, respectively. Find the volumes V_1 and V_2 of the cubes and compare them.

Solution:

Given details are, Edge of one cube $a_1 = 2 \text{ cm}$ Edge of second cube $a_2 = 4 \text{ cm}$ So, volume $v_1 = 2^3 = 8 \text{ cm}^3$ Volume $v_2 = 4^3 = 64 \text{ cm}^3$ $v_2 = 8v_1$

18. A tea-packet measures $10 \text{ cm} \times 6 \text{ cm} \times 4 \text{ cm}$. How many such tea-packets can be placed in a cardboard box of dimensions $50 \text{ cm} \times 30 \text{ cm} \times 0.2 \text{ m}$?

Solution:

Given details are,

Dimensions of tea packet = $10 \text{ cm} \times 6 \text{ cm} \times 4 \text{ cm}$ Dimension of cardboard box = $50 \text{ cm} \times 30 \text{ cm} \times 0.2 \text{ m}$ So, Number of tea packets can be put in cardboard box =

Volume of cardboard box / volume of tea packet

 $= (50 \times 30 \times 20) / (10 \times 6 \times 4)$

= 125 tea packets

19. The weight of a metal block of size 5 cm by 4 cm by 3 cm is 1 kg. Find the weight of a block of the same metal of size 15 cm by 8 cm by 3 cm.

Solution:

Given details are, Dimensions of metal block = $5 \text{cm} \times 4 \text{cm} \times 3 \text{cm}$

Weight of block = 1 kg Volume of box = $5 \times 4 \times 3 = 60$ cm³

Dimension of new block = $15 \text{ cm} \times 8 \text{ cm} \times 3 \text{ cm}$ Volume of new box = $15 \times 8 \times 3 = 360 \text{ cm}^3$ We know that, $60 \text{ cm}^3 = 1 \text{ kg}$ $360 \text{ cm}^3 = 6 \times 60 \text{ cm}^3$ $= 6 \times 1$ = 6 kg

20. How many soap cakes can be placed in a box of size 56 cm \times 0.4 m \times 0.25 m, if the size of a soap cake is 7 cm \times 5cm \times 2.5 cm? Solution:

Given details are.

Given details are,

Dimensions of box = 56cm $\times 0.4$ m $\times 0.25$ m

Dimensions of soap cake = $7 \text{cm} \times 5 \text{cm} \times 2.5 \text{cm}$

So,

Number of soap cakes that can be placed in box = volume of box / volume of soap cake

 $= (56 \times 40 \times 25) / (7 \times 5 \times 2.5)$

= 640 soap cakes

21. The volume of a cuboidal box is 48 cm³. If its height and length are 3 cm and 4 cm respectively, find its breadth.

Solution:

Given details are, Volume of a cuboidal box = 48 cm^3 Length of a cuboidal box = 4 cmHeight of a cuboidal box = 3 cmLet breadth of wooden block be 'b' cm We know that, $1 \times b \times h = 48 \text{ cm}^3$ $b = 48/(1 \times h)$ $= 48/(4 \times 3)$ = 4am

$$=4$$
cm