Exercise 8(A)

1. Find, in each case, the remainder when:
(i) $x^{4}-3 x^{2}+2 x+1$ is divided by $x-1$.
(ii) $x^{3}+3 x^{2}-12 x+4$ is divided by $x-2$.
(ii) $x^{4}+1$ is divided by $x+1$.

Solution:

From remainder theorem, we know that when a polynomial $f(x)$ is divided by $(x-a)$, then the remainder is $f(a)$.
(i) Given, $f(x)=x^{4}-3 x^{2}+2 x+1$ is divided by $x-1$

So, remainder $=f(1)=(1)^{4}-3(1)^{2}+2(1)+1=1-3+2+1=1$
(ii) Given, $f(x)=x^{3}+3 x^{2}-12 x+4$ is divided by $x-2$

So, remainder $=f(2)=(2)^{3}+3(2)^{2}-12(2)+4=8+12-24+4=0$
(iii) Given, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}+1$ is divided by $\mathrm{x}+1$

So, remainder $=f(-1)=(-1)^{4}+1=2$
2. Show that:
(i) $x-2$ is a factor of $5 x^{2}+15 x-50$
(ii) $3 x+2$ is a factor of $3 x^{2}-x-2$

Solution:

$(x-a)$ is a factor of a polynomial $f(x)$ if the remainder, when $f(x)$ is divided by $(x-a)$, is 0 , i.e., if $f(a)=$ 0.
(i) $f(x)=5 x^{2}+15 x-50$
$\mathrm{f}(2)=5(2)^{2}+15(2)-50=20+30-50=0$
As the remainder is zero for $x=2$
Thus, we can conclude that $(x-2)$ is a factor of $5 x^{2}+15 x-50$
(ii) $f(x)=3 x^{2}-x-2$
$f(-2 / 3)=3(-2 / 3)^{2}-(-2 / 3)-2=4 / 3+2 / 3-2=2-2=0$
As the remainder is zero for $x=-2 / 3$
Thus, we can conclude that $(3 x+2)$ is a factor of $3 x^{2}-x-2$
3. Use the Remainder Theorem to find which of the following is a factor of $2 x^{3}+3 x^{2}-5 x-6$.
(i) $x+1$
(ii) $2 \mathrm{x}-1$
(iii) $x+2$

Solution:

From remainder theorem we know that when a polynomial $f(x)$ is divided by $x-a$, then the remainder is $\mathrm{f}(\mathrm{a})$.
Here, $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}+3 \mathrm{x}^{2}-5 \mathrm{x}-6$
(i) $\mathrm{f}(-1)=2(-1)^{3}+3(-1)^{2}-5(-1)-6=-2+3+5-6=0$
\Rightarrow Remainder is zero for $x=-1$
Therefore, $(x+1)$ is a factor of the polynomial $f(x)$.
(ii) $\mathrm{f}(1 / 2)=2(1 / 2)^{3}+3(1 / 2)^{2}-5(1 / 2)-6$

$$
=1 / 4+3 / 4-5 / 2-6
$$

$$
=-5 / 2-5=-15 / 2
$$

\Rightarrow Remainder is not equals to zero for $x=1 / 2$
Therefore, $(2 x-1)$ is not a factor of the polynomial $f(x)$.
(iii) $\mathrm{f}(-2)=2(-2)^{3}+3(-2)^{2}-5(-2)-6=-16+12+10-6=0$
\Rightarrow Remainder is zero for $x=-2$
Therefore, $(x+2)$ is a factor of the polynomial $f(x)$.
4. (i) If $2 x+1$ is a factor of $2 x^{2}+a x-3$, find the value of a.
(ii) Find the value of k, if $3 x-4$ is a factor of expression $3 x^{2}+2 x-k$.

Solution:

(i) Given, $2 x+1$ is a factor of $f(x)=2 x^{2}+a x-3$.

So, $f(-1 / 2)=0$
$2(-1 / 2)^{2}+a(-1 / 2)-3=0$
$1 / 2-a / 2-3=0$
$1-a-6=0$
$a=-5$
(ii) Given, $3 \mathrm{x}-4$ is a factor of $\mathrm{g}(\mathrm{x})=3 \mathrm{x}^{2}+2 \mathrm{x}-\mathrm{k}$.

So, $f(4 / 3)=0$
$3(4 / 3)^{2}+2(4 / 3)-k=0$
$16 / 3+8 / 3-\mathrm{k}=0$
$24 / 3=k$
$\mathrm{k}=8$
5. Find the values of constants a and b when $x-2$ and $x+3$ both are the factors of expression $x^{3}+$ $\mathbf{a x}^{2}+\mathrm{bx}-12$.

Solution:

Here, $f(x)=x^{3}+a x^{2}+b x-12$
Given, $x-2$ and $x+3$ both are the factors of $f(x)$
So,
$f(2)$ and $f(-3)$ both should be equal to zero.
$f(2)=(2)^{3}+a(2)^{2}+b(2)-12$
$0=8+4 a+2 b-12$
$0=4 \mathrm{a}+2 \mathrm{~b}-4$
$2 a+b=2$
Now,
$f(-3)=(-3)^{3}+a(-3)^{2}+b(-3)-12$
$0=-27+9 a-3 b-12$
$9 a-3 b-39=0$
$3 a-b=13 \ldots$ (2)
Adding (1) and (2), we get,
$5 \mathrm{a}=15$
Thus, $\mathrm{a}=3$
Putting the value of a in (1), we have
$6+b=2$
Thus, $\mathrm{b}=-4$
6. Find the value of k, if $2 x+1$ is a factor of $(3 k+2) x^{3}+(k-1)$.

Solution:

Let take $f(x)=(3 k+2) x^{3}+(k-1)$
Now, $2 \mathrm{x}+1=0$
$\mathrm{x}=-1 / 2$
As, $2 \mathrm{x}+1$ is a factor of $\mathrm{f}(\mathrm{x})$ then the remainder should be 0 .
$\mathrm{f}(-1 / 2)=(3 \mathrm{k}+2)(-1 / 2)^{3}+(\mathrm{k}-1)=0$
$\Rightarrow \frac{-(3 k+2)}{8}+(k-1)=0$
$\Rightarrow \frac{-3 k-2+8 k-8}{8}=0$
$5 \mathrm{k}=10=0$
$\mathrm{k}=2$
7. Find the value of a, if $x-2$ is a factor of $2 x^{5}-6 x^{4}-2 a x^{3}+6 a x^{2}+4 a x+8$.

Solution:

Given, $f(x)=2 x^{5}-6 x^{4}-2 a x^{3}+6 a x^{2}+4 a x+8$ and $x-2$ is a factor of $f(x)$.
So, $x-2=0 ; x=2$
Hence, $f(2)=0$
$2(2)^{5}-6(2)^{4}-2 \mathrm{a}(2)^{3}+6 \mathrm{a}(2)^{2}+4 \mathrm{a}(2)+8=0$
$64-96-16 a+24 a+8 a+8=0$
$-24+16 a=0$
$16 a=24$
Thus, $\mathrm{a}=1.5$
8. Find the values of m and n so that $x-1$ and $x+2$ both are factors of $x^{3}+(3 m+1) x^{2}+n x-18$. Solution:

Let $f(x)=x^{3}+(3 m+1) x^{2}+n x-18$
Given, $(x-1)$ and $(x+2)$ are the factors of $f(x)$.
So,
$\mathrm{x}-1=0 ; \mathrm{x}=1$ and $\mathrm{x}+2=0 ; \mathrm{x}=-2$
$f(1)$ and $f(-2)$ both should be equal to zero.
$(1)^{3}+(3 m+1)(1)^{2}+n(1)-18=0$
$1+3 m+1+n-18=0$
$3 m+n-16=0 \ldots$. (1)
And,
$(-2)^{3}+(3 m+1)(-2)^{2}+n(-2)-18=0$
$8+12 m+4-2 n-18=0$
$12 m-2 n-22=0$
$6 \mathrm{~m}-\mathrm{n}-11=0 \ldots$ (2)
Adding (1) and (2), we get,
$9 \mathrm{~m}-27=0$
Thus, $\mathrm{m}=3$
Putting the value of m in (1), we have
$3(3)+\mathrm{n}-16=0$
$9+\mathrm{n}-16=0$
Therefore, $\mathrm{n}=7$

Exercise 8(B)

Page No: III

1. Using the Factor Theorem, show that:
(i) ($x-2$) is a factor of $x^{3}-2 x^{2}-9 x+18$. Hence, factorise the expression $x^{3}-2 x^{2}-9 x+18$ completely.
(ii) $(x+5)$ is a factor of $2 x^{3}+5 x^{2}-28 x-15$. Hence, factorise the expression $2 x^{3}+5 x^{2}-28 x-15$ completely.
(iii) $(3 x+2)$ is a factor of $3 x^{3}+2 x^{2}-3 x-2$. Hence, factorise the expression $3 x^{3}+2 x^{2}-3 x-2$ completely.
Solution:
(i) Here, $f(x)=x^{3}-2 x^{2}-9 x+18$

So, $x-2=0 \Rightarrow x=2$
Thus, remainder $=\mathrm{f}(2)$
$=(2)^{3}-2(2)^{2}-9(2)+18$
$=8-8-18+18$
$=0$
Therefore, $(x-2)$ is a factor of $f(x)$.
Now, performing division of polynomial $f(x)$ by $(x-2)$ we have

$$
\begin{array}{r}
x^{2}-9 \\
x-2 \begin{array}{r}
x^{3}-2 x^{2}-9 x+18 \\
x^{3}-2 x^{2} \\
\hline
\end{array} \\
\begin{array}{l}
-9 x+18 \\
-9 x+18
\end{array}
\end{array}
$$

Thus, $x^{3}-2 x^{2}-9 x+18=(x-2)\left(x^{2}-9\right)=(x-2)(x+3)(x-3)$
(ii) Here, $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}+5 \mathrm{x}^{2}-28 \mathrm{x}-15$

So, $x+5=0 \Rightarrow x=-5$
Thus, remainder $=f(-5)$
$=2(-5)^{3}+5(-5)^{2}-28(-5)-15$
$=-250+125+140-15$
$=-265+265$
$=0$
Therefore, $(x+5)$ is a factor of $f(x)$.
Now, performing division of polynomial $f(x)$ by $(x+5)$ we get

$$
\begin{array}{r}
2 x^{2}-5 x-3 \\
\frac{2 x^{3}+5 x^{2}-28 x-15}{2 x^{2}} \\
\begin{array}{l}
-5 x^{2}-28 x-15 \\
\frac{-5 x^{2}-25 x}{} \\
\frac{-3 x-15}{} \\
\frac{-3 x-15}{0}
\end{array}
\end{array}
$$

So, $2 \mathrm{x}^{3}+5 \mathrm{x}^{2}-28 \mathrm{x}-15=(\mathrm{x}+5)\left(2 \mathrm{x}^{2}-5 \mathrm{x}-3\right)$
Further, on factorisation
$=(x+5)\left[2 x^{2}-6 x+x-3\right]$
$=(x+5)[2 x(x-3)+1(x-3)]=(x+5)(2 x+1)(x-3)$
Thus, $f(x)$ is factorised as $(x+5)(2 x+1)(x-3)$
(iii) Here, $f(x)=3 x^{3}+2 x^{2}-3 x-2$

So, $3 x+2=0 \Rightarrow x=-2 / 3$
Thus, remainder $=\mathrm{f}(-2 / 3)$
$=3(-2 / 3)^{3}+2(-2 / 3)^{2}-3(-2 / 3)-2$
$=-8 / 9+8 / 9+2-2$
$=0$
Therefore, $(3 x+2)$ is a factor of $f(x)$.
Now, performing division of polynomial $f(x)$ by $(3 x+2)$ we get

$$
\begin{array}{r}
x^{2}-1 \\
\begin{array}{l}
3 x+2 \\
\begin{array}{l}
3 x^{3}+2 x^{2}-3 x-2 \\
3 x^{3}+2 x^{2}
\end{array} \\
\\
\frac{-3 x-2}{0}
\end{array}
\end{array}
$$

Thus, $3 x^{3}+2 x^{2}-3 x-2=(3 x+2)\left(x^{2}-1\right)=(3 x+2)(x-1)(x+1)$
2. Using the Remainder Theorem, factorise each of the following completely.
(i) $3 x^{3}+2 x^{2}-19 x+6$
(ii) $2 x^{3}+x^{2}-13 x+6$
(iii) $3 x^{3}+2 x^{2}-23 x-30$
(iv) $4 x^{3}+7 x^{2}-36 x-63$
(v) $x^{3}+x^{2}-4 x-4$

Solution:

(i) Let $f(x)=3 x^{3}+2 x^{2}-19 x+6$

For $x=2$, the value of $f(x)$ will be
$=3(2)^{3}+2(2)^{2}-19(2)+6$
$=24+8-38+6=0$
As $f(2)=0$, so $(x-2)$ is a factor of $f(x)$.
Now, performing long division we have

$$
\begin{array}{r}
3 x^{2}+8 x-3 \\
x-2 \begin{array}{l}
3 x^{3}+2 x^{2}-19 x+6 \\
3 x^{3}-6 x^{2}
\end{array} \\
\begin{array}{l}
8 x^{2}-19 x+6 \\
\frac{8 x^{2}-16 x}{} \\
\frac{-3 x+6}{}
\end{array} \\
\frac{-3 x+6}{0}
\end{array}
$$

Thus, $\mathrm{f}(\mathrm{x})=(\mathrm{x}-2)\left(3 \mathrm{x}^{2}+8 \mathrm{x}-3\right)$

$$
\begin{aligned}
& =(x-2)\left(3 x^{2}+9 x-x-3\right) \\
& =(x-2)[3 x(x+3)-1(x+3)] \\
& =(x-2)(x+3)(3 x-1)
\end{aligned}
$$

(ii) Let $f(x)=2 x^{3}+x^{2}-13 x+6$

For $x=2$, the value of $f(x)$ will be
$\mathrm{f}(2)=2(2)^{3}+(2)^{2}-13(2)+6=16+4-26+6=0$
As $f(2)=0$, so $(x-2)$ is a factor of $f(x)$.
Now, performing long division we have

$$
\begin{array}{r}
2 x^{2}+5 x-3 \\
x-2 \begin{array}{l}
2 x^{3}+x^{2}-13 x+6 \\
2 x^{3}-4 x^{2}
\end{array} \\
\begin{array}{l}
5 x^{2}-13 x+6 \\
5 x^{2}-10 x
\end{array} \\
\frac{-3 x+6}{0}+6
\end{array}
$$

Thus, $\mathrm{f}(\mathrm{x})=(\mathrm{x}-2)\left(2 \mathrm{x}^{2}+5 \mathrm{x}-3\right)$

$$
\begin{aligned}
& =(x-2)\left[2 x^{2}+6 x-x-3\right] \\
& =(x-2)[2 x(x+3)-1(x+3)]
\end{aligned}
$$

$$
\begin{aligned}
& =(x-2)[2 x(x+3)-1(x+3)] \\
& =(x-2)(2 x-1)(x+3)
\end{aligned}
$$

(iii) Let $f(x)=3 x^{3}+2 x^{2}-23 x-30$

For $x=-2$, the value of $f(x)$ will be

$$
\begin{aligned}
f(-2) & =3(-2)^{3}+2(-2)^{2}-23(-2)-30 \\
& =-24+8+46-30=-54+54=0
\end{aligned}
$$

As $f(-2)=0$, so $(x+2)$ is a factor of $f(x)$.
Now, performing long division we have

$$
\begin{array}{r}
3 x^{2}-4 x-15 \\
\frac{3 x^{3}+2 x^{2}-23 x-30}{3 x^{3}+6 x^{2}} \\
\begin{array}{l}
-4 x^{2}-23 x-30 \\
-4 x^{2}-8 x
\end{array} \\
\frac{-15 x-30}{}
\end{array}
$$

Thus, $f(x)=(x+2)\left(3 x^{2}-4 x-15\right)$

$$
\begin{aligned}
& =(x+2)\left(3 x^{2}-9 x+5 x-15\right) \\
& =(x+2)[3 x(x-3)+5(x-3)] \\
& =(x+2)(3 x+5)(x-3)
\end{aligned}
$$

(iv) Let $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{3}+7 \mathrm{x}^{2}-36 \mathrm{x}-63$

For $x=3$, the value of $f(x)$ will be

$$
\begin{aligned}
\mathrm{f}(3) & =4(3)^{3}+7(3)^{2}-36(3)-63 \\
& =108+63-108-63=0
\end{aligned}
$$

As $f(3)=0,(x+3)$ is a factor of $f(x)$.
Now, performing long division we have

$$
\begin{array}{r}
4 x^{2}+19 x+21 \\
\frac{4 x^{3}+7 x^{2}-36 x-63}{} \\
\frac{19 x^{3}}{19 x^{2}-36 x-63} \\
\frac{19 x^{2}-57 x}{21 x-63} \\
\frac{21 x-63}{0}
\end{array}
$$

Thus, $f(x)=(x+3)\left(4 x^{2}-5 x-21\right)$

$$
\begin{aligned}
& =(x+3)\left(4 x^{2}-12 x+7 x-21\right) \\
& =(x+3)[4 x(x-3)+7(x-3)] \\
& =(x+3)(4 x+7)(x-3)
\end{aligned}
$$

(v) Let $f(x)=x^{3}+x^{2}-4 x-4$

For $x=-1$, the value of $f(x)$ will be
$f(-1)=(-1)^{3}+(-1)^{2}-4(-1)-4$

$$
=-1+1+4-4=0
$$

As, $f(-1)=0$ so $(x+1)$ is a factor of $f(x)$.
Now, performing long division we have

$$
\begin{array}{r}
x^{2}-4 \\
x+1 \begin{array}{l}
x^{3}+x^{2}-4 x-4 \\
x^{3}+x^{2}
\end{array} \\
\hline
\end{array}
$$

Thus, $\mathrm{f}(\mathrm{x})=(\mathrm{x}+1)\left(\mathrm{x}^{2}-4\right)$

$$
=(x+1)(x-2)(x+2)
$$

3. Using the Remainder Theorem, factorise the expression $3 x^{3}+10 x^{2}+x-6$. Hence, solve the equation $3 x^{3}+10 x^{2}+x-6=0$.
Solution:
Let's take $f(x)=3 x^{3}+10 x^{2}+x-6$
For $x=-1$, the value of $f(x)$ will be
$f(-1)=3(-1)^{3}+10(-1)^{2}+(-1)-6=-3+10-1-6=0$
As, $f(-1)=0$ so $(x+1)$ is a factor of $f(x)$.
Now, performing long division we have

$$
\begin{array}{r}
\begin{array}{r}
3 x^{2}+7 x-6 \\
x+1 \\
\begin{array}{l}
3 x^{3}+10 x^{2}+x-6 \\
3 x^{3}+3 x^{2}
\end{array} \\
\begin{array}{l}
7 x^{2}+x-6 \\
7 x^{2}+7 x
\end{array} \\
\frac{-6 x-6}{}
\end{array} \\
\begin{array}{r}
-6 x-6
\end{array}
\end{array}
$$

Thus, $f(x)=(x+1)\left(3 x^{2}+7 x-6\right)$

$$
\begin{aligned}
& =(x+1)\left(3 x^{2}+9 x-2 x-6\right) \\
& =(x+1)[3 x(x+3)-2(x+3)] \\
& =(x+1)(x+3)(3 x-2)
\end{aligned}
$$

Now, $3 x^{3}+10 x^{2}+\mathrm{x}-6=0$
$(\mathrm{x}+1)(\mathrm{x}+3)(3 \mathrm{x}-2)=0$
Therefore,
$x=-1,-3$ or $2 / 3$
4. Factorise the expression $f(x)=2 x^{3}-7 x^{2}-3 x+18$. Hence, find all possible values of x for which $f(\mathbf{x})=0$.

Solution:

Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}-7 \mathrm{x}^{2}-3 \mathrm{x}+18$
For $x=2$, the value of $f(x)$ will be

$$
\begin{aligned}
\mathrm{f}(2) & =2(2)^{3}-7(2)^{2}-3(2)+18 \\
& =16-28-6+18=0
\end{aligned}
$$

As $f(2)=0,(x-2)$ is a factor of $f(x)$.
Now, performing long division we have

$$
\begin{array}{r}
2 x^{2}-3 x-9 \\
x-2 \begin{array}{l}
2 x^{3}-7 x^{2}-3 x+18 \\
2 x^{3}-4 x^{2} \\
\frac{-3 x^{2}-3 x+18}{-3 x^{2}+6 x} \\
\frac{-9 x+18}{0}+18
\end{array}
\end{array}
$$

Thus, $f(x)=(x-2)\left(2 x^{2}-3 x-9\right)$

$$
\begin{aligned}
& =(x-2)\left(2 x^{2}-6 x+3 x-9\right) \\
& =(x-2)[2 x(x-3)+3(x-3)] \\
& =(x-2)(x-3)(2 x+3)
\end{aligned}
$$

Now, for $f(x)=0$
$(\mathrm{x}-2)(\mathrm{x}-3)(2 \mathrm{x}+3)=0$
Hence $x=2,3$ or $-3 / 2$
5. Given that $x-2$ and $x+1$ are factors of $f(x)=x^{3}+3 x^{2}+a x+b$; calculate the values of a and b. Hence, find all the factors of $f(x)$.
Solution:
Let $f(x)=x^{3}+3 x^{2}+a x+b$

As, $(x-2)$ is a factor of $f(x)$, so $f(2)=0$

$$
\begin{aligned}
& (2)^{3}+3(2)^{2}+a(2)+b=0 \\
& 8+12+2 a+b=0 \\
& 2 a+b+20=0 \ldots
\end{aligned}
$$

And as, $(x+1)$ is a factor of $f(x)$, so $f(-1)=0$

$$
\begin{align*}
& (-1)^{3}+3(-1)^{2}+a(-1)+b=0 \\
& -1+3-a+b=0 \\
& -a+b+2=0 \ldots(2) \tag{2}
\end{align*}
$$

Subtracting (2) from (1), we have
$3 a+18=0$
$a=-6$
On substituting the value of a in (ii), we have
$\mathrm{b}=\mathrm{a}-2=-6-2=-8$
Thus, $f(x)=x^{3}+3 x^{2}-6 x-8$
Now, for $\mathrm{x}=-1$
$f(-1)=(-1)^{3}+3(-1)^{2}-6(-1)-8=-1+3+6-8=0$
Therefore, $(x+1)$ is a factor of $f(x)$.
Now, performing long division we have

$$
\begin{array}{r}
x^{2}+2 x-8 \\
\frac{x^{3}+3 x^{2}-6 x-8}{x^{3}+3 x^{2}-6 x-8} \\
\frac{2 x^{2}-6 x}{2 x^{2}+2 x} \\
\frac{-8 x-8}{0}
\end{array}
$$

Hence, $f(x)=(x+1)\left(x^{2}+2 x-8\right)$

$$
\begin{aligned}
& =(x+1)\left(x^{2}+4 x-2 x-8\right) \\
& =(x+1)[x(x+4)-2(x+4)] \\
& =(x+1)(x+4)(x-2)
\end{aligned}
$$

Exercise 8(C)

Page No: II2

1. Show that $(x-1)$ is a factor of $x^{3}-7 x^{2}+14 x-8$. Hence, completely factorise the given expression.

Solution:

Let $f(x)=x^{3}-7 x^{2}+14 x-8$
Then, for $\mathrm{x}=1$
$\mathrm{f}(1)=(1)^{3}-7(1)^{2}+14(1)-8=1-7+14-8=0$
Thus, $(x-1)$ is a factor of $f(x)$.
Now, performing long division we have

$$
\begin{array}{r}
x^{2}-6 x+8 \\
x-1 \begin{array}{l}
x^{3}-7 x^{2}+14 x-8 \\
x^{3}-x^{2}
\end{array} \\
\begin{array}{r}
-6 x^{2}+14 x-8 \\
\frac{-6 x^{2}+6 x}{8 x-8} \\
8 x-8
\end{array}
\end{array}
$$

Hence, $f(x)=(x-1)\left(x^{2}-6 x+8\right)$

$$
\begin{aligned}
& =(x-1)\left(x^{2}-4 x-2 x+8\right) \\
& =(x-1)[x(x-4)-2(x-4)] \\
& =(x-1)(x-4)(x-2)
\end{aligned}
$$

2. Using Remainder Theorem, factorise:

$$
x^{3}+10 x^{2}-37 x+26 \text { completely }
$$

Solution:

Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+10 \mathrm{x}^{2}-37 \mathrm{x}+26$
From remainder theorem, we know that
For $x=1$, the value of $f(x)$ is the remainder
$\mathrm{f}(1)=(1)^{3}+10(1)^{2}-37(1)+26=1+10-37+26=0$
As $f(1)=0, x-1$ is a factor of $f(x)$.
Now, performing long division we have

$$
\begin{array}{r}
x^{2}+11 x-26 \\
x-1 \begin{array}{l}
x^{3}+10 x^{2}-37 x+26 \\
x^{3}-1 x^{2} \\
\frac{11 x^{2}-37 x+26}{}-11 x
\end{array} \\
\frac{-26 x+26}{}
\end{array}
$$

Thus, $\mathrm{f}(\mathrm{x})=(\mathrm{x}-1)\left(\mathrm{x}^{2}+11 \mathrm{x}-26\right)$

$$
\begin{aligned}
& =(\mathrm{x}-1)\left(\mathrm{x}^{2}+13 \mathrm{x}-2 \mathrm{x}-26\right) \\
& =(\mathrm{x}-1)[\mathrm{x}(\mathrm{x}+13)-2(\mathrm{x}+13)] \\
& =(\mathrm{x}-1)(\mathrm{x}+13)(\mathrm{x}-2)
\end{aligned}
$$

3. When $x^{3}+3 x^{2}-m x+4$ is divided by $x-2$, the remainder is $m+3$. Find the value of m. Solution:

Let $f(x)=x^{3}+3 x^{2}-m x+4$
From the question, we have
$\mathrm{f}(2)=\mathrm{m}+3$
$(2)^{3}+3(2)^{2}-\mathrm{m}(2)+4=\mathrm{m}+3$
$8+12-2 m+4=m+3$
24-3 $=\mathrm{m}+2 \mathrm{~m}$
$3 \mathrm{~m}=21$
Thus, $\mathrm{m}=7$
4. What should be subtracted from $3 x^{3}-8 x^{2}+4 x-3$, so that the resulting expression has $x+2$ as a factor?
Solution:
Let's assume the required number to be k .
And let $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{3}-8 \mathrm{x}^{2}+4 \mathrm{x}-3-\mathrm{k}$
From the question, we have
$\mathrm{f}(-2)=0$
$3(-2)^{3}-8(-2)^{2}+4(-2)-3-\mathrm{k}=0$
$-24-32-8-3-k=0$
$-67-\mathrm{k}=0$
$\mathrm{k}=-67$
Therefore, the required number is -67 .
5. If $(x+1)$ and $(x-2)$ are factors of $x^{3}+(a+1) x^{2}-(b-2) x-6$, find the values of a and b. And then, factorise the given expression completely.

Solution:

Let's take $f(x)=x^{3}+(a+1) x^{2}-(b-2) x-6$
As, $(x+1)$ is a factor of $f(x)$.
Then, remainder $=f(-1)=0$
$(-1)^{3}+(a+1)(-1)^{2}-(b-2)(-1)-6=0$
$-1+(a+1)+(b-2)-6=0$
$\mathrm{a}+\mathrm{b}-8=0$.
And as, $(x-2)$ is a factor of $f(x)$.
Then, remainder $=f(2)=0$
$(2)^{3}+(a+1)(2)^{2}-(b-2)(2)-6=0$
$8+4 a+4-2 b+4-6=0$
$4 a-2 b+10=0$
$2 a-b+5=0$
Adding (1) and (2), we get
$3 a-3=0$
Thus, $\mathrm{a}=1$
Substituting the value of a in (i), we get,
$1+\mathrm{b}-8=0$
Thus, $\mathrm{b}=7$
Hence, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}^{2}-5 \mathrm{x}-6$
Now as $(x+1)$ and $(x-2)$ are factors of $f(x)$.
So, $(x+1)(x-2)=x^{2}-x-2$ is also a factor of $f(x)$.

$$
\begin{array}{r}
x+3 \\
x^{2}-x-2 \left\lvert\, \begin{array}{l}
x^{3}+2 x^{2}-5 x-6 \\
x^{3}-x^{2}-2 x
\end{array}\right. \\
\begin{array}{r}
3 x^{2}-3 x-6 \\
\frac{3 x^{2}-3 x-6}{0}
\end{array}
\end{array}
$$

Therefore, $f(x)=x^{3}+2 x^{2}-5 x-6=(x+1)(x-2)(x+3)$
6. If $x-2$ is a factor of $x^{2}+a x+b$ and $a+b=1$, find the values of a and b.

Solution:

Let $f(x)=x^{2}+a x+b$
Given, ($x-2$) is a factor of $f(x)$.
Then, remainder $=f(2)=0$
$(2)^{2}+a(2)+b=0$
$4+2 a+b=0$
$2 a+b=-4 \ldots$

And also given that,
$a+b=1$
Subtracting (2) from (1), we have
$a=-5$
On substituting the value of a in (2), we have
$\mathrm{b}=1-(-5)=6$
7. Factorise $x^{3}+6 x^{2}+11 x+6$ completely using factor theorem.

Solution:

Let $f(x)=x^{3}+6 x^{2}+11 x+6$
For $x=-1$, the value of $f(x)$ is
$f(-1)=(-1)^{3}+6(-1)^{2}+11(-1)+6$

$$
=-1+6-11+6=12-12=0
$$

Thus, $(x+1)$ is a factor of $f(x)$.

$$
\begin{array}{r}
x^{2}+5 x+6 \\
x+1 \begin{array}{l}
x^{3}+6 x^{2}+11 x+6 \\
x^{3}+x^{2}
\end{array} \\
\begin{array}{r}
5 x^{2}+11 x+6 \\
5 x^{2}+5 x \\
6 x+6
\end{array} \\
\frac{6 x+6}{0}
\end{array}
$$

Therefore, $f(x)=(x+1)\left(x^{2}+5 x+6\right)$

$$
\begin{aligned}
& =(x+1)\left(x^{2}+3 x+2 x+6\right) \\
& =(x+1)[x(x+3)+2(x+3)] \\
& =(x+1)(x+3)(x+2)
\end{aligned}
$$

8. Find the value of ' m ', if $m x^{3}+2 x^{2}-3$ and $x^{2}-m x+4$ leave the same remainder when each is divided by x-2.

Solution:

Let $f(x)=m x^{3}+2 x^{2}-3$ and $g(x)=x^{2}-m x+4$
From the question, it's given that $f(x)$ and $g(x)$ leave the same remainder when divided by ($x-2$). So, we have:
$\mathrm{f}(2)=\mathrm{g}(2)$
$\mathrm{m}(2)^{3}+2(2)^{2}-3=(2)^{2}-\mathrm{m}(2)+4$
$8 \mathrm{~m}+8-3=4-2 \mathrm{~m}+4$
$10 \mathrm{~m}=3$
Thus, $\mathrm{m}=3 / 10$

