EXERCISE 10.1

PAGE NO: 10.12

1. If in a $\triangle A B C, \angle A=45^{\circ}, \angle B=60^{\circ}$, and $\angle C=75^{\circ}$; find the ratio of its sides.

Solution:
Given: In $\triangle \mathrm{ABC}, \angle \mathrm{A}=45^{\circ}, \angle \mathrm{B}=60^{\circ}$, and $\angle \mathrm{C}=75^{\circ}$
By using the sine rule, we get

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Now by substituting the values we get,

$$
\begin{aligned}
& \frac{a}{\sin 45^{\circ}}=\frac{b}{\sin 60^{\circ}}=\frac{c}{\sin 75^{\circ}} \\
& \frac{a}{\sin 45^{\circ}}=\frac{b}{\sin 60^{\circ}}=\frac{c}{\sin \left(30^{\circ}+45^{\circ}\right)}
\end{aligned}
$$

$$
\frac{a}{\sin 45^{\circ}}=\frac{b}{\sin 60^{\circ}}=\frac{c}{\sin 30^{\circ} \cos 45^{\circ}+\sin 45^{\circ} \cos 30^{\circ}}
$$

We know, $\sin (a+b)=\sin a \cos b+\sin b \cos a$
Now by substituting the corresponding values, we get,

$$
\begin{aligned}
& \frac{\mathrm{a}}{\frac{1}{\sqrt{2}}}=\frac{\mathrm{b}}{\frac{\sqrt{3}}{2}}=\frac{\mathrm{c}}{\frac{1}{2} \times \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}} \\
& \frac{\mathrm{a}}{\frac{1}{\sqrt{2}}}=\frac{\mathrm{b}}{\frac{\sqrt{3}}{2}}=\frac{\mathrm{c}}{\frac{1+\sqrt{3}}{2 \sqrt{2}}} \\
& \mathrm{a}: \mathrm{b}: c=\frac{1}{\sqrt{2}}: \frac{\sqrt{3}}{2}: \frac{1+\sqrt{3}}{2 \sqrt{2}}
\end{aligned}
$$

Multiply the above expression by $2 \sqrt{ } 2$, we get
a: $b: c=2: \sqrt{6}:(1+\sqrt{ } 3)$
Hence the ratio of the sides of the given triangle is $a: b: c=2: \sqrt{6}:(1+\sqrt{ } 3)$

2. If in any $\triangle A B C, \angle C=105^{\circ}, \angle B=45^{\circ}, a=2$, then find b.

Solution:

Given: In $\triangle \mathrm{ABC}, \angle \mathrm{C}=105^{\circ}, \angle \mathrm{B}=45^{\circ}, \mathrm{a}=2$
We know in a triangle,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{A}=180^{\circ}-\angle \mathrm{B}-\angle \mathrm{C}$

Substituting the given values, we get

$$
\begin{aligned}
& \angle \mathrm{A}=180^{\circ}-45^{\circ}-105^{\circ} \\
& \angle \mathrm{A}=30^{\circ}
\end{aligned}
$$

By using the sine rule, we get

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& \frac{a}{\sin A}=\frac{b}{\sin B}
\end{aligned}
$$

Now by substituting the corresponding values we get,

$$
\frac{2}{\sin 30^{\circ}}=\frac{\mathrm{b}}{\sin 45^{\circ}}
$$

Substitute the equivalent values of the sine, we get

$$
\begin{aligned}
& \frac{2}{\frac{1}{2}}=\frac{b}{\frac{1}{\sqrt{2}}} \\
& \begin{aligned}
4 & =b \sqrt{2} \\
b & =4 / \sqrt{ } 2 \\
& =2 \sqrt{ } 2
\end{aligned}
\end{aligned}
$$

Hence the value of b is $2 \sqrt{ } 2$ units.

3. In $\triangle A B C$, if $a=18, b=24$ and $c=30$ and $\angle C=90^{\circ}$, find $\sin A, \sin B$ and $\sin C$.

 Solution:Given: In $\triangle \mathrm{ABC}, \mathrm{a}=18, \mathrm{~b}=24$ and $\mathrm{c}=30$ and $\angle \mathrm{C}=90^{\circ}$
By using the sine rule, we get

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

$$
\frac{a}{\sin A}=\frac{c}{\sin C}
$$

Now by substituting the given values we get,

$$
\begin{aligned}
& \frac{18}{\sin A}=\frac{30}{\sin 90^{\circ}} \\
& \sin A=\frac{18 \times \sin 90^{\circ}}{30} \\
& \sin A=\frac{18 \times 1}{30}
\end{aligned}
$$

$$
\sin A=\frac{3}{5}
$$

Similarly,

$$
\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Substitute the given values, we get

$$
\begin{aligned}
& \frac{24}{\sin B}=\frac{30}{\sin 90^{\circ}} \\
& \sin B=\frac{24 \times \sin 90^{\circ}}{30} \\
& \sin B=\frac{24 \times 1}{30}
\end{aligned}
$$

$$
\sin B=\frac{4}{5}
$$

And given, $\angle \mathrm{C}=90^{\circ}$, so $\sin \mathrm{C}=\sin 90^{\circ}=1$.
Hence the values of $\sin A=3 / 5, \sin B=4 / 5$ and $\sin C=1$ respectively.
In any triangle ABC , prove the following:
4. $\frac{a-b}{a+b}=\frac{\tan \left(\frac{A-B}{2}\right)}{\tan \left(\frac{A+B}{2}\right)}$

Solution:

By using the sine rule we know,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k
$$

$$
\frac{a}{\sin A}=k
$$

So, $\mathrm{a}=\mathrm{k} \sin \mathrm{A}$
Similarly, $\mathrm{b}=\mathrm{k} \sin \mathrm{B}$

$$
\text { And } \mathrm{c}=\mathrm{k} \sin \mathrm{C}
$$

We know,
$\mathrm{a}-\mathrm{b}=\mathrm{k}(\sin \mathrm{A}-\sin \mathrm{B})$
$a+b=k(\sin A+\sin B)$
Now let us consider LHS:

$$
\begin{align*}
\frac{a-b}{a+b} & =\frac{k(\sin A-\sin B)}{k(\sin A+\sin B)} \\
& =\frac{(\sin A-\sin B)}{(\sin A+\sin B)} \ldots \tag{i}
\end{align*}
$$

We know,
$\sin \mathrm{A}-\sin \mathrm{B}=2 \sin (\mathrm{~A}-\mathrm{B}) / 2 \cos (\mathrm{~A}+\mathrm{B}) / 2$
$\sin \mathrm{A}+\sin \mathrm{B}=2 \sin (\mathrm{~A}+\mathrm{B}) / 2 \cos (\mathrm{~A}-\mathrm{B}) / 2$
Substituting the above formulas in equation (i), we get
$\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}=\frac{\left(2 \sin \left(\frac{\mathrm{~A}-\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right)\right)}{\left(2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)\right)}$
Upon rearranging we get,

$$
\begin{aligned}
& =\frac{\left(\sin \left(\frac{A-B}{2}\right)\right)}{\left(\cos \left(\frac{A-B}{2}\right)\right)} \times \frac{\cos \left(\frac{A+B}{2}\right)}{\sin \left(\frac{A+B}{2}\right)} \\
& =\frac{\left(\tan \left(\frac{A-B}{2}\right)\right)}{1} \times \frac{1}{\tan \left(\frac{A+B}{2}\right)} \\
& =\frac{\left(\tan \left(\frac{A-B}{2}\right)\right)}{\left(\tan \left(\frac{A+B}{2}\right)\right)} \\
& =\text { RHS }
\end{aligned}
$$

Hence proved.
5. $(\mathrm{a}-\mathrm{b}) \cos \mathrm{C} / 2=\mathrm{C} \sin (\mathrm{A}-\mathrm{B}) / 2$

Solution:
By using the sine rule we know,
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k$
$\frac{a}{\sin A}=k$
So, $\mathrm{a}=\mathrm{k} \sin \mathrm{A}$
Similarly, $\mathrm{b}=\mathrm{k} \sin \mathrm{B}$
We know,
$\mathrm{a}-\mathrm{b}=\mathrm{k}(\sin \mathrm{A}-\sin \mathrm{B}) \ldots$ (i)
Now let us consider LHS:
$(\mathrm{a}-\mathrm{b}) \cos \frac{\mathrm{C}}{2}$
Substituting equation (i) in above equation, we get
$(k(\sin A-\sin B)) \cos \frac{C}{2} \ldots$ (ii)
We know,
$\sin \mathrm{A}-\sin \mathrm{B}=2 \sin (\mathrm{~A}-\mathrm{B}) / 2 \cos (\mathrm{~A}+\mathrm{B}) / 2$
Substituting the above formulas in equation (ii), we get

$$
\begin{aligned}
&(a-b) \cos \frac{C}{2}=\left(k\left(2 \sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)\right)\right) \cos \frac{C}{2} \\
&=\left(k\left(2 \sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)\right)\right) \cos \frac{(\pi-(A+B))}{2} \\
&=\left(2 k \sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)\right) \sin \left(\frac{A+B}{2}\right) \\
& {[\operatorname{since}, \cos (\pi / 2-A)=\sin A] }
\end{aligned}
$$

Upon rearranging we get,

$$
=\mathrm{k} \sin \left(\frac{\mathrm{~A}-\mathrm{B}}{2}\right)\left(2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right)\right)
$$

We know, $\sin \mathrm{A}=2 \cos (\mathrm{~A} / 2) \sin (\mathrm{A} / 2)$
So the above equation becomes,

$$
\begin{aligned}
& =k \sin \left(\frac{A-B}{2}\right)(\sin (A+B)) \\
& =k \sin \left(\frac{A-B}{2}\right)(\sin (\pi-C)) \\
& =k \sin (C) \sin \left(\frac{A-B}{2}\right)_{[\text {since, }} \sin (\pi-A)=A+B+C,
\end{aligned}
$$

From the sine rule,

$$
\frac{c}{\sin \mathrm{C}}=\mathrm{k} \Rightarrow \mathrm{c}=\mathrm{k} \sin \mathrm{C}
$$

So the above equation becomes,

$$
\begin{aligned}
& =c \sin \left(\frac{A-B}{2}\right) \\
& =\text { RHS }
\end{aligned}
$$

Hence proved.
6. $\frac{\mathbf{c}}{\mathbf{a}-\mathbf{b}}=\frac{\tan \left(\frac{A}{2}\right)+\tan \left(\frac{B}{2}\right)}{\tan \left(\frac{A}{2}\right)-\tan \left(\frac{B}{2}\right)}$

Solution:

By using the sine rule we know,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k
$$

$$
\frac{a}{\sin A}=k
$$

So, $\mathrm{a}=\mathrm{k} \sin \mathrm{A}$
Similarly, $\mathrm{b}=\mathrm{k} \sin \mathrm{B}$
And $\mathrm{c}=\mathrm{k} \sin \mathrm{C} \ldots$ (i)
We know,
$\mathrm{a}-\mathrm{b}=\mathrm{k}(\sin \mathrm{A}-\sin \mathrm{B})$.
Now let us consider LHS:

$$
\begin{equation*}
\frac{c}{a-b} \tag{ii}
\end{equation*}
$$

Substituting equation (i) and (ii) in above equation, we get

$$
\begin{equation*}
\frac{k \sin C}{k(\sin A-\sin B)}=\frac{\sin C}{(\sin A-\sin B)} \tag{iii}
\end{equation*}
$$

By applying half angle rule,

$$
\begin{equation*}
\sin C=2 \sin \frac{C}{2} \cos \frac{C}{2} \tag{iv}
\end{equation*}
$$

And we know,
$\sin \mathrm{A}-\sin \mathrm{B}=2 \sin (\mathrm{~A}-\mathrm{B}) / 2 \cos (\mathrm{~A}+\mathrm{B}) / 2 \ldots$ (v)
Substituting the above equations (iv) and (v) in equation (iii), we get

$$
\begin{aligned}
& \frac{c}{(a-b)}=\frac{2 \sin \frac{C}{2} \cos \frac{C}{2}}{2 \sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)} \\
&=\frac{\sin \left(\frac{\pi-(A+B)}{2}\right) \cos \left(\frac{C}{2}\right)}{\sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)} \\
& {[\text { since }, \pi=A+B+C, \text { where, } C=\pi-(A+B)] }
\end{aligned}
$$

$$
=\frac{\cos \left(\frac{A+B}{2}\right) \cos \left(\frac{C}{2}\right)}{\sin \left(\frac{(-B}{2}\right) \cos \left(\frac{A+B}{2}\right)}[\text { since, } \sin (\pi / 2-\mathrm{A})=\cos \mathrm{A}]
$$

Upon simplification we get,

$$
\begin{aligned}
& =\frac{\cos \left(\frac{C}{2}\right)}{\sin \left(\frac{A-B}{2}\right)} \\
& =\frac{\cos \left(\frac{\pi-(A+B)}{2}\right)}{\sin \left(\frac{A-B}{2}\right)} \quad[\text { since, } \pi=A+B+C, \text { where, } C=\pi-(A+B)] \\
& =\frac{\sin \left(\frac{(A+B)}{2}\right)}{\sin \left(\frac{A-B}{2}\right)} \ldots(\mathrm{vi})[\text { since, } \cos (\pi / 2-\mathrm{A})=\sin \mathrm{A}]
\end{aligned}
$$

We know,
$\operatorname{Sin}(\mathrm{A}+\mathrm{B}) / 2=\sin (\mathrm{A} / 2+\mathrm{B} / 2)=\sin \mathrm{A} / 2 \cos \mathrm{~B} / 2+\cos \mathrm{A} / 2 \sin \mathrm{~B} / 2$
$\sin (A-B) / 2=\sin (A / 2-B / 2)=\sin A / 2 \cos B / 2-\cos A / 2 \sin B / 2$
Substituting the above equations in equation (yi) we get,

$$
=\frac{\sin \frac{A}{2} \cos \frac{B}{2}+\cos \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right)}{\sin \frac{A}{2} \cos \frac{B}{2}-\cos \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right)}
$$

Let us divide the numerator and denominator by $\cos \mathrm{A} / 2 \cos \mathrm{~B} / 2$, we get

$$
\begin{aligned}
& \frac{\sin \frac{A}{2} \cos \frac{B}{2}+\cos \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right)}{\cos \frac{A}{2} \cos \frac{B}{2}} \\
&= \frac{\sin \frac{A}{2} \cos \frac{B}{2}-\cos \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right)}{\cos \frac{A}{2} \cos \frac{B}{2}} \\
&= \frac{\sin \frac{A}{2} \cos \frac{B}{2} \frac{A}{2} \cos \frac{B}{2}}{\sin \frac{A}{2} \cos \frac{B}{2}} \frac{\cos \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right)}{\cos \frac{A}{2} \cos \frac{B}{2}} \\
&\left.\cos \frac{A}{2} \cos \frac{B}{2}\right) \sin \left(\frac{B}{2}\right) \\
& \cos \frac{A}{2} \cos \frac{B}{2}
\end{aligned}
$$

Upon simplification we get,

$$
\begin{aligned}
& \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}+\frac{\sin \left(\frac{B}{2}\right)}{\cos \frac{B}{2}} \\
= & \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}-\frac{\sin \left(\frac{B}{2}\right)}{\cos \frac{B}{2}} \\
= & \frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{\tan \frac{A}{2}-\tan \frac{B}{2}} \\
= & \text { RHS }
\end{aligned}
$$

Hence proved.
7. $\frac{\mathbf{c}}{\mathbf{a}+\mathbf{b}}=\frac{1-\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right)}{1+\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right)}$

Solution:
By using the sine rule we know,
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k$
$\frac{a}{\sin A}=k$
So, $\mathrm{a}=\mathrm{k} \sin \mathrm{A}$
Similarly, $\mathrm{b}=\mathrm{k} \sin \mathrm{B}$
And $\mathrm{c}=\mathrm{k} \sin \mathrm{C} \ldots$ (i)
We know,
$\mathrm{a}+\mathrm{b}=\mathrm{k}(\sin \mathrm{A}+\sin \mathrm{B}) \ldots$
Now let us consider LHS:
$\frac{c}{a+b}$
Substituting equation (i) and (ii) in above equation, we get
$\frac{k \sin C}{k(\sin A+\sin B)}=\frac{\sin C}{(\sin A+\sin B)}$
By applying half angle rule,

$$
\begin{equation*}
\sin C=2 \sin \frac{C}{2} \cos \frac{C}{2} \tag{iv}
\end{equation*}
$$

And we know,
$\sin \mathrm{A}+\sin \mathrm{B}=2 \sin (\mathrm{~A}+\mathrm{B}) / 2 \cos (\mathrm{~A}-\mathrm{B}) / 2 \ldots$ (v)
Substituting the above equations (iv) and (v) in equation (iii), we get

$$
\begin{aligned}
\frac{c}{(a+b)} & =\frac{2 \sin \frac{C}{2} \cos \frac{C}{2}}{2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)} \\
& =\frac{\sin \left(\frac{\pi-(A+B)}{2}\right) \cos \left(\frac{\pi-(A+B)}{2}\right)}{\sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}
\end{aligned}
$$

[Since, $\pi=\mathrm{A}+\mathrm{B}+\mathrm{C}$, where,
$\mathrm{C}=\pi-(\mathrm{A}+\mathrm{B})]$

$$
=\frac{\cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A+B}{2}\right)}{\sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}[\text { Since, } \sin (\pi / 2-A)=\cos A, \cos (\pi / 2-A)=
$$

$\sin \mathrm{A}]$
Upon simplification we get,

$$
\begin{equation*}
=\frac{\cos \left(\frac{(\mathrm{A}+\mathrm{B})}{2}\right)}{\cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)} \tag{vi}
\end{equation*}
$$

We know,
$\cos (\mathrm{A}+\mathrm{B}) / 2=\cos (\mathrm{A} / 2+\mathrm{B} / 2)=\cos \mathrm{A} / 2 \cos \mathrm{~B} / 2+\sin \mathrm{A} / 2 \sin \mathrm{~B} / 2$
$\cos (\mathrm{A}-\mathrm{B}) / 2=\cos (\mathrm{A} / 2-\mathrm{B} / 2)=\cos \mathrm{A} / 2 \cos \mathrm{~B} / 2-\sin \mathrm{A} / 2 \sin \mathrm{~B} / 2$
Substituting the above equations in equation (vi) we get,

$$
=\frac{\cos \frac{A}{2} \cos \frac{B}{2}+\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right)}{\cos \frac{A}{2} \cos \frac{B}{2}-\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right)}
$$

Let us divide the numerator and denominator by $\cos \mathrm{A} / 2 \cos \mathrm{~B} / 2$, we get

$$
=\frac{\frac{\cos \frac{\mathrm{A}}{2} \cos \frac{\mathrm{~B}}{2}+\sin \left(\frac{\mathrm{A}}{2}\right) \sin \left(\frac{\mathrm{B}}{2}\right)}{\cos \frac{\mathrm{A}}{2} \cos \frac{\mathrm{~B}}{2}}}{\frac{\cos \frac{\mathrm{~A}}{2} \cos \frac{\mathrm{~B}}{2}-\sin \left(\frac{\mathrm{A}}{2}\right) \sin \left(\frac{\mathrm{B}}{2}\right)}{\cos \frac{\mathrm{A}}{2} \cos \frac{\mathrm{~B}}{2}}}
$$

$$
=\frac{\frac{\cos \frac{A}{2} \cos \frac{B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}}+\frac{\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right)}{\cos \frac{A}{2} \cos \frac{B}{2}}}{\frac{\cos \frac{A}{2} \cos \frac{B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}}-\frac{\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right)}{\cos \frac{A}{2} \cos \frac{B}{2}}}
$$

Upon simplification we get,

$$
\begin{aligned}
& =\frac{1+\frac{\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right)}{\cos \frac{A}{2} \cos \frac{B}{2}}}{1-\frac{\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right)}{\cos \frac{A}{2} \cos \frac{B}{2}}} \\
& =\frac{1+\tan \frac{A}{2} \tan \frac{B}{2}}{1-\tan \frac{A}{2} \tan \frac{B}{2}} \\
& =
\end{aligned}
$$

Hence proved.
8. $\frac{\mathbf{a}+\mathbf{b}}{\mathbf{c}}=\frac{\cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)}{\sin \frac{\mathrm{C}}{2}}$

Solution:

By using the sine rule we know,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k
$$

$$
\frac{a}{\sin A}=k
$$

So, $\mathrm{a}=\mathrm{k} \sin \mathrm{A}$
Similarly, $\mathrm{b}=\mathrm{k} \sin \mathrm{B}$
And $\mathrm{c}=\mathrm{k} \sin \mathrm{C} \ldots$ (i)
We know,
$a+b=k(\sin A+\sin B) \ldots$
Now let us consider LHS:

$\frac{a+b}{c}$

Substituting equation (i) and (ii) in above equation, we get

$$
\begin{equation*}
\frac{\mathrm{k}(\sin A+\sin B)}{\mathrm{k}(\sin C)}=\frac{(\sin A+\sin B)}{(\sin C)} \tag{iii}
\end{equation*}
$$

By applying half angle rule,

$$
\begin{equation*}
\sin C=2 \sin \frac{C}{2} \cos \frac{C}{2} . \tag{iv}
\end{equation*}
$$

And we know,
$\sin \mathrm{A}+\sin \mathrm{B}=2 \sin (\mathrm{~A}+\mathrm{B}) / 2 \cos (\mathrm{~A}-\mathrm{B}) / 2 \ldots$ (v)
Substituting the above equations (iv) and (v) in equation (iii), we get

$$
\begin{aligned}
\begin{aligned}
& \frac{\mathrm{a}+\mathrm{b}}{\mathrm{c}}=\frac{2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)}{2 \sin \left(\frac{\mathrm{C}}{2}\right) \cos \left(\frac{\mathrm{C}}{2}\right)} \\
&=\frac{\sin \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)}{\sin \left(\frac{\mathrm{C}}{2}\right) \cos \left(\frac{\pi-(\mathrm{A}+\mathrm{B})}{2}\right)} \\
&(\mathrm{A}+\mathrm{B})] \\
&=\frac{\sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}{\sin \left(\frac{C}{2}\right) \sin \left(\frac{A+B}{2}\right)}[\text { Since, } \sin (\pi / 2-\mathrm{A})=\cos \mathrm{A}, \mathrm{~B}+\mathrm{C}, \text { where, } \mathrm{C}=\pi- \\
&(\pi / 2-\mathrm{A})=\sin
\end{aligned}
\end{aligned}
$$

A]
Upon simplification we get,

$$
\begin{aligned}
& =\frac{\cos \left(\frac{A-B}{2}\right)}{\sin \left(\frac{C}{2}\right)} \\
& =\text { RHS }
\end{aligned}
$$

Hence proved.
9. $\sin \left(\frac{B-C}{2}\right)=\frac{b-c}{a} \cos \frac{A}{2}$

Solution:

By using the sine rule we know,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k
$$

$$
\frac{c}{\sin C}=\mathrm{k}
$$

So, $\mathrm{c}=\mathrm{k} \sin \mathrm{C}$
Similarly, $b=k \sin B$
We know,
$\mathrm{b}-\mathrm{c}=\mathrm{k}(\sin \mathrm{B}-\sin \mathrm{C}) \ldots(\mathrm{i})$
Now let us consider RHS:

$$
\frac{\mathrm{b}-\mathrm{c}}{\mathrm{a}} \cos \frac{\mathrm{~A}}{2}
$$

Substituting equation (i) in above equation, we get

$$
\begin{equation*}
\frac{(k(\sin B-\sin C))}{k \sin A} \cos \frac{A}{2}=\frac{(\sin B-\sin C)}{\sin A} \cos \frac{A}{2} \tag{ii}
\end{equation*}
$$

And we know,
$\operatorname{Sin} B-\sin C=2 \sin (B-C) / 2 \cos (B+C) / 2 \ldots$ (iii)
Substituting the above equation (iii) in equation (ii), we get

$$
\frac{\mathrm{b}-\mathrm{c}}{\mathrm{a}} \cos \frac{\mathrm{~A}}{2}=\frac{2 \sin \left(\frac{\mathrm{~B}-\mathrm{C}}{2}\right) \cos \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)}{\sin \mathrm{A}} \cos \left(\frac{\pi-(\mathrm{B}+\mathrm{C})}{2}\right)_{[\text {Since }, \pi=}
$$

$\mathrm{A}+\mathrm{B}+\mathrm{C}$, where, $\mathrm{C}=\pi-(\mathrm{A}+\mathrm{B})]$

$$
=\frac{2 \sin \left(\frac{\mathrm{~B}-\mathrm{C}}{2}\right) \cos \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)}{\sin \mathrm{A}} \sin \left(\frac{(\mathrm{~B}+\mathrm{C})}{2}\right)
$$

[Since, $\cos (\pi / 2-\mathrm{A})$

$=\sin \mathrm{A}]$

Upon rearranging the above equation we get,

$$
=\frac{\sin \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)\left(2 \sin \left(\frac{(\mathrm{~B}+\mathrm{C})}{2}\right) \cos \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)\right)}{\sin \mathrm{A}}
$$

We know $\sin \mathrm{A}=2 \cos (\mathrm{~A} / 2) \sin (\mathrm{A} / 2)$
So,

$$
=\frac{\sin \left(\frac{B-C}{2}\right)(\sin (B+C))}{\sin A}
$$

$$
\begin{aligned}
& =\frac{\sin \left(\frac{B-C}{2}\right)(\sin (\pi-A))}{\sin A} \\
& =\frac{\sin \left(\frac{B-C}{2}\right) \sin A}{\sin A}[\text { Since, } \pi=A+B \\
& {[\text { Since, } \sin (\pi-A)=\sin A]}
\end{aligned}
$$

Upon simplification we get,

$$
\begin{aligned}
& =\sin \left(\frac{B-C}{2}\right) \\
& =\text { LHS }
\end{aligned}
$$

Hence proved.
10. $\frac{a^{2}-c^{2}}{b^{2}}=\frac{\sin (A-C)}{\sin (A+C)}$

Solution:

By using the sine rule we know,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k
$$

$\frac{\mathrm{c}}{\sin \mathrm{C}}=\mathrm{k}$
So, $\mathrm{c}=\mathrm{k} \sin \mathrm{C}$
Similarly, $\mathrm{a}=\mathrm{k} \sin \mathrm{A}$
And $\mathrm{b}=\mathrm{k} \sin \mathrm{B}$
So, $\mathrm{a}-\mathrm{c}=\mathrm{k}(\sin \mathrm{A}-\sin \mathrm{C}) \ldots$ (i)
We know,
Now let us consider LHS:
$\frac{a^{2}-c^{2}}{b^{2}}$
Substituting the values in the above equation, we get
$\frac{(\mathrm{k} \sin \mathrm{A})^{2}-(\mathrm{k} \sin \mathrm{C})^{2}}{(\mathrm{k} \sin \mathrm{B})^{2}}=\frac{\mathrm{k}^{2}\left(\sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{C}\right)}{\mathrm{k}^{2} \sin ^{2} \mathrm{~B}}$
And we know,
$\operatorname{Sin}^{2} \mathrm{~A}-\sin ^{2} \mathrm{C}=\sin (\mathrm{A}+\mathrm{C}) \sin (\mathrm{A}-\mathrm{C}) \ldots$ (iii)
Substituting the above equation (iii) in equation (ii), we get

$$
\begin{aligned}
\frac{a^{2}-c^{2}}{b^{2}} & =\frac{\sin (A+C) \sin (A-C)}{\sin ^{2}(\pi-(A+C))} \\
& =\frac{\sin (A+C) \sin (A-C)}{\sin ^{2}((A+C))} \quad[\text { Since, } \pi=A+B+C, \text { where, } \\
& =\frac{\sin (A-C)}{\sin (A+C)} \\
& =\text { RHS }
\end{aligned}
$$

Hence proved.
11. $b \sin B-c \sin C=a \sin (B-C)$

Solution:

By using the sine rule we know,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k
$$

$$
\frac{c}{\sin C}=k
$$

So, $\mathrm{c}=\mathrm{k} \sin \mathrm{C}$
Similarly, $\mathrm{a}=\mathrm{k} \sin \mathrm{A}$
And $\mathrm{b}=\mathrm{k} \sin \mathrm{B}$
We know,
Now let us consider LHS:
$b \sin B-c \sin C$
Substituting the values of b and c in the above equation, we get
$\mathrm{k} \sin \mathrm{B} \sin \mathrm{B}-\mathrm{k} \sin \mathrm{C} \sin \mathrm{C}=\mathrm{k}\left(\sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}\right) \ldots \ldots \ldots$. (i)
We know,
$\operatorname{Sin}^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}=\sin (\mathrm{B}+\mathrm{C}) \sin (\mathrm{B}-\mathrm{C})$,
Substituting the above values in equation (i), we get
$\mathrm{k}\left(\sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}\right)=\mathrm{k}(\sin (\mathrm{B}+\mathrm{C}) \sin (\mathrm{B}-\mathrm{C}))[$ since, $\pi=\mathrm{A}+\mathrm{B}+\mathrm{C} \Rightarrow \mathrm{B}+\mathrm{C}=\pi-\mathrm{A}]$
The above equation becomes,

$$
\begin{aligned}
& =k(\sin (\pi-A) \sin (B-C))[\text { since, } \sin (\pi-\theta)=\sin \theta] \\
& =k(\sin (A) \sin (B-C))
\end{aligned}
$$

From sine rule, $\mathrm{a}=\mathrm{k} \sin \mathrm{A}$, so the above equation becomes,

$$
\begin{aligned}
& =\mathrm{a} \sin (\mathrm{~B}-\mathrm{C}) \\
& =\text { RHS }
\end{aligned}
$$

Hence proved.
12. $a^{2} \sin (B-C)=\left(b^{2}-c^{2}\right) \sin A$

Solution:

By using the sine rule we know,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k
$$

$$
\frac{c}{\sin C}=k
$$

So, $\mathrm{c}=\mathrm{k} \sin \mathrm{C}$
Similarly, $\mathrm{a}=\mathrm{k} \sin \mathrm{A}$
And $b=k \sin B$
We know,
Now let us consider RHS:
$\left(\mathrm{b}^{2}-\mathrm{c}^{2}\right) \sin \mathrm{A} \ldots$
Substituting the values of b and c in the above equation, we get

$$
\begin{align*}
\left(b^{2}-c^{2}\right) \sin A & =\left[(k \sin B)^{2}-(k \sin C)^{2}\right] \sin A \\
& =k^{2}\left(\sin ^{2} B-\sin ^{2} C\right) \sin A \ldots \ldots . \tag{i}
\end{align*}
$$

We know,
$\operatorname{Sin}^{2} B-\sin ^{2} C=\sin (B+C) \sin (B-C)$,
Substituting the above values in equation (i), we get

$$
\begin{aligned}
& =k^{2}(\sin (B+C) \sin (B-C)) \sin A[\text { since, } \pi=A+B+C \Rightarrow B+C=\pi-A] \\
& =k^{2}(\sin (\pi-A) \sin (B-C)) \sin A \\
& =k^{2}(\sin (A) \sin (B-C)) \sin A[\text { since, } \sin (\pi-\theta)=\sin \theta]
\end{aligned}
$$

Rearranging the above equation we get

$$
=(\mathrm{k} \sin (\mathrm{~A}))(\sin (\mathrm{B}-\mathrm{C}))(\mathrm{k} \sin \mathrm{~A})
$$

From sine rule, $\mathrm{a}=\mathrm{k} \sin \mathrm{A}$, so the above equation becomes,

$$
\begin{aligned}
& =a^{2} \sin (B-C) \\
& =\text { RHS }
\end{aligned}
$$

Hence proved.
13. $\frac{\sqrt{\sin A}-\sqrt{\sin B}}{\sqrt{\sin A}+\sqrt{\sin B}}=\frac{a+b-2 \sqrt{a b}}{a-b}$

Solution:

By using the sine rule we know,

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k \\
& \sin A=\frac{a}{k}, \sin B=\frac{b}{k}, \sin C=\frac{c}{k}
\end{aligned}
$$

Let us consider LHS,

$$
\frac{\sqrt{\sin A}-\sqrt{\sin B}}{\sqrt{\sin A}+\sqrt{\sin B}}
$$

Let us multiply and divide the above expression by $\frac{\sqrt{\sin A}-\sqrt{\sin B}}{\sqrt{\sin A}-\sqrt{\sin B}}$ we get,

$$
\begin{aligned}
\frac{\sqrt{\sin A}-\sqrt{\sin B}}{\sqrt{\sin A}+\sqrt{\sin B}} & \times \frac{\sqrt{\sin A}-\sqrt{\sin B}}{\sqrt{\sin A}-\sqrt{\sin B}}=\frac{(\sqrt{\sin A}-\sqrt{\sin B})^{2}}{(\sqrt{\sin A})^{2}-(\sqrt{\sin B})^{2}} \\
& =\frac{(\sqrt{\sin A})^{2}+(\sqrt{\sin B})^{2}-(2 \sqrt{\sin A} \times \sqrt{\sin B})}{\sin A-\sin B} \\
& =\frac{\sin A+\sin B-(2 \sqrt{\sin A \times \sin B})}{\sin A-\sin B}
\end{aligned}
$$

Substituting the values of a and b from sine rule in the above equation, we get

$$
\begin{aligned}
& =\frac{\frac{a}{k}+\frac{b}{k}-\left(2 \sqrt{\frac{a}{k} \times \frac{b}{k}}\right)}{\frac{a}{k}-\frac{b}{k}} \\
& =\frac{\frac{1}{\mathrm{k}}(a+b-2 \sqrt{a b})}{\frac{1}{k}(a-b)} \\
& =\frac{a+b-2 \sqrt{a b}}{a-b} \\
& =\text { RHS }
\end{aligned}
$$

Hence proved.
14. $a(\sin B-\sin C)+b(\sin C-\sin A)+c(\sin A-\sin B)=0$

Solution:

By using the sine rule we know,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k
$$

$\mathrm{a}=\mathrm{k} \sin \mathrm{A}, \mathrm{b}=\mathrm{k} \sin \mathrm{B}, \mathrm{c}=\mathrm{k} \sin \mathrm{C}$
Let us consider LHS:
$a(\sin B-\sin C)+b(\sin C-\sin A)+c(\sin A-\sin B)$
Substituting the values of a, b, c from sine rule in above equation, we get
$a(\sin B-\sin C)+b(\sin C-\sin A)+c(\sin A-\sin B)=k \sin A(\sin B-\sin C)+k \sin B$ $(\sin C-\sin A)+k \sin C(\sin A-\sin B)$

$$
=\mathrm{k} \sin \mathrm{~A} \sin \mathrm{~B}-\mathrm{k} \sin \mathrm{~A} \sin \mathrm{C}+\mathrm{k}
$$

$\sin \mathrm{B} \sin \mathrm{C}-\mathrm{k} \sin \mathrm{B} \sin \mathrm{A}+\mathrm{k} \sin \mathrm{C} \sin \mathrm{A}-\mathrm{k} \sin \mathrm{C} \sin \mathrm{B}$ Upon simplification, we get

$$
\begin{aligned}
& =0 \\
& =\text { RHS }
\end{aligned}
$$

Hence proved.

$$
\text { 15. } \frac{a^{2} \sin (B-C)}{\sin A}+\frac{b^{2} \sin (C-A)}{\sin B}+\frac{c^{2} \sin (A-B)}{\sin C}=0
$$

Solution:

By using the sine rule we know,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k
$$

$\mathrm{a}=\mathrm{k} \sin \mathrm{A}, \mathrm{b}=\mathrm{k} \sin \mathrm{B}, \mathrm{c}=\mathrm{k} \sin \mathrm{C}$
Let us consider LHS:

$$
\frac{a^{2} \sin (B-C)}{\sin A}+\frac{b^{2} \sin (C-A)}{\sin B}+\frac{c^{2} \sin (A-B)}{\sin C}
$$

Substituting the values of a, b and c from sine rule in the above equation, we get

$$
\begin{aligned}
& =\frac{(k \sin A)^{2} \sin (B-C)}{\sin A}+\frac{(k \sin B)^{2} \sin (C-A)}{\sin B}+\frac{(k \sin C)^{2} \sin (A-B)}{\sin C} \\
& =\frac{k^{2} \sin ^{2} A \sin (B-C)}{\sin A}+\frac{k^{2} \sin ^{2} B \sin (C-A)}{\sin B}+\frac{k^{2} \sin ^{2} C \sin (A-B)}{\sin C}
\end{aligned}
$$

Upon simplification we get,

$$
=\mathrm{k}^{2}[\sin \mathrm{~A} \sin (\mathrm{~B}-\mathrm{C})+\sin \mathrm{B} \sin (\mathrm{C}-\mathrm{A})+\sin \mathrm{C} \sin (\mathrm{~A}-\mathrm{B})]
$$

We know, $\sin (A-B)=\sin A \cos B-\cos A \sin B$
$\sin (B-C)=\sin B \cos C-\cos B \sin C$
$\operatorname{Sin}(C-A)=\sin C \cos A-\cos C \sin A$
So the above equation becomes,

$$
=k^{2}[\sin A(\sin B \cos C-\cos B \sin C)+\sin B(\sin C \cos A-\cos C \sin A)+\sin C
$$ $(\sin \mathrm{A} \cos \mathrm{B}-\cos \mathrm{A} \sin \mathrm{B})]$

$$
=k^{2}[\sin A \sin B \cos C-\sin A \cos B \sin C+\sin B \sin C \cos A-\sin B \cos C \sin A
$$

$+\sin \mathrm{C} \sin \mathrm{A} \cos \mathrm{B}-\sin \mathrm{C} \cos \mathrm{A} \sin \mathrm{B})$]
Upon simplification we get,

$$
=0
$$

= RHS

Hence proved.

EXERCISE 10.2

PAGE NO: 10.25

In any $\triangle \mathrm{ABC}$, prove the following:

1. In a $\triangle A B C$, if $a=5, b=6$ and $C=60^{\circ}$, show that its area is $(15 \sqrt{ } 3) / 2$ sq. units. Solution:

Given:
In a $\triangle \mathrm{ABC}, \mathrm{a}=5, \mathrm{~b}=6$ and $\mathrm{C}=60^{\circ}$
By using the formula,
Area of $\triangle \mathrm{ABC}=1 / 2 \mathrm{ab} \sin \theta$ where, a and b are the lengths of the sides of a triangle and θ is the angle between sides.
So,
Area of $\triangle \mathrm{ABC}=1 / 2 \mathrm{ab} \sin \theta$

$$
\begin{aligned}
& =1 / 2 \times 5 \times 6 \times \sin 60^{\circ} \\
& =30 / 2 \times \sqrt{ } 3 / 2 \\
& =(15 \sqrt{3}) / 2 \text { sq. units }
\end{aligned}
$$

Hence proved.
2. In a $\triangle A B C$, if $a=\sqrt{ } 2, b=\sqrt{ } 3$ and $c=\sqrt{ } 5$ show that its area is $1 / 2 \sqrt{ } 6$ sq. units. Solution:
Given:
In a $\triangle A B C, a=\sqrt{ } 2, b=\sqrt{3}$ and $c=\sqrt{5}$
By using the formulas,
We know, $\cos \mathrm{A}=\left(\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}\right) / 2 \mathrm{bc}$
By substituting the values we get,

$$
\begin{aligned}
& =\left[(\sqrt{ } 3)^{2}+(\sqrt{5})^{2}-(\sqrt{ } 2)^{2}\right] /[2 \times \sqrt{ } 3 \times \sqrt{ } 5] \\
& =3 / \sqrt{ } 15
\end{aligned}
$$

We know, Area of $\triangle \mathrm{ABC}=1 / 2 \mathrm{bc} \sin \mathrm{A}$
To find $\sin \mathrm{A}$:
$\operatorname{Sin} A=\sqrt{ }\left(1-\cos ^{2} A\right)$ [by using trigonometric identity]
$=\sqrt{ }\left(1-(3 / \sqrt{ } 15)^{2}\right)$
$=\sqrt{ }(1-(9 / 15))$
$=\sqrt{ }(6 / 15)$
Now,
Area of $\triangle \mathrm{ABC}=1 / 2 \mathrm{bc} \sin \mathrm{A}$

$$
\begin{aligned}
& =1 / 2 \times \sqrt{ } 3 \times \sqrt{ } 5 \times \sqrt{ }(6 / 15) \\
& =1 / 2 \sqrt{6} \text { sq. units }
\end{aligned}
$$

Hence proved.
3. The sides of a triangle are $a=4, b=6$ and $c=8$, show that: $8 \cos A+16 \cos B+4$ $\cos \mathrm{C}=17$.

Solution:

Given:
Sides of a triangle are $a=4, b=6$ and $c=8$
By using the formulas,
$\operatorname{Cos} \mathrm{A}=\left(\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}\right) / 2 \mathrm{bc}$
$\operatorname{Cos} \mathrm{B}=\left(\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}\right) / 2 \mathrm{ac}$
$\operatorname{Cos} C=\left(a^{2}+b^{2}-c^{2}\right) / 2 a b$
So now let us substitute the values of a, b and c we get,
$\operatorname{Cos} \mathrm{A}=\left(\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}\right) / 2 \mathrm{bc}$
$=\left(6^{2}+8^{2}-4^{2}\right) / 2 \times 6 \times 8$
$=(36+64-16) / 96$
$=84 / 96$
$=7 / 8$
$\operatorname{Cos} B=\left(\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}\right) / 2 \mathrm{ac}$
$=\left(4^{2}+8^{2}-6^{2}\right) / 2 \times 4 \times 8$
$=(16+64-36) / 64$
$=44 / 64$

$$
\begin{aligned}
\operatorname{Cos} \mathrm{C} & =\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}\right) / 2 \mathrm{ab} \\
& =\left(4^{2}+6^{2}-8^{2}\right) / 2 \times 4 \times 6 \\
& =(16+36-64) / 48 \\
& =-12 / 48 \\
& =-1 / 4
\end{aligned}
$$

Now considering LHS:
$8 \cos A+16 \cos B+4 \cos C=8 \times 7 / 8+16 \times 44 / 64+4 \times(-1 / 4)$

$$
\begin{aligned}
& =7+11-1 \\
& =17
\end{aligned}
$$

Hence proved.
4. In a $\triangle A B C$, if $a=18, b=24, c=30$, find $\cos A, \cos B$ and $\cos C$

Solution:

Given:
Sides of a triangle are $\mathrm{a}=18, \mathrm{~b}=24$ and $\mathrm{c}=30$
By using the formulas,
$\operatorname{Cos} \mathrm{A}=\left(\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}\right) / 2 \mathrm{bc}$
$\operatorname{Cos} B=\left(a^{2}+c^{2}-b^{2}\right) / 2 a c$
$\operatorname{Cos} C=\left(a^{2}+b^{2}-c^{2}\right) / 2 a b$
So now let us substitute the values of a, b and c we get,
$\operatorname{Cos} A=\left(b^{2}+c^{2}-a^{2}\right) / 2 b c$
$=\left(24^{2}+30^{2}-18^{2}\right) / 2 \times 24 \times 30$
$=1152 / 1440$
$=4 / 5$
$\operatorname{Cos} \mathrm{B}=\left(\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}\right) / 2 \mathrm{ac}$
$=\left(18^{2}+30^{2}-24^{2}\right) / 2 \times 18 \times 30$
$=648 / 1080$
$=3 / 5$
$\operatorname{Cos} \mathrm{C}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}\right) / 2 \mathrm{ab}$

$$
\begin{aligned}
& =\left(18^{2}+24^{2}-30^{2}\right) / 2 \times 18 \times 24 \\
& =0 / 864 \\
& =0
\end{aligned}
$$

$\therefore \cos A=4 / 5, \cos B=3 / 5, \cos C=0$
5. For any $\triangle A B C$, show that $b(c \cos A-a \cos C)=c^{2}-a^{2}$

Solution:

Let us consider LHS:
b $(\mathrm{c} \cos \mathrm{A}-\mathrm{a} \cos \mathrm{C})$
As LHS contain bc $\cos \mathrm{A}$ and $\mathrm{ab} \cos \mathrm{C}$ which can be obtained from cosine formulae.
From cosine formula we have:
$\operatorname{Cos} \mathrm{A}=\left(\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}\right) / 2 \mathrm{bc}$
$\mathrm{bc} \cos \mathrm{A}=\left(\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}\right) / 2 \ldots$
$\operatorname{Cos} \mathrm{C}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}\right) / 2 \mathrm{ab}$
$a b \cos C=\left(a^{2}+b^{2}-c^{2}\right) / 2$.
Now let us subtract equation (i) and (ii) we get,
$\mathrm{bc} \cos \mathrm{A}-\mathrm{ab} \cos \mathrm{C}=\left(\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}\right) / 2-\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}\right) / 2$

$$
=\mathrm{c}^{2}-\mathrm{a}^{2}
$$

$\therefore \mathrm{b}(\mathrm{c} \cos \mathrm{A}-\mathrm{a} \cos \mathrm{C})=\mathrm{c}^{2}-\mathrm{a}^{2}$
Hence proved.
6. For any $\triangle A B C$ show that $c(a \cos B-b \cos A)=a^{2}-b^{2}$ Solution:
Let us consider LHS:
$\mathrm{c}(\mathrm{a} \cos \mathrm{B}-\mathrm{b} \cos \mathrm{A})$
As LHS contain ca $\cos \mathrm{B}$ and $\mathrm{cb} \cos \mathrm{A}$ which can be obtained from cosine formulae.
From cosine formula we have:
$\operatorname{Cos} \mathrm{A}=\left(\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}\right) / 2 \mathrm{bc}$
$b c \cos A=\left(b^{2}+c^{2}-a^{2}\right) / 2 \ldots$ (i)
$\operatorname{Cos} \mathrm{B}=\left(\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}\right) / 2 \mathrm{ac}$
$\mathrm{ac} \cos \mathrm{B}=\left(\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}\right) / 2$
Now let us subtract equation (ii) from (i) we get,
$a c \cos B-b c \cos A=\left(a^{2}+c^{2}-b^{2}\right) / 2-\left(b^{2}+c^{2}-a^{2}\right) / 2$

$$
=\mathrm{a}^{2}-\mathrm{b}^{2}
$$

$\therefore \mathrm{c}(\mathrm{a} \cos \mathrm{B}-\mathrm{b} \cos \mathrm{A})=\mathrm{a}^{2}-\mathrm{b}^{2}$
Hence proved.

7. For any $\triangle \mathrm{ABC}$ show that

$2(b c \cos A+c a \cos B+a b \cos C)=a^{2}+b^{2}+c^{2}$

Solution:

Let us consider LHS:
$2(b c \cos A+c a \cos B+a b \cos C)$
As LHS contain $2 \mathrm{ca} \cos \mathrm{B}, 2 \mathrm{ab} \cos \mathrm{C}$ and $2 \mathrm{cb} \cos \mathrm{A}$, which can be obtained from cosine formulae.
From cosine formula we have:
$\operatorname{Cos} \mathrm{A}=\left(\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}\right) / 2 \mathrm{bc}$
$2 b c \cos A=\left(b^{2}+c^{2}-a^{2}\right) \ldots$ (i)
$\operatorname{Cos} B=\left(a^{2}+c^{2}-b^{2}\right) / 2 a c$
$2 a c \cos B=\left(a^{2}+c^{2}-b^{2}\right) \ldots$ (ii)
$\operatorname{Cos} \mathrm{C}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}\right) / 2 \mathrm{ab}$
$2 a b \cos C=\left(a^{2}+b^{2}-c^{2}\right) \ldots$ (iii)
Now let us add equation (i), (ii) and (ii) we get,
$2 b c \cos A+2 a c \cos B+2 a b \cos C=\left(b^{2}+c^{2}-a^{2}\right)+\left(a^{2}+c^{2}-b^{2}\right)+\left(a^{2}+b^{2}-c^{2}\right)$
Upon simplification we get,

$$
=c^{2}+b^{2}+a^{2}
$$

$2(b c \cos A+a c \cos B+a b \cos C)=a^{2}+b^{2}+c^{2}$
Hence proved.

8. For any $\triangle \mathrm{ABC}$ show that

 $\left(c^{2}-\mathbf{a}^{2}+b^{2}\right) \tan A=\left(a^{2}-b^{2}+c^{2}\right) \tan B=\left(b^{2}-c^{2}+a^{2}\right) \tan C$
Solution:

Let us consider LHS:
$\left(c^{2}-a^{2}+b^{2}\right),\left(a^{2}-b^{2}+c^{2}\right),\left(b^{2}-c^{2}+a^{2}\right)$
We know sine rule in $\triangle \mathrm{ABC}$

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

As LHS contain $\left(c^{2}-a^{2}+b^{2}\right),\left(a^{2}-b^{2}+c^{2}\right)$ and $\left(b^{2}-c^{2}+a^{2}\right)$, which can be obtained from cosine formulae.
From cosine formula we have:
$\operatorname{Cos} A=\left(b^{2}+c^{2}-a^{2}\right) / 2 b c$
$2 b c \cos A=\left(b^{2}+c^{2}-a^{2}\right)$
Let us multiply both the sides by $\tan \mathrm{A}$ we get,
$2 b c \cos A \tan A=\left(b^{2}+c^{2}-a^{2}\right) \tan A$
$2 b c \cos A(\sin A / \cos A)=\left(b^{2}+c^{2}-a^{2}\right) \tan A$
$2 b c \sin A=\left(b^{2}+c^{2}-a^{2}\right) \tan A \ldots$ (i)
$\operatorname{Cos} B=\left(a^{2}+c^{2}-b^{2}\right) / 2 a c$
$2 \mathrm{ac} \cos \mathrm{B}=\left(\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}\right)$
Let us multiply both the sides by $\tan \mathrm{B}$ we get,
$2 a c \cos B \tan B=\left(a^{2}+c^{2}-b^{2}\right) \tan B$
$2 a c \cos B(\sin B / \cos B)=\left(a^{2}+c^{2}-b^{2}\right) \tan B$
$2 a c \sin B=\left(a^{2}+c^{2}-b^{2}\right) \tan B \ldots$ (ii)
$\operatorname{Cos} \mathrm{C}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}\right) / 2 \mathrm{ab}$
$2 \mathrm{ab} \cos \mathrm{C}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}\right)$
Let us multiply both the sides by $\tan \mathrm{C}$ we get,
$2 \mathrm{ab} \cos \mathrm{C} \tan \mathrm{C}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}\right) \tan \mathrm{C}$
$2 a b \cos C(\sin C / \cos C)=\left(a^{2}+b^{2}-c^{2}\right) \tan C$
$2 a b \sin C=\left(a^{2}+b^{2}-c^{2}\right) \tan C \ldots$ (iii)
As we are observing that sin terms are being involved so let's use sine formula.
From sine formula we have,
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \Rightarrow \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
Let us multiply abc to each of the expression we get,
$\frac{a b c \sin A}{a}=\frac{a b c \sin B}{b}=\frac{a b c \sin C}{c}$
$b c \sin A=a c \sin B=a b \sin C$
$2 \mathrm{bc} \sin \mathrm{A}=2 \mathrm{ac} \sin \mathrm{B}=2 \mathrm{ab} \sin \mathrm{C}$
\therefore From equation (i), (ii) and (iii) we have, $\left(c^{2}-a^{2}+b^{2}\right) \tan A=\left(a^{2}-b^{2}+c^{2}\right) \tan B=\left(b^{2}-c^{2}+a^{2}\right) \tan C$ Hence proved.

9. For any $\triangle \mathrm{ABC}$ show that:

$\frac{c-b \cos A}{b-c \cos A}=\frac{\cos B}{\cos C}$

Solution:

Let us consider LHS:
$\frac{c-b \cos A}{b-c \cos A}$
We can observe that we can get terms $\mathrm{c}-\mathrm{b} \cos \mathrm{A}$ and $\mathrm{b}-\mathrm{c} \cos \mathrm{A}$ from projection formula
From projection formula we get,
$\mathrm{c}=\mathrm{a} \cos \mathrm{B}+\mathrm{b} \cos \mathrm{A}$
$c-b \cos A=a \cos B$
And,
$\mathrm{b}=\mathrm{c} \cos \mathrm{A}+\mathrm{a} \cos \mathrm{C}$
$\mathrm{b}-\mathrm{c} \cos \mathrm{A}=\mathrm{a} \cos \mathrm{C}$
Dividing equation (i) by (ii), we get,
$\frac{c-b \cos A}{b-c \cos A}=\frac{a \cos B}{a \cos C}$

$$
=\frac{\cos B}{\cos C}
$$

$$
=\text { RHS }
$$

Hence proved.

