

EXERCISE 3.4

PAGE NO: 3.38

1. Find f + g, f - g, cf ($c \in R$, $c \ne 0$), fg, 1/f and f/g in each of the following:

(i)
$$f(x) = x^3 + 1$$
 and $g(x) = x + 1$

(ii)
$$f(x) = \sqrt{(x-1)}$$
 and $g(x) = \sqrt{(x+1)}$

Solution:

(i)
$$f(x) = x^3 + 1$$
 and $g(x) = x + 1$

We have $f(x): R \to R$ and $g(x): R \to R$

(a)
$$f + g$$

We know,
$$(f + g)(x) = f(x) + g(x)$$

$$(f + g)(x) = x^3 + 1 + x + 1$$

= $x^3 + x + 2$

So,
$$(f + g)(x): R \rightarrow R$$

$$\therefore$$
 f + g: R \rightarrow R is given by (f + g) (x) = $x^3 + x + 2$

(b)
$$f - g$$

We know,
$$(f - g)(x) = f(x) - g(x)$$

$$(f - g)(x) = x^3 + 1 - (x + 1)$$

$$= x^3 + 1 - x - 1$$

$$= x^3 - x$$

So,
$$(f-g)(x): R \to R$$

$$\therefore$$
 f – g: R \rightarrow R is given by (f – g) (x) = $x^3 - x$

(c) cf (
$$c \in R$$
, $c \neq 0$)

We know, (cf)
$$(x) = c \times f(x)$$

$$(cf)(x) = c(x^3 + 1)$$
$$= cx^3 + c$$

So, (cf)
$$(x): R \rightarrow R$$

$$\therefore$$
 cf: R \rightarrow R is given by (cf) (x) = cx³ + c

(d) fg

We know,
$$(fg)(x) = f(x) g(x)$$

So, (fg) (x):
$$R \rightarrow R$$

$$\therefore$$
 fg: R \rightarrow R is given by (fg) $(x) = (x + 1)^2(x^2 - x + 1)$

(e)
$$1/f$$

We know,
$$(1/f)(x) = 1/f(x)$$

$$1/f(x) = 1/(x^3 + 1)$$

Observe that 1/f(x) is undefined when f(x) = 0 or when x = -1.

So,
$$1/f$$
: $R - \{-1\} \rightarrow R$ is given by $1/f(x) = 1/(x^3 + 1)$

(f) f/g

We know,
$$(f/g)(x) = f(x)/g(x)$$

$$(f/g)(x) = (x^3 + 1) / (x + 1)$$

Observe that $(x^3 + 1) / (x + 1)$ is undefined when g(x) = 0 or when x = -1.

Using
$$x^3 + 1 = (x + 1)(x^2 - x + 1)$$
, we have

$$(f/g)(x) = [(x+1)(x^2-x+1)/(x+1)]$$

= $x^2 - x + 1$

$$\therefore f/g: R - \{-1\} \rightarrow R \text{ is given by } (f/g) (x) = x^2 - x + 1$$

(ii)
$$f(x) = \sqrt{(x-1)}$$
 and $g(x) = \sqrt{(x+1)}$

We have $f(x): [1, \infty) \to R^+$ and $g(x): [-1, \infty) \to R^+$ as real square root is defined only for non-negative numbers.

(a)
$$f + g$$

We know,
$$(f + g)(x) = f(x) + g(x)$$

$$(f+g)(x) = \sqrt{(x-1)} + \sqrt{(x+1)}$$

Domain of $(f + g) = Domain of f \cap Domain of g$

Domain of
$$(f + g) = [1, \infty) \cap [-1, \infty)$$

Domain of
$$(f + g) = [1, \infty)$$

$$\therefore f + g: [1, \infty) \to R \text{ is given by } (f+g)(x) = \sqrt{(x-1)} + \sqrt{(x+1)}$$

(b)
$$f - g$$

We know,
$$(f - g)(x) = f(x) - g(x)$$

$$(f-g)(x) = \sqrt{(x-1)} - \sqrt{(x+1)}$$

Domain of
$$(f - g) = Domain of f \cap Domain of g$$

Domain of
$$(f - g) = [1, \infty) \cap [-1, \infty)$$

Domain of
$$(f - g) = [1, \infty)$$

$$\therefore$$
 f – g: [1, ∞) \rightarrow R is given by (f-g) (x) = $\sqrt{(x-1)}$ - $\sqrt{(x+1)}$

(c) cf (
$$c \in R$$
, $c \neq 0$)

We know, (cf)
$$(x) = c \times f(x)$$

$$(cf)(x) = c\sqrt{(x-1)}$$

Domain of
$$(cf)$$
 = Domain of f

Domain of (cf) =
$$[1, \infty)$$

$$\therefore$$
 cf: $[1, \infty) \rightarrow R$ is given by (cf) $(x) = c\sqrt{(x-1)}$

We know,
$$(fg)(x) = f(x) g(x)$$

(fg) (x) =
$$\sqrt{(x-1)} \sqrt{(x+1)}$$

= $\sqrt{(x^2-1)}$

Domain of (fg) = Domain of
$$f \cap Domain of g$$

Domain of (fg) =
$$[1, \infty) \cap [-1, \infty)$$

Domain of (fg) =
$$[1, \infty)$$

$$\therefore$$
 fg: $[1, \infty) \rightarrow R$ is given by (fg) $(x) = \sqrt{(x^2 - 1)}$

(e) 1/f

We know,
$$(1/f)(x) = 1/f(x)$$

$$(1/f)(x) = 1/\sqrt{(x-1)}$$

Domain of
$$(1/f)$$
 = Domain of f

Domain of
$$(1/f) = [1, \infty)$$

Observe that
$$1/\sqrt{(x-1)}$$
 is also undefined when $x - 1 = 0$ or $x = 1$.

$$\therefore$$
 1/f: $(1, \infty) \rightarrow R$ is given by $(1/f)(x) = 1/\sqrt{(x-1)}$

(f) f/g

We know,
$$(f/g)(x) = f(x)/g(x)$$

$$(f/g)(x) = \sqrt{(x-1)}/\sqrt{(x+1)}$$

$$(f/g)(x) = \sqrt{(x-1)/(x+1)}$$

Domain of (f/g) = Domain of $f \cap$ Domain of g

Domain of
$$(f/g) = [1, \infty) \cap [-1, \infty)$$

Domain of
$$(f/g) = [1, \infty)$$

$$\therefore f/g: [1, \infty) \to R \text{ is given by } (f/g)(x) = \sqrt{(x-1)/(x+1)}$$

2. Let f(x) = 2x + 5 and $g(x) = x^2 + x$. Describe

$$(i) f + g$$

(ii)
$$f - g$$

Find the domain in each case.

Solution:

Given:

$$f(x) = 2x + 5$$
 and $g(x) = x^2 + x$

Both f(x) and g(x) are defined for all $x \in R$.

So, domain of f = domain of g = R

$$(i) f + g$$

We know,
$$(f + g)(x) = f(x) + g(x)$$

$$(f + g)(x) = 2x + 5 + x^2 + x$$

= $x^2 + 3x + 5$

(f + g)(x) Is defined for all real numbers x.

 \therefore The domain of (f + g) is R

(ii)
$$f - g$$

We know,
$$(f - g)(x) = f(x) - g(x)$$

$$(f-g)(x) = 2x + 5 - (x^2 + x)$$

= 2x + 5 - x² - x
= 5 + x - x²

(f-g)(x) is defined for all real numbers x.

 \therefore The domain of (f - g) is R

(iii) fg

We know,
$$(fg)(x) = f(x)g(x)$$

$$(fg)(x) = (2x + 5)(x^{2} + x)$$

$$= 2x(x^{2} + x) + 5(x^{2} + x)$$

$$= 2x^{3} + 2x^{2} + 5x^{2} + 5x$$

$$= 2x^{3} + 7x^{2} + 5x$$

(fg)(x) is defined for all real numbers x.

∴ The domain of fg is R

(iv) f/g

We know,
$$(f/g)(x) = f(x)/g(x)$$

$$(f/g)(x) = (2x+5)/(x^2+x)$$

(f/g) (x) is defined for all real values of x, except for the case when $x^2 + x = 0$.

$$x^2 + x = 0$$

$$x(x+1)=0$$

$$x = 0 \text{ or } x + 1 = 0$$

$$x = 0 \text{ or } -1$$

When x = 0 or -1, (f/g)(x) will be undefined as the division result will be indeterminate.

 \therefore The domain of f/g = R - $\{-1, 0\}$

3. If f(x) be defined on [-2, 2] and is given by f(|x|) + |f(x)|. Find g(x).

$$f(x) = \begin{cases} -1, -2 \le x \le 0 \\ x - 1, 0 < x \le 2 \end{cases}$$
 and $g(x) =$

Solution:

Given:

$$f(x) = \begin{cases} -1, -2 \le x \le 0 \\ x - 1, 0 < x \le 2 \end{cases}$$
 and

$$g(x) = f(|x|) + |f(x)|$$

Now we have,

$$f(|x|) = \begin{cases} -1, -2 \le |x| \le 0\\ |x| - 1, 0 < |x| \le 2 \end{cases}$$

However, $|x| \ge 0 \Rightarrow f(|x|) = |x| - 1$ when $0 \le |x| \le 2$

We also have,

$$|f(x)| = \begin{cases} |-1|, -2 \le x \le 0 \\ |x-1|, 0 < x \le 2 \end{cases}$$
$$= \begin{cases} 1, -2 \le x \le 0 \\ |x-1|, 0 < x \le 2 \end{cases}$$

We also know,

$$|x-1| = \begin{cases} -(x-1), x-1 < 0 \\ x-1, x-1 \ge 0 \end{cases}$$
$$= \begin{cases} -(x-1), x < 1 \\ x-1, x \ge 1 \end{cases}$$

Here, we shall only the range between [0, 2].

$$|x-1| = \begin{cases} -(x-1), & 0 < x < 1\\ x-1, & 1 \le x \le 2 \end{cases}$$

Substituting this value of |x - 1| in |f(x)|, we get

$$|f(x)| = \begin{cases} 1, -2 \le x \le 0 \\ -(x-1), 0 < x < 1 \\ x - 1, 1 \le x \le 2 \end{cases}$$
$$= \begin{cases} 1, -2 \le x \le 0 \\ 1, -2 \le x \le 0 \\ 1 - x, 0 < x < 1 \\ x - 1, 1 \le x \le 2 \end{cases}$$

Now, we need to find g(x)

$$g(x) = f(|x|) + |f(x)|$$

$$= |\mathbf{x}| - 1 \text{ when } 0 < |\mathbf{x}| \le 2 + \begin{cases} 1, -2 \le x \le 0\\ 1 - x, 0 < x < 1\\ x - 1, 1 \le x \le 2 \end{cases}$$

$$g(x) = \begin{cases} -x - 1, -2 \le x \le 0 \\ x - 1, 0 < x < 1 \\ x - 1, 1 \le x \le 2 \end{cases} + \begin{cases} 1, -2 \le x \le 0 \\ 1 - x, 0 < x < 1 \\ x - 1, 1 \le x \le 2 \end{cases}$$

$$= \begin{cases} -x - 1 + 1, -2 \le x \le 0 \\ x - 1 + 1 - x, 0 < x < 1 \\ x - 1 + x - 1, 1 \le x \le 2 \end{cases}$$

$$= \begin{cases} -x, -2 \le x \le 0 \\ 0, 0 < x < 1 \\ 2(x - 1), 1 \le x \le 2 \end{cases}$$

$$\therefore g(\mathbf{x}) = f(|\mathbf{x}|) + |f(\mathbf{x})| |
= \begin{cases}
-x, -2 \le x \le 0 \\
0, 0 < x < 1 \\
2(x - 1), 1 \le x \le 2
\end{cases}$$

- 4. Let f, g be two real functions defined by $f(x) = \sqrt{(x+1)}$ and $g(x) = \sqrt{(9-x^2)}$. Then, describe each of the following functions.
- (i) f + g
- (ii) g f
- (iii) fg
- (iv) f/g
- (v) g/f
- (vi) $2\mathbf{f} \sqrt{5}\mathbf{g}$
- (vii) $f^2 + 7f$
- (viii) 5/g

Solution:

Given:

$$f(x) = \sqrt{(x+1)}$$
 and $g(x) = \sqrt{(9-x^2)}$

We know the square of a real number is never negative.

So, f(x) takes real values only when $x + 1 \ge 0$

$$x \ge -1, x \in [-1, \infty)$$

Domain of $f = [-1, \infty)$

Similarly, g(x) takes real values only when $9 - x^2 \ge 0$

$$9 \ge x^2$$

$$x^2 < 9$$

$$x^2 - 9 \le 0$$

$$x^2 - 3^2 \le 0$$

$$(x+3)(x-3) \le 0$$

$$x \ge -3$$
 and $x \le 3$
 $\therefore x \in [-3, 3]$
Domain of $g = [-3, 3]$

(i)
$$f + g$$

We know,
$$(f + g)(x) = f(x) + g(x)$$

 $(f + g)(x) = \sqrt{(x+1)} + \sqrt{(9-x^2)}$

Domain of
$$f + g = Domain of f \cap Domain of g$$

= $[-1, \infty) \cap [-3, 3]$
= $[-1, 3]$

:
$$f + g: [-1, 3] \rightarrow R$$
 is given by $(f + g)(x) = f(x) + g(x) = \sqrt{(x+1)} + \sqrt{(9-x^2)}$

(ii)
$$g - f$$

We know,
$$(g - f)(x) = g(x) - f(x)$$

$$(g-f)(x) = \sqrt{(9-x^2)} - \sqrt{(x+1)}$$

Domain of
$$g - f = Domain of g \cap Domain of f$$

= $[-3, 3] \cap [-1, \infty)$

$$= [-1, 3]$$

∴
$$g - f$$
: $[-1, 3] \to R$ is given by $(g - f)(x) = g(x) - f(x) = \sqrt{(9-x^2)} - \sqrt{(x+1)}$

(iii) fg

We know,
$$(fg)(x) = f(x)g(x)$$

(fg) (x) =
$$\sqrt{(x+1)} \sqrt{(9-x^2)}$$

= $\sqrt{[(x+1) (9-x^2)]}$
= $\sqrt{[x(9-x^2) + (9-x^2)]}$
= $\sqrt{(9x-x^3+9-x^2)}$
= $\sqrt{(9+9x-x^2-x^3)}$

Domain of fg = Domain of f
$$\cap$$
 Domain of g = $[-1, \infty) \cap [-3, 3]$

$$= [-1, 3]$$

: fg: [-1, 3]
$$\rightarrow$$
 R is given by (fg) (x) = f(x) g(x) = $\sqrt{(x+1)} \sqrt{(9-x^2)} = \sqrt{(9+9x-x^2-x^3)}$

(iv) f/g

We know,
$$(f/g)(x) = f(x)/g(x)$$

$$(f/g) (x) = \sqrt{(x+1)} / \sqrt{(9-x^2)}$$
$$= \sqrt{[(x+1) / (9-x^2)]}$$

Domain of f/g = Domain of f
$$\cap$$
 Domain of g = $[-1, \infty) \cap [-3, 3]$ = $[-1, 3]$

However, (f/g) (x) is defined for all real values of $x \in [-1, 3]$, except for the case when $9 - x^2 = 0$ or $x = \pm 3$

When $x = \pm 3$, (f/g) (x) will be undefined as the division result will be indeterminate.

Domain of $f/g = [-1, 3] - \{-3, 3\}$

Domain of f/g = [-1, 3)

: f/g: [-1, 3)
$$\to$$
 R is given by (f/g) (x) = f(x)/g(x) = $\sqrt{(x+1)} / \sqrt{(9-x^2)}$

(v) g/f

We know, (g/f)(x) = g(x)/f(x)

$$(g/f)(x) = \sqrt{(9-x^2)} / \sqrt{(x+1)}$$

= $\sqrt{[(9-x^2)/(x+1)]}$

Domain of $g/f = Domain of f \cap Domain of g$

$$= [-1, \infty) \cap [-3, 3]$$

= $[-1, 3]$

However, (g/f)(x) is defined for all real values of $x \in [-1, 3]$, except for the case when x + 1 = 0 or x = -1

When x = -1, (g/f)(x) will be undefined as the division result will be indeterminate.

Domain of $g/f = [-1, 3] - \{-1\}$

Domain of g/f = (-1, 3]

: g/f: (-1, 3]
$$\to$$
 R is given by (g/f) (x) = g(x)/f(x) = $\sqrt{(9-x^2)} / \sqrt{(x+1)}$

(vi) 2f - $\sqrt{5}$ g

We know,
$$(2f - \sqrt{5g})(x) = 2f(x) - \sqrt{5g}(x)$$

$$(2f - \sqrt{5}g)(x) = 2f(x) - \sqrt{5}g(x)$$

= $2\sqrt{(x+1)} - \sqrt{5}\sqrt{(9-x^2)}$
= $2\sqrt{(x+1)} - \sqrt{(45-5x^2)}$

Domain of 2f - $\sqrt{5g}$ = Domain of f \cap Domain of g = $[-1, \infty) \cap [-3, 3]$

$$= [-1, \infty) + [-3, 3]$$

= $[-1, 3]$

∴ 2f -
$$\sqrt{5}g$$
: [-1, 3] → R is given by (2f - $\sqrt{5}g$) (x) = 2f (x) - $\sqrt{5}g$ (x) = $2\sqrt{(x+1)}$ - $\sqrt{(45-5x^2)}$

(vii)
$$f^2 + 7f$$

We know,
$$(f^2 + 7f)(x) = f^2(x) + (7f)(x)$$

$$(f^{2} + 7f)(x) = f(x) f(x) + 7f(x)$$

$$= \sqrt{(x+1)} \sqrt{(x+1)} + 7\sqrt{(x+1)}$$

$$= x + 1 + 7\sqrt{(x+1)}$$

Domain of $f^2 + 7f$ is same as domain of f.

Domain of $f^2 + 7f = [-1, \infty)$

:
$$f^2 + 7f$$
: $[-1, \infty) \to R$ is given by $(f^2 + 7f)(x) = f(x) f(x) + 7f(x) = x + 1 + 7\sqrt{(x+1)}$

(viii) 5/g

We know, (5/g)(x) = 5/g(x)

$$(5/g)(x) = 5/\sqrt{(9-x^2)}$$

Domain of 5/g = Domain of g = [-3, 3]

However, (5/g) (x) is defined for all real values of $x \in [-3, 3]$, except for the case when $9 - x^2 = 0$ or $x = \pm 3$

When $x = \pm 3$, (5/g) (x) will be undefined as the division result will be indeterminate.

Domain of
$$5/g = [-3, 3] - \{-3, 3\}$$

$$=(-3,3)$$

: 5/g: $(-3, 3) \rightarrow R$ is given by $(5/g)(x) = 5/g(x) = 5/\sqrt{(9-x^2)}$

5. If $f(x) = \log_e (1 - x)$ and g(x) = [x], then determine each of the following functions:

- (i) f + g
- (ii) fg
- (iii) f/g
- (iv) g/f

Also, find (f + g) (-1), (fg) (0), (f/g) (1/2) and (g/f) (1/2).

Solution:

Given:

$$f(x) = \log_e (1 - x)$$
 and $g(x) = [x]$

We know, f(x) takes real values only when 1 - x > 0

$$x < 1, : x \in (-\infty, 1)$$

Domain of
$$f = (-\infty, 1)$$

Similarly, g(x) is defined for all real numbers x.

Domain of
$$g = [x], x \in R$$

= R

(i)
$$f + g$$

We know,
$$(f + g)(x) = f(x) + g(x)$$

$$(f + g)(x) = \log_e (1 - x) + [x]$$

Domain of $f + g = Domain of f \cap Domain of g$

Domain of
$$f + g = (-\infty, 1) \cap R$$

= $(-\infty, 1)$

$$\therefore$$
 f + g: (-\infty, 1) \rightarrow R is given by (f + g) (x) = log_e (1 - x) + [x]

(ii) fg

We know,
$$(fg)(x) = f(x) g(x)$$

(fg) (x) =
$$\log_e (1 - x) \times [x]$$

= [x] $\log_e (1 - x)$

Domain of fg = Domain of f
$$\cap$$
 Domain of g = $(-\infty, 1) \cap R$

$$=(-\infty, 1)$$

$$\therefore$$
 fg: $(-\infty, 1) \rightarrow R$ is given by (fg) $(x) = [x] \log_e (1 - x)$

(iii) f/g

We know,
$$(f/g)(x) = f(x)/g(x)$$

$$(f/g)(x) = \log_e(1-x)/[x]$$

Domain of f/g = Domain of f
$$\cap$$
 Domain of g = $(-\infty, 1) \cap R$

$$=(-\infty, 1)$$

However, (f/g) (x) is defined for all real values of $x \in (-\infty, 1)$, except for the case when [x] = 0.

We have, [x] = 0 when $0 \le x < 1$ or $x \in [0, 1)$

When $0 \le x < 1$, (f/g) (x) will be undefined as the division result will be indeterminate.

Domain of f/g =
$$(-\infty, 1) - [0, 1)$$

= $(-\infty, 0)$

$$\therefore$$
 f/g: $(-\infty, 0) \rightarrow R$ is given by $(f/g)(x) = \log_e(1-x)/[x]$

(iv) g/f

We know,
$$(g/f)(x) = g(x)/f(x)$$

$$(g/f)(x) = [x] / log_e(1-x)$$

However, (g/f)(x) is defined for all real values of $x \in (-\infty, 1)$, except for the case when $\log_e(1-x) = 0$.

$$log_e(1 - x) = 0 \Rightarrow 1 - x = 1 \text{ or } x = 0$$

When x = 0, (g/f)(x) will be undefined as the division result will be indeterminate.

Domain of
$$g/f = (-\infty, 1) - \{0\}$$

$$=(-\infty,0) \cup (0,1)$$

$$\therefore g/f: (-\infty, 0) \cup (0, 1) \rightarrow R \text{ is given by } (g/f) (x) = [x] / \log_e (1 - x)$$

(a) We need to find (f + g) (-1).

We have,
$$(f + g)(x) = \log_e (1 - x) + [x], x \in (-\infty, 1)$$

Substituting x = -1 in the above equation, we get

$$(f+g)(-1) = \log_e (1 - (-1)) + [-1]$$

= $\log_e (1 + 1) + (-1)$
= $\log_e 2 - 1$

∴
$$(f + g) (-1) = log_e 2 - 1$$

(b) We need to find (fg) (0).

We have, (fg) (x) = [x] $\log_e(1 - x)$, $x \in (-\infty, 1)$

Substituting x = 0 in the above equation, we get

(fg) (0) = [0]
$$log_e (1 - 0)$$

= $0 \times log_e 1$

∴ (fg)
$$(0) = 0$$

(c) We need to find (f/g) (1/2)

We have, $(f/g)(x) = \log_e(1-x) / [x], x \in (-\infty, 0)$

However, 1/2 is not in the domain of f/g.

$$\therefore$$
 (f/g) (1/2) does not exist.

(d) We need to find (g/f) (1/2)

We have, $(g/f)(x) = [x] / \log_e(1-x), x \in (-\infty, 0) \cup (0, \infty)$

Substituting x=1/2 in the above equation, we get

$$(g/f) (1/2) = [x] / log_e (1-x)$$

$$= (1/2)/\log_e (1 - 1/2)$$

$$= 0.5/\log_e(1/2)$$

$$= 0 / \log_e(1/2)$$

$$=0$$

$$\therefore$$
 (g/f) (1/2) = 0