

EXERCISE 3.1

PAGE NO: 3.7

1. Define a function as a set of ordered pairs.

Solution:

Let A and B be two non-empty sets. A relation from A to B, i.e., a subset of $A \times B$, is called a function (or a mapping) from A to B, if

- (i) for each $a \in A$ there exists $b \in B$ such that $(a, b) \in f$
- (ii) $(a, b) \in f$ and $(a, c) \in f \Rightarrow b = c$

2. Define a function as a correspondence between two sets.

Solution:

Let A and B be two non-empty sets. Then a function 'f' from set A to B is a rule or method or correspondence which associates elements of set A to elements of set B such that:

- (i) all elements of set A are associated to elements in set B.
- (ii) an element of set A is associated to a unique element in set B.

3. What is the fundamental difference between a relation and a function? Is every relation a function?

Solution:

Let 'f' be a function and R be a relation defined from set X to set Y.

The domain of the relation R might be a subset of the set X, but the domain of the function f must be equal to X. This is because each element of the domain of a function must have an element associated with it, whereas this is not necessary for a relation.

In relation, one element of X might be associated with one or more elements of Y, while it must be associated with only one element of Y in a function.

Thus, not every relation is a function. However, every function is necessarily a relation.

4. Let $A = \{-2, -1, 0, 1, 2\}$ and $f: A \rightarrow Z$ be a function defined by $f(x) = x^2 - 2x - 3$. Find:

- (i) range of f i.e. f (A)
- (ii) pre-images of 6, -3 and 5

Solution:

Given:

$$A = \{-2, -1, 0, 1, 2\}$$

$$f: A \rightarrow Z$$
 such that $f(x) = x^2 - 2x - 3$

(i) Range of f i.e. f (A)

A is the domain of the function f. Hence, range is the set of elements f(x) for all $x \in A$. Substituting x = -2 in f(x), we get

$$f(-2) = (-2)^{2} - 2(-2) - 3$$

$$= 4 + 4 - 3$$

$$= 5$$

Substituting x = -1 in f(x), we get

$$f(-1) = (-1)^2 - 2(-1) - 3$$

= 1 + 2 - 3
= 0

Substituting x = 0 in f(x), we get

$$f(0) = (0)^2 - 2(0) - 3$$

= 0 - 0 - 3
= -3

Substituting x = 1 in f(x), we get

$$f(1) = 1^2 - 2(1) - 3$$

= 1 - 2 - 3
= -4

Substituting x = 2 in f(x), we get

$$f(2) = 2^2 - 2(2) - 3$$

= 4 - 4 - 3
= -3

Thus, the range of f is $\{-4, -3, 0, 5\}$.

(ii) pre-images of 6, -3 and 5

Let x be the pre-image of $6 \Rightarrow f(x) = 6$

$$x^{2}-2x-3=6$$

$$x^{2}-2x-9=0$$

$$x = [-(-2) \pm \sqrt{((-2)^{2}-4(1)(-9))}] / 2(1)$$

$$= [2 \pm \sqrt{(4+36)}] / 2$$

$$= [2 \pm \sqrt{40}] / 2$$

$$= 1 + \sqrt{10}$$

However, $1 \pm \sqrt{10} \notin A$

Thus, there exists no pre-image of 6.

Now, let x be the pre-image of $-3 \Rightarrow f(x) = -3$

$$x^2 - 2x - 3 = -3$$
$$x^2 - 2x = 0$$

$$x(x-2)=0$$

$$x = 0 \text{ or } 2$$

Clearly, both 0 and 2 are elements of A. Thus, 0 and 2 are the pre-images of -3.

Now, let x be the pre-image of $5 \Rightarrow f(x) = 5$

$$x^2 - 2x - 3 = 5$$

$$x^2 - 2x - 8 = 0$$

$$x^2 - 4x + 2x - 8 = 0$$

$$x(x-4) + 2(x-4) = 0$$

$$(x+2)(x-4)=0$$

$$x = -2 \text{ or } 4$$

However, $4 \notin A$ but $-2 \in A$

Thus, -2 is the pre-images of 5.

 $\therefore \emptyset$, $\{0, 2\}$, -2 are the pre-images of 6, -3, 5

5. If a function $f: R \to R$ be defined by

$$f(x) = \begin{cases} 3x - 2, x < 0 \\ 1, x = 0 \\ 4x + 1, x > 0 \end{cases}$$

Find: f (1), f (-1), f (0), f (2).

Solution:

Given:

Let us find f(1), f(-1), f(0) and f(2).

When x > 0, f(x) = 4x + 1

Substituting x = 1 in the above equation, we get

$$f(1) = 4(1) + 1$$

= 4 + 1
= 5

When x < 0, f(x) = 3x - 2

Substituting x = -1 in the above equation, we get

$$f(-1) = 3(-1) - 2$$

= -3 - 2
= -5

When x = 0, f(x) = 1

Substituting x = 0 in the above equation, we get

$$f(0) = 1$$

When x > 0, f(x) = 4x + 1

Substituting x = 2 in the above equation, we get

$$f(2) = 4(2) + 1$$
= 8 + 1
= 9

$$f(1) = 5$$
, $f(-1) = -5$, $f(0) = 1$ and $f(2) = 9$.

6. A function f: $R \rightarrow R$ is defined by $f(x) = x^2$. Determine

- (i) range of f
- (ii) $\{x: f(x) = 4\}$
- (iii) $\{y: f(y) = -1\}$

Solution:

Given:

 $f: R \rightarrow R$ and $f(x) = x^2$.

(i) range of f

Domain of f = R (set of real numbers)

We know that the square of a real number is always positive or equal to zero.

$$\therefore \text{ range of } f = R^+ \cup \{0\}$$

(ii)
$$\{x: f(x) = 4\}$$

Given:

$$f(x) = 4$$

we know, $x^2 = 4$

$$x^2 - 4 = 0$$

$$(x-2)(x+2)=0$$

$$\therefore x = \pm 2$$

$$\therefore \{x: f(x) = 4\} = \{-2, 2\}$$

(iii)
$$\{y: f(y) = -1\}$$

Given:

$$f(y) = -1$$

$$y^2 = -1$$

However, the domain of f is R, and for every real number y, the value of y^2 is non-negative.

Hence, there exists no real y for which $y^2 = -1$.

7. Let f: $R^+ \rightarrow R$, where R^+ is the set of all positive real numbers, be such that f(x) =

loge x. Determine

- (i) the image set of the domain of f
- (ii) $\{x: f(x) = -2\}$
- (iii) whether f(xy) = f(x) + f(y) holds.

Solution:

- Given f: $R^+ \rightarrow R$ and $f(x) = \log_e x$.
- (i) the image set of the domain of f

Domain of $f = R^+$ (set of positive real numbers)

We know the value of logarithm to the base e (natural logarithm) can take all possible real values.

- \therefore The image set of f = R
- (ii) $\{x: f(x) = -2\}$

Given
$$f(x) = -2$$

$$\log_{\rm e} x = -2$$

$$\therefore$$
 x = e⁻² [since, log_b a = c \Rightarrow a = b^c]

$$\therefore \{x: f(x) = -2\} = \{e^{-2}\}\$$

(iii) Whether f(xy) = f(x) + f(y) holds.

We have $f(x) = \log_e x \Rightarrow f(y) = \log_e y$

Now, let us consider f (xy)

$$F(xy) = \log_e(xy)$$

$$f(xy) = log_e(x \times y)$$
 [since, $log_b(a \times c) = log_b a + log_b c$]

$$f(xy) = \log_e x + \log_e y$$

$$f(xy) = f(x) + f(y)$$

 \therefore the equation f(xy) = f(x) + f(y) holds.

8. Write the following relations as sets of ordered pairs and find which of them are functions:

(i)
$$\{(x, y): y = 3x, x \in \{1, 2, 3\}, y \in \{3, 6, 9, 12\}\}$$

(ii)
$$\{(x, y): y > x + 1, x = 1, 2 \text{ and } y = 2, 4, 6\}$$

(iii)
$$\{(x, y): x + y = 3, x, y \in \{0, 1, 2, 3\}\}$$

Solution:

(i)
$$\{(x, y): y = 3x, x \in \{1, 2, 3\}, y \in \{3, 6, 9, 12\}\}$$

When
$$x = 1$$
, $y = 3(1) = 3$

When
$$x = 2$$
, $y = 3(2) = 6$

When
$$x = 3$$
, $y = 3(3) = 9$

$$\therefore$$
 R = {(1, 3), (2, 6), (3, 9)}

Hence, the given relation R is a function.

(ii)
$$\{(x, y): y > x + 1, x = 1, 2 \text{ and } y = 2, 4, 6\}$$

When $x = 1, y > 1 + 1 \text{ or } y > 2 \Rightarrow y = \{4, 6\}$
When $x = 2, y > 2 + 1 \text{ or } y > 3 \Rightarrow y = \{4, 6\}$
 $\therefore R = \{(1, 4), (1, 6), (2, 4), (2, 6)\}$

Hence, the given relation R is not a function.

(iii)
$$\{(x, y): x + y = 3, x, y \in \{0, 1, 2, 3\}\}$$

When $x = 0, 0 + y = 3 \Rightarrow y = 3$
When $x = 1, 1 + y = 3 \Rightarrow y = 2$
When $x = 2, 2 + y = 3 \Rightarrow y = 1$
When $x = 3, 3 + y = 3 \Rightarrow y = 0$
 $\therefore R = \{(0, 3), (1, 2), (2, 1), (3, 0)\}$
Hence, the given relation R is a function.

9. Let $f: R \to R$ and $g: C \to C$ be two functions defined as $f(x) = x^2$ and $g(x) = x^2$. Are they equal functions? Solution:

Given:

f: $R \rightarrow R \in f(x) = x^2$ and $g: R \rightarrow R \in g(x) = x^2$

f is defined from R to R, the domain of f = R.

g is defined from C to C, the domain of g = C.

Two functions are equal only when the domain and codomain of both the functions are equal.

In this case, the domain of $f \neq domain of g$.

∴ f and g are not equal functions.