Exercise 7(C)

1. If $a: b=c: d$, prove that:
(i) $5 \mathrm{a}+7 \mathrm{~b}: 5 \mathrm{a}-7 \mathrm{~b}=5 \mathrm{c}+7 \mathrm{~d}: 5 \mathrm{c}-7 \mathrm{~d}$.
(ii) $(9 a+13 b)(9 c-13 d)=(9 c+13 d)(9 a-13 b)$.
(iii) $\mathbf{x a}+\mathbf{y b}: \mathbf{x c}+\mathbf{y d}=\mathrm{b}: d$.

Solution:

(i) Given, $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$

$$
\begin{aligned}
& \left.\frac{5 a}{7 b}=\frac{5 c}{7 d} \quad \text { (Multiplying each by } 5 / 7\right) \\
& \frac{5 a+7 b}{5 a-7 b}=\frac{5 c+7 d}{5 c-7 d} \quad \text { (By componendo and Dividendo) }
\end{aligned}
$$

(ii) Given, $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$

$$
\begin{aligned}
& \left.\frac{9 a}{13 b}=\frac{9 c}{13 d} \text { (Multiplying each by } 9 / 13\right) \\
& \frac{9 a+13 b}{9 a-13 b}=\frac{9 c+13 d}{9 c-13 d} \text { (By componendo and Dividendo) }
\end{aligned}
$$

On cross-multiplication we have,
$(9 a+13 b)(9 c-13 d)=(9 c+13 d)(9 a-13 b)$
(iii) Given, $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$

$$
\begin{aligned}
& \frac{x a}{y b}=\frac{x c}{y d} \text { (Multiplying each by } \mathrm{x} / \mathrm{y} \text {) } \\
& \frac{x a+y b}{y b}=\frac{x c+y d}{y d} \text { (By compenendo) } \\
& \frac{x a+y b}{x c+y d}=\frac{y b}{y d} \\
& \frac{x a+y b}{x c+y d}=\frac{b}{d} \\
& \quad \quad \text { Hence Proved }
\end{aligned}
$$

2. If $\mathbf{a}: \mathbf{b}=\mathbf{c}: \mathbf{d}$, prove that:
$(6 a+7 b)(3 c-4 d)=(6 c+7 d)(3 a-4 b)$.
Solution:
Given, $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$
$\frac{6 a}{7 b}=\frac{6 c}{7 d}$ (Multiplying each by $6 / 7$)
$\frac{6 a+7 b}{7 b}=\frac{6 c+7 d}{7 d}$ (By compenendo)
$\frac{6 a+7 b}{6 c+7 d}=\frac{7 b}{7 d}=\frac{b}{d}$.
Also, $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$
$\frac{3 a}{4 b}=\frac{3 c}{4 d}$ (Multiplying each by $3 / 4$)
$\frac{3 a-4 b}{4 b}=\frac{3 c-4 d}{4 d}$ (By dividendo)
$\frac{3 a-4 b}{3 c-4 d}=\frac{4 b}{4 d}=\frac{b}{d}$
Fromo (1) and (2), we have
$\frac{6 a+7 b}{6 c+7 d}=\frac{3 a-4 b}{3 c-4 d}$
$(6 a+7 b)(3 c-4 d)=(3 a-4 b)(6 c+7 d)$

- Hence Proved

3. Given, $\mathbf{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$, prove that:
$(3 a-5 b) /(3 a+5 b)=(3 c-5 d)(3 c+5 d)$
Solution:
Given,
$\frac{a}{b}=\frac{c}{d}$
$\frac{3 a}{5 b}=\frac{3 c}{5 d} \quad$ (Multiplying both by $3 / 5$)
$\frac{3 a+5 b}{3 a-5 b}=\frac{3 c+5 d}{3 c-5 d}$ (By compnendo and Dividendo)
$\frac{3 a-5 b}{3 a+5 b}=\frac{3 c-5 d}{3 c+5 d}$ (By alternendo)
4. If $\frac{5 x+6 y}{5 u+6 v}=\frac{5 x-6 y}{5 u-6 v}$;

Then prove that $x: y=u: v$
Solution:
$\frac{5 x+6 y}{5 u+6 v}=\frac{5 x-6 y}{5 u-6 v}$ (By alternendo)
$\frac{5 x+6 y}{5 x-6 y}=\frac{5 u+6 v}{5 u-6 v}$
$\frac{5 x+6 y+5 x-6 y}{5 x+6 y-5 x+6 y}=\frac{5 u+6 v+5 u-6 v}{5 u+6 v-5 u+6 v}$
(By componendo and dividendo)
$10 \mathrm{x} / 12 \mathrm{y}=10 \mathrm{u} / 12 \mathrm{v}$
Thus,
$x / y=u / v \Rightarrow x: y=u: v$
5. If $(7 a+8 b)(7 c-8 d)=(7 a-8 b)(7 c+8 d) ;$

Prove that $a: b=c: d$

Solution:

The given can the rewritten as,

$$
\frac{7 a+8 b}{7 a-8 b}=\frac{7 c+8 d}{7 c-8 d}
$$

Applying componendo and dividendo, we have

$$
\begin{aligned}
\frac{7 a+8 b+7 a-8 b}{7 a+8 b-7 a+8 b} & =\frac{7 c+8 d+7 c-8 d}{7 c+8 d-7 c+8 d} \\
\frac{14 a}{16 b} & =\frac{14 c}{16 d} \\
\frac{a}{b} & =\frac{c}{d}
\end{aligned}
$$

6. (i) If $x=6 \mathbf{a b} /(a+b)$, find the value of:

$$
\frac{x+3 a}{x-3 a}+\frac{x+3 b}{x-3 b}
$$

Solution:
Given, $\mathrm{x}=6 \mathrm{ab} /(\mathrm{a}+\mathrm{b})$
$\Rightarrow \mathrm{x} / 3 \mathrm{a}=2 \mathrm{~b} / \mathrm{a}+\mathrm{b}$
Now, applying componendo and dividendo we have
$\frac{x+3 a}{x-3 a}=\frac{2 b+a+b}{2 b-a-b}$
$\frac{x+3 a}{x-3 a}=\frac{3 b+a}{b-a}$
Again, $x=6 a b /(a+b)$
$\Rightarrow \mathrm{x} / 3 \mathrm{~b}=2 \mathrm{a} / \mathrm{a}+\mathrm{b}$
Now, applying componendo and dividendo we have
$\frac{x+3 b}{x-3 b}=\frac{2 a+a+b}{2 a-a-b}$
$\frac{x+3 b}{x-3 b}=\frac{3 a+b}{a-b}$
From (1) and (2), we get
$\frac{x+3 a}{x-3 a}+\frac{x+3 b}{x-3 b}=\frac{3 b+a}{b-a}+\frac{3 a+b}{a-b}$
$\frac{x+3 a}{x-3 a}+\frac{x+3 b}{x-3 b}=\frac{-3 b-a+3 a+b}{a-b}$
$\frac{x+3 a}{x-3 a}+\frac{x+3 b}{x-3 b}=\frac{2 a-2 b}{a-b}=2$
(ii) If $a=4 \sqrt{ } 6 /(\sqrt{ } 2+\sqrt{ } 3)$, find the value of:

$$
\frac{a+2 \sqrt{2}}{a-2 \sqrt{2}}+\frac{a+2 \sqrt{3}}{a-2 \sqrt{3}}
$$

Solution:
Given, $a=4 \sqrt{ } 6 /(\sqrt{ } 2+\sqrt{ } 3)$
$a / 2 \sqrt{ } 2=2 \sqrt{ } 3 /(\sqrt{ } 2+\sqrt{ } 3)$
Now, applying componendo and dividendo we have
$\frac{a+2 \sqrt{2}}{a-2 \sqrt{2}}=\frac{2 \sqrt{3}+\sqrt{2}+\sqrt{3}}{2 \sqrt{3}-\sqrt{2}-\sqrt{3}}$
$\frac{a+2 \sqrt{2}}{a-2 \sqrt{2}}=\frac{3 \sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$
Again, $a=4 \sqrt{ } 6 /(\sqrt{2}+\sqrt{ } 3)$
$a / 2 \sqrt{ } 3=2 \sqrt{ } 2 /(\sqrt{ } 2+\sqrt{ } 3)$
Now, applying componendo and dividendo we have
$\frac{a+2 \sqrt{3}}{a-2 \sqrt{3}}=\frac{2 \sqrt{2}+\sqrt{2}+\sqrt{3}}{2 \sqrt{2}-\sqrt{2}-\sqrt{3}}$
$\frac{a+2 \sqrt{3}}{a-2 \sqrt{3}}=\frac{3 \sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}$
From (1) and (2), we have
$\frac{a+2 \sqrt{2}}{a-2 \sqrt{2}}+\frac{a+2 \sqrt{3}}{a-2 \sqrt{3}}=\frac{3 \sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{3 \sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}$
$\frac{a+2 \sqrt{2}}{a-2 \sqrt{2}}+\frac{a+2 \sqrt{3}}{a-2 \sqrt{3}}=\frac{3 \sqrt{2}+\sqrt{3}-3 \sqrt{3}-\sqrt{2}}{\sqrt{2}-\sqrt{3}}$
$\frac{a+2 \sqrt{2}}{a-2 \sqrt{2}}+\frac{a+2 \sqrt{3}}{a-2 \sqrt{3}}=\frac{2 \sqrt{2}-2 \sqrt{3}}{\sqrt{2}-\sqrt{3}}=2$
7. If $(a+b+c+d)(a-b-c+d)=(a+b-c-d)(a-b+c-d)$, prove that $a: b=c: d$.

Solution:

Rewriting the given, we have

$$
\frac{a+b+c+d}{a+b-c-d}=\frac{a-b+c-d}{a-b-c+d}
$$

Now, applying componendo and dividendo
$\frac{(a+b+c+d)+(a+b-c-d)}{(a+b+c+d)-(a+b-c-d)}=\frac{(a-b+c-d)+(a-b-c+d)}{(a-b+c-d)-(a-b-c+d)}$
$\frac{2(a+b)}{2(c+d)}=\frac{2(a-b)}{2(c-d)}$
$\frac{a+b}{c+d}=\frac{a-b}{c-d}$
$\frac{a+b}{a-b}=\frac{c+d}{c-d}$
Applying componendo and dividendo again, we get
$\frac{a+b+a-b}{a+b-a+b}=\frac{c+d+c-d}{c+d-c+d}$
$\frac{2 a}{2 b}=\frac{2 c}{2 d}$
$\frac{a}{b}=\frac{c}{d}$

- Hence Proved

