

EXERCISE 5.2

PAGE NO: 5.25

1. Find the values of the other five trigonometric functions in each of the following:

- (i) cot x = 12/5, x in quadrant III
- (ii) $\cos x = -1/2$, x in quadrant II
- (iii) $\tan x = 3/4$, x in quadrant III
- (iv) $\sin x = 3/5$, x in quadrant I

Solution:

(i) $\cot x = 12/5$, x in quadrant III

In third quadrant, $\tan x$ and $\cot x$ are positive. $\sin x$, $\cos x$, $\sec x$, $\csc x$ are negative. By using the formulas,

$$\tan x = 1/\cot x$$

= 1/(12/5)
= 5/12

cosec x =
$$-\sqrt{(1 + \cot^2 x)}$$

= $-\sqrt{(1 + (12/5)^2)}$
= $-\sqrt{(25+144)/25}$
= $-\sqrt{(169/25)}$
= $-13/5$

$$\sin x = 1/\csc x$$

= 1/(-13/5)
= -5/13

$$\cos x = -\sqrt{(1 - \sin^2 x)}$$

$$= -\sqrt{(1 - (-5/13)^2)}$$

$$= -\sqrt{(169-25)/169}$$

$$= -\sqrt{(144/169)}$$

$$= -12/13$$

$$sec x = 1/\cos x
= 1/(-12/13)
= -13/12$$

$$\sin x = -5/13$$
, $\cos x = -12/13$, $\tan x = 5/12$, $\csc x = -13/5$, $\sec x = -13/12$

(ii) $\cos x = -1/2$, x in quadrant II

In second quadrant, $\sin x$ and $\csc x$ are positive. $\tan x$, $\cot x$, $\cos x$, $\sec x$ are negative.

RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions

By using the formulas,

$$\sin x = \sqrt{(1 - \cos^2 x)}$$
= $\sqrt{(1 - (-1/2)^2)}$
= $\sqrt{(4-1)/4}$
= $\sqrt{(3/4)}$
= $\sqrt{3/2}$

$$\tan x = \sin x/\cos x$$
$$= (\sqrt{3}/2)/(-1/2)$$
$$= -\sqrt{3}$$

$$\cot x = \frac{1}{\tan x}$$
$$= \frac{1}{\sqrt{3}}$$
$$= -\frac{1}{\sqrt{3}}$$

$$cosec x = 1/\sin x$$
$$= 1/(\sqrt{3}/2)$$
$$= 2/\sqrt{3}$$

$$\sec x = 1/\cos x$$

= 1/(-1/2)
= -2

$$\therefore \sin x = \sqrt{3}/2, \tan x = -\sqrt{3}, \csc x = 2/\sqrt{3}, \cot x = -1/\sqrt{3} \sec x = -2$$

(iii) $\tan x = 3/4$, x in quadrant III

In third quadrant, $\tan x$ and $\cot x$ are positive. $\sin x$, $\cos x$, $\sec x$, $\csc x$ are negative. By using the formulas,

$$\sin x = \sqrt{(1 - \cos^2 x)}$$
= -\sqrt{(1-(-4/5)^2)}
= -\sqrt{(25-16)/25}
= -\sqrt{(9/25)}
= -3/5

$$\cos x = 1/\sec x$$

= 1/(-5/4)
= -4/5

$$\cot x = 1/\tan x$$

$$= 1/(3/4)$$

= 4/3

cosec
$$x = 1/\sin x$$

= 1/(-3/5)
= -5/3

$$\sec x = -\sqrt{(1 + \tan^2 x)}$$

$$= -\sqrt{(1+(3/4)^2)}$$

$$= -\sqrt{(16+9)/16}$$

$$= -\sqrt{(25/16)}$$

$$= -5/4$$

$$\sin x = -3/5$$
, $\cos x = -4/5$, $\csc x = -5/3$, $\sec x = -5/4$, $\cot x = 4/3$

(iv) $\sin x = 3/5$, x in quadrant I

In first quadrant, all trigonometric ratios are positive.

So, by using the formulas,

$$tan x = sin x/cos x$$

$$= (3/5)/(4/5)$$

$$= 3/4$$

$$cosec x = 1/\sin x$$
$$= 1/(3/5)$$
$$= 5/3$$

$$\cos x = \sqrt{(1-\sin^2 x)}$$

$$= \sqrt{(1-(-3/5)^2)}$$

$$= \sqrt{(25-9)/25}$$

$$= \sqrt{(16/25)}$$

$$= 4/5$$

$$sec x = 1/\cos x$$

$$= 1/(4/5)$$

$$= 5/4$$

$$\cot x = 1/\tan x$$

= 1/(3/4)
= 4/3

$$\therefore$$
 cos x = 4/5, tan x = 3/4, cosec x = 5/3, sec x = 5/4, cot x = 4/3

2. If $\sin x = 12/13$ and lies in the second quadrant, find the value of $\sec x + \tan x$. Solution:

Given:

Sin x = 12/13 and x lies in the second quadrant.

We know, in second quadrant, sin x and cosec x are positive and all other ratios are negative.

By using the formulas,

Cos x =
$$\sqrt{(1-\sin^2 x)}$$

= $-\sqrt{(1-(12/13)^2)}$
= $-\sqrt{(1-(144/169))}$
= $-\sqrt{(169-144)/169}$
= $-\sqrt{(25/169)}$
= $-5/13$

We know,

$$\tan x = \sin x/\cos x$$

$$sec x = 1/cos x$$

Now.

$$\tan x = \frac{(12/13)}{(-5/13)}$$
$$= -12/5$$

$$sec x = 1/(-5/13)
= -13/5$$

Sec x + tan x =
$$-13/5 + (-12/5)$$

= $(-13-12)/5$
= $-25/5$
= -5

$$\therefore \operatorname{Sec} x + \tan x = -5$$

3. If sin x = 3/5, tan y = 1/2 and $\pi/2 < x < \pi < y < 3\pi/2$ find the value of 8 tan x - $\sqrt{5}$ sec y.

Solution:

Given:

$$\sin x = 3/5$$
, $\tan y = 1/2$ and $\pi/2 < x < \pi < y < 3\pi/2$

We know that, x is in second quadrant and y is in third quadrant.

In second quadrant, cos x and tan x are negative.

In third quadrant, sec y is negative.

By using the formula,

$$\cos x = -\sqrt{(1-\sin^2 x)}$$

$$\tan x = \sin x/\cos x$$

Now,

$$\cos x = -\sqrt{(1-\sin^2 x)}$$

$$= -\sqrt{(1-(3/5)^2)}$$

$$= -\sqrt{(1-9/25)}$$

$$= -\sqrt{((25-9)/25)}$$

$$= -\sqrt{(16/25)}$$

$$= -4/5$$

$$\tan x = \sin x/\cos x$$
= (3/5)/(-4/5)
= 3/5 × -5/4
= -3/4

We know that sec
$$y = -\sqrt{(1+\tan^2 y)}$$

 $= -\sqrt{(1+(1/2)^2)}$
 $= -\sqrt{(1+1/4)}$
 $= -\sqrt{(4+1)/4}$
 $= -\sqrt{(5/4)}$
 $= -\sqrt{5/2}$

Now, 8 tan x -
$$\sqrt{5}$$
 sec y = 8(-3/4) - $\sqrt{5}$ (- $\sqrt{5}$ /2)
= -6 + 5/2
= (-12+5)/2
= -7/2

$$\therefore$$
 8 tan x - $\sqrt{5}$ sec y = -7/2

4. If $\sin x + \cos x = 0$ and x lies in the fourth quadrant, find $\sin x$ and $\cos x$. Solution:

Given:

Sin $x + \cos x = 0$ and x lies in fourth quadrant.

Sin x = -cos x

Sin x/cos x = -1

So, $\tan x = -1$ (since, $\tan x = \sin x/\cos x$)

We know that, in fourth quadrant, cos x and sec x are positive and all other ratios are negative.

By using the formulas,

$$Sec x = \sqrt{1 + tan^2 x}$$

$$Cos x = 1/sec x$$

$$\sin x = -\sqrt{1-\cos^2 x}$$

Now.

Sec
$$x = \sqrt{(1 + \tan^2 x)}$$

= $\sqrt{(1 + (-1)^2)}$
= $\sqrt{2}$

$$Cos x = 1/sec x$$
$$= 1/\sqrt{2}$$

Sin x =
$$-\sqrt{(1-\cos^2 x)}$$

= $-\sqrt{(1-(1/\sqrt{2})^2)}$
= $-\sqrt{(1-(1/2))}$
= $-\sqrt{((2-1)/2)}$
= $-\sqrt{(1/2)}$
= $-1/\sqrt{2}$

 \therefore sin x = -1/ $\sqrt{2}$ and cos x = 1/ $\sqrt{2}$

5. If $\cos x = -3/5$ and $\pi < x < 3\pi/2$ find the values of other five trigonometric functions $cosec \ x + cot \ x$

and hence evaluate $\overline{sec x - tan x}$ Solution:

Given:

$$\cos x = -3/5 \text{ and } \pi < x < 3\pi/2$$

We know that in the third quadrant, tan x and cot x are positive and all other rations are negative.

By using the formulas,

$$\sin x = -\sqrt{(1-\cos^2 x)}$$

Tan
$$x = \sin x/\cos x$$

$$Cot x = 1/tan x$$

Sec
$$x = 1/\cos x$$

Cosec
$$x = 1/\sin x$$

Now,

Sin x = -
$$\sqrt{(1-\cos^2 x)}$$

= - $\sqrt{(1-(-3/5)^2)}$
= - $\sqrt{(1-9/25)}$
= - $\sqrt{((25-9)/25)}$

RD Sharma Solutions for Class 11 Maths Chapter 5 – Trigonometric Functions

$$= -\sqrt{(16/25)}$$

= -4/5

Tan x =
$$\sin x/\cos x$$

= $(-4/5)/(-3/5)$
= $-4/5 \times -5/3$
= $4/3$

Cot
$$x = 1/\tan x$$

= 1/(4/3)
= 3/4

Sec
$$x = 1/\cos x$$

= $1/(-3/5)$
= $-5/3$

Cosec
$$x = 1/\sin x$$

= 1/(-4/5)
= -5/4

$cosec \ x + cot \ x$