Date of Exam: 9<sup>th</sup> January 2020 (Shift 2) Time: 2:30 P.M. to 5:30 P.M. Subject: Mathematics

1. If  $A = \{x \in \mathbf{R} : |x| < 2\}$  and  $B = \{x \in \mathbf{R} : |x - 2| \ge 3\}$  then : a. A - B = [-1,2] b.  $B - A = \mathbf{R} - (-2,5)$ c.  $A \cup B = \mathbf{R} - (2,5)$  d.  $A \cap B = (-2,-1)$ Answer: (b) Solution:  $A = \{x : x \in (-2,2)\}$   $B = \{x : x \in (-\infty, -1] \cup [5, \infty)\}$   $A \cap B = \{x : x \in (-\infty, -1] \cup [5, \infty)\}$   $A \cap B = \{x : x \in (-\infty, -2] \cup [5, \infty)\}$   $A - B = \{x : x \in (-1,2)\}$  $A \cup B = \{x : x \in (-\infty, 2) \cup [5, \infty)\}$ 

2. If 10 different balls has to be placed in 4 distinct boxes at random, then the probability that two of these boxes contain exactly 2 and 3 balls is :

| a. | $\frac{965}{2^{10}}$   |  | b. | 945<br>2 <sup>10</sup> |
|----|------------------------|--|----|------------------------|
| c. | 945<br>2 <sup>11</sup> |  | d. | $\frac{965}{2^{11}}$   |

Answer: (b)

Solution:

Total ways to distribute 10 balls in 4 boxes is  $= 4^{10}$ 

Total ways of placing exactly 2 and 3 balls in any two of these boxes is

$$= {}^{4}C_{2}! \times {}^{10}C_{5} \times \frac{5!}{2! \, 3!} \times 2 \times 2^{5}$$
$$P(E) = \frac{945}{2^{10}}$$



3. If  $x = 2\sin\theta - \sin 2\theta$  and  $y = 2\cos\theta - \cos 2\theta$ ,  $\theta \in [0, 2\pi]$ , then  $\frac{d^2y}{dx^2}$  at  $\theta = \pi$  is :

a. 
$$-\frac{3}{8}$$
  
b.  $\frac{3}{4}$   
c.  $\frac{3}{2}$   
d.  $-\frac{3}{4}$ 

Answer: (Bonus)

### Solution:

 $\frac{dx}{d\theta} = 2\cos\theta - 2\cos 2\theta$   $\frac{dy}{d\theta} = -2\sin\theta + 2\sin 2\theta$   $\frac{dy}{dx} = \frac{2\cos\frac{3\theta}{2}\sin\frac{\theta}{2}}{2\sin\frac{3\theta}{2}\sin\frac{\theta}{2}}$   $\frac{dy}{dx} = \cot\frac{3\theta}{2}$   $\frac{dy}{dx^2} = -\frac{3}{2}\csc^2\frac{3\theta}{2}\frac{d\theta}{dx}$   $\frac{d^2y}{dx^2} = \left(-\frac{3}{2}\csc^2\frac{3\theta}{2}\right)\frac{1}{(2\cos\theta - 2\cos 2\theta)}$   $\frac{d^2y}{dx^2}\Big|_{\theta=\pi} = \frac{3}{8}$ 

None of the above option satisfies the answer.

4. Let *f* and *g* be differentiable functions on **R**, such that *f* og is the identity function. If for some  $a, b \in \mathbf{R}, g'(a) = 5$  and g(a) = b, then f'(b) is equal to :

| a. $\frac{2}{5}$               | b. 5             |
|--------------------------------|------------------|
| c. 1                           | d. $\frac{1}{5}$ |
| Answer: (d)                    | 5                |
| <b>Solution:</b> $f(g(x)) = x$ |                  |
| f'(g(x))g'(x) = 1              |                  |

Put x = a

$$f'(g(a))g'(a) = 1 \Rightarrow f'^{(b)} \times 5 = 1 \Rightarrow f'(b) = \frac{1}{5}$$

5. In the expansion of  $\left(\frac{x}{\cos \theta} + \frac{1}{x \sin \theta}\right)^{16}$ , if  $l_1$  is the least value of the term independent of x when  $\frac{\pi}{8} \le \theta \le \frac{\pi}{4}$  and  $l_2$  is the least value of the term independent of x when  $\frac{\pi}{16} \le \theta \le \frac{\pi}{8}$ , then the ratio  $l_2$ :  $l_1$  is equal to :

b. 8:1

d. 1:16

c. 1:8

Answer: (a)

Solution:

$$T_{r+1} = {}^{16}C_r \left(\frac{x}{\cos\theta}\right)^{16-r} \left(\frac{1}{x\sin\theta}\right)^r$$

For term independent of *x*,

$$16 - 2r = 0 \Rightarrow r = 8$$
  

$$T_9 = {}^{16}C_8 \left(\frac{1}{\sin\theta\cos\theta}\right)^8 = {}^{16}C_8 2^8 \left(\frac{1}{\sin 2\theta}\right)^8$$
  

$$l_1 = {}^{16}C_8 2^8 \text{ at } \theta = \frac{\pi}{4}$$
  

$$l_2 = {}^{16}C_8 \frac{2^8}{\left(\frac{1}{\sqrt{2}}\right)^8} = {}^{16}C_8 2^{12} \text{ at } \theta = \frac{\pi}{8}$$

- $\frac{l_2}{l_1} = 16:1$
- 6. Let  $a, b \in \mathbf{R}$ ,  $a \neq 0$ , such that the equation,  $ax^2 2bx + 5 = 0$  has a repeated root  $\alpha$ , which is also a root of the equation  $x^2 2bx 10 = 0$ . If  $\beta$  is the root of this equation, then  $\alpha^2 + \beta^2$  is equal to:

| a. | 24 | b. | 25 |
|----|----|----|----|
| c. | 26 | d. | 28 |

Answer: (b)

#### Solution:

 $ax^2 - 2bx + 5 = 0$  has both roots as  $\alpha$ 

$$\Rightarrow 2\alpha = \frac{2b}{a} \Rightarrow \alpha = \frac{b}{a}$$
And  $\alpha^2 = \frac{5}{a}$ 



- ... (1)
- $\Rightarrow \alpha + \beta = 2b \& \alpha\beta = -10$   $\alpha = \frac{b}{a} \text{ is also a root of } x^2 - 2bx - 10 = 0$   $\Rightarrow b^2 - 2ab^2 - 10a^2 = 0$   $\because b^2 = 5a \Rightarrow 5a - 10a^2 - 10a^2 = 0$   $\Rightarrow a = \frac{1}{4} \Rightarrow b^2 = \frac{5}{4}$  $\Rightarrow \alpha^2 = 20, \beta^2 = 5 \Rightarrow \alpha^2 + \beta^2 = 25$
- 7. Let a function  $f:[0,5] \to \mathbf{R}$ , be continuous, f(1) = 3 and  $\mathbf{F}$  be defined as:  $F(x) = \int_{1}^{x} t^{2} g(t) dt$ , where  $g(t) = \int_{1}^{t} f(u) du$  Then for the function  $\mathbf{F}$ , the point x = 1 is a. a point of inflection. b. a point of local maxima c. a point of local minima. d. not a critical point

Answer: (c)

 $\Rightarrow b^2 = 5a(a \neq 0)$ 

Solution:

 $F(x) = x^{2}g(x)$ Put x = 1  $\Rightarrow F(1) = g(1) = 0$  ... (1)
Now  $F''(x) = 2xg(x) + g'(x)x^{2}$  F''(1) = 2g(1) + g'(1) {: g'(x) = f(x)} F''(1) = f(1) = 3 ... (2)

From (1) and (2), F(x) has local minimum at x = 1

- 8. Let [*t*] denotes the greatest integer  $\leq t$  and  $\lim_{x \to 0} x \left[\frac{4}{x}\right] = A$ . Then the function,  $f(x) = [x^2] \sin \pi x$  is discontinuous, when *x* is equal to
  - a.  $\sqrt{A+1}$ b.  $\sqrt{A}$ c.  $\sqrt{A+5}$ d.  $\sqrt{A+21}$ Answer: (a) Solution:  $f(x) = [x^2] \sin \pi x$

It is continuous  $\forall x \in \mathbf{Z}$  as  $\sin \pi x \to 0$  as  $\to \mathbf{Z}$ .

f(x) is discontinuous at points where  $[x^2]$  is discontinuous i.e.  $x^2 \in \mathbb{Z}$  with an exception that f(x) is continuous as x is an integer.

 $\therefore$  Points of discontinuity for f(x) would be at

$$x = \pm \sqrt{2}, \pm \sqrt{3}, \pm \sqrt{5}, \dots \dots$$

Also, it is given that  $\lim_{x\to 0} x\left[\frac{4}{x}\right] = A$  (indeterminate form  $(0 \times \infty)$ )

$$\Rightarrow \lim_{x \to 0} x \left(\frac{4}{x} - \left\{\frac{4}{x}\right\}\right) = A$$
$$\Rightarrow 4 - \lim_{x \to 0} \left\{\frac{4}{x}\right\} = A$$
$$\Rightarrow A = 4$$
$$\sqrt{A + 5} = 3$$
$$\sqrt{A + 1} = \sqrt{5}$$

 $\sqrt{A+21} = 5$ 

$$\sqrt{A} = 2$$

 $\therefore$  Points of discontinuity for f(x) is  $x = \sqrt{5}$ 

```
9. Let a - 2b + c = 1,

If f(x) = \begin{vmatrix} x + a & x + 2 & x + 1 \\ x + b & x + 3 & x + 2 \\ x + c & x + 4 & x + 3 \end{vmatrix}, then:

a. f(-50) = 501

c. f(50) = 1
```

Answer: (c)

Solution:

```
Given f(x) = \begin{vmatrix} x+a & x+2 & x+1 \\ x+b & x+3 & x+2 \\ x+c & x+4 & x+3 \end{vmatrix}
a-2b+c = 1
Applying R_1 \to R_1 - 2R_2 + R_3
f(x) = \begin{vmatrix} a-2b+c & 0 & 0 \\ x+b & x+3 & x+2 \\ x+c & x+4 & x+3 \end{vmatrix}
```

b. f(-50) = -1

d. f(50) = -501







$$\begin{aligned} 1 - x &= \left(x - \frac{1}{2}\right)^2 \\ \Rightarrow x &= \frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2} \\ \text{Required area} &= \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} (f(x) - g(x)) dx \\ &= \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \left(1 - x - \left(x - \frac{1}{2}\right)^2\right) dx \\ &= x - \frac{x^2}{2} - \frac{1}{3} \left(x - \frac{1}{2}\right)^3 \Big|_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} &= \frac{\sqrt{3}}{4} - \frac{1}{3} \end{aligned}$$

#### 11. The following system of linear equations

7x + 6y - 2z = 0, 3x + 4y + 2z = 0

- x 2y 6z = 0, has
- a. infinitely many solutions, (x, y, z) satisfying y = 2z
- b. infinitely many solutions (x, y, z) satisfying x = 2z
- c. no solution
- d. only the trivial solution

#### Answer: (b)

#### Solution:

7x + 6y - 2z = 0

3x + 4y + 2z = 0

x - 2y - 6z = 0

As the system of equations are Homogeneous  $\Rightarrow$  the system is consistent.

$$\Rightarrow \begin{vmatrix} 7 & 6 & -2 \\ 3 & 4 & 2 \\ 1 & -2 & -6 \end{vmatrix} = 0$$

 $\Rightarrow$  Infinite solutions exist (both trivial and non-trivial solutions)

When y = 2z

Let's take y = 2, z = 1

When (x, 2, 1) is substituted in the system of equations

 $\Rightarrow 7x + 10 = 0$ , 3x + 10 = 0, x - 10 = 0 (which is not possible)

 $\therefore y = 2z \Rightarrow$  Infinitely many solutions does not exist.

For x = 2z, lets take x = 2, z = 1, y = y

Substitute (2, *y*, 1)in system of equations

$$\Rightarrow y = -2$$

:. For each pair of (x, z), we get a value of y.

Therefore, for x = 2z infinitely many solutions exists.

### 12. If $p \rightarrow (p \land \sim q)$ is false. Then the truth values of *p* and *q* are respectively

| a. | F, T | b. | T, F |
|----|------|----|------|
| c. | F, F | d. | Т, Т |

Answer: (d)

Solution:

Given  $p \to (p \land \sim q)$ 

Truth table:

| р | q | ~q | $(p \land \sim q)$ | $p \to (p \land \sim q)$ |
|---|---|----|--------------------|--------------------------|
| Т | Т | F  | F                  | F                        |
| Т | F | Т  | Т                  | Т                        |
| F | Т | F  | F                  | Т                        |
| F | F | Т  | F                  | Т                        |

 $p \rightarrow (p \land \sim q)$  is false when p is true and q is true.

13. The length of minor axis (along y-axis) of an ellipse of the standard form is  $\frac{4}{\sqrt{3}}$ . If this ellipse touches the line x + 6y = 8, then its eccentricity is :

a. 
$$\frac{1}{2}\sqrt{\frac{5}{3}}$$
  
b.  $\frac{1}{2}\sqrt{\frac{11}{3}}$   
c.  $\sqrt{\frac{5}{6}}$   
d.  $\frac{1}{3}\sqrt{\frac{11}{3}}$   
Answer: (b)

Solution:

If 
$$2b = \frac{4}{\sqrt{3}}$$
  
 $b = \frac{2}{\sqrt{3}}$ 

Comparing  $y = -\frac{x}{6} + \frac{8}{6}$  with  $y = mx \pm \sqrt{a^2 m^2 + b^2}$   $m = -\frac{1}{6}$  and  $a^2 m^2 + b^2 = \frac{16}{9}$   $\frac{a^2}{36} + \frac{4}{3} = \frac{16}{9}$   $\Rightarrow \frac{a^2}{36} = \frac{16}{9} - \frac{4}{3}$   $\Rightarrow a^2 = 16$   $e = \sqrt{1 - \frac{b^2}{a^2}}$  $\Rightarrow e = \sqrt{\frac{11}{12}}$ 

14. If z be a complex number satisfying |Re(z)| + |Im(z)| = 4, then |z| cannot be:





15. If  $x = \sum_{n=0}^{\infty} (-1)^n \tan^{2n}\theta$  and  $y = \sum_{n=0}^{\infty} \cos^{2n}\theta$ , where  $0 < \theta < \frac{\pi}{4}$ , then:

a. 
$$y(1+x) = 1$$
b.  $x(1-y) = 1$ c.  $y(1-x) = 1$ d.  $x(1+y) = 1$ 

Answer: (c)

#### Solution:

$$y = 1 + \cos^2 \theta + \cos^4 \theta + \cdots$$
  

$$\Rightarrow y = \frac{1}{1 - \cos^2 \theta} \Rightarrow \frac{1}{y} = \sin^2 \theta$$
  

$$x = 1 - \tan^2 \theta + \tan^4 \theta - \cdots$$
  

$$\Rightarrow x = \frac{1}{1 - (-\tan^2 \theta)} = \cos^2 \theta$$
  

$$\therefore x + \frac{1}{y} = 1 \Rightarrow y(1 - x) = 1$$

16. If 
$$\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$$
;  $y(1) = 1$ ; then a value of  $x$  satisfying  $y(x) = e$  is

a. √3*e* 

c.  $\sqrt{2}e$ 

b.  $\frac{1}{2}\sqrt{3}e$ d.  $\frac{e}{\sqrt{2}}$ 

Answer: (a)

Solution:

Let y = vx

$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$\Rightarrow v + x \frac{dv}{dx} = \frac{vx^2}{x^2(1+v^2)} = \frac{v}{1+v^2}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{-v^3}{1+v^2}$$

$$\Rightarrow \frac{1}{x} dx = \left(-\frac{1}{v^3} - \frac{1}{v}\right) dv$$



- 17. If one end of focal chord *AB* of the parabola  $y^2 = 8x$  is at  $A\left(\frac{1}{2}, -2\right)$ , then the equation of tangent to it at *B* is
  - a. x + 2y + 8 = 0b. 2x - y - 24 = 0c. x - 2y + 8 = 0d. 2x + y - 24 = 0Answer: (c)

Solution:

Let *PQ* be the focal chord of the parabola  $y^2 = 8x$ 

$$\Rightarrow P(t_1) = (2t_1^2, 4t_1) \& Q(t_2) = (2t_2^2, 4t_2)$$

- $\Rightarrow t_1 t_2 = -1$
- $:\left(\frac{1}{2},-2\right)$  is one of the ends of the focal chord of the parabola

Let 
$$\left(\frac{1}{2}, -2\right) = (2t_2^2, 4t_2)$$

 $\Rightarrow t_2 = -\frac{1}{2}$ 

 $\Rightarrow$  Other end of focal chord will have parameter  $t_1=2$ 

 $\Rightarrow$  The co-ordinate of the other end of the focal chord will be (8,8)



: The equation of the tangent will be given as  $\rightarrow 8y = 4(x + 8)$ 

 $\Rightarrow 2y - x = 8$ 

18. Let  $a_n$  be the  $n^{th}$  term of a G.P. of positive terms. If  $\sum_{n=1}^{100} a_{2n+1} = 200$  and  $\sum_{n=1}^{100} a_{2n} = 100$  then  $\sum_{n=1}^{200} a_n$  is equal to:

| a. | 300 | b. | 175 |
|----|-----|----|-----|
| c. | 225 | d. | 150 |

Answer: (d)

### Solution:

 $\begin{aligned} a_n \text{ is a positive term of GP.} \\ \text{Let GP be } a, ar, ar^2, \dots \\ \sum_{n=1}^{100} a_{2n+1} &= a_3 + a_5 + \dots + a_{201} \\ 200 &= ar^2 + ar^4 + \dots + ar^{201} \Rightarrow 200 = \frac{ar^2(r^{200}-1)}{r^2-1} \dots (1) \\ \text{Also,} \quad \sum_{n=1}^{100} a_{2n} &= 100 \\ 100 &= a_2 + a_4 + \dots + a_{200} \Rightarrow 100 = ar + ar^3 + \dots + ar^{199} \\ 100 &= \frac{ar(r^{200}-1)}{r^2-1} \dots (2) \\ \text{From (1) and (2), } r &= 2 \\ \text{And } \sum_{n=1}^{100} a_{2n+1} + \sum_{n=1}^{100} a_{2n} = 300 \\ \Rightarrow a_2 + a_3 + a_4 \dots + a_{200} + a_{201} = 300 \\ \Rightarrow ar + ar^2 + ar^3 + \dots + ar^{200} = 300 \Rightarrow r(a + ar + ar^2 + \dots + ar^{199}) = 300 \\ \Rightarrow 2(a_1 + a_2 + a_3 + \dots + a_{200}) = 300 \\ \sum_{n=1}^{200} a_n &= 150 \end{aligned}$ 

19. A random variable *X* has the following probability distribution:

| Х    | 1                     | 2          | 3 | 4          | 5      |
|------|-----------------------|------------|---|------------|--------|
| P(X) | <i>K</i> <sup>2</sup> | 2 <i>K</i> | K | 2 <i>K</i> | $5K^2$ |

Then P(X > 2) is equal to:

| a. | $\frac{7}{12}$ | b. | 23<br>36      |
|----|----------------|----|---------------|
| c. | <u>1</u><br>36 | d. | $\frac{1}{6}$ |

Answer: (b)

### Solution:

We know that  $\sum_{X=1}^{5} P(X) = 1$   $\Rightarrow K^{2} + 2K + K + 2K + 5K^{2} = 1$   $\Rightarrow K = -1, \frac{1}{6} \Rightarrow K = \frac{1}{6}$  P(X > 2) = P(X = 3) + P(X = 4) + P(X = 5) $= K + 2K + 5K^{2} = \frac{23}{36}$ 

20. If  $\int \frac{d\theta}{\cos^2 \theta \ (\tan 2\theta + \sec 2\theta)} = \lambda \tan \theta + 2 \log_e |f(\theta)| + C$  where C is constant if integration, then the ordered pair  $(\lambda, f(\theta))$  is equal to:

a.  $(-1, 1 - \tan \theta)$ 

c.  $(1, 1 + \tan \theta)$ 

- b.  $(-1, 1 + \tan \theta)$
- d.  $(1, 1 \tan \theta)$

Answer: (b)

Solution:

Let 
$$I = \int \frac{d\theta}{\cos^2\theta(\sec 2\theta + \tan 2\theta)}$$
  
 $I = \int \frac{\sec^2\theta d\theta}{\left(\frac{1+\tan^2\theta}{1-\tan^2\theta}\right) + \left(\frac{2\tan\theta}{1-\tan^2\theta}\right)}$   
 $I = \int \frac{(1-\tan^2\theta)(\sec^2\theta)d\theta}{(1+\tan\theta)^2}$   
Let  $\tan\theta = k \Rightarrow \sec^2\theta \ d\theta = dk$   
 $I = \int \frac{(1-k^2)}{(1+k)^2} dk = \int \frac{(1-k)}{(1+k)} \ dk$   
 $I = \left(\frac{2}{1+k} - 1\right) dk$   
 $I = 2\ln|1+k| - k + c$   
 $I = 2\ln|1 + \tan\theta| - \tan\theta + c$   
Given  $I = \lambda \tan\theta + 2\log f(\theta) + c$ 



21. Let  $\vec{a}, \vec{b}$  and  $\vec{c}$  be three vectors such that  $|\vec{a}| = \sqrt{3}, |\vec{b}| = 5, \vec{b}, \vec{c} = 10$  and the angle between  $\vec{b}$  and  $\vec{c}$  is  $\frac{\pi}{3}$ . If  $\vec{a}$  is perpendicular to vector  $\vec{b} \times \vec{c}$ , then  $|\vec{a} \times (\vec{b} \times \vec{c})|$  is equal to \_\_\_\_\_

Answer : (30)  
Solution:  

$$|\vec{a} \times (\vec{b} \times \vec{c})| = |\vec{a}| |\vec{b} \times \vec{c}| \sin \theta \text{ where } \theta \text{ is the angle between } \vec{a} \text{ and } \vec{b} \times \vec{c}$$

$$\theta = \frac{\pi}{2} \text{ given}$$

$$\Rightarrow |\vec{a} \times (\vec{b} \times \vec{c})| = \sqrt{3} |\vec{b} \times \vec{c}| = \sqrt{3} |\vec{b}| |\vec{c}| \sin \frac{\pi}{3}$$

$$\Rightarrow |\vec{a} \times (\vec{b} \times \vec{c})| = \sqrt{3} \times 5 \times |\vec{c}| \times \frac{\sqrt{3}}{2}$$

$$\Rightarrow |\vec{a} \times (\vec{b} \times \vec{c})| = \frac{15}{2} |\vec{c}|$$
Now,  $|\vec{b}| |\vec{c}| \cos \theta = 10$ 

$$5|\vec{c}| \frac{1}{2} = 10$$

$$|\vec{c}| = 4$$

$$\Rightarrow |\vec{a} \times (\vec{b} \times \vec{c})| = 30$$
22. If  $C_r = {}^{25}C_r \text{ and } C_0 + 5 \cdot C_1 + 9 \cdot C_2 + \dots + 101 \cdot C_{25} = 2^{25} \cdot k \text{ then } k \text{ is equal to} \_\_\_$ 
Answer: (51)  
Solution:  

$$S = {}^{25}C_0 + 5^{25}C_1 + 9^{25}C_2 + \dots + 9^{725}C_{24} + 101^{25}C_{25} = 2^{25}k \qquad (1)$$
Reverse and apply property  ${}^{n}C_r = {}^{n}C_{n-r}$  in all coefficients  

$$S = 101^{25}C_0 + 97^{25}C_1 + \dots + 5^{25}C_{24} + {}^{25}C_{25} \qquad (2)$$
Adding (1) and (2), we get  

$$2S = 102[{}^{25}C_0 + {}^{25}C_1 + \dots + {}^{25}C_{25}]$$

$$S = 51 \times 2^{25}$$



23. If the curves  $x^2 - 6x + y^2 + 8 = 0$  and  $x^2 - 8y + y^2 + 16 - k = 0$ , (k > 0) touch each other at a point, then the largest value of k is \_\_\_\_\_.

**Answer:** (36)

### Solution:

Two circles touch each other if  $C_1C_2 = |r_1 \pm r_2|$ 

$$\sqrt{k} + 1 = 5$$
 or  $|\sqrt{k} - 1| = 5$ 

 $\Rightarrow k = 16 \text{ or } 36$ 

Maximum value of *k* is 36

- 24. The number of terms common to the A.P.'s 3, 7, 11, ... 407 and 2, 9, 16, ... 709 is \_
  - **Answer:** (14)

#### Solution:

First common term is 23

Common difference = LCM(7, 4) = 28

- $23 + (n-1)28 \le 407$
- $n-1 \leq 13.71$

$$n = 14$$

25. If the distance between the plane, 23x - 10y - 2z + 48 = 0 and the plane containing the lines  $\frac{x+1}{2} = \frac{y-3}{4} = \frac{z+1}{3}$  and  $\frac{x+3}{2} = \frac{y+2}{6} = \frac{z-1}{\lambda}$ ,  $(\lambda \in R)$  is equal to  $\frac{k}{\sqrt{633}}$ , then *k* is equal to

### Answer: (3)

### Solution:

We find the point of intersection of the two lines, and the distance of given plane from the two lines is the distance of plane from the point of intersection.

$$\therefore (2p - 1, 4p + 3, 3p - 1) = (2q - 3, 6q - 2, \lambda q + 1)$$

$$p = -\frac{1}{2} \text{ and } q = \frac{1}{2}$$

$$\lambda = -7$$
Point of intersection is  $\left(-2, 1, -\frac{5}{2}\right)$ 

$$\therefore \frac{k}{\sqrt{633}} = \left|\frac{-46 - 10 + 5 + 48}{\sqrt{633}}\right| \Rightarrow k = 3$$