Differentiate the following functions from the first principles:

1. e^{-x}

Solution:

We have to find the derivative of e^{-x} with the first principle method,
So let $f(x)=e^{-x}$
By using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{-(x+h)}-e^{-x}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{-x}\left(e^{-h}-1\right)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{-x}\left(e^{-h}-1\right)(-1)}{h(-1)}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x^{x}}-1}{x}=1$]
$f^{\prime}(x)=-e^{-x}$
2. $e^{3 x}$

Solution:

We have to find the derivative of $\mathrm{e}^{3 \mathrm{x}}$ with the first principle method,
So, let $f(x)=e^{3 x}$
By using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{3(x+h)}-e^{3 x}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{3 x}\left(e^{3 h}-1\right)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{3 x}\left(e^{3 h}-1\right) 3}{3 h}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$]
$f^{\prime}(x)=3 e^{3 x}$
3. $e^{a x+b}$

Solution:

We have to find the derivative of $\mathrm{e}^{\mathrm{ax}+\mathrm{b}}$ with the first principle method,
So, let $f(x)=e^{a x+b}$
By using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{a(x+h)+b}-e^{a x+b}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{a x+b}\left(e^{a h}-1\right) a}{a h}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$]
$f^{\prime}(x)=a e^{a x+b}$
4. $e^{\cos x}$

Solution:

We have to find the derivative of $e^{\cos x}$ with the first principle method,

So, let $f(x)=e^{\cos x}$
By using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\cos (x+h)}-e^{\cos x}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\cos x}\left(e^{\cos (x+h)-\cos x}-1\right)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\cos x}\left(e^{\cos (x+h)-\cos x}-1\right)}{\cos (x+h)-\cos x} \frac{\cos (x+h)-\cos x}{h}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$]
$f^{\prime}(x)=\lim _{h \rightarrow 0} e^{\cos x} \frac{\cos (x+h)-\cos x}{h}$
Now by using $\cos (x+h)=\cos x \cos h-\sin x \sin h$
$f^{\prime}(x)=\lim _{h \rightarrow 0} e^{\cos x} \frac{\cos x \cosh -\sin x \sin h-\cos x}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} e^{\cos x}\left[\frac{\cos x(\cos h-1)}{h}-\frac{\sin x \sin h}{h}\right]$
[By using $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ and $\cos 2 x=1-2 \sin ^{2} x$]
$f^{\prime}(x)=\lim _{h \rightarrow 0} e^{\cos x}\left[\frac{\cos x\left(-2 \sin ^{2} \frac{h}{2}\right)\left(\frac{h}{4}\right)}{h\left(\frac{h}{4}\right)}-\sin x\right]$
$f^{\prime}(x)=\lim _{h \rightarrow 0} e^{\cos x}\left[\frac{\cos x\left(-2 \sin ^{2} \frac{h}{2}\right)\left(\frac{h}{4}\right)}{\frac{h^{2}}{2^{2}}}-\sin x\right]$
$f^{\prime}(x)=-e^{\cos x} \sin x$
5. $e^{\sqrt{2 x}}$

Solution:

We have to find the derivative of $e^{\sqrt{2 x}}$ with the first principle method,
So, let $f(x)=e^{1 / 2 x}$
By using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{2(x+h)}}-e^{\sqrt{2 x}}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{2 x}}\left(e^{\sqrt{2(x+h)}-\sqrt{2 x}}-1\right)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{2 x}}\left(e^{\sqrt{2(x+h)}-\sqrt{2 x}}-1\right)}{h} \times \frac{\sqrt{2(x+h)}-\sqrt{2 x}}{\sqrt{2(x+h)}-\sqrt{2 x}}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$]
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{2 x}}}{h} \times(\sqrt{2(x+h)}-\sqrt{2 x}) \times \frac{\sqrt{2(x+h)}+\sqrt{2 x}}{\sqrt{2(x+h)}+\sqrt{2 x}}$
[By rationalizing]
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{2 x}}}{h} \times \frac{(2(x+h)-2 x)}{\sqrt{2(x+h)}+\sqrt{2 x}}$
$f^{\prime}(x)=\frac{e^{\sqrt{2 x}}}{\sqrt{2 \mathrm{x}}}$

Differentiate the following functions with respect to x :

1. $\operatorname{Sin}(3 x+5)$

Solution:

Given $\operatorname{Sin}(3 x+5)$
Let $y=\sin (3 x+5)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}[\sin (3 x+5)]$
We know $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=\cos (3 x+5) \frac{d}{d x}(3 x+5)$ [Using chain rule]
$\Rightarrow \frac{d y}{d x}=\cos (3 x+5)\left[\frac{d}{d x}(3 x)+\frac{d}{d x}(5)\right]$
$\Rightarrow \frac{d y}{d x}=\cos (3 x+5)\left[3 \frac{d}{d x}(x)+\frac{d}{d x}(5)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\cos (3 x+5)[3 \times 1+0]$
$\therefore \frac{d y}{d x}=3 \cos (3 x+5)$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}[\sin (3 \mathrm{x}+5)]=3 \cos (3 \mathrm{x}+5)$
2. $\tan ^{2} x$

Solution:

Given $\tan ^{2} \mathrm{x}$

Let $\mathrm{y}=\tan ^{2} \mathrm{x}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{2} x\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{d y}{d x}=2 \tan ^{2-1} x \frac{d}{d x}(\tan x)$ [Using chain rule]
$\Rightarrow \frac{d y}{d x}=2 \tan x \frac{d}{d x}(\tan x)$
However, $\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\Rightarrow \frac{d y}{d x}=2 \tan x\left(\sec ^{2} x\right)$
$\therefore \frac{d y}{d x}=2 \tan x \sec ^{2} x$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{2} \mathrm{x}\right)=2 \tan \mathrm{x} \sec ^{2} \mathrm{x}$

3. $\tan \left(x^{\circ}+45^{\circ}\right)$

Solution:

$$
\text { Let } \mathrm{y}=\tan \left(\mathrm{x}^{\circ}+45^{\circ}\right)
$$

First, we will convert the angle from degrees to radians.

$$
\text { Let } \mathrm{y}=\tan \left(\mathrm{x}^{\circ}+45^{\circ}\right)
$$

First, we will convert the angle from degrees to radians.
We have $1^{\circ}=\left(\frac{\pi}{180}\right)^{c} \Rightarrow(x+45)^{\circ}=\left[\frac{(x+45) \pi}{180}\right]^{c}$
$\Rightarrow \mathrm{y}=\tan \left[\frac{(\mathrm{x}+45) \pi}{180}\right]$

On differentiating y with respect to x, we get
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left\{\tan \left[\frac{(\mathrm{x}+45) \pi}{180}\right]\right\}$
We know $\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\Rightarrow \frac{d y}{d x}=\sec ^{2}\left[\frac{(x+45) \pi}{180}\right] \frac{d}{d x}\left[\frac{(x+45) \pi}{180}\right]$ [Using chain rule]
$\Rightarrow \frac{d y}{d x}=\sec ^{2}\left(x^{\circ}+45^{\circ}\right) \frac{\pi}{180} \frac{d}{d x}(x+45)$
$\Rightarrow \frac{d y}{d x}=\frac{\pi}{180} \sec ^{2}\left(x^{\circ}+45^{\circ}\right)\left[\frac{d}{d x}(x)+\frac{d}{d x}(45)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\pi}{180} \sec ^{2}\left(\mathrm{x}^{\circ}+45^{\circ}\right)[1+0]$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\pi}{180} \sec ^{2}\left(\mathrm{x}^{\circ}+45^{\circ}\right)$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\tan \left(\mathrm{x}^{\circ}+45^{\circ}\right)\right]=\frac{\pi}{180} \sec ^{2}\left(\mathrm{x}^{\circ}+45^{\circ}\right)$

4. $\operatorname{Sin}(\log x)$

Solution:

Given $\sin (\log x)$
Let $\mathrm{y}=\sin (\log \mathrm{x})$
On differentiating y with respect to x, we get

$$
\frac{d y}{d x}=\frac{d}{d x}[\sin (\log x)]
$$

We know $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=\cos (\log x) \frac{d}{d x}(\log x)$ [Using chain rule]
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}}$
$\Rightarrow \frac{d y}{d x}=\cos (\log x) \times \frac{1}{x}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\mathrm{x}} \cos (\log \mathrm{x})$
Thus, $\frac{d}{d x}[\sin (\log x)]=\frac{1}{x} \cos (\log x)$
5. $e^{\sin \sqrt{x}}$

Solution:

Let $y=e^{\sin \sqrt{x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\sin \sqrt{x}}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{x}}\right)=\mathrm{e}^{\mathrm{x}}$
$\Rightarrow \frac{d y}{d x}=e^{\sin \sqrt{x}} \frac{d}{d x}(\sin \sqrt{x})$ [Using chain rule]
We have $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=e^{\sin \sqrt{x}} \cos \sqrt{x} \frac{d}{d x}(\sqrt{x})$ [Using chain rule]
$\Rightarrow \frac{d y}{d x}=e^{\sin \sqrt{x}} \cos \sqrt{x} \frac{d}{d x}\left(x^{\frac{1}{2}}\right)$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{d y}{d x}=e^{\sin \sqrt{x}} \cos \sqrt{x}\left[\frac{1}{2} x^{\left(\frac{1}{2}-1\right)}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2} e^{\sin \sqrt{x}} \cos \sqrt{x} x^{-\frac{1}{2}}$
$\therefore \frac{d y}{d x}=\frac{1}{2 \sqrt{x}} \mathrm{e}^{\sin \sqrt{x}} \cos \sqrt{x}$
Thus, $\frac{d}{d x}\left(e^{\sin \sqrt{x}}\right)=\frac{1}{2 \sqrt{x}} e^{\sin \sqrt{x}} \cos \sqrt{x}$
6. $\mathrm{e}^{\tan x}$

Solution:

Let $y=e^{\tan x}$
On differentiating y with respect to x, we get

$$
\frac{d y}{d x}=\frac{d}{d x}\left(e^{\tan x}\right)
$$

We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{e}^{\tan \mathrm{x}} \frac{\mathrm{d}}{\mathrm{dx}}(\tan \mathrm{x})$ [Using chain rule]
We have $\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\therefore \frac{d y}{d x}=e^{\tan x} \sec ^{2} x$
Thus, $\frac{d}{d x}\left(e^{\tan x}\right)=e^{\tan x} \sec ^{2} x$

7. $\operatorname{Sin}^{2}(2 x+1)$

Solution:

Let $y=\sin ^{2}(2 x+1)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\sin ^{2}(2 x+1)\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
Using chain rule we get.
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=2 \sin ^{2-1}(2 \mathrm{x}+1) \frac{\mathrm{d}}{\mathrm{dx}}[\sin (2 \mathrm{x}+1)]$
$\Rightarrow \frac{d y}{d x}=2 \sin (2 x+1) \frac{d}{d x}[\sin (2 x+1)]$
We have $\frac{d}{d x}(\sin x)=\cos x$
Now by using chain rule we have
$\Rightarrow \frac{d y}{d x}=2 \sin (2 x+1) \cos (2 x+1) \frac{d}{d x}(2 x+1)$
$\Rightarrow \frac{d y}{d x}=\sin [2(2 x+1)] \frac{d}{d x}(2 x+1)[\because \sin (2 \theta)=2 \sin \theta \cos \theta]$
$\Rightarrow \frac{d y}{d x}=\sin (4 x+2)\left[\frac{d}{d x}(2 x)+\frac{d}{d x}(1)\right]$
$\Rightarrow \frac{d y}{d x}=\sin (4 x+2)\left[2 \frac{d}{d x}(x)+\frac{d}{d x}(1)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\sin (4 x+2)[2 \times 1+0]$
$\therefore \frac{d y}{d x}=2 \sin (4 x+2)$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\sin ^{2}(2 \mathrm{x}+1)\right]=2 \sin (4 \mathrm{x}+2)$
8. $\log _{7}(2 x-3)$

Solution:

Let $\mathrm{y}=\log _{7}(2 \mathrm{x}-3)$
We know that $\log _{a} b=\frac{\log b}{\log a}$.
$\Rightarrow \log _{7}(2 x-3)=\frac{\log (2 x-3)}{\log 7}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\frac{\log (2 x-3)}{\log 7}\right]$
$\Rightarrow \frac{d y}{d x}=\left(\frac{1}{\log 7}\right) \frac{d}{d x}[\log (2 x-3)]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
Now by using chain rule we get
$\Rightarrow \frac{d y}{d x}=\left(\frac{1}{\log 7}\right)\left(\frac{1}{2 x-3}\right) \frac{d}{d x}(2 x-3)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{(2 x-3) \log 7}\left[\frac{d}{d x}(2 x)-\frac{d}{d x}(3)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{(2 x-3) \log 7}\left[2 \frac{d}{d x}(x)-\frac{d}{d x}(3)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{(2 x-3) \log 7}[2 \times 1-0]$
$\therefore \frac{d y}{d x}=\frac{2}{(2 x-3) \log 7}$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\log _{7}(2 \mathrm{x}-3)\right]=\frac{2}{(2 \mathrm{x}-3) \log 7}$
9. $\tan 5 x^{\circ}$

Solution:

Let $\mathrm{y}=\tan \left(5 \mathrm{x}^{\circ}\right)$
First, we will convert the angle from degrees to radians. We have

$$
\begin{aligned}
& 1^{\circ}=\left(\frac{\pi}{180}\right)^{c} \Rightarrow 5 x^{\circ}=5 x \times \frac{\pi^{c}}{180} \\
& \Rightarrow y=\tan \left(5 x \times \frac{\pi}{180}\right)
\end{aligned}
$$

On differentiating y with respect to x, we get

$$
\begin{aligned}
& \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\tan \left(5 \mathrm{x} \times \frac{\pi}{180}\right)\right] \\
& \text { We know } \frac{\mathrm{d}}{\mathrm{dx}}(\tan \mathrm{x})=\sec ^{2} \mathrm{x}
\end{aligned}
$$

Now by using chain rule we have

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\sec ^{2}\left(5 x \times \frac{\pi}{180}\right) \frac{d}{d x}\left(5 x \times \frac{\pi}{180}\right) \\
& \Rightarrow \frac{d y}{d x}=\sec ^{2}\left(5 x^{\circ}\right) \frac{\pi}{180} \frac{d}{d x}(5 x) \\
& \Rightarrow \frac{d y}{d x}=\frac{\pi}{180} \sec ^{2}\left(5 x^{\circ}\right)\left[5 \frac{d}{d x}(x)\right]
\end{aligned}
$$

However, $\frac{d}{d x}(x)=1$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\pi}{180} \sec ^{2}\left(5 \mathrm{x}^{\circ}\right)[5]$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{5 \pi}{180} \sec ^{2}\left(5 \mathrm{x}^{\circ}\right)$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan 5 \mathrm{x}^{\circ}\right)=\frac{5 \pi}{180} \sec ^{2}\left(5 \mathrm{x}^{\circ}\right)$
10. $2^{x^{3}}$

Solution:

Let $\mathrm{y}=2^{\mathrm{x}^{-}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(2^{x^{3}}\right)$
We know $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a$
Now by using chain rule,
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=2^{\mathrm{x}^{3}} \log 2 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{x}^{3}\right)$
We have $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{d y}{d x}=2^{x^{3}} \log 2 \times 3 x^{3-1}$
$\Rightarrow \frac{d y}{d x}=2^{x^{3}} \log 2 \times 3 x^{2}$
$\therefore \frac{d y}{d x}=2^{x^{3}} 3 x^{2} \log 2$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left(2^{\mathrm{x}^{3}}\right)=2^{\mathrm{x}^{3}} 3 \mathrm{x}^{2} \log 2$
11. $3^{e^{x}}$

Solution:

$$
\text { Let } \mathrm{y}=3^{\mathrm{e}^{\mathrm{x}}}
$$

On differentiating y with respect to x, we get

$$
\frac{d y}{d x}=\frac{d}{d x}\left(3^{e^{x}}\right)
$$

We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{a}^{\mathrm{x}}\right)=\mathrm{a}^{\mathrm{x}} \log \mathrm{a}$
Now by using chain rule,

$$
\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=3^{\mathrm{e}^{\mathrm{x}}} \log 3 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{x}}\right)
$$

We have $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{x}}\right)=\mathrm{e}^{\mathrm{x}}$
$\Rightarrow \frac{d y}{d x}=3^{e^{x}} \log 3 \times e^{x}$
$\therefore \frac{d y}{d x}=3^{e^{x}} e^{x} \log 3$
Thus, $\frac{d}{d x}\left(3^{e^{x}}\right)=3^{e^{x}} e^{x} \log 3$
12. $\log _{x} 3$

Solution:

Let $y=\log _{x} 3$
We know that $\log _{a} b=\frac{\log b}{\log a}$.
$\Rightarrow \log _{x} 3=\frac{\log 3}{\log x}$
On differentiating y with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\frac{\log 3}{\log x}\right) \\
& \Rightarrow \frac{d y}{d x}=\log 3 \frac{d}{d x}\left(\frac{1}{\log x}\right) \\
& \Rightarrow \frac{d y}{d x}=\log 3 \frac{d}{d x}(\log x)^{-1}
\end{aligned}
$$

We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{n}^{\mathrm{n}-1}$
Now by using chain rule,
$\Rightarrow \frac{d y}{d x}=\log 3\left[-1 \times(\log x)^{-1-1}\right] \frac{d}{d x}(\log x)$
$\Rightarrow \frac{d y}{d x}=-\log 3(\log x)^{-2} \frac{d}{d x}(\log x)$
We have $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=-\log 3(\log x)^{-2} \times \frac{1}{x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{1}{\mathrm{x}} \frac{\log 3}{(\log \mathrm{x})^{2}}$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{x} \frac{\log 3}{(\log x)^{2}} \times \frac{\log 3}{\log 3}$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{x \log 3} \frac{(\log 3)^{2}}{(\log x)^{2}}$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{x \log 3}\left(\frac{\log 3}{\log x}\right)^{2}$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{x \log 3 \times\left(\frac{\log x}{\log 3}\right)^{2}}$
$\therefore \frac{d y}{d x}=-\frac{1}{x \log 3\left(\log _{3} x\right)^{2}}$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\log _{\mathrm{x}} 3\right)=-\frac{1}{\mathrm{x} \log 3\left(\log _{3} \mathrm{x}\right)^{2}}$
13. $3^{x^{2}+2 x}$

Solution:

Let $y=3^{x^{2}+2 x}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(3^{x^{2}+2 x}\right)$
We know $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a$
Now by using chain rule, we get
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=3^{\mathrm{x}^{2}+2 \mathrm{x}} \log 3 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{x}^{2}+2 \mathrm{x}\right)$
$\Rightarrow \frac{d y}{d x}=3^{x^{2}+2 x} \log 3\left[\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(2 x)\right]$
$\Rightarrow \frac{d y}{d x}=3^{x^{2}+2 x} \log 3\left[\frac{d}{d x}\left(x^{2}\right)+2 \frac{d}{d x}(x)\right]$
We have $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$ and $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d y}{d x}=3^{x^{2}+2 x} \log 3[2 x+2 \times 1]$
$\Rightarrow \frac{d y}{d x}=3^{x^{2}+2 x} \log 3(2 x+2)$
$\therefore \frac{d y}{d x}=(2 x+2) 3^{x^{2}+2 x} \log 3$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left(3^{\mathrm{x}^{2}+2 \mathrm{x}}\right)=(2 \mathrm{x}+2) 3^{\mathrm{x}^{2}+2 \mathrm{x}} \log 3$
14. $\sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}$

Solution:
Let $y=\sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}$
On differentiating y with respect to x, we get

$$
\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}\right)
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{\frac{1}{2}}\right]
$$

We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
Using chain rule

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)
\end{aligned}
$$

We know that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{\left(a^{2}+x^{2}\right) \frac{d}{d x}\left(a^{2}-x^{2}\right)-\left(a^{2}-x^{2}\right) \frac{d}{d x}\left(a^{2}+x^{2}\right)}{\left(a^{2}+x^{2}\right)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}
\end{aligned}
$$

$$
=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{\left(a^{2}+x^{2}\right)\left(\frac{d}{d x}\left(a^{2}\right)-\frac{d}{d x}\left(x^{2}\right)\right)-\left(a^{2}-x^{2}\right)\left(\frac{d}{d x}\left(a^{2}\right)+\frac{d}{d x}\left(x^{2}\right)\right)}{\left(a^{2}+x^{2}\right)^{2}}\right]
$$

However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}$ and derivative of a constant is 0 .

$$
\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{\left(a^{2}+x^{2}\right)(0-2 x)-\left(a^{2}-x^{2}\right)(0+2 x)}{\left(a^{2}+x^{2}\right)^{2}}\right]
$$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x\left(a^{2}+x^{2}\right)-2 x\left(a^{2}-x^{2}\right)}{\left(a^{2}+x^{2}\right)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x\left(a^{2}+x^{2}+a^{2}-x^{2}\right)}{\left(a^{2}+x^{2}\right)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x\left(2 a^{2}\right)}{\left(a^{2}+x^{2}\right)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x a^{2}}{\left(a^{2}+x^{2}\right)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{\left(a^{2}-x^{2}\right)^{-\frac{1}{2}}}{\left(a^{2}+x^{2}\right)^{-\frac{1}{2}}}\left[\frac{-2 x a^{2}}{\left(a^{2}+x^{2}\right)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{-2 x a^{2}\left(a^{2}-x^{2}\right)^{-\frac{1}{2}}}{\left(a^{2}+x^{2}\right)^{-\frac{1}{2}+2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{-2 x a^{2}\left(a^{2}-x^{2}\right)^{-\frac{1}{2}}}{\left(a^{2}+x^{2}\right)^{\frac{3}{2}}} \\
& \Rightarrow \frac{d y}{d x}=\frac{-2 x a^{2}}{\left(a^{2}+x^{2}\right)^{\frac{3}{2}}\left(a^{2}-x^{2}\right)^{\frac{1}{2}}} \\
& \therefore \frac{d y}{d x}=\frac{-2 x a^{2}}{\left(a^{2}+x^{2}\right)^{\frac{3}{2}} \sqrt{a^{2}-x^{2}}} \\
& \Rightarrow
\end{aligned}
$$

15. $3^{x \log x}$

Solution:

Let $y=3^{x \log x}$
On differentiating y with respect to x, we get

$$
\frac{d y}{d x}=\frac{d}{d x}\left(3^{x \log x}\right)
$$

We know $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a$
Now by using chain rule
$\Rightarrow \frac{d y}{d x}=3^{x \log x} \log 3 \frac{d}{d x}(x \log x)$
We know that by product rule $(\mathrm{u} v)^{\prime}=\mathrm{vu} \mathrm{u}^{\prime}+\mathrm{u} \mathrm{v}^{\prime}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=3^{\mathrm{x} \log \mathrm{x}} \log 3 \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x} \times \log \mathrm{x})$
$\Rightarrow \frac{d y}{d x}=3^{x \log x} \log 3\left[\log x \frac{d}{d x}(x)+x \frac{d}{d x}(\log x)\right]$
We have $\frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}}$ and $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d y}{d x}=3^{x \log x} \log 3\left[\log x \times 1+x \times \frac{1}{x}\right]$
$\Rightarrow \frac{d y}{d x}=3^{x \log x} \log 3[\log x+1]$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=(1+\log \mathrm{x}) 3^{\mathrm{x} \log \mathrm{x}} \log 3$
Thus, $\frac{d}{d x}\left(3^{x \log x}\right)=(1+\log x) 3^{x \log x} \log 3$
16. $\sqrt{\frac{1+\sin x}{1-\sin x}}$

Solution:

Let $\mathrm{y}=\sqrt{\frac{1+\sin x}{1-\sin x}}$
On differentiating y with respect to x, we get

On differentiating y with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\left(\frac{1+\sin x}{1-\sin x}\right)^{\frac{1}{2}}\right]
\end{aligned}
$$

We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
Using chain rule, we get
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\frac{1+\sin \mathrm{x}}{1-\sin \mathrm{x}}\right)^{\frac{1}{2}-1} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\frac{1+\sin \mathrm{x}}{1-\sin \mathrm{x}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(\frac{1+\sin x}{1-\sin x}\right)$
We know that

$$
\left(\frac{u}{v}\right)^{\prime}=\frac{v u^{\prime}-u^{\prime}}{v^{2}}
$$

$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}}\left[\frac{(1-\sin x) \frac{d}{d x}(1+\sin x)-(1+\sin x) \frac{d}{d x}(1-\sin x)}{(1-\sin x)^{2}}\right]$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}}\left[\frac{(1-\sin x)\left(\frac{d}{d x}(1)+\frac{d}{d x}(\sin x)\right)-(1+\sin x)\left(\frac{d}{d x}(1)-\frac{d}{d x}(\sin x)\right)}{(1-\sin x)^{2}}\right]$
We know $\frac{d}{d x}(\sin x)=\cos x$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}}\left[\frac{(1-\sin x)(0+\cos x)-(1+\sin x)(0-\cos x)}{(1-\sin x)^{2}}\right]$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}}\left[\frac{(1-\sin x) \cos x+(1+\sin x) \cos x}{(1-\sin x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}}\left[\frac{(1-\sin x+1+\sin x) \cos x}{(1-\sin x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}}\left[\frac{2 \cos x}{(1-\sin x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}}\left[\frac{\cos x}{(1-\sin x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{(1+\sin x)^{-\frac{1}{2}}}{(1-\sin x)^{-\frac{1}{2}}}\left[\frac{\cos x}{(1-\sin x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{(1+\sin x)^{-\frac{1}{2}} \cos x}{(1-\sin x)^{-\frac{1}{2}+2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{(1+\sin x)^{-\frac{1}{2}} \cos x}{(1-\sin x)^{\frac{3}{2}}} \\
& \Rightarrow \frac{d y}{d x}=\frac{\cos x}{(1-\sin x)^{1+\frac{1}{2}}(1+\sin x)^{\frac{1}{2}}} \\
& \Rightarrow \frac{d y}{d x}=\frac{\cos x}{(1-\sin x)(1-\sin x)^{\frac{1}{2}}(1+\sin x)^{\frac{1}{2}}} \\
& \Rightarrow \frac{d y}{d x}=\frac{\cos x}{(1-\sin x) \sqrt{(1-\sin x)(1+\sin x)}} \\
& \Rightarrow \frac{d y}{d x}=\frac{\cos x}{(1-\sin x) \sqrt{1-\sin ^{2} x}} \\
& \Rightarrow \frac{d y}{d x}=\frac{\cos x}{(1-\sin x) \sqrt{\cos ^{2} x}}\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{\cos x}{(1-\sin x) \cos x} \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{1-\sin x} \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{1-\sin x} \times \frac{1+\sin x}{1+\sin x} \\
& \Rightarrow \frac{d y}{d x}=\frac{1+\sin x}{1-\sin ^{2} x} \\
& \Rightarrow \frac{d y}{d x}=\frac{1+\sin x}{\cos ^{2} x}\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{\cos ^{2} x}+\frac{\sin ^{2} x}{\cos ^{2} x} \\
& \Rightarrow \frac{d y}{d x}=\left(\frac{1}{\cos ^{2} x}\right)^{2}+\left(\frac{1}{\cos x}\right)\left(\frac{\sin x}{\cos x}\right) \\
& \Rightarrow \frac{d y}{d x}=\sec ^{2} x+\sec x \tan x \\
& \therefore \frac{d y}{d x}=\sec x(\sec x+\tan x)
\end{aligned}
$$

Thus, $\frac{d}{d x}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right)=\sec x(\sec x+\tan x)$
17. $\sqrt{\frac{1+x^{2}}{1-x^{2}}}$

Solution:

Let $\mathrm{y}=\sqrt{\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{\frac{1-x^{2}}{1+\mathrm{x}^{2}}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\left(\frac{1-x^{2}}{1+x^{2}}\right)^{\frac{1}{2}}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
Now by using chain rule
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)^{\frac{1}{2}-1} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
We know that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{\left(1+x^{2}\right) \frac{d}{d x}\left(1-x^{2}\right)-\left(1-x^{2}\right) \frac{d}{d x}\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{\left(1+x^{2}\right)\left(\frac{d}{d x}(1)-\frac{d}{d x}\left(x^{2}\right)\right)-\left(1-x^{2}\right)\left(\frac{d}{d x}(1)+\frac{d}{d x}\left(x^{2}\right)\right)}{\left(1+x^{2}\right)^{2}}\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{\left(1+x^{2}\right)(0-2 x)-\left(1-x^{2}\right)(0+2 x)}{\left(1+x^{2}\right)^{2}}\right]$

$$
\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x\left(1+x^{2}\right)-2 x\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}\right]
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x\left(1+x^{2}+1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}\right]
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x(2)}{\left(1+x^{2}\right)^{2}}\right]
$$

$$
\Rightarrow \frac{d y}{d x}=\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right]
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{\left(1-x^{2}\right)^{-\frac{1}{2}}}{\left(1+x^{2}\right)^{-\frac{1}{2}}}\left[\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right]
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{-2 x\left(1-x^{2}\right)^{-\frac{1}{2}}}{\left(1+x^{2}\right)^{-\frac{1}{2}+2}}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{-2 x\left(1-x^{2}\right)^{-\frac{1}{2}}}{\left(1+x^{2}\right)^{\frac{3}{2}}}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{-2 x}{\left(1+x^{2}\right)^{\frac{3}{2}}\left(1-x^{2}\right)^{\frac{1}{2}}}
$$

$$
\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-2 \mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{\frac{3}{2}} \sqrt{1-\mathrm{x}^{2}}}
$$

$$
\text { Thus, } \frac{\mathrm{d}}{\mathrm{dx}}\left(\sqrt{\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}}\right)=\frac{-2 \mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{\frac{3}{2}} \sqrt{1-\mathrm{x}^{2}}}
$$

18. $(\log \sin x)^{2}$

Solution:

Let $\mathrm{y}=(\log \sin \mathrm{x})^{2}$

On differentiating y with respect to x, we get

$$
\frac{d y}{d x}=\frac{d}{d x}\left[(\log (\sin x))^{2}\right]
$$

We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
Now by using chain rule,
$\Rightarrow \frac{d y}{d x}=2(\log (\sin x))^{2-1} \frac{d}{d x}[\log (\sin x)]$
$\Rightarrow \frac{d y}{d x}=2 \log (\sin x) \frac{d}{d x}[\log (\sin x)]$
We have $\frac{d}{d x}(\log x)=\frac{1}{x}$
Now by using chain rule,

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=2 \log (\sin x)\left[\frac{1}{\sin x} \frac{d}{d x}(\sin x)\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{2}{\sin x} \log (\sin x) \frac{d}{d x}(\sin x)
\end{aligned}
$$

However, $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=\frac{2}{\sin x} \log (\sin x) \cos x$
$\Rightarrow \frac{d y}{d x}=2\left(\frac{\cos x}{\sin x}\right) \log (\sin x)$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=2 \cot \mathrm{x} \log (\sin \mathrm{x})$
Thus, $\frac{d}{d x}\left[(\log (\sin x))^{2}\right]=2 \cot x \log (\sin x)$
19. $\sqrt{\frac{1+x}{1-x}}$

Solution:

Let $\mathrm{y}=\sqrt{\frac{1+\mathrm{x}}{1-\mathrm{x}}}$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{\frac{1+x}{1-x}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
Now by using chain rule,
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)^{\frac{1}{2}-1} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x}{1-x}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(\frac{1+x}{1-x}\right)$
We know that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)^{-\frac{1}{2}}\left[\frac{(1-\mathrm{x}) \frac{\mathrm{d}}{\mathrm{dx}}(1+\mathrm{x})-(1+\mathrm{x}) \frac{\mathrm{d}}{\mathrm{dx}}(1-\mathrm{x})}{(1-\mathrm{x})^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x}{1-x}\right)^{-\frac{1}{2}}\left[\frac{(1-x)\left(\frac{d}{d x}(1)+\frac{d}{d x}(x)\right)-(1+x)\left(\frac{d}{d x}(1)-\frac{d}{d x}(x)\right)}{(1-x)^{2}}\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x}{1-x}\right)^{-\frac{1}{2}}\left[\frac{(1-x)(0+1)-(1+x)(0-1)}{(1-x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x}{1-x}\right)^{-\frac{1}{2}}\left[\frac{(1-x)+(1+x)}{(1-x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x}{1-x}\right)^{-\frac{1}{2}}\left[\frac{2}{(1-x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\left(\frac{1+x}{1-x}\right)^{-\frac{1}{2}}\left[\frac{1}{(1-x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{(1+x)^{-\frac{1}{2}}}{(1-x)^{-\frac{1}{2}}}\left[\frac{1}{(1-x)^{2}}\right]
\end{aligned}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{(1+x)^{-\frac{1}{2}}}{(1-x)^{-\frac{1}{2}+2}}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{(1+x)^{-\frac{1}{2}}}{(1-x)^{\frac{3}{2}}}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{1}{(1-x)^{\frac{3}{2}}(1+x)^{\frac{1}{2}}}
$$

$$
\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{(1-\mathrm{x})^{\frac{3}{2}} \sqrt{1+\mathrm{x}}}
$$

$$
\text { Thus, } \frac{\mathrm{d}}{\mathrm{dx}}\left(\sqrt{\frac{1+\mathrm{x}}{1-\mathrm{x}}}\right)=\frac{1}{(1-\mathrm{x})^{\frac{3}{2}} \sqrt{1+\mathrm{x}}}
$$

20. $\sin \left(\frac{1+x^{2}}{1-x^{2}}\right)$

Solution:

Let $\mathrm{y}=\sin \left(\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right)$
On differentiating y with respect to x , we get

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\sin \left(\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right)\right]
$$

We know $\frac{d}{d x}(\sin x)=\cos x$
Now by using chain rule
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\cos \left(\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right) \frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right)$
We know that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{\left(1-x^{2}\right) \frac{d}{d x}\left(1+x^{2}\right)-\left(1+x^{2}\right) \frac{d}{d x}\left(1-x^{2}\right)}{\left(1-x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{\left(1-x^{2}\right)\left(\frac{d}{d x}(1)+\frac{d}{d x}\left(x^{2}\right)\right)-\left(1+x^{2}\right)\left(\frac{d}{d x}(1)-\frac{d}{d x}\left(x^{2}\right)\right)}{\left(1-x^{2}\right)^{2}}\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{\left(1-x^{2}\right)(0+2 x)-\left(1+x^{2}\right)(0-2 x)}{\left(1-x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{2 x\left(1-x^{2}\right)+2 x\left(1+x^{2}\right)}{\left(1-x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{2 x\left(1-x^{2}+1+x^{2}\right)}{\left(1-x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{2 x(2)}{\left(1-x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{4 x}{\left(1-x^{2}\right)^{2}}\right]$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{4 \mathrm{x}}{\left(1-\mathrm{x}^{2}\right)^{2}} \cos \left(\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right)$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\sin \left(\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right)\right]=\frac{4 \mathrm{x}}{\left(1-\mathrm{x}^{2}\right)^{2}} \cos \left(\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right)$
21. $\mathrm{e}^{3 \mathrm{x}} \cos 2 \mathrm{x}$

Solution:

Let $y=e^{3 x} \cos (2 x)$
On differentiating y with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(e^{3 x} \cos 2 x\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(e^{3 x} \times \cos 2 x\right)
\end{aligned}
$$

We know that $(u v)^{\prime}=v u^{\prime}+u v^{\prime}$ (product rule)
$\Rightarrow \frac{d y}{d x}=\cos 2 x \frac{d}{d x}\left(e^{3 x}\right)+e^{3 x} \frac{d}{d x}(\cos 2 x)$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$ and $\frac{d}{d x}(\cos x)=-\sin x$
Now by using chain rule, we get

$$
\Rightarrow \frac{d y}{d x}=\cos 2 x\left[e^{3 x} \frac{d}{d x}(3 x)\right]+e^{3 x}\left[-\sin 2 x \frac{d}{d x}(2 x)\right]
$$

$\Rightarrow \frac{d y}{d x}=e^{3 x} \cos 2 x\left[\frac{d}{d x}(3 x)\right]-e^{3 x} \sin 2 x\left[\frac{d}{d x}(2 x)\right]$
$\Rightarrow \frac{d y}{d x}=e^{3 x} \cos 2 x\left[3 \frac{d}{d x}(x)\right]-e^{3 x} \sin 2 x\left[2 \frac{d}{d x}(x)\right]$
$\Rightarrow \frac{d y}{d x}=3 e^{3 x} \cos 2 x\left[\frac{d}{d x}(x)\right]-2 e^{3 x} \sin 2 x\left[\frac{d}{d x}(x)\right]$
We have $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d y}{d x}=3 e^{3 x} \cos 2 x \times 1-2 e^{3 x} \sin 2 x \times 1$
$\Rightarrow \frac{d y}{d x}=3 e^{3 x} \cos 2 x-2 e^{3 x} \sin 2 x$
$\therefore \frac{d y}{d x}=e^{3 x}(3 \cos 2 x-2 \sin 2 x)$
Thus, $\frac{d}{d x}\left(e^{3 x} \cos 2 x\right)=e^{3 x}(3 \cos 2 x-2 \sin 2 x)$

22. $\operatorname{Sin}(\log \sin x)$

Solution:

Let $\mathrm{y}=\sin (\log \sin \mathrm{x})$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}[\sin (\log (\sin x))]$
We know $\frac{d}{d x}(\sin x)=\cos x$
By using chain rule,

$$
\Rightarrow \frac{d y}{d x}=\cos (\log (\sin x)) \frac{d}{d x}[\log (\sin x)]
$$

We have $\frac{\mathrm{d}}{\mathrm{dx}}(\log x)=\frac{1}{\mathrm{x}}$

Now by using chain rule,
$\Rightarrow \frac{d y}{d x}=\cos (\log (\sin x))\left[\frac{1}{\sin x} \frac{d}{d x}(\sin x)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sin x} \cos (\log (\sin x)) \frac{d}{d x}(\sin x)$
However, $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sin x} \cos (\log (\sin x)) \cos x$
$\Rightarrow \frac{d y}{d x}=\left(\frac{\cos x}{\sin x}\right) \cos (\log (\sin x))$
$\therefore \frac{d y}{d x}=\cot x \cos (\log (\sin x))$
Thus, $\frac{d}{d x}[\sin (\log (\sin x))]=\cot x \cos (\log (\sin x))$
23. $\mathrm{e}^{\tan 3 \mathrm{x}}$

Solution:

Let $\mathrm{y}=\mathrm{e}^{\tan 3 \mathrm{x}}$
On differentiating y with respect to x, we get

$$
\frac{d y}{d x}=\frac{d}{d x}\left(e^{\tan 3 x}\right)
$$

We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{x}}\right)=\mathrm{e}^{\mathrm{x}}$
By using chain rule,
$\Rightarrow \frac{d y}{d x}=e^{\tan 3 x} \frac{d}{d x}(\tan 3 \mathrm{x})$
We have $\frac{d}{d x}(\tan x)=\sec ^{2} x$
Now by using chain rule, we get
$\Rightarrow \frac{d y}{d x}=e^{\tan 3 x} \sec ^{2} 3 x \frac{d}{d x}(3 x)$
$\Rightarrow \frac{d y}{d x}=3 e^{\tan 3 x} \sec ^{2} 3 x \frac{d}{d x}(x)$
However, $\frac{d}{d x}(x)=1$
$\Rightarrow \frac{d y}{d x}=3 e^{\tan 3 x} \sec ^{2} 3 x \times 1$
$\therefore \frac{d y}{d x}=3 e^{\tan 3 x} \sec ^{2} 3 x$
Thus, $\frac{d}{d x}\left(e^{\tan 3 x}\right)=3 e^{\tan 3 x} \sec ^{2} 3 x$
24. $e^{\sqrt{\cot x}}$

Solution:

Let $y=e^{\sqrt{\cot x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\sqrt{\cot x}}\right)$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
By using chain rule, we get
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{e}^{\sqrt{\cot \mathrm{x}}} \frac{\mathrm{d}}{\mathrm{dx}}(\sqrt{\cot \mathrm{x}})$
$\Rightarrow \frac{d y}{d x}=e^{\sqrt{\cot x}} \frac{d}{d x}\left[(\cot x)^{\frac{1}{2}}\right]$
We have $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
By using chain rule, we get
$\Rightarrow \frac{d y}{d x}=e^{\sqrt{\cot x}}\left[\frac{1}{2}(\cot x)^{\frac{1}{2}-1} \frac{d}{d x}(\cot x)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2} e^{\sqrt{\cot x}}(\cot x)^{-\frac{1}{2}} \frac{d}{d x}(\cot x)$
However, $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{2} e^{\sqrt{\cot x}}(\cot x)^{-\frac{1}{2}} \operatorname{cosec}^{2} x$
$\Rightarrow \frac{d y}{d x}=-\frac{e^{\sqrt{\cot x}} \operatorname{cosec}^{2} x}{2(\cot x)^{\frac{1}{2}}}$
$\therefore \frac{d y}{d x}=-\frac{e^{\sqrt{\cot x}} \operatorname{cosec}^{2} x}{2 \sqrt{\cot x}}$
Thus, $\frac{d}{d x}\left(e^{\sqrt{\cot x}}\right)=-\frac{e^{\sqrt{\cot x}} \operatorname{cosec}^{2} x}{2 \sqrt{\cot x}}$
25. $\log \left(\frac{\sin x}{1+\cos x}\right)$

Solution:

Let $y=\log \left(\frac{\sin x}{1+\cos x}\right)$
$\Rightarrow y=\log \left(\frac{\sin 2 \times \frac{x}{2}}{1+\cos 2 \times \frac{x}{2}}\right)$
We have $\sin 2 \theta=2 \sin \theta \cos \theta$ and $1+\cos 2 \theta=2 \cos ^{2} \theta$.
$\Rightarrow y=\log \left(\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\right)$
$\Rightarrow y=\log \left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right)$
$\Rightarrow \mathrm{y}=\log \left(\tan \frac{\mathrm{x}}{2}\right)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\log \left(\tan \frac{x}{2}\right)\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}}$
Now by using chain rule we have,
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\left(\frac{1}{\tan \frac{x}{2}}\right) \frac{\mathrm{d}}{\mathrm{dx}}\left(\tan \frac{\mathrm{x}}{2}\right)$
$\Rightarrow \frac{d y}{d x}=\cot \frac{x}{2} \frac{d}{d x}\left(\tan \frac{x}{2}\right)$
We have $\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\Rightarrow \frac{d y}{d x}=\cot \frac{x}{2} \sec ^{2} \frac{x}{2} \frac{d}{d x}\left(\frac{x}{2}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2} \cot \frac{x}{2} \sec ^{2} \frac{x}{2} \frac{d}{d x}(x)$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2} \cot \frac{x}{2} \sec ^{2} \frac{x}{2} \times 1$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2} \times \frac{\cos \frac{x}{2}}{\sin \frac{x}{2}} \times \frac{1}{\cos ^{2} \frac{x}{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 \sin \frac{x}{2} \cos \frac{x}{2}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\sin 2 \times \frac{\mathrm{x}}{2}}[\because \sin 2 \theta=2 \sin \theta \cos \theta]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sin x}$
$\therefore \frac{d y}{d x}=\operatorname{cosec} x$
Thus, $\frac{d}{d x}\left[\log \left(\frac{\sin x}{1+\cos x}\right)\right]=\operatorname{cosec} x$
26. $\log \sqrt{\frac{1-\cos x}{1+\cos x}}$

Solution:

Let $y=\log \sqrt{\frac{1-\cos x}{1+\cos x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\log \sqrt{\frac{1-\cos x}{1+\cos x}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\log \left(\frac{1-\cos x}{1+\cos x}\right)^{\frac{1}{2}}\right]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
Now by using chain rule,
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\left(\frac{1-\cos x}{1+\cos \mathrm{x}}\right)^{\frac{1}{2}}} \frac{\mathrm{~d}}{\mathrm{dx}}\left[\left(\frac{1-\cos \mathrm{x}}{1+\cos \mathrm{x}}\right)^{\frac{1}{2}}\right]$

$$
\Rightarrow \frac{d y}{d x}=\left(\frac{1-\cos x}{1+\cos x}\right)^{-\frac{1}{2}} \frac{d}{d x}\left[\left(\frac{1-\cos x}{1+\cos x}\right)^{\frac{1}{2}}\right]
$$

We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
Again by using chain rule, we get

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\left(\frac{1-\cos x}{1+\cos x}\right)^{-\frac{1}{2}} \frac{1}{2}\left(\frac{1-\cos x}{1+\cos x}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(\frac{1-\cos x}{1+\cos x}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-\cos x}{1+\cos x}\right)^{-\frac{1}{2}}\left(\frac{1-\cos x}{1+\cos x}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(\frac{1-\cos x}{1+\cos x}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-\cos x}{1+\cos x}\right)^{-1} \frac{d}{d x}\left(\frac{1-\cos x}{1+\cos x}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right) \frac{d}{d x}\left(\frac{1-\cos x}{1+\cos x}\right)
\end{aligned}
$$

We know that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{(1+\cos x) \frac{d}{d x}(1-\cos x)-(1-\cos x) \frac{d}{d x}(1+\cos x)}{(1+\cos x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}
\end{aligned}
$$

$$
=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{(1+\cos x)\left(\frac{d}{d x}(1)-\frac{d}{d x}(\cos x)\right)-(1-\cos x)\left(\frac{d}{d x}(1)+\frac{d}{d x}(\cos x)\right)}{(1+\cos x)^{2}}\right]
$$

We know $\frac{d}{d x}(\cos x)=-\sin x$ and derivative of a constant is 0 .

$$
\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{(1+\cos x)(0+\sin x)-(1-\cos x)(0-\sin x)}{(1+\cos x)^{2}}\right]
$$

$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{(1+\cos x) \sin x+(1-\cos x) \sin x}{(1+\cos x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{(1+\cos x+1-\cos x) \sin x}{(1+\cos x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{2 \sin x}{(1+\cos x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sin x}{(1-\cos x)(1+\cos x)}$
$\Rightarrow \frac{d y}{d x}=\frac{\sin x}{1-\cos ^{2} x}$
$\Rightarrow \frac{d y}{d x}=\frac{\sin x}{\sin ^{2} x}\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sin x}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\operatorname{cosec} \mathrm{x}$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\log \sqrt{\frac{1-\cos x}{1+\cos x}}\right)=\operatorname{cosec} x$
27. $\tan \left(e^{\sin x}\right)$

Solution:

Let $\mathrm{y}=\tan \left(\mathrm{e}^{\sin \mathrm{x}}\right)$
On differentiating y with respect to x , we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left[\tan \left(e^{\sin x}\right)\right] \\
& \text { We know } \frac{d}{d x}(\tan x)=\sec ^{2} x
\end{aligned}
$$

Now by using chain rule,

$$
\Rightarrow \frac{d y}{d x}=\sec ^{2}\left(e^{\sin x}\right) \frac{d}{d x}\left(e^{\sin x}\right)
$$

We have $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
Again by using chain rule, we get

$$
\Rightarrow \frac{d y}{d x}=\sec ^{2}\left(e^{\sin x}\right) e^{\sin x} \frac{d}{d x}(\sin x)
$$

However, $\frac{d}{d x}(\sin x)=\cos x$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\sec ^{2}\left(e^{\sin x}\right) e^{\sin x} \cos x \\
& \therefore \frac{d y}{d x}=e^{\sin x} \cos x \sec ^{2}\left(e^{\sin x}\right)
\end{aligned}
$$

Thus, $\frac{d}{d x}\left[\tan \left(e^{\sin x}\right)\right]=e^{\sin x} \cos x \sec ^{2}\left(e^{\sin x}\right)$
28. $\log \left(x+\sqrt{x^{2}+1}\right)$

Solution:

$$
\text { Let } \mathrm{y}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+1}\right)
$$

On differentiating y with respect to x, we get

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+1}\right)\right]
$$

We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
Using chain rule, we get

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}} \frac{d}{d x}\left(x+\sqrt{x^{2}+1}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[\frac{d}{d x}(x)+\frac{d}{d x}\left(\sqrt{x^{2}+1}\right)\right]
\end{aligned}
$$

$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[\frac{d}{d x}(x)+\frac{d}{d x}\left(x^{2}+1\right)^{\frac{1}{2}}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{n}^{\mathrm{n}-1}$
Again by using chain rule, we get
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[1+\frac{1}{2}\left(x^{2}+1\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(x^{2}+1\right)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[1+\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}}\left(\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(1)\right)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[1+\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}}(2 x+0)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[1+\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}} \times 2 x\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[1+x\left(x^{2}+1\right)^{-\frac{1}{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[1+\frac{x}{\sqrt{x^{2}+1}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[\frac{x+\sqrt{x^{2}+1}}{\sqrt{x^{2}+1}}\right]$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\sqrt{\mathrm{x}^{2}+1}}$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+1}\right)\right]=\frac{1}{\sqrt{\mathrm{x}^{2}+1}}$
29. $\frac{e^{x} \log x}{x^{2}}$

Solution:

Let $y=\frac{e^{x} \log x}{x^{2}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{e^{x} \log x}{x^{2}}\right)$
We know that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}}{}{ }^{\prime} \mathrm{v}^{2}$ (quotient rule)

$$
\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}\right) \frac{d}{d x}\left(e^{x} \log x\right)-\left(e^{x} \log x\right) \frac{d}{d x}\left(x^{2}\right)}{\left(x^{2}\right)^{2}}
$$

We have (uv$)^{\prime}=\mathrm{vu}^{\prime}+\mathrm{u} \mathrm{v}^{\prime}$ (product rule)

$$
\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}\right)\left[\log x \frac{d}{d x}\left(e^{x}\right)+e^{x} \frac{d}{d x}(\log x)\right]-\left(e^{x} \log x\right) \frac{d}{d x}\left(x^{2}\right)}{x^{4}}
$$

We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}, \frac{d}{d x}(\log x)=\frac{1}{x}$ and $\frac{d}{d x}\left(x^{2}\right)=2 x$

$$
\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}\right)\left[\log x \times e^{x}+e^{x} \times \frac{1}{x}\right]-\left(e^{x} \log x\right) \times 2 x}{x^{4}}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}\right)\left[e^{x} \log x+\frac{e^{x}}{x}\right]-2 x e^{x} \log x}{x^{4}}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{x^{2} e^{x} \log x+x e^{x}-2 x e^{x} \log x}{x^{4}}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{x^{2} e^{x} \log x}{x^{4}}+\frac{x e^{x}}{x^{4}}-\frac{2 x e^{x} \log x}{x^{4}}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{e^{x} \log x}{x^{2}}+\frac{e^{x}}{x^{3}}-\frac{2 e^{x} \log x}{x^{3}}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{e^{x}}{x^{2}}\left(\log x+\frac{1}{x}-\frac{2 \log x}{x}\right)
$$

$\therefore \frac{d y}{d x}=\mathrm{e}^{\mathrm{x}} \mathrm{x}^{-2}\left(\log \mathrm{x}+\frac{1}{\mathrm{x}}-\frac{2}{\mathrm{x}} \log \mathrm{x}\right)$
Thus, $\frac{d}{d x}\left(\frac{e^{x} \log x}{x^{2}}\right)=e^{x} x^{-2}\left(\log x+\frac{1}{x}-\frac{2}{x} \log x\right)$

30. $\log (\operatorname{cosec} x-\cot x)$

Solution:

Let $y=\log (\operatorname{cosec} x-\cot x)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}[\log (\operatorname{cosec} x-\cot x)]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}}$
Now by using chain rule, we get
$\Rightarrow \frac{d y}{d x}=\frac{1}{\operatorname{cosec} x-\cot x} \frac{d}{d x}(\operatorname{cosec} x-\cot x)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\operatorname{cosec} x-\cot x}\left[\frac{d}{d x}(\operatorname{cosec} x)-\frac{d}{d x}(\cot x)\right]$
We know $\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$ and $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\operatorname{cosec} x-\cot x}\left[-\operatorname{cosec} x \cot x-\left(-\operatorname{cosec}^{2} x\right)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\operatorname{cosec} x-\cot x}\left[-\operatorname{cosec} x \cot x+\operatorname{cosec}^{2} x\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\operatorname{cosec} x-\cot x}\left[\operatorname{cosec}^{2} x-\operatorname{cosec} x \cot x\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\operatorname{cosec} x-\cot x}[(\operatorname{cosec} x-\cot x) \operatorname{cosec} x]$
$\therefore \frac{d y}{d x}=\operatorname{cosec} x$

Thus, $\frac{d}{d x}[\log (\operatorname{cosec} x-\cot x)]=\operatorname{cosec} x$
31. $\frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}$

Solution:

Let $y=\frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}\right)$
We know that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule
$\Rightarrow \frac{d y}{d x}=\frac{\left(e^{2 x}-e^{-2 x}\right) \frac{d}{d x}\left(e^{2 x}+e^{-2 x}\right)-\left(e^{2 x}+e^{-2 x}\right) \frac{d}{d x}\left(e^{2 x}-e^{-2 x}\right)}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\frac{\left(e^{2 x}-e^{-2 x}\right)\left[\frac{d}{d x}\left(e^{2 x}\right)+\frac{d}{d x}\left(e^{-2 x}\right)\right]-\left(e^{2 x}+e^{-2 x}\right)\left[\frac{d}{d x}\left(e^{2 x}\right)-\frac{d}{d x}\left(e^{-2 x}\right)\right]}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\frac{\left(e^{2 x}-e^{-2 x}\right)\left[e^{2 x} \frac{d}{d x}(2 x)+e^{-2 x} \frac{d}{d x}(-2 x)\right]-\left(e^{2 x}+e^{-2 x}\right)\left[e^{2 x} \frac{d}{d x}(2 x)-e^{-2 x} \frac{d}{d x}(-2 x)\right]}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\frac{\left(e^{2 x}-e^{-2 x}\right)\left[2 e^{2 x} \frac{d}{d x}(x)-2 e^{-2 x} \frac{d}{d x}(x)\right]-\left(e^{2 x}+e^{-2 x}\right)\left[2 e^{2 x} \frac{d}{d x}(x)+2 e^{-2 x} \frac{d}{d x}(x)\right]}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$

However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\frac{\left(e^{2 x}-e^{-2 x}\right)\left[2 e^{2 x} \times 1-2 e^{-2 x} \times 1\right]-\left(e^{2 x}+e^{-2 x}\right)\left[2 e^{2 x} \times 1+2 e^{-2 x} \times 1\right]}{\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(e^{2 x}-e^{-2 x}\right)\left[2 e^{2 x}-2 e^{-2 x}\right]-\left(e^{2 x}+e^{-2 x}\right)\left[2 e^{2 x}+2 e^{-2 x}\right]}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)-2\left(\mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}\right)\left(\mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}\right)}{\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2\left[\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)^{2}-\left(\mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}\right)^{2}\right]}{\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2\left(e^{2 x}-e^{-2 x}+e^{2 x}+e^{-2 x}\right)\left(e^{2 x}-e^{-2 x}-e^{2 x}-e^{-2 x}\right)}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2\left(2 \mathrm{e}^{2 \mathrm{x}}\right)\left(-2 \mathrm{e}^{-2 \mathrm{x}}\right)}{\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{-8 e^{2 x+(-2 x)}}{\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 \mathrm{x}}\right)^{2}}$
$\therefore \frac{d y}{d x}=\frac{-8}{\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)^{2}}$
Thus, $\frac{d}{d x}\left(\frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}\right)=\frac{-8}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
32. $\log \left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)$

Solution:

Let $y=\log \left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)$
On differentiating y with respect to x, we get

$$
\frac{d y}{d x}=\frac{d}{d x}\left[\log \left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)\right]
$$

We know $\frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}}$
By using chain rule, we have

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{1}{\left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)} \frac{d}{d x}\left(\frac{x^{2}+x+1}{x^{2}-x+1}\right) \\
& \Rightarrow \frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right) \frac{d}{d x}\left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)
\end{aligned}
$$

We know that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{\left(x^{2}-x+1\right) \frac{d}{d x}\left(x^{2}+x+1\right)-\left(x^{2}+x+1\right) \frac{d}{d x}\left(x^{2}-x+1\right)}{\left(x^{2}-x+1\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}$
$=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{\left(x^{2}-x+1\right)\left(\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(x)+\frac{d}{d x}(1)\right)-\left(x^{2}+x+1\right)\left(\frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}(x)+\frac{d}{d x}(1)\right)}{\left(x^{2}-x+1\right)^{2}}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}, \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of constant is 0 .
$\Rightarrow \frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{\left(x^{2}-x+1\right)(2 x+1+0)-\left(x^{2}+x+1\right)(2 x-1+0)}{\left(x^{2}-x+1\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{(2 x+1)\left(x^{2}-x+1\right)-(2 x-1)\left(x^{2}+x+1\right)}{\left(x^{2}-x+1\right)^{2}}\right]$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x} \\
& =\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{2 x\left(x^{2}-x+1\right)+\left(x^{2}-x+1\right)-2 x\left(x^{2}+x+1\right)+\left(x^{2}+x+1\right)}{\left(x^{2}-x+1\right)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x} \\
& =\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{2 x\left(x^{2}-x+1-x^{2}-x-1\right)+\left(x^{2}-x+1+x^{2}+x+1\right)}{\left(x^{2}-x+1\right)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{2 x(-2 x)+\left(2 x^{2}+2\right)}{\left(x^{2}-x+1\right)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{-4 x^{2}+2 x^{2}+2}{\left(x^{2}-x+1\right)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{2-2 x^{2}}{\left(x^{2}-x+1\right)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{2}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} \\
& \Rightarrow \frac{d y}{d x}=\frac{2\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}-x^{2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{2\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}-x^{2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{d y}{x^{4}+2 x^{2}+1-x^{2}}=\frac{2\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}-x^{2}} \\
& \Rightarrow \frac{2\left(1-x^{2}\right)}{x^{4}+2 x^{2}+1-x^{2}} \\
& \Rightarrow \\
& \Rightarrow
\end{aligned}
$$

33. $\tan ^{-1}\left(\mathrm{e}^{\mathrm{x}}\right)$

Solution:

Let $\mathrm{y}=\tan ^{-1}\left(\mathrm{e}^{\mathrm{x}}\right)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1} e^{x}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
Now by using chain rule, we get
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{1+\left(\mathrm{e}^{\mathrm{x}}\right)^{2}} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{x}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{1+e^{2 x}} \frac{d}{d x}\left(e^{x}\right)$
However, $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{1+e^{2 x}} \times e^{x}$
$\therefore \frac{d y}{d x}=\frac{e^{x}}{1+e^{2 x}}$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{e}^{\mathrm{x}}\right)=\frac{\mathrm{e}^{\mathrm{x}}}{1+\mathrm{e}^{2 \mathrm{x}}}$
34. $e^{\sin ^{-1} 2 x}$

Solution:

Let $y=e^{\sin ^{-1} 2 x}$
On differentiating y with respect to x, we get

$$
\frac{d y}{d x}=\frac{d}{d x}\left(e^{\sin ^{-1} 2 x}\right)
$$

We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{x}}\right)=\mathrm{e}^{\mathrm{x}}$
Using chain rule, we can write as
$\Rightarrow \frac{d y}{d x}=e^{\sin ^{-1} 2 x} \frac{d}{d x}\left(\sin ^{-1} 2 x\right)$
We have $\frac{\mathrm{d}}{\mathrm{dx}}\left(\sin ^{-1} \mathrm{x}\right)=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
Using chain rule we get
$\Rightarrow \frac{d y}{d x}=e^{\sin ^{-1} 2 x} \frac{1}{\sqrt{1-(2 x)^{2}}} \frac{d}{d x}(2 x)$
$\Rightarrow \frac{d y}{d x}=\frac{e^{\sin ^{-1} 2 x}}{\sqrt{1-4 x^{2}}} \times 2 \frac{d}{d x}(x)$
$\Rightarrow \frac{d y}{d x}=\frac{2 e^{\sin ^{-1} 2 x}}{\sqrt{1-4 x^{2}}} \times \frac{d}{d x}(x)$
However, $\frac{d}{d x}(x)=1$
$\Rightarrow \frac{d y}{d x}=\frac{2 e^{\sin ^{-1} 2 x}}{\sqrt{1-4 x^{2}}} \times 1$
$\therefore \frac{d y}{d x}=\frac{2 e^{\sin ^{-1} 2 x}}{\sqrt{1-4 x^{2}}}$
Thus, $\frac{d}{d x}\left(e^{\sin ^{-1} 2 x}\right)=\frac{2 e^{\sin ^{-1} 2 x}}{\sqrt{1-4 x^{2}}}$

35. $\sin \left(2 \sin ^{-1} x\right)$

Solution:

Let $\mathrm{y}=\sin \left(2 \sin ^{-1} \mathrm{x}\right)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\sin \left(2 \sin ^{-1} x\right)\right]$
We know $\frac{d}{d x}(\sin x)=\cos x$
By using chain rule we get,

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\cos \left(2 \sin ^{-1} x\right) \frac{d}{d x}\left(2 \sin ^{-1} x\right) \\
& \Rightarrow \frac{d y}{d x}=\cos \left(2 \sin ^{-1} x\right) \times 2 \frac{d}{d x}\left(\sin ^{-1} x\right) \\
& \Rightarrow \frac{d y}{d x}=2 \cos \left(2 \sin ^{-1} x\right) \frac{d}{d x}\left(\sin ^{-1} x\right)
\end{aligned}
$$

We have $\frac{\mathrm{d}}{\mathrm{dx}}\left(\sin ^{-1} \mathrm{x}\right)=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
$\Rightarrow \frac{d y}{d x}=2 \cos \left(2 \sin ^{-1} x\right) \times \frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{d y}{d x}=\frac{2 \cos \left(2 \sin ^{-1} x\right)}{\sqrt{1-x^{2}}}$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\sin \left(2 \sin ^{-1} \mathrm{x}\right)\right]=\frac{2 \cos \left(2 \sin ^{-1} \mathrm{x}\right)}{\sqrt{1-\mathrm{x}^{2}}}$
36. $e^{\tan ^{-1} \sqrt{x}}$

Solution:

Let $y=e^{\tan ^{-1} \sqrt{x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\tan ^{-1} \sqrt{x}}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{x}}\right)=\mathrm{e}^{\mathrm{x}}$
Now by using chain rule, we can write as
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{e}^{\tan ^{-1} \sqrt{\mathrm{x}}} \frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \sqrt{\mathrm{x}}\right)$
We have $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
Again by using chain rule we get,
$\Rightarrow \frac{d y}{d x}=e^{\tan ^{-1} \sqrt{x}} \frac{1}{1+(\sqrt{x})^{2}} \frac{d}{d x}(\sqrt{x})$
$\Rightarrow \frac{d y}{d x}=\frac{e^{\tan ^{-1} \sqrt{x}}}{1+x} \frac{d}{d x}\left(x^{\frac{1}{2}}\right)$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{e^{\tan ^{-1} \sqrt{x}}}{1+x}\left(\frac{1}{2} x^{\frac{1}{2}-1}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{e^{\tan ^{-1} \sqrt{x}}}{1+x}\left(\frac{1}{2} x^{-\frac{1}{2}}\right)
\end{aligned}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{e^{\tan ^{-1} \sqrt{x}}}{1+x}\left(\frac{1}{2 \sqrt{x}}\right)
$$

$\therefore \frac{d y}{d x}=\frac{e^{\tan ^{-1} \sqrt{x}}}{2 \sqrt{x}(1+x)}$
Thus, $\frac{d}{d x}\left(e^{\tan ^{-1} \sqrt{x}}\right)=\frac{e^{\tan ^{-1} \sqrt{x}}}{2 \sqrt{x}(1+x)}$
37. $\sqrt{\tan ^{-1}\left(\frac{x}{2}\right)}$

Solution:

Let $\mathrm{y}=\sqrt{\tan ^{-1} \frac{\mathrm{x}}{2}}$
On differentiating y with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{\tan ^{-1} \frac{x}{2}}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\left(\tan ^{-1} \frac{x}{2}\right)^{\frac{1}{2}}\right]
\end{aligned}
$$

We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
Now by using chain rule, we get

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\tan ^{-1} \frac{\mathrm{x}}{2}\right)^{\frac{1}{2}-1} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\tan ^{-1} \frac{\mathrm{x}}{2}\right) \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\tan ^{-1} \frac{\mathrm{x}}{2}\right)^{-\frac{1}{2}} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\tan ^{-1} \frac{\mathrm{x}}{2}\right) \\
& \text { We have } \frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}
\end{aligned}
$$

Again by using chain rule, we can write as

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\tan ^{-1} \frac{x}{2}\right)^{-\frac{1}{2}} \frac{1}{1+\left(\frac{x}{2}\right)^{2}} \frac{d}{d x}\left(\frac{x}{2}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\tan ^{-1} \frac{x}{2}\right)^{-\frac{1}{2}} \frac{1}{1+\frac{x^{2}}{4}} \times \frac{1}{2} \frac{d}{d x}(x) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\tan ^{-1} \frac{x}{2}\right)^{-\frac{1}{2}} \frac{4}{4+x^{2}} \times \frac{1}{2} \frac{d}{d x}(x) \\
& \Rightarrow \frac{d y}{d x}=\left(\tan ^{-1} \frac{x}{2}\right)^{-\frac{1}{2}} \frac{1}{4+x^{2}} \times \frac{d}{d x}(x)
\end{aligned}
$$

However, $\frac{d}{d x}(x)=1$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\left(\tan ^{-1} \frac{x}{2}\right)^{-\frac{1}{2}} \frac{1}{4+x^{2}} \times 1 \\
& \Rightarrow \frac{d y}{d x}=\left(\tan ^{-1} \frac{x}{2}\right)^{-\frac{1}{2}} \frac{1}{4+x^{2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{\left(4+x^{2}\right)\left(\tan ^{-1} \frac{x}{2}\right)^{\frac{1}{2}}}
\end{aligned}
$$

$$
\therefore \frac{d y}{d x}=\frac{1}{\left(4+x^{2}\right) \sqrt{\tan ^{-1} \frac{x}{2}}}
$$

Differentiate the following functions with respect to x :

1. $\cos ^{-1}\left\{2 x \sqrt{1-x^{2}}\right\}, \frac{1}{\sqrt{2}}<x<1$

Solution:

$$
\begin{aligned}
& \text { Let } y=\cos ^{-1}\left\{2 x \sqrt{1-x^{2}}\right\} \\
& \text { let } x=\cos \theta
\end{aligned}
$$

Now

$$
\begin{aligned}
& y=\cos ^{-1}\left\{2 \cos \theta \sqrt{1-\cos ^{2} \theta}\right\} \\
& =\cos ^{-1}\left\{2 \cos \theta \sqrt{\sin ^{2} \theta}\right\}
\end{aligned}
$$

Using $\sin ^{2} \theta+\cos ^{2} \theta=1$ and $2 \sin \theta \cos \theta=\sin 2 \theta$

$$
\begin{aligned}
& =\cos ^{-1}(2 \cos \theta \sin \theta) \\
& =\cos ^{-1}(\sin 2 \theta) \\
& y=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-2 \theta\right)\right)
\end{aligned}
$$

Now by considering the limits,

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}<x<1 \\
& \Rightarrow \frac{1}{\sqrt{2}}<\cos \theta<1 \\
& \Rightarrow 0<\theta<\frac{\pi}{4} \\
& \Rightarrow 0<2 \theta<\frac{\pi}{2} \\
& \Rightarrow 0>-2 \theta>-\frac{\pi}{2}
\end{aligned}
$$

$\Rightarrow \frac{\pi}{2}>\frac{\pi}{2}-2 \theta>\frac{\pi}{2}-\frac{\pi}{2}$
$\Rightarrow 0<\frac{\pi}{2}-2 \theta<\frac{\pi}{2}$
Therefore,
$y=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-2 \theta\right)\right)$
$y=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-2 \theta\right)\right)$
$y=\left(\frac{\pi}{2}-2 \theta\right)$
$y=\frac{\pi}{2}-2 \cos ^{-1} x$
Differentiating with respect to x, we get
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{2}-2 \cos ^{-1} x\right)$
$\Rightarrow \frac{d y}{d x}=0-2\left(\frac{-1}{\sqrt{1-x^{2}}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{2}{\sqrt{1-x^{2}}}$
2. $\cos ^{-1}\left\{\sqrt{\frac{1+x}{2}}\right\},-1<x<1$

Solution:

Let
$y=\cos ^{-1}\left\{\sqrt{\frac{1+x}{2}}\right\}$
let $x=\cos 2 \theta$
Now

$$
\begin{aligned}
& y=\cos ^{-1}\left\{\sqrt{\frac{1+\cos 2 \theta}{2}}\right\} \\
& y=\cos ^{-1}\left\{\sqrt{\frac{2 \cos ^{2} \theta}{2}}\right\}
\end{aligned}
$$

Now by using $\cos 2 \theta=2 \cos ^{2} \theta-1$
$y=\cos ^{-1}(\cos \theta)$
Considering the limits,
$-1<x<1$
$-1<\cos 2 \theta<1$
$0<2 \theta<\pi$
$0<\theta<\frac{\pi}{2}$
Now, $\mathrm{y}=\cos ^{-1}(\cos \theta)$
$y=\theta$
$\mathrm{y}=\frac{1}{2} \cos ^{-1} \mathrm{x}$
Differentiating with respect to x, we get

$$
\frac{d y}{d x}=\frac{1}{2}\left(-\frac{1}{\sqrt{1-x^{2}}}\right)
$$

3. $\sin ^{-1}\left\{\sqrt{\frac{1-x}{2}}\right\}, 0<x<1$

Solution:

Let,

$$
y=\sin ^{-1}\left\{\sqrt{\frac{1-x}{2}}\right\}
$$

let $x=\cos 2 \theta$
Now

$$
\begin{aligned}
& y=\sin ^{-1}\left\{\sqrt{\frac{1-\cos 2 \theta}{2}}\right\} \\
& y=\sin ^{-1}\left\{\sqrt{\frac{2 \sin ^{2} \theta}{2}}\right\}
\end{aligned}
$$

Using $\cos 2 \theta=1-2 \sin ^{2} \theta$
$y=\sin ^{-1}(\sin \theta)$
Considering the limits,
$0<x<1$
$0<\cos 2 \theta<1$
$0<2 \theta<\frac{\pi}{2}$
$0<\theta<\frac{\pi}{4}$
Now, $\mathrm{y}=\sin ^{-1}(\sin \theta)$
$y=\theta$
$y=\frac{1}{2} \cos ^{-1} \mathrm{x}$
Differentiating with respect to x, we get

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\right)
$$

4. $\sin ^{-1}\left\{\sqrt{1-x^{2}}\right\}, 0<x<1$

Solution:

Let,
$y=\sin ^{-1}\left\{\sqrt{1-x^{2}}\right\}$
let $x=\cos \theta$
Now
$y=\sin ^{-1}\left\{\sqrt{1-\cos ^{2} \theta}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\sin ^{-1}(\sin \theta)$
Considering the limits,
$0<x<1$
$0<\cos \theta<1$
$0<\theta<\frac{\pi}{2}$
Now, $\mathrm{y}=\sin ^{-1}(\sin \theta)$
$y=\theta$
$y=\cos ^{-1} x$
Differentiating with respect to x, we get
$\frac{d y}{d x}=-\frac{1}{\sqrt{1-x^{2}}}$
5. $\tan ^{-1}\left\{\frac{x}{\sqrt{a^{2}-x^{2}}}\right\},-a<x<a$

Solution:

$$
y=\tan ^{-1}\left\{\frac{x}{\sqrt{a^{2}-x^{2}}}\right\}
$$

Let $x=a \sin \theta$
Now
$\mathrm{y}=\tan ^{-1}\left\{\frac{a \sin \theta}{\sqrt{\mathrm{a}^{2}-\mathrm{a}^{2} \sin ^{2} \theta}}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\tan ^{-1}\left\{\frac{a \sin \theta}{a \sqrt{1-\sin ^{2} \theta}}\right\}$
$y=\tan ^{-1}\left\{\frac{\sin \theta}{\cos \theta}\right\}$
$y=\tan ^{-1}(\tan \theta)$
Considering the limits,
$-\mathrm{a}<\mathrm{x}<\mathrm{a}$
$-a<a \sin \theta<a$
$-1<\sin \theta<1$
$-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
Now, $\mathrm{y}=\tan ^{-1}(\tan \theta)$
$y=\theta$
$y=\sin ^{-1}\left(\frac{x}{a}\right)$
Differentiating with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\sin ^{-1}\left(\frac{x}{a}\right)\right) \\
& \frac{d y}{d x}=\frac{a}{\sqrt{a^{2}-x^{2}}} \times \frac{1}{a} \\
& \frac{d y}{d x}=\frac{1}{\sqrt{a^{2}-x^{2}}}
\end{aligned}
$$

6. $\sin ^{-1}\left\{\frac{x}{\sqrt{x^{2}+a^{2}}}\right\}$

Solution:

Let,

$$
y=\sin ^{-1}\left\{\frac{x}{\sqrt{x^{2}+a^{2}}}\right\}
$$

Let $x=a \tan \theta$
Now

$$
\mathrm{y}=\sin ^{-1}\left\{\frac{\operatorname{atan} \theta}{\sqrt{\mathrm{a}^{2} \tan ^{2} \theta+\mathrm{a}^{2}}}\right\}
$$

Using $1+\tan ^{2} \theta=\sec ^{2} \theta$
$y=\sin ^{-1}\left\{\frac{\operatorname{atan} \theta}{a \sqrt{\tan ^{2} \theta+1}}\right\}$
$y=\sin ^{-1}\left\{\frac{\operatorname{atan} \theta}{a \sqrt{\sec ^{2} \theta}}\right\}$
$y=\sin ^{-1}\left\{\frac{\tan \theta}{\sec \theta}\right\}$
$y=\sin ^{-1}(\sin \theta)$
$y=\theta$
$y=\tan ^{-1}\left(\frac{x}{a}\right)$
Differentiating with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1}\left(\frac{x}{a}\right)\right) \\
& \frac{d y}{d x}=\frac{a^{2}}{a^{2}+x^{2}} \times \frac{1}{a} \\
& \frac{d y}{d x}=\frac{a}{a^{2}+x^{2}}
\end{aligned}
$$

7. $\operatorname{Sin}^{-1}\left(2 x^{2}-1\right), 0<x<1$

Solution:

Let,
$y=\sin ^{-1}\left\{2 \mathrm{x}^{2}-1\right\}$
let $x=\cos \theta$
Now
$y=\sin ^{-1}\left\{\sqrt{2 \cos ^{2} \theta-1}\right\}$
Using $2 \cos ^{2} \theta-1=\cos 2 \theta$
$y=\sin ^{-1}(\cos 2 \theta)$
$y=\sin ^{-1}\left\{\sin \left(\frac{\pi}{2}-2 \theta\right)\right\}$
Considering the limits,
$0<x<1$
$0<\cos \theta<1$
$0<\theta<\frac{\pi}{2}$
$0<2 \theta<\pi$
$0>-2 \theta>-\pi$
$\frac{\pi}{2}>\frac{\pi}{2}-2 \theta>-\frac{\pi}{2}$
Now,
$y=\sin ^{-1}\left\{\sin \left(\frac{\pi}{2}-2 \theta\right)\right\}$
$y=\frac{\pi}{2}-2 \theta$
$y=\frac{\pi}{2}-2 \cos ^{-1} x$

Differentiating with respect to x , we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{2}-2 \cos ^{-1} x\right) \\
& \frac{d y}{d x}=0-2\left(-\frac{1}{\sqrt{1-x^{2}}}\right) \\
& \frac{d y}{d x}=\frac{2}{\sqrt{1-x^{2}}}
\end{aligned}
$$

8. $\operatorname{Sin}^{-1}\left(1-2 x^{2}\right), 0<x<1$

Solution:

Let,
$y=\sin ^{-1}\left\{1-2 x^{2}\right\}$
let $x=\sin \theta$
Now

$$
y=\sin ^{-1}\left\{\sqrt{1-2 \sin ^{2} \theta}\right\}
$$

Using $1-2 \sin ^{2} \theta=\cos 2 \theta$
$y=\sin ^{-1}(\cos 2 \theta)$
$y=\sin ^{-1}\left\{\sin \left(\frac{\pi}{2}-2 \theta\right)\right\}$
Considering the limits,
$0<x<1$
$0<\sin \theta<1$
$0<\theta<\frac{\pi}{2}$
$0<2 \theta<\pi$
$0>-2 \theta>-\pi$
$\frac{\pi}{2}>\frac{\pi}{2}-2 \theta>-\frac{\pi}{2}$
Now,
$y=\sin ^{-1}\left\{\sin \left(\frac{\pi}{2}-2 \theta\right)\right\}$
$y=\frac{\pi}{2}-2 \theta$
$y=\frac{\pi}{2}-2 \sin ^{-1} x$
Differentiating with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{2}-2 \cos ^{-1} x\right)$
$\frac{d y}{d x}=0-2\left(\frac{1}{\sqrt{1-x^{2}}}\right)$
$\frac{d y}{d x}=\frac{-2}{\sqrt{1-x^{2}}}$
9. $\cos ^{-1}\left\{\frac{x}{\sqrt{x^{2}+a^{2}}}\right\}$

Solution:

Let,
$y=\cos ^{-1}\left\{\frac{x}{\sqrt{x^{2}+a^{2}}}\right\}$
Let $x=a \cot \theta$
Now
$y=\cos ^{-1}\left\{\frac{a \cot \theta}{\sqrt{a^{2} \cot ^{2} \theta+a^{2}}}\right\}$
Using $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$

$$
\begin{aligned}
& y=\cos ^{-1}\left\{\frac{a \cot \theta}{a \sqrt{\cot ^{2} \theta+1}}\right\} \\
& y=\cos ^{-1}\left\{\frac{a \cot \theta}{a \sqrt{\operatorname{cosec}^{2} \theta}}\right\} \\
& y=\cos ^{-1}\left\{\frac{\cot \theta}{\operatorname{cosec} \theta}\right\} \\
& y=\cos ^{-1}(\cos \theta) \\
& y=\theta \\
& y=\cot ^{-1}\left(\frac{x}{a}\right)
\end{aligned}
$$

Differentiating with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\cot ^{-1}\left(\frac{x}{a}\right)\right) \\
& \frac{d y}{d x}=\frac{-a^{2}}{a^{2}+x^{2}} \times \frac{1}{a} \\
& \frac{d y}{d x}=\frac{-a}{a^{2}+x^{2}}
\end{aligned}
$$

10. $\sin ^{-1}\left\{\frac{\sin x+\cos x}{\sqrt{2}}\right\},-\frac{3 \pi}{4}<x<\frac{\pi}{4}$

Solution:
Let,

$$
y=\sin ^{-1}\left\{\frac{\sin x+\cos x}{\sqrt{2}}\right\}
$$

Now

$$
\begin{aligned}
& y=\sin ^{-1}\left\{\sin x \frac{1}{\sqrt{2}}+\cos x \frac{1}{\sqrt{2}}\right\} \\
& y=\sin ^{-1}\left\{\sin x \cos \left(\frac{\pi}{4}\right)+\cos x \sin \left(\frac{\pi}{4}\right)\right\}
\end{aligned}
$$

$U \operatorname{sing} \sin (A+B)=\sin A \cos B+\cos A \sin B$
$y=\sin ^{-1}\left\{\sin \left(x+\frac{\pi}{4}\right)\right\}$
Considering the limits,
$-\frac{3 \pi}{4}<x<\frac{\pi}{4}$
Differentiating it with respect to x,
$y=x+\frac{\pi}{4}$

$$
\frac{d y}{d x}=1
$$

11. $\cos ^{-1}\left\{\frac{\cos x+\sin x}{\sqrt{2}}\right\},-\frac{\pi}{4}<x<\frac{\pi}{4}$

Solution:

Let,
$y=\cos ^{-1}\left\{\frac{\cos x+\sin x}{\sqrt{2}}\right\}$
Now
$y=\cos ^{-1}\left\{\cos x \frac{1}{\sqrt{2}}+\sin x \frac{1}{\sqrt{2}}\right\}$
$y=\cos ^{-1}\left\{\cos x \cos \left(\frac{\pi}{4}\right)+\sin x \sin \left(\frac{\pi}{4}\right)\right\}$
Using $\cos (A-B)=\cos A \cos B+\sin A \sin B$
$y=\cos ^{-1}\left\{\cos \left(x-\frac{\pi}{4}\right)\right\}$
Considering the limits,
$-\frac{\pi}{4}<\mathrm{x}<\frac{\pi}{4}$
$-\frac{\pi}{2}<x-\frac{\pi}{4}<0$
Now,
$y=-x+\frac{\pi}{4}$
Differentiating it with respect to x,

$$
\frac{d y}{d x}=-1
$$

12. $\tan ^{-1}\left\{\frac{x}{1+\sqrt{1-x^{2}}}\right\},-1<x<1$

Solution:

Let,
$y=\tan ^{-1}\left\{\frac{x}{1+\sqrt{1-x^{2}}}\right\}$
Let $x=\sin \theta$
Now
$y=\tan ^{-1}\left\{\frac{\sin \theta}{1+\sqrt{1-\sin ^{2} \theta}}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\tan ^{-1}\left\{\frac{\sin \theta}{1+\sqrt{\cos ^{2} \theta}}\right\}$
$y=\tan ^{-1}\left\{\frac{\sin \theta}{1+\cos \theta}\right\}$
Using $2 \cos ^{2} \theta=1+\cos 2 \theta$ and $2 \sin \theta \cos \theta=\sin 2 \theta$
$y=\tan ^{-1}\left\{\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}\right\}$
$y=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\}$
Considering the limits,
$-1<x<1$
$-1<\sin \theta<1$
$-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
$-\frac{\pi}{4}<\frac{\theta}{2}<\frac{\pi}{4}$
Now,
$y=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\}$
$\mathrm{y}=\frac{\theta}{2}$
$\mathrm{y}=\frac{1}{2} \sin ^{-1} \mathrm{x}$
Differentiating with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1}{2} \sin ^{-1} x\right)$
$\frac{d y}{d x}=\frac{1}{2 \sqrt{1-x^{2}}}$
13. $\tan ^{-1}\left\{\frac{x}{a+\sqrt{a^{2}-x^{2}}}\right\},-a<x<a$

Solution:

Let,
$y=\tan ^{-1}\left\{\frac{x}{a+\sqrt{a^{2}-x^{2}}}\right\}$
Let $\mathrm{x}=\mathrm{a} \sin \theta$

Now
$y=\tan ^{-1}\left\{\frac{a \sin \theta}{a+\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\tan ^{-1}\left\{\frac{a \sin \theta}{a+a \sqrt{\cos ^{2} \theta}}\right\}$
$y=\tan ^{-1}\left\{\frac{\sin \theta}{1+\cos \theta}\right\}$
Using $2 \cos ^{2} \theta=1+\cos \theta$ and $2 \sin \theta \cos \theta=\sin 2 \theta$
$y=\tan ^{-1}\left\{\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}\right\}$
$y=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\}$
Considering the limits,
$-\mathrm{a}<\mathrm{x}<\mathrm{a}$
$-1<\sin \theta<1$
$-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
$-\frac{\pi}{4}<\frac{\theta}{2}<\frac{\pi}{4}$
Now,
$y=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\}$
$y=\frac{\theta}{2}$
$y=\frac{1}{2} \sin ^{-1} \frac{x}{a}$
Differentiating with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\frac{1}{2} \sin ^{-1} \frac{x}{a}\right) \\
& \frac{d y}{d x}=\frac{a}{2 \sqrt{a^{2}-x^{2}}} \times \frac{1}{a} \\
& \frac{d y}{d x}=\frac{1}{2 \sqrt{a^{2}-x^{2}}}
\end{aligned}
$$

14. $\sin ^{-1}\left\{\frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}\right\},-1<x<1$

Solution:

Let,
$y=\sin ^{-1}\left\{\frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}\right\}$
Let $x=\sin \theta$
Now
$y=\sin ^{-1}\left\{\frac{\sin \theta+\sqrt{1-\sin ^{2} \theta}}{\sqrt{2}}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\sin ^{-1}\left\{\frac{\sin \theta+\cos \theta}{\sqrt{2}}\right\}$
Now
$y=\sin ^{-1}\left\{\sin \theta \frac{1}{\sqrt{2}}+\cos \theta \frac{1}{\sqrt{2}}\right\}$
$y=\sin ^{-1}\left\{\sin \theta \cos \left(\frac{\pi}{4}\right)+\cos \theta \sin \left(\frac{\pi}{4}\right)\right\}$
Using $\sin (A+B)=\sin A \cos B+\cos A \sin B$
$y=\sin ^{-1}\left\{\sin \left(\theta+\frac{\pi}{4}\right)\right\}$

Considering the limits,
$-1<x<1$
$-1<\sin \theta<1$
$-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
$-\frac{\pi}{2}+\frac{\pi}{4}<\theta+\frac{\pi}{4}<\frac{\pi}{2}+\frac{\pi}{4}$
$-\frac{\pi}{4}<\theta+\frac{\pi}{4}<\frac{3 \pi}{4}$
Now,
$y=\sin ^{-1}\left\{\sin \left(\theta+\frac{\pi}{4}\right)\right\}$
$y=\theta+\frac{\pi}{4}$
$y=\sin ^{-1} x+\frac{\pi}{4}$
Differentiating with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\sin ^{-1} x+\frac{\pi}{4}\right)$
$\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$
15. $\cos ^{-1}\left\{\frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}\right\},-1<x<1$

Solution:

Let,
$y=\cos ^{-1}\left\{\frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}\right\}$
Let $x=\sin \theta$

Now
$y=\cos ^{-1}\left\{\frac{\sin \theta+\sqrt{1-\sin ^{2} \theta}}{\sqrt{2}}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\cos ^{-1}\left\{\frac{\sin \theta+\cos \theta}{\sqrt{2}}\right\}$
Now
$\mathrm{y}=\cos ^{-1}\left\{\sin \theta \frac{1}{\sqrt{2}}+\cos \theta \frac{1}{\sqrt{2}}\right\}$
$y=\cos ^{-1}\left\{\sin \theta \sin \left(\frac{\pi}{4}\right)+\cos \theta \cos \left(\frac{\pi}{4}\right)\right\}$
Using $\cos (A-B)=\cos A \cos B+\sin A \sin B$
$y=\cos ^{-1}\left\{\cos \left(\theta-\frac{\pi}{4}\right)\right\}$
Considering the limits,
$-1<x<1$
$-1<\sin \theta<1$
$-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
$-\frac{\pi}{2}-\frac{\pi}{4}<\theta-\frac{\pi}{4}<\frac{\pi}{2}-\frac{\pi}{4}$
$-\frac{3 \pi}{4}<\theta-\frac{\pi}{4}<\frac{\pi}{4}$
Now,
$y=\cos ^{-1}\left\{\cos \left(\theta-\frac{\pi}{4}\right)\right\}$
$y=-\left(\theta-\frac{\pi}{4}\right)$

$$
y=-\sin ^{-1} x+\frac{\pi}{4}
$$

Differentiating with respect to x , we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(-\sin ^{-1} x+\frac{\pi}{4}\right) \\
& \frac{d y}{d x}=-\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

16. $\tan ^{-1}\left\{\frac{4 x}{1-4 x^{2}}\right\},-\frac{1}{2}<x<\frac{1}{2}$

Solution:
Let,

$$
y=\tan ^{-1}\left\{\frac{4 x}{1-4 x^{2}}\right\}
$$

Let $2 x=\tan \theta$

$$
y=\tan ^{-1}\left\{\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right\}
$$

Using $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

$$
\mathrm{y}=\tan ^{-1}(\tan 2 \theta)
$$

Considering the limits,

$$
\begin{aligned}
& -\frac{1}{2}<x<\frac{1}{2} \\
& -1<2 x<1 \\
& -1<\tan \theta<1 \\
& -\frac{\pi}{4}<\theta<\frac{\pi}{4} \\
& -\frac{\pi}{2}<2 \theta<\frac{\pi}{2}
\end{aligned}
$$

Now,
$y=\tan ^{-1}(\tan 2 \theta)$
$y=2 \theta$
$y=2 \tan ^{-1}(2 x)$
Differentiating with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} 2 x\right) \\
& \frac{d y}{d x}=2 \times \frac{2}{1+(2 x)^{2}} \\
& \frac{d y}{d x}=\frac{4}{1+4 x^{2}}
\end{aligned}
$$

17. $\tan ^{-1}\left\{\frac{2^{x+1}}{1-4^{x}}\right\},-\infty<x<0$

Solution:
Let,
$y=\tan ^{-1}\left\{\frac{2^{x+1}}{1-4^{x}}\right\}$
Let $2^{\mathrm{x}}=\boldsymbol{\operatorname { t a n }} \theta$
$y=\tan ^{-1}\left\{\frac{2 \times 2^{x}}{1-\left(2^{x}\right)^{2}}\right\}$
$y=\tan ^{-1}\left\{\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right\}$
Using $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$y=\tan ^{-1}(\tan 2 \theta)$
Considering the limits,
$-\infty<x<0$
$2^{-\infty}<2^{x}<2^{0}$
$0<\tan \theta<1$
$0<\theta<\frac{\pi}{4}$
$0<2 \theta<\frac{\pi}{2}$
Now,
$y=\tan ^{-1}(\tan 2 \theta)$
$y=2 \theta$
$y=2 \tan ^{-1}\left(2^{x}\right)$
Differentiating with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} 2^{x}\right) \\
& \frac{d y}{d x}=2 \times \frac{2^{x} \log 2}{1+\left(2^{x}\right)^{2}} \\
& \frac{d y}{d x}=\frac{2^{x+1} \log 2}{1+4^{x}}
\end{aligned}
$$

18. $\tan ^{-1}\left\{\frac{2 a^{x}}{1-a^{2 x}}\right\}, a>1,-\infty<x<0$

Solution:

Let,
$y=\tan ^{-1}\left\{\frac{2 a^{x}}{1-a^{2 x}}\right\}$
Let $\mathrm{a}^{\mathrm{x}}=\tan \theta$
$y=\tan ^{-1}\left\{\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right\}$

Using $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$y=\tan ^{-1}(\tan 2 \theta)$
Considering the limits,
$-\infty<x<0$
$a^{-\infty}<a^{x}<a^{0}$
$0<\tan \theta<1$
$0<\theta<\frac{\pi}{4}$
$0<2 \theta<\frac{\pi}{2}$
Now, $\mathrm{y}=\tan ^{-1}(\tan 2 \theta)$
$y=2 \theta$
$\mathrm{y}=2 \tan ^{-1}\left(\mathrm{a}^{\mathrm{x}}\right)$
Differentiating with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} a^{x}\right)$
$\frac{d y}{d x}=2 \times \frac{a^{x} \log a}{1+\left(a^{x}\right)^{2}}$
$\frac{d y}{d x}=\frac{2 a^{x} \log a}{1+a^{2 x}}$
19. $\sin ^{-1}\left\{\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right\}, 0<x<1$

Solution:

Let, $y=\sin ^{-1}\left\{\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right\}$

Let $x=\cos 2 \theta$
Now
$y=\sin ^{-1}\left\{\frac{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}{2}\right\}$
Using $1-2 \sin ^{2} \theta=\cos 2 \theta$ and $2 \cos ^{2} \theta-1=\cos 2 \theta$
$y=\sin ^{-1}\left\{\frac{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}{2}\right\}$
Now

$$
\begin{aligned}
& y=\sin ^{-1}\left\{\sin \theta \frac{1}{\sqrt{2}}+\cos \theta \frac{1}{\sqrt{2}}\right\} \\
& y=\sin ^{-1}\left\{\sin \theta \cos \left(\frac{\pi}{4}\right)+\cos \theta \sin \left(\frac{\pi}{4}\right)\right\}
\end{aligned}
$$

Using $\sin (A+B)=\sin A \cos B+\cos A \sin B$
$y=\sin ^{-1}\left\{\sin \left(\theta+\frac{\pi}{4}\right)\right\}$
Considering the limits,
$0<x<1$
$0<\cos 2 \theta<1$
$0<2 \theta<\frac{\pi}{2}$
$0<\theta<\frac{\pi}{4}$
Now,
$y=\sin ^{-1}\left\{\sin \left(\theta+\frac{\pi}{4}\right)\right\}$
$y=\theta+\frac{\pi}{4}$
$\mathrm{y}=\frac{1}{2} \cos ^{-1} \mathrm{x}+\frac{\pi}{4}$
Differentiating with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\frac{1}{2} \cos ^{-1} x+\frac{\pi}{4}\right) \\
& \frac{d y}{d x}=\frac{1}{2} \times \frac{-1}{\sqrt{1-x^{2}}} \\
& \frac{d y}{d x}=\frac{-1}{2 \sqrt{1-x^{2}}}
\end{aligned}
$$

20. $\tan ^{-1}\left\{\frac{\sqrt{1+a^{2} x^{2}}-1}{a x}\right\}, x \neq 0$

Solution:

Let,

$$
\mathrm{y}=\tan ^{-1}\left\{\frac{\sqrt{1+\mathrm{a}^{2} \mathrm{x}^{2}}-1}{\mathrm{ax}}\right\}
$$

Let $\mathrm{ax}=\tan \theta$
Now
$y=\tan ^{-1}\left\{\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right\}$
Using $\sec ^{2} \theta=1+\tan ^{2} \theta$
$y=\tan ^{-1}\left\{\frac{\sqrt{\sec ^{2} \theta}-1}{\tan \theta}\right\}$
$y=\tan ^{-1}\left\{\frac{\sec \theta-1}{\tan \theta}\right\}$
$y=\tan ^{-1}\left\{\frac{1-\cos \theta}{\sin \theta}\right\}$

Using $2 \sin ^{2} \theta=1-\cos 2 \theta$ and $2 \sin \theta \cos \theta=\sin 2 \theta$
$y=\tan ^{-1}\left\{\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right\}$
$\mathrm{y}=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\}$
$\mathrm{y}=\frac{\theta}{2}$
$\mathrm{y}=\frac{1}{2} \tan ^{-1} \mathrm{ax}$
Differentiating with respect to x, we get
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{2} \tan ^{-1} \mathrm{ax}\right)$
$\frac{d y}{d x}=\frac{1}{2} \times \frac{a}{1+(a x)^{2}}$

$$
\frac{d y}{d x}=\frac{a}{2\left(1+a^{2} x^{2}\right)}
$$

21. $\tan ^{-1}\left\{\frac{\sin x}{1+\cos x}\right\},-\pi<x<\pi$

Solution:

Let,
$y=\tan ^{-1}\left\{\frac{\sin x}{1+\cos x}\right\}$
Function y is defined for all real numbers where $\cos \mathrm{x} \neq-1$
Using $2 \cos ^{2} \theta=1+\cos 2 \theta$ and $2 \sin \theta \cos \theta=\sin 2 \theta$
$y=\tan ^{-1}\left\{\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\right\}$
$y=\tan ^{-1}\left\{\tan \frac{x}{2}\right\}$
$y=\frac{x}{2}$
Differentiating with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\frac{x}{2}\right) \\
& \frac{d y}{d x}=\frac{1}{2}
\end{aligned}
$$

22. $\sin ^{-1}\left\{\frac{1}{\sqrt{1+x^{2}}}\right\}$

Solution:

Let,
$y=\sin ^{-1}\left\{\frac{1}{\sqrt{1+x^{2}}}\right\}$
Let $x=\cot \theta$
Now
$y=\sin ^{-1}\left\{\frac{1}{\sqrt{1+\cot ^{2} \theta}}\right\}$
Using, $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
Now
$y=\sin ^{-1}\left\{\frac{1}{\sqrt{\operatorname{cosec}^{2} \theta}}\right\}$
$y=\sin ^{-1}\left\{\frac{1}{\operatorname{cosec} \theta}\right\}$
$y=\sin ^{-1}(\sin \theta)$
$y=\theta$

$$
y=\cot ^{-1} x
$$

Differentiating with respect to x we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\cot ^{-1} x\right) \\
& \frac{d y}{d x}=-\frac{1}{1+x^{2}}
\end{aligned}
$$

23. $\cos ^{-1}\left\{\frac{1-x^{2 n}}{1+x^{2 n}}\right\}, 0<x<\infty$

Solution:

Let,
$y=\cos ^{-1}\left\{\frac{1-x^{2 n}}{1+x^{2 n}}\right\}$
Let $x^{n}=\tan \theta$
Now
$y=\cos ^{-1}\left\{\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right\}$
Using $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$
$y=\cos ^{-1}\{\cos 2 \theta\}$
Considering the limits,
$0<x<\infty$
$0<x^{n}<\infty$
$0<\theta<\frac{\pi}{2}$
Now, $y=\cos ^{-1}(\cos 2 \theta)$
$y=2 \theta$

$$
y=\tan ^{-1}\left(x^{n}\right)
$$

Differentiating with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1}\left(x^{n}\right)\right) \\
& \frac{d y}{d x}=\frac{2 n x^{n-1}}{1+\left(x^{n}\right)^{2}} \\
& \frac{d y}{d x}=\frac{2 n x^{n-1}}{1+x^{2 n}}
\end{aligned}
$$

Find $d y / d x$ in each of the following:

1. $x y=c^{2}$

Solution:

Given $x y=c^{2}$;
Now we have to find $\frac{\mathrm{dy}}{\mathrm{dx}}$ of given equation, so by differentiating the equation on both sides with respect to x, we get,

By using the product rule on the left hand side,
$\frac{\mathrm{d}(\mathrm{xy})}{\mathrm{dx}}=\frac{\mathrm{dc}^{2}}{\mathrm{dx}}$
$x(d y / d x)+y(1)=0$
$\frac{d y}{d x}=\frac{-y}{x}$
We can further solve it by putting the value of y,
$\frac{d y}{d x}=\frac{-c^{2}}{x^{2}}$
2. $y^{3}-3 x y^{2}=x^{3}+3 x^{2} y$

Solution:

Given $y^{3}-3 x y^{2}=x^{3}+3 x^{2} y$,
Now we have to find dy/dx of given equation, so by differentiating the equation on both sides with respect to x , we get,

$$
\Rightarrow \frac{d}{d x}\left(y^{3}\right)-\frac{d}{d x}\left(3 x y^{2}\right)=\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}\left(3 x^{2} y\right)
$$

Now by using product rule we get,

$$
\begin{aligned}
& \Rightarrow 3 y^{2} \frac{d y}{d x}-3\left[x \frac{d}{d x}\left(y^{2}\right)+y^{2} \frac{d}{d x}(x)\right]=3 x^{2}+3\left[x^{2} \frac{d}{d x}(y)+y \frac{d}{d x}\left(x^{2}\right)\right] \\
& \Rightarrow 3 y^{2} \frac{d y}{d x}-3\left[x(2 y) \frac{d y}{d x}+y^{2}\right]=3 x^{2}+3\left[x^{2} \frac{d y}{d x}+y(2 x)\right] \\
& \Rightarrow 3 y^{2} \frac{d y}{d x}-6 x y \frac{d y}{d x}-3 y^{2}=3 x^{2}+3 x^{2} \frac{d y}{d x}+6 x y \\
& \Rightarrow 3 y^{2} \frac{d y}{d x}-6 x y \frac{d y}{d x}-3 x^{2} \frac{d y}{d x}=3 x^{2}+6 x y+3 y^{2} \\
& \Rightarrow 3 \frac{d y}{d x}\left(y^{2}-2 x y-x^{2}\right)=3\left(x^{2}+2 x y+y^{2}\right)
\end{aligned}
$$

Now by taking 3 as common we get,

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{3(x+y)^{2}}{3\left(y^{2}-2 x y-x^{2}\right)} \\
& \Rightarrow \frac{d y}{d x}=\frac{(x+y)^{2}}{y^{2}-2 x y-x^{2}}
\end{aligned}
$$

3. $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$

Solution:

Given $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$,
Now we have to find $d y / d x$ of given equation, so by differentiating the equation on both sides with respect to x , we get,

$$
\begin{aligned}
& \frac{2}{3} \frac{1}{x^{1 / 3}}+\frac{2}{3} \frac{1}{y^{1 / 3}} \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{-y^{1 / 3}}{x^{1 / 3}}
\end{aligned}
$$

Now by substituting the value, we get

$$
\frac{d y}{d x}=\frac{-\sqrt{a^{2 / 3}-x^{2 / 3}}}{x^{1 / 3}}
$$

4. $4 x+3 y=\log (4 x-3 y)$

Solution:
Given $4 x+3 y=\log (4 x-3 y)$,
Now we have to find $\mathrm{dy} / \mathrm{dx}$ of it, so by differentiating the equation on both sides with respect to x, we get,

$$
\begin{aligned}
& \frac{d}{d x}(4 x)+\frac{d}{d x}(3 y)=\frac{d}{d x}\{\log (4 x-3 y)\} \\
& \Rightarrow 4+3 \frac{d y}{d x}=\frac{1}{(4 x-3 y)} \frac{d}{d x}(4 x-3 y) \\
& \Rightarrow 4+3 \frac{d y}{d x}=\frac{1}{(4 x-3 y)}\left(4-3 \frac{d y}{d x}\right) \\
& \Rightarrow 3 \frac{d y}{d x}+\frac{3}{(4 x-3 y)} \frac{d y}{d x}=\frac{4}{(4 x-3 y)}-4 \\
& \Rightarrow 3 \frac{d y}{d x}\left\{1+\frac{1}{(4 x-3 y)}\right\}=4\left\{\frac{1}{(4 x-3 y)}-1\right\} \\
& \Rightarrow 3 \frac{d y}{d x}\left\{\frac{4 x-3 y+1}{(4 x-3 y)}\right\}=4\left\{\frac{1-4 x+3 y}{(4 x-3 y)}\right\} \\
& \Rightarrow \frac{d y}{d x}=\frac{4}{3}\left\{\frac{1-4 x+3 y}{(4 x-3 y)}\right\}\left(\frac{4 x-3 y}{4 x-3 y+1}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{4}{3}\left(\frac{1-4 x+3 y}{4 x-3 y+1}\right)
\end{aligned}
$$

5. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Solution:
Given $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$,

Now we have to find $\mathrm{dy} / \mathrm{dx}$ of given equation, so by differentiating the equation on both sides with respect to x, we get,

$$
\begin{aligned}
& \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{-x b^{2}}{y a^{2}}
\end{aligned}
$$

6. $x^{5}+y^{5}=5 x y$

Solution:

Given $x^{5}+y^{5}=5 x y$
Now we have to find $\mathrm{dy} / \mathrm{dx}$ of given equation, so by differentiating the equation on both sides with respect to x, we get,

$$
\frac{d}{d x}\left(x^{5}\right)+\frac{d}{d x}\left(y^{5}\right)=\frac{d}{d x}(5 x y)
$$

Now by using product rule, we get

$$
\begin{aligned}
& \Rightarrow 5 x^{4}+5 y^{4} \frac{d y}{d x}=5\left[x \frac{d y}{d x}+y \frac{d}{d x}(x)\right] \\
& \Rightarrow 5 x^{4}+5 y^{4} \frac{d y}{d x}=5\left[x \frac{d y}{d x}+y(1)\right] \\
& \Rightarrow 5 x^{4}+5 y^{4} \frac{d y}{d x}=5 x \frac{d y}{d x}+5 y \\
& \Rightarrow 5 y^{4} \frac{d y}{d x}-5 x \frac{d y}{d x}=5 y-5 x^{4} \\
& \Rightarrow 5 \frac{d y}{d x}\left(y^{4}-x\right)=5\left(y-x^{4}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{5\left(y-x^{4}\right)}{5\left(y^{4}-x\right)}
\end{aligned}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{y-x^{4}}{y^{4}-x}
$$

7. $(x+y)^{2}=2 a x y$

Solution:

Given $(x+y)^{2}=2 a x y$
Now we have to find $d y / d x$ of given equation, so by differentiating the equation on both sides with respect to x, we get,

$$
\Rightarrow \frac{d}{d x}(x+y)^{2}=\frac{d}{d x}(2 a x y)
$$

Now by using product rule, we get

$$
\begin{aligned}
& \Rightarrow 2(x+y) \frac{d}{d x}(x+y)=2 a\left[x \frac{d y}{d x}+y \frac{d}{d x}(x)\right] \\
& \Rightarrow 2(x+y)\left[1+\frac{d y}{d x}\right]=2 a\left[x \frac{d y}{d x}+y(1)\right] \\
& \Rightarrow 2(x+y)+2(x+y) \frac{d y}{d x}=2 a x \frac{d y}{d x}+2 a y \\
& \Rightarrow \frac{d y}{d x}[2(x+y)-2 a x]=2 a y-2(x+y) \\
& \Rightarrow \frac{d y}{d x}=\frac{2[a y-x-y]}{2[x+y-a x]} \\
& \Rightarrow \frac{d y}{d x}=\left(\frac{a y-x-y}{x+y-a x}\right)
\end{aligned}
$$

8. $\left(x^{2}+y^{2}\right)^{2}=x y$

Solution:

Given $(x+y)^{2}=2 a x y$
Now we have to find $\mathrm{dy} / \mathrm{dx}$ of given equation, so by differentiating the equation on both sides with respect to x, we get,

$$
\Rightarrow \frac{d}{d x}\left[\left(x^{2}+y^{2}\right)^{2}\right]=\frac{d}{d x}(x y)
$$

Now by applying product rule we get,

$$
\begin{aligned}
& \Rightarrow 2\left(x^{2}+y^{2}\right) \frac{d}{d x}\left(x^{2}+y^{2}\right)=x \frac{d y}{d x}+y \frac{d}{d x}(x) \\
& \Rightarrow 2\left(x^{2}+y^{2}\right)\left(2 x+2 y \frac{d y}{d x}\right)=x \frac{d y}{d x}+y(1) \\
& \Rightarrow 4 x\left(x^{2}+y^{2}\right)+4 y\left(x^{2}+y^{2}\right) \frac{d y}{d x}=x \frac{d y}{d x}+y \\
& \Rightarrow 4 y\left(x^{2}+y^{2}\right) \frac{d y}{d x}-x \frac{d y}{d x}=y-4 x\left(x^{2}+y^{2}\right) \\
& \Rightarrow \frac{d y}{d x}\left[4 y\left(x^{2}+y^{2}\right)-x\right]=y-4 x\left(x^{2}+y^{2}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{y-4 x\left(x^{2}+y^{2}\right)}{4 y\left(x^{2}+y^{2}\right)-x} \\
& \Rightarrow \frac{d y}{d x}=\frac{4 x\left(x^{2}+y^{2}\right)-y}{x-4 y\left(x^{2}+y^{2}\right)}
\end{aligned}
$$

9. $\operatorname{Tan}^{-1}\left(x^{2}+y^{2}\right)$

Solution:

Given $\tan ^{-1}\left(x^{2}+y^{2}\right)=a$,
Now we have to find $d y / d x$ of given function, so by differentiating the equation on both sides with respect to x, we get,

$$
\begin{aligned}
& \frac{1}{x^{2}+y^{2}}\left(2 x+2 y \frac{d y}{d x}\right)=0 \\
& \frac{d y}{d x}=\frac{-x}{y}
\end{aligned}
$$

10. $e^{x-y}=\log \left(\frac{x}{y}\right)$

Solution:

$$
e^{x-y}=\log \left(\frac{x}{y}\right)
$$

Now we have to find $\mathrm{dy} / \mathrm{dx}$ of given function, so by differentiating the equation on both sides with respect to x, we get,

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{x-y}\right)=\frac{d}{d x}\left\{\log \left(\frac{x}{y}\right)\right\} \\
& \Rightarrow e^{(x-y)} \frac{d}{d x}(x-y)=\frac{1}{\left(\frac{x}{y}\right)} \times \frac{d}{d x}\left(\frac{x}{y}\right)
\end{aligned}
$$

Now by applying quotient rule we get

$$
\begin{aligned}
& \Rightarrow e^{(x-y)}\left(1-\frac{d y}{d x}\right)=\frac{y}{x}\left[\frac{y \frac{d}{d x}(x)-x \frac{d y}{d x}}{y^{2}}\right] \\
& \Rightarrow e^{(x-y)}-e^{(x-y)} \frac{d y}{d x}=\frac{1}{x y}\left[y(1)-x \frac{d y}{d x}\right] \\
& \Rightarrow e^{(x-y)}-e^{(x-y)} \frac{d y}{d x}=\frac{1}{x}-\frac{1}{y} \frac{d y}{d x} \\
& \Rightarrow \frac{1}{y} \frac{d y}{d x}-e^{(x-y)} \frac{d y}{d x}=\frac{1}{x}-e^{(x-y)} \\
& \Rightarrow \frac{d y}{d x}\left[\frac{1}{y}-\frac{e^{(x-y)}}{1}\right]=\frac{1}{x}-\frac{e^{(x-y)}}{1} \\
& \Rightarrow \frac{d y}{d x}\left[\frac{1-y e^{(x-y)}}{y}\right]=\frac{1-x e^{(x-y)}}{x}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{y}{x}\left[\frac{1-x e^{(x-y)}}{1-y e^{(x-y)}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{-y}{-x}\left[\frac{x e^{(x-y)}-1}{y e^{(x-y)}-1}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{y}{x}\left[\frac{x e^{(x-y)}-1}{y e^{(x-y)}-1}\right]
\end{aligned}
$$

11. $\operatorname{Sin} x y+\cos (x+y)=1$

Solution:

Given $\operatorname{Sin} x y+\cos (x+y)=1$
Now we have to find $\mathrm{dy} / \mathrm{dx}$ of given function, so by differentiating the equation on both sides with respect to x, we get,

$$
\begin{aligned}
& \frac{d}{d x}(\sin x y)+\frac{d}{d x} \cos (x+y)=\frac{d}{d x}(1) \\
& \Rightarrow \cos x y \frac{d}{d x}(x y)-\sin (x+y) \frac{d}{d x}(x+y)=0 \\
& \Rightarrow \cos x y\left[x \frac{d y}{d x}+y \frac{d}{d x}(x)\right]-\sin (x+y)\left[1+\frac{d y}{d x}\right]=0 \\
& \Rightarrow \cos x y\left[x \frac{d y}{d x}+y(1)\right]-\sin (x+y)-\sin (x+y) \frac{d y}{d x}=0 \\
& \Rightarrow x \cos x y \frac{d y}{d x}+y \cos x y-\sin (x+y)-\sin (x+y) \frac{d y}{d x}=0 \\
& \Rightarrow[x \cos x y-\sin (x+y)] \frac{d y}{d x}=[\sin (x+y)-y \cos x y] \\
& \Rightarrow \frac{d y}{d x}=\left[\frac{\sin (x+y)-y \cos x y}{x \cos x y-\sin (x+y)}\right]
\end{aligned}
$$

12. If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$, prove that $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$.

Solution:

Given $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$
Let $\mathrm{x}=\sin \mathrm{A}$ and $\mathrm{y}=\sin \mathrm{B}$
Then given equation becomes,

$$
\begin{aligned}
& \Rightarrow \sqrt{1-\sin ^{2} A}+\sqrt{1-\sin ^{2} B}=a(\sin A-\sin B) \\
& \Rightarrow \cos A+\cos B=a(\sin A-\sin B) \\
& \Rightarrow a=\frac{\cos A+\cos B}{\sin A-\sin B}
\end{aligned}
$$

Now by applying the formula we get,

$$
\begin{aligned}
& \Rightarrow a=\frac{2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}}{2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}} \\
& \Rightarrow a=\cot \left(\frac{A-B}{2}\right) \\
& \Rightarrow \cot ^{-1} a=\frac{A-B}{2} \\
& \Rightarrow 2 \cot ^{-1} a=A-B \\
& \Rightarrow 2 \cot ^{-1} a=\sin ^{-1} x-\sin ^{-1} y
\end{aligned}
$$

Now by differentiating with respect to x we get,

$$
\frac{d}{d x}\left(2 \cot ^{-1} a\right)=\frac{d}{d x}\left(\sin ^{-1} x\right)-\frac{d}{d x}\left(\sin ^{-1} y\right)
$$

$\Rightarrow 0=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-y^{2}}} \frac{d y}{d x}$
$\Rightarrow \frac{1}{\sqrt{1-y^{2}}} \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$
13. If $y=\sqrt{1-x^{2}}+x \sqrt{1-y^{2}}=1$, prove that $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$.

Solution:

Given, $y=\sqrt{1-x^{2}}+x \sqrt{1-y^{2}}=1$
Let $x=\sin A$ and $y=\sin B$
Then given equation becomes,
$\Rightarrow \sin B \sqrt{1-\sin ^{2} A}+\sin A \sqrt{1-\sin ^{2} B}=1$
Now by applying the identity, we get
$\Rightarrow \sin B \cos A+\sin A \cos B=1$
$\Rightarrow \sin (A+B)=1$
$\Rightarrow A+B=\sin ^{-1}(1)$
Now by substituting the values of A and B, we get
$\Rightarrow \sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}$

Now by differentiating with respect to x , we get
$\Rightarrow \frac{d}{d x}\left(\sin ^{-1} x\right)+\frac{d}{d x}\left(\sin ^{-1} y\right)=\frac{d}{d x}\left(\frac{\pi}{2}\right)$
$\Rightarrow \frac{1}{\sqrt{1-x^{2}}}+\frac{1}{\sqrt{1-y^{2}}} \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=-\sqrt{\frac{1-y^{2}}{1-x^{2}}}$
14. If $x y=1$, prove that $\frac{d y}{d x}+y^{2}=0$.

Solution:

Given $\mathrm{x} \mathrm{y}=1$
Differentiating with respect to x, we get

$$
\frac{d}{d x}(x y)=\frac{d}{d x}(1)
$$

By using product rule,

$$
\begin{aligned}
& \Rightarrow x \frac{d y}{d x}+y \frac{d}{d x}(x)=0 . \\
& \Rightarrow x \frac{d y}{d x}+y(1)=0 \\
& \Rightarrow \frac{d y}{d x}=-\frac{y}{x}
\end{aligned}
$$

We have $x y=1$, therefore $x=1 / y$

$$
\Rightarrow \frac{d y}{d x}=-\frac{y}{\frac{1}{y}}
$$

$\Rightarrow \frac{d y}{d x}=-y^{2}$
$\Rightarrow \frac{d y}{d x}+y^{2}=0$
15. If $x y^{2}=1$, prove that $2 \frac{d y}{d x}+y^{3}=0$.

Solution:

Given $x y^{2}=1$
Now differentiating given equation with respect to x, we get
$\frac{d}{d x}\left(x y^{2}\right)=\frac{d}{d x}(1)$
$\Rightarrow x \frac{d}{d x}\left(y^{2}\right)+y^{2} \frac{d}{d x}(x)=0$
$\Rightarrow x(2 y) \frac{d y}{d x}+y^{2}(1)=0$
$\Rightarrow 2 x y \frac{d y}{d x}=-y^{2}$
$\Rightarrow \frac{d y}{d x}=\frac{-y^{2}}{2 x y}$
$\Rightarrow \frac{d y}{d x}=\frac{-y}{2 x}$

Now by substituting $x=1 / y^{2}$ in above equation we get

$$
\Rightarrow \frac{d y}{d x}=\frac{-y}{2\left(\frac{1}{y^{2}}\right)}
$$

$\Rightarrow 2 \frac{d y}{d x}=-y^{3}$

$$
\Rightarrow 2 \frac{d y}{d x}+y^{3}=0
$$

Differentiate the following functions with respect to x :

1. $x^{1 / x}$

Solution:

Let $y=x^{\frac{1}{x}}$
Taking log both the sides:
$\Rightarrow \log y=\log x^{\frac{1}{x}}$
We know that $\log x^{a}=a \log x$, substituting this in above equation we get
$\Rightarrow \log y=\frac{1}{x} \log x$
Differentiating with respect to x, we get
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d\left(\frac{1}{x} \log x\right)}{d x}$
Now by using the product rule, we get
$\Rightarrow \frac{d(\log y)}{d x}=\frac{1}{x} \times \frac{d(\log x)}{d x}+\log x \times \frac{d\left(x^{-1}\right)}{d x}$
We have $\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d\left(u^{n}\right)}{d x}=n u^{n-1} \frac{d u}{d x}\right\}$, by using this we get,
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{1}{x} \times \frac{1}{x} \frac{d x}{d x}+\log x\left(\frac{-1}{x^{2}}\right)$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{1}{x^{2}}-\frac{1}{x^{2}} \log \mathrm{x}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{1-\log x}{x^{2}}$
$\Rightarrow \frac{d y}{d x}=y\left(\frac{1-\log x}{x^{2}}\right)$

Put the value of $y=x^{\frac{1}{x}}$
$\Rightarrow \frac{d y}{d x}=x^{\frac{1}{x}}\left(\frac{1-\log x}{x^{2}}\right)$
2. $x^{\sin x}$

Solution:

Let $\mathrm{y}=\mathrm{x}^{\sin \mathrm{x}}$
Taking log both the sides
$\log y=\log \left(x^{\sin x}\right)$
$\log y=\sin x \log x\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x, we get
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d(\sin x \log x)}{d x}$
Now by using product rule, we can write as
$\Rightarrow \frac{d(\log y)}{d x}=\sin x \times \frac{d(\log x)}{d x}+\log x \times \frac{d(\sin x)}{d x}$
Again we have, $\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}} \& \frac{\mathrm{~d}(\sin \mathrm{x})}{\mathrm{dx}}=\cos \mathrm{x}\right\}_{\ell}$ by using this we can write as
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\sin x \times \frac{1}{x} \frac{d x}{d x}+\log x(\cos x)$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\sin x}{x}+\log x \cos x$
$\Rightarrow \frac{d y}{d x}=y\left(\frac{\sin x}{x}+\log x \cos x\right)$
Put the value of $y=x^{\sin x}$
$\Rightarrow \frac{d y}{d x}=x^{\sin x}\left(\frac{\sin x}{x}+\log x \cos x\right)$

3. $(1+\cos x)^{x}$

Solution:

$$
\text { Let } y=(1+\cos x)^{x}
$$

Taking log on both the sides

$$
\begin{aligned}
& \Rightarrow \log y=\log (1+\cos x)^{x} \\
& \Rightarrow \log y=x \log (1+\cos x)\left\{\log x^{a}=a \log x\right\}
\end{aligned}
$$

Differentiating with respect to x

$$
\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=\frac{\mathrm{d}[\mathrm{x} \log (1+\cos \mathrm{x})]}{\mathrm{dx}}
$$

Now by using product rule, we get

$$
\Rightarrow \frac{d(\log y)}{d x}=x \times \frac{d[\log (1+\cos x)]}{d x}+\log (1+\cos x) \times \frac{d x}{d x}
$$

Again we have, $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=x \times \frac{1}{(1+\cos x)} \frac{d(1+\cos x)}{d x}+\log (1+\cos x)$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=x \times \frac{1}{(1+\cos x)}(-\sin x)+\log (1+\cos x)$
$\left\{\frac{d(1+\cos x)}{d x}=\frac{d(1)}{d x}+\frac{d(\cos x)}{d x}=0+(-\sin x) \frac{d x}{d x}=-\sin x\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{-x \sin x}{1+\cos x}+\log (1+\cos x)$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{-x \sin x}{1+\cos x}+\log (1+\cos x)\right\}$
Put the value of $y=(1+\cos x)^{x}$
$\Rightarrow \frac{d y}{d x}=(1+\cos x)^{x}\left\{\frac{-x \sin x}{1+\cos x}+\log (1+\cos x)\right\}$
4. $x^{\cos ^{-1} x}$

Solution:

Let $y=x^{\cos ^{-1} x}$
Taking log both the sides
$\Rightarrow \log y=\log \mathrm{x}^{\cos ^{-1} \mathrm{x}}$
$\Rightarrow \log y=\cos ^{-1} x \log x\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d\left(\cos ^{-1} x \log x\right)}{d x}$
By using product rule, we get
$\Rightarrow \frac{d(\log y)}{d x}=\cos ^{-1} x \times \frac{d(\log x)}{d x}+\log x \times \frac{d\left(\cos ^{-1} x\right)}{d x}$
Again we have, $\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}} \& \frac{\mathrm{~d}\left(\cos ^{-1} \mathrm{x}\right)}{\mathrm{dx}}=\frac{-1}{\sqrt{1-\mathrm{x}^{2}}}\right\}_{\imath}$ from this we can write as
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\cos ^{-1} x}{x}+\log x\left(\frac{-1}{\sqrt{1-x^{2}}}\right)$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\cos ^{-1} x}{x}-\frac{\log x}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{\cos ^{-1} x}{x}-\frac{\log x}{\sqrt{1-x^{2}}}\right\}$
Put the value of $y=x^{\cos ^{-1} x}$
$\Rightarrow \frac{d y}{d x}=x^{\cos ^{-1} x}\left\{\frac{\cos ^{-1} x}{x}-\frac{\log x}{\sqrt{1-x^{2}}}\right\}$
5. $(\log x)^{x}$

Solution:

$$
\text { Let } \mathrm{y}=(\log \mathrm{x})^{\mathrm{x}}
$$

Taking log both the sides
$\Rightarrow \log y=\log (\log x)^{x}$
$\Rightarrow \log y=x \log (\log x)\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \log \log \mathrm{x})}{\mathrm{dx}}$
By product rule, we have

$$
\Rightarrow \frac{d(\log y)}{d x}=x \times \frac{d(\log \log x)}{d x}+\log \log x \times \frac{d x}{d x}
$$

We know that $\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=x \times \frac{1}{\log x} \frac{d(\log x)}{d x}+\log \log x$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{x}{\log x} \times \frac{1}{x}+\log \log x$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{1}{\log x}+\log \log x\right\}$
Put the value of $y=(\log x)^{x}$
$\Rightarrow \frac{d y}{d x}=(\log x)^{x}\left\{\frac{1}{\log x}+\log \log x\right\}$

6. $(\log x)^{\cos x}$

Solution:

Let $\mathrm{y}=(\log \mathrm{x})^{\cos \mathrm{x}}$
Taking log both the sides, we get
$\Rightarrow \log y=\log (\log x)^{\cos x}$
$\Rightarrow \log y=\cos x \log (\log x)\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d(\cos x \log \log x)}{d x}$
Now by using product rule, we get
$\Rightarrow \frac{d(\log y)}{d x}=\cos x \times \frac{d(\log \log x)}{d x}+\log \log x \times \frac{d(\cos x)}{d x}$
We know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} \& \frac{d(\cos x)}{d x}=-\sin x$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\cos x \times \frac{1}{\log x} \frac{d(\log x)}{d x}+\log \log x(-\sin x)$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\cos x}{\log x} \times \frac{1}{x}-\sin x \log \log x$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{\cos x}{x \log x}-\sin x \log \log x\right\}$
Put the value of $y=(\log x)^{\cos x}$
$\Rightarrow \frac{d y}{d x}=(\log x)^{\cos x}\left\{\frac{\cos x}{x \log x}-\sin x \log \log x\right\}$

7. $(\operatorname{Sin} x)^{\cos x}$

Solution:

Let $y=(\sin x)^{\cos x}$
Taking log both the sides
$\Rightarrow \log y=\log (\sin x)^{\cos x}$
$\Rightarrow \log y=\cos x \log \sin x\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d(\cos x \log \sin x)}{d x}$
Now by using product rule, we get
$\Rightarrow \frac{d(\log y)}{d x}=\cos x \times \frac{d(\log \sin x)}{d x}+\log \sin x \times \frac{d(\cos x)}{d x}$
We know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\cos x)}{d x}=-\sin x ; \frac{d(\sin x)}{d x}=\cos x$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\cos x \times \frac{1}{\sin x} \frac{d(\sin x)}{d x}+\log \sin x(-\sin x)$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\cot x(\cos x)-\sin x \log \sin x$
$\Rightarrow \frac{d y}{d x}=y\{\cos x \cot x-\sin x \log \sin x\}$
Put the value of $y=(\sin x)^{\cos x}$
$\Rightarrow \frac{d y}{d x}=(\sin x)^{\cos x}\{\cos x \cot x-\sin x \log \sin x\}$
8. $e^{x \log x}$

Solution:

Let $\mathrm{y}=\mathrm{e}^{\mathrm{x} \log \mathrm{x}}$
Taking log both the sides, we get
$\Rightarrow \log y=\log (e)^{x \log x}$
$\Rightarrow \log y=x \log x \log e\left\{\log x^{a}=a \log x\right\}$
$\Rightarrow \log y=x \log x\{\log e=1\}$
Differentiating with respect to x
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d(x \log x)}{d x}$

Now by using product rule, we get
$\Rightarrow \frac{d(\log y)}{d x}=x \times \frac{d(\log x)}{d x}+\log x \times \frac{d x}{d x}$
We know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=x \times \frac{1}{x} \frac{d x}{d x}+\log x$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{x}{x}+\log x$
$\Rightarrow \frac{d y}{d x}=y\{1+\log x\}$
Put the value of $y=e^{x \log x}$
$\Rightarrow \frac{d y}{d x}=e^{x \log x}\{1+\log x\}$
$\Rightarrow \frac{d y}{d x}=e^{\log x^{x}}\{1+\log x\}\left\{e^{\log a}=a ; a \log x=x^{a}\right\}$
$\Rightarrow \frac{d y}{d x}=x^{x}\{1+\log x\}$
9. $(\operatorname{Sin} x)^{\log x}$

Solution:

$$
\text { Let } \mathrm{y}=(\sin \mathrm{x})^{\log \mathrm{x}}
$$

Taking log both the sides
$\Rightarrow \log y=\log (\sin x)^{\log x}$
$\Rightarrow \log y=\log x \log \sin x\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x, then we get
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d(\log x \log \sin x)}{d x}$

Now by using product rule, we get
$\Rightarrow \frac{d(\log y)}{d x}=\log x \times \frac{d(\log \sin x)}{d x}+\log \sin x \times \frac{d(\log x)}{d x}$
We know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\sin x)}{d x}=\cos x$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log x \times \frac{1}{\sin x} \frac{d(\sin x)}{d x}+\log \sin x\left(\frac{1}{x} \frac{d x}{d x}\right)$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\log x}{\sin x}(\cos x)+\frac{\log \sin x}{x}$
$\Rightarrow \frac{d y}{d x}=y\left\{\log x \cot x+\frac{\log \sin x}{x}\right\}$
Put the value of $y=(\sin x)^{\log x}$
$\Rightarrow \frac{d y}{d x}=(\sin x)^{\log x}\left\{\log x \cot x+\frac{\log \sin x}{x}\right\}$
10. $10^{\log \sin x}$

Solution:

$$
\text { Let } \mathrm{y}=10^{\log \sin \mathrm{x}}
$$

Taking log both the sides

$$
\begin{aligned}
& \Rightarrow \log y=\log 10^{\log \sin x} \\
& \Rightarrow L \log y=\log \sin x \log 10\left\{\log x^{a}=a \log x\right\}
\end{aligned}
$$

Differentiating with respect to x

$$
\Rightarrow \frac{d(\log y)}{d x}=\frac{d(\log 10 \log \sin x)}{d x}
$$

Now by using chain rule, we get

$$
\Rightarrow \frac{d(\log y)}{d x}=\log 10 \times \frac{d(\log \sin x)}{d x}
$$

We know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\sin x)}{d x}=\cos x$.
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log 10 \times \frac{1}{\sin x} \frac{d(\sin x)}{d x}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\log 10}{\sin x}(\cos x)$
$\Rightarrow \frac{d y}{d x}=y\{\log 10 \cot x\}$
Put the value of $y=10^{\log \sin x}$
$\Rightarrow \frac{d y}{d x}=10^{\log \sin x}\{\log 10 \cot x\}$

11. $(\log x)^{\log x}$

Solution:

Let $\mathrm{y}=(\log \mathrm{x})^{\log \mathrm{x}}$
Taking log both the sides
$\Rightarrow \log y=\log (\log x)^{\log x}$
$\Rightarrow \log y=\log x \log (\log x)\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x, then we get
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=\frac{\mathrm{d}(\log \mathrm{x} \log (\log \mathrm{x}))}{\mathrm{dx}}$
Now by using product rule, we get
$\Rightarrow \frac{d(\log y)}{d x}=\log x \times \frac{d(\log (\log x))}{d x}+\log (\log x) \times \frac{d(\log x)}{d x}$
We know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log x \times \frac{1}{\log x} \frac{d(\log x)}{d x}+\log \log x\left(\frac{1}{x} \frac{d x}{d x}\right)$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\log x}{\log x}\left(\frac{1}{x} \frac{d x}{d x}\right)+\frac{\log (\log x)}{x}$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{1}{x}+\frac{\log (\log x)}{x}\right\}$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{1+\log (\log x)}{x}\right\}$
Put the value of $y=(\log x)^{\log x}$
$\Rightarrow \frac{d y}{d x}=(\log x)^{\log x}\left\{\frac{1+\log (\log x)}{x}\right\}$
12. $10^{\left(10^{x}\right)}$

Solution:

$$
\text { Let } \mathrm{y}=10^{\left(10^{x}\right)}
$$

Taking log both the sides
$\Rightarrow \log y=\log 10^{\left(10^{x}\right)}$
$\Rightarrow \log y=10 x \log 10\left\{\log x^{a}=a \log x\right\}$
$\Rightarrow \log y=(10 \log 10) x$
Differentiating with respect to x,
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=\frac{\mathrm{d}\{(10 \log 10) \mathrm{x}\}}{\mathrm{dx}}$
Here $10 \log 10$ is a constant term, therefore by using chain rule, we get
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=10 \times \log (10) \times \frac{\mathrm{d}(\mathrm{x})}{\mathrm{dx}}$
We know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\sin x)}{d x}=\cos x$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=10 \log (10)$
$\Rightarrow \frac{1}{\mathrm{y}} \frac{\mathrm{dy}}{\mathrm{dx}}=10 \log (10)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{y}\{10 \log (10)\}$
Put the value of $\mathrm{y}=10^{\left(10^{x}\right)}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=10^{10 \mathrm{x}}\{10 \log (10)\}$

13. $\operatorname{Sin}\left(x^{x}\right)$

Solution:

Let $\mathrm{y}=\sin \left(\mathrm{x}^{\mathrm{x}}\right)$
Take sin inverse both sides
$\Rightarrow \sin ^{-1} \mathrm{y}=\sin ^{-1}\left(\sin \mathrm{x}^{\mathrm{x}}\right)$
$\Rightarrow \sin ^{-1} \mathrm{y}=\mathrm{x}^{\mathrm{x}}$
Taking log both the sides
$\Rightarrow \log \left(\sin ^{-1} y\right)=\log x^{x}$
$\Rightarrow \log \left(\sin ^{-1} y\right)=x \log x\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x
$\Rightarrow \frac{\mathrm{d}\left(\log \left(\sin ^{-1} \mathrm{y}\right)\right)}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \log \mathrm{x})}{\mathrm{dx}}$
Now by using product rule, we get
$\Rightarrow \frac{d\left(\log \left(\sin ^{-1} y\right)\right)}{d x}=x \times \frac{d(\log x)}{d x}+\log x \times \frac{d x}{d x}$
We know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x}$
$\Rightarrow \frac{1}{\sin ^{-1} y} \frac{d\left(\sin ^{-1} y\right)}{d x}=x \times \frac{1}{x} \frac{d x}{d x}+\log x$
Again we have, $\frac{d\left(\sin ^{-1} u\right)}{d x}=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$ by using this result we get
$\Rightarrow \frac{1}{\sin ^{-1} y} \times \frac{1}{\sqrt{1-y^{2}}} \frac{d y}{d x}=\frac{x}{x}+\log x$
$\Rightarrow \frac{1}{\sin ^{-1} y\left(\sqrt{1-y^{2}}\right)} \frac{d y}{d x}=1+\log x$
$\Rightarrow \frac{d y}{d x}=\sin ^{-1} y\left(\sqrt{1-y^{2}}\right)(1+\log x)$
Put the value of $y=\sin \left(x^{x}\right)$
$\Rightarrow \frac{d y}{d x}=\sin ^{-1}\left(\sin x^{x}\right)\left(\sqrt{1-\sin ^{2}\left(x^{x}\right)}\right)(1+\log x)$
From $\sin ^{2} x+\cos ^{2} x=1$, we can write as

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=x^{x}\left(\sqrt{\cos ^{2}\left(x^{x}\right)}\right)(1+\log x) \\
& \Rightarrow \frac{d y}{d x}=x^{x} \cos x^{x}(1+\log x)
\end{aligned}
$$

14. $\left(\operatorname{Sin}^{-1} x\right)^{x}$

Solution:

Let $\mathrm{y}=\left(\sin ^{-1} \mathrm{x}\right)^{\mathrm{x}}$
Taking log both the sides
$\Rightarrow \log y=\log \left(\sin ^{-1} \mathrm{x}\right)^{x}$
$\Rightarrow \log y=x \log \left(\sin ^{-1} x\right)\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d\left(x \log \left(\sin ^{-1} x\right)\right)}{d x}$
Now by using product rule, we get
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=\mathrm{x} \times \frac{\mathrm{d}\left(\log \left(\sin ^{-1} \mathrm{x}\right)\right)}{\mathrm{dx}}+\log \left(\sin ^{-1} \mathrm{x}\right) \times \frac{\mathrm{dx}}{\mathrm{dx}}$
We know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=x \times \frac{1}{\sin ^{-1} x} \frac{d\left(\sin ^{-1} x\right)}{d x}+\log \left(\sin ^{-1} x\right)$
Again we have, $\frac{d\left(\sin ^{-1} u\right)}{d x}=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$ by using this result we get
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{x}{\sin ^{-1} x} \times \frac{1}{\sqrt{1-x^{2}}} \frac{d x}{d x}+\log \left(\sin ^{-1} x\right)$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{x}{\sin ^{-1} x \sqrt{1-x^{2}}}+\log \left(\sin ^{-1} x\right)$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{x}{\sin ^{-1} x \sqrt{1-x^{2}}}+\log \left(\sin ^{-1} x\right)\right\}$
Put the value of $y=\left(\sin ^{-1} x\right)^{x}$
$\left.\Rightarrow \frac{d y}{d x}=\left(\sin ^{-1} x\right)^{x}\left\{\frac{x}{\sin ^{-1} x \sqrt{1-x^{2}}}+\log \left(\sin ^{-1} x\right)\right\}\right\}$
15. $x^{\sin ^{-1} x}$

Solution:
Let $y=x^{\sin ^{-1} x}$
Taking log both the sides

$$
\begin{aligned}
& \Rightarrow \log y=\log x^{\sin ^{-1} x} \\
& \Rightarrow \log y=\sin ^{-1} x \log x\left\{\log x^{a}=a \log x\right\}
\end{aligned}
$$

Differentiating with respect to x
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=\frac{\mathrm{d}\left(\sin ^{-1} \mathrm{x} \log \mathrm{x}\right)}{\mathrm{dx}}$
By using product rule, we get
$\Rightarrow \frac{d(\log y)}{d x}=\sin ^{-1} x \times \frac{d(\log x)}{d x}+\log x \times \frac{d\left(\sin ^{-1} x\right)}{d x}$
We know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d\left(\sin ^{-1} u\right)}{d x}=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\sin ^{-1} x \times \frac{1}{x} \frac{d x}{d x}+\log x \times \frac{1}{\sqrt{1-x^{2}}} \frac{d x}{d x}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\sin ^{-1} x}{x}+\frac{\log x}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{\sin ^{-1} x}{x}+\frac{\log x}{\sqrt{1-x^{2}}}\right\}$
Put the value of $y=x^{\sin ^{-1} x}$:
$\Rightarrow \frac{d y}{d x}=x^{\sin ^{-1} x}\left\{\frac{\sin ^{-1} x}{x}+\frac{\log x}{\sqrt{1-x^{2}}}\right\}$

16. $(\tan x)^{1 / x}$

Solution:

Let $y=(\tan x)^{\frac{1}{x}}$
Taking log both the sides, we get
$\Rightarrow \log y=\log (\tan \mathrm{x})^{\frac{1}{\mathrm{x}}}$
$\Rightarrow \log y=\frac{1}{x} \log \tan x\left\{\begin{array}{lll} \\ \left.x^{a}=a \log x\right\}\end{array}\right.$
Differentiating with respect to x
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d\left(\frac{1}{x} \log \tan x\right)}{d x}$
By using product rule, we can write as
$\Rightarrow \frac{d(\log y)}{d x}=\frac{1}{x} \times \frac{d(\log \tan x)}{d x}+\log \tan x \times \frac{d\left(x^{-1}\right)}{d x}$
We know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d\left(u^{n}\right)}{d x}=n u^{n-1} \frac{d u}{d x}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{1}{x} \times \frac{1}{\tan x} \frac{d(\tan x)}{d x}+\log \tan x\left(-x^{-2}\right)$
Again we have $\frac{d(\tan x)}{d x}=\sec ^{2} x$ by using this result in the above expression
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{1}{x \tan x}\left(\sec ^{2} x\right)-\frac{\log \tan x}{x^{2}}$
$\frac{d y}{d x}=y\left\{\frac{\sec ^{2} x}{x \tan x}-\frac{\log \tan x}{x^{2}}\right\}$
Put the value of $y=(\tan x)^{\frac{1}{x}}$

$$
\frac{d y}{d x}=(\tan x)^{\frac{1}{x}}\left\{\frac{\sec ^{2} x}{x \tan x}-\frac{\log \tan x}{x^{2}}\right\}
$$

17. $x^{\tan ^{-1} x}$

Solution:

Let $y=x^{\tan ^{-1} x}$
Taking log both the sides
$\Rightarrow \log y=\log x^{\tan ^{-1} x}$
$\Rightarrow \log y=\tan ^{-1} x \log x\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=\frac{\mathrm{d}\left(\tan ^{-1} \mathrm{x} \log \mathrm{x}\right)}{\mathrm{dx}}$
Now by using product rule, we get
$\Rightarrow \frac{d(\log y)}{d x}=\tan ^{-1} x \times \frac{d(\log x)}{d x}+\log x \times \frac{d\left(\tan ^{-1} x\right)}{d x}$
Again we know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d\left(\tan ^{-1} u\right)}{d x}=\frac{1}{u^{2}+1} \frac{d u}{d x}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\tan ^{-1} x \times \frac{1}{x} \frac{d x}{d x}+\log x \times \frac{1}{x^{2}+1} \frac{d x}{d x}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\tan ^{-1} x}{x}+\frac{\log x}{x^{2}+1}$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{\tan ^{-1} x}{x}+\frac{\log x}{x^{2}+1}\right\}$
Put the value of $y=x^{\tan ^{-1} x}$
$\Rightarrow \frac{d y}{d x}=x^{\tan ^{-1} x}\left\{\frac{\tan ^{-1} x}{x}+\frac{\log x}{x^{2}+1}\right\}$

18. (i) $\left(x^{x}\right) \sqrt{x}$

Solution:

Let $\mathrm{y}=(\mathrm{x})^{\mathrm{x}} \sqrt{\mathrm{x}}$
Taking log both the sides

$$
\begin{aligned}
& \Rightarrow \log y=\log (x)^{x} \sqrt{x} \\
& \Rightarrow \log y=\log (x)^{x}+\log \sqrt{x}\{\log (a b)=\log a+\log b\} \\
& \Rightarrow \log y=\log (x)^{x}+\log x^{\frac{1}{2}} \\
& \Rightarrow \log y=x \log x+\frac{1}{2} \log x\left\{\log x^{a}=a \log x\right\}
\end{aligned}
$$

$\Rightarrow \log y=\left(x+\frac{1}{2}\right) \log x$
Differentiating with respect to x
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d\left(\left(x+\frac{1}{2}\right) \log x\right)}{d x}$
Now by using product rule, we get
$\Rightarrow \frac{d(\log y)}{d x}=\left(x+\frac{1}{2}\right) \times \frac{d(\log x)}{d x}+\log x \times \frac{d\left(x+\frac{1}{2}\right)}{d x}$
Again we have to use chain rule for the above expression,
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\left(x+\frac{1}{2}\right) \times \frac{1}{x} \frac{d x}{d x}+\log x \frac{d x}{d x}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{(2 x+1)}{2} \times \frac{1}{x}+\log x$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{(2 x+1)}{2 x}+\log x\right\}$
Put the value of $y=(x)^{x} \sqrt{x}$
$\Rightarrow \frac{d y}{d x}=(x)^{x} \sqrt{x}\left\{\frac{(2 x+1)}{2 x}+\log x\right\}$
$\Rightarrow \frac{d y}{d x}=(x)^{x} \sqrt{x}\left\{\frac{2 x}{2 x}+\frac{1}{2 x}+\log x\right\}$
$\Rightarrow \frac{d y}{d x}=(x)^{x} \sqrt{x}\left\{1+\frac{1}{2 x}+\log x\right\}$
18. (ii) $x^{(\sin x-\cos x)}+\frac{x^{2}-1}{x^{2}+1}$

Solution:

Let $y=x^{(\sin x-\cos \mathrm{x})}+\frac{\mathrm{x}^{2}-1}{\mathrm{x}^{2}+1}$
$\Rightarrow y=a+b$
where $a=x^{(\sin x-\cos x)} ; b=\frac{x^{2}-1}{x^{2}+1}$
Now we have to differentiate $y=a+b$ with respect to x
By using chain rule, we can write as
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$a=x^{(\sin x-\cos x)}$
Taking log both the sides to the above expressions we get
$\Rightarrow \log \mathrm{a}=\log \mathrm{x}^{(\sin \mathrm{x}-\cos \mathrm{x})}$
$\Rightarrow \log \mathrm{a}=(\sin \mathrm{x}-\cos \mathrm{x}) \log \mathrm{x}\left\{\log \mathrm{x}^{\mathrm{a}}=\mathrm{a} \log \mathrm{x}\right\}$
Differentiating with respect to x
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d((\sin x-\cos x) \log x)}{d x}$
Now by using product rule, we get
$\Rightarrow \frac{d(\log a)}{d x}=(\sin x-\cos x) \times \frac{d(\log x)}{d x}+\log x \times \frac{d(\sin x-\cos x)}{d x}$
To the above expression we have to use chain rule,
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=(\sin x-\cos x) \times \frac{1}{x} \frac{d x}{d x}+\log x\left(\frac{d(\sin x)}{d x}-\frac{d(\cos x)}{d x}\right)$
We know that $\frac{d(\cos x)}{d x}=-\sin x ; \frac{d(\sin x)}{d x}=\cos x$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{(\sin x-\cos x)}{x}+\log x(\cos x-(-\sin x))$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{(\sin x-\cos x)}{x}+\log x(\cos x+\sin x)$
$\Rightarrow \frac{d a}{d x}=a\left\{\frac{\sin x-\cos x}{x}+\log x(\cos x+\sin x)\right\}$
Put the value of $a=x^{(\sin x-\cos x)}$
$\Rightarrow \frac{d a}{d x}=x^{(\sin x-\cos x)}\left\{\frac{\sin x-\cos x}{x}+\log x(\cos x+\sin x)\right\}$
$\mathrm{b}=\frac{\mathrm{x}^{2}-1}{\mathrm{x}^{2}+1}$
To differentiate above expression with respect to x we have to use quotient rule,
$\Rightarrow \frac{d b}{d x}=\frac{\left(x^{2}+1\right) \frac{d\left(x^{2}-1\right)}{d x}-\left(x^{2}-1\right) \frac{d\left(x^{2}+1\right)}{d x}}{\left(x^{2}+1\right)^{2}}$
Now by using chain rule, we get

$$
\begin{aligned}
& \Rightarrow \frac{d b}{d x}=\frac{\left(x^{2}+1\right)(2 x)-\left(x^{2}-1\right)(2 x)}{\left(x^{2}+1\right)^{2}} \\
& \Rightarrow \frac{d b}{d x}=\frac{\left(2 x^{3}+2 x\right)-\left(2 x^{3}-2 x\right)}{\left(x^{2}+1\right)^{2}} \\
& \Rightarrow \frac{d b}{d x}=\frac{\left(2 x^{3}+2 x-2 x^{3}+2 x\right)}{\left(x^{2}+1\right)^{2}} \\
& \Rightarrow \frac{d b}{d x}=\frac{4 x}{\left(x^{2}+1\right)^{2}} \\
& \frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}
\end{aligned}
$$

Now by substituting all the values in above expressions we get

$$
\Rightarrow \frac{d y}{d x}=x^{(\sin x-\cos x)}\left\{\frac{(\sin x-\cos x}{x}+\log x(\cos x+\sin x)\right\}+\frac{4 x}{\left(x^{2}+1\right)^{2}}
$$

18. (iii) $x^{x \cos x}+\frac{x^{2}+1}{x^{2}-1}$

Solution:

Let $y=x^{x \cos x}+\frac{x^{2}+1}{x^{2}-1}$
$\Rightarrow \mathrm{y}=\mathrm{a}+\mathrm{b}$
where $\mathrm{a}=\mathrm{x}^{\mathrm{xcos} \mathrm{x}} ; \mathrm{b}=\frac{\mathrm{x}^{2}+1}{\mathrm{x}^{2}-1}$
Now we have to differentiate $\mathrm{y}=\mathrm{a}+\mathrm{b}$ with respect to x
By using chain rule, we can write as

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x} \\
& a=x^{x \cos x}
\end{aligned}
$$

Taking log both the sides to the above equation we get

$$
\begin{aligned}
& \Rightarrow \log a=\log x^{x \cos x} \\
& \Rightarrow \log a=x \cos x \log x \\
& \left\{\log x^{a}=a \log x\right\}
\end{aligned}
$$

Differentiating with respect to x,
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \cos \mathrm{x} \log \mathrm{x})}{\mathrm{dx}}$
Now by using product rule, we can write as

$$
\begin{aligned}
& \Rightarrow \frac{d(\log a)}{d x}=x \cos x \times \frac{d(\log x)}{d x}+\log x \times \frac{d(x \cos x)}{d x} \\
& \Rightarrow \frac{d(\log a)}{d x}=x \cos x \times \frac{d(\log x)}{d x}+\log x\left\{x \frac{d(\cos x)}{d x}+\cos x\right\}
\end{aligned}
$$

Again we have, $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x}$ by using this result in the above expressions we get
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=x \cos x \times \frac{1}{x} \frac{d x}{d x}+\log x\{x(-\sin x)+\cos x\}$
We know that $\frac{d(\cos x)}{d x}=-\sin x ; \frac{d(\sin x)}{d x}=\cos x$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{x \cos x}{x}+\log x(\cos x-x \sin x)$
$\Rightarrow \frac{d a}{d x}=a\{\cos x+\log x(\cos x-x \sin x)\}$
Put the value of $a=x^{x \cos x}$:
$\Rightarrow \frac{d a}{d x}=x^{x \cos x}\{\cos x+\log x(\cos x-x \sin x)\}$
$\Rightarrow \frac{d a}{d x}=x^{x \cos x}\{\cos x+\log x \cos x-x \sin x \log x\}$
$\Rightarrow \frac{d a}{d x}=x^{x \cos x}\{\cos x(1+\log x)-x \sin x \log x\}$
$b=\frac{x^{2}+1}{x^{2}-1}$
Now we have to differentiate above expression using quotient rule, then we get
$\Rightarrow \frac{d b}{d x}=\frac{\left(x^{2}-1\right) \frac{d\left(x^{2}+1\right)}{d x}-\left(x^{2}+1\right) \frac{d\left(x^{2}-1\right)}{d x}}{\left(x^{2}-1\right)^{2}}$
Now apply chain rule for the above equation,
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\frac{\left(\mathrm{x}^{2}-1\right)(2 \mathrm{x})-\left(\mathrm{x}^{2}+1\right)(2 \mathrm{x})}{\left(\mathrm{x}^{2}+1\right)^{2}}$
$\Rightarrow \frac{d \mathrm{~b}}{\mathrm{dx}}=\frac{\left(2 \mathrm{x}^{3}-2 \mathrm{x}\right)-\left(2 \mathrm{x}^{3}+2 \mathrm{x}\right)}{\left(\mathrm{x}^{2}+1\right)^{2}}$
$\Rightarrow \frac{d b}{d x}=\frac{\left(2 x^{3}-2 x-2 x^{3}-2 x\right)}{\left(x^{2}+1\right)^{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{d b}{d x}=\frac{-4 x}{\left(x^{2}+1\right)^{2}} \\
& \frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}
\end{aligned}
$$

By substituting all values in the above expression we get
$\Rightarrow \frac{d y}{d x}=x^{x \cos x}\{\cos x(1+\log x)-x \sin x \log x\}-\frac{4 x}{\left(x^{2}+1\right)^{2}}$
18. (iv) $(x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}$

Solution:

Let $y=(x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}$
$\Rightarrow \mathrm{y}=\mathrm{a}+\mathrm{b}$
where $a=(x \cos x)^{x} ; b=(x \sin x)^{\frac{1}{x}}$
Now we have to differentiate $\mathrm{y}=\mathrm{a}+\mathrm{b}$ with respect to x
By using chain rule, we can write as
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$a=(x \cos x)^{x}$
Taking log both the sides, we get
$\Rightarrow \log \mathrm{a}=\log (\mathrm{x} \cos \mathrm{x})^{\mathrm{x}}$
$\Rightarrow \log \mathrm{a}=\mathrm{x} \log (\mathrm{x} \cos \mathrm{x})$
$\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \log (\mathrm{x} \cos \mathrm{x}))}{\mathrm{dx}}$
By using product rule, we get
$\Rightarrow \frac{d(\log a)}{d x}=x \times \frac{d(\log (x \cos x))}{d x}+\log (x \cos x) \times \frac{d x}{d x}$
We know that. $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=x \times \frac{1}{x \cos x} \frac{d(x \cos x)}{d x}+\log (x \cos x)$
Again by using product rule, we can write as
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{x}{x \cos x}\left\{x \frac{d(\cos x)}{d x}+\cos x\right\}+\log (x \cos x)$
We have $\frac{d(\cos x)}{d x}=-\sin x$ using this result we can write as
$\left.\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{1}{\cos x}\{x(-\sin x)+\cos x\}\right\}+\log (x \cos x)$
$\Rightarrow \frac{d a}{d x}=a\left\{\frac{\cos x-x \sin x}{\cos x}+\log (x \cos x)\right\}$
Put the value of $a=(x \cos x)^{x}$:
$\Rightarrow \frac{d a}{d x}=(x \cos x)^{x}\left\{\frac{(\cos x-x \sin x}{\cos x}+\log (x \cos x)\right\}$
$\Rightarrow \frac{d a}{d x}=(x \cos x)^{x}\{1-x \tan x+\log (x \cos x)\}$
$\mathrm{b}=(\mathrm{x} \sin \mathrm{x})^{\frac{1}{\mathrm{x}}}$
Taking log both the sides
$\Rightarrow \log \mathrm{b}=\log (\mathrm{x} \sin \mathrm{x})^{\frac{1}{\mathrm{x}}}$
$\Rightarrow \log \mathrm{b}=\frac{1}{\mathrm{x}} \log (\mathrm{x} \sin \mathrm{x})\left\{\log \mathrm{x}^{\mathrm{a}}=\mathrm{a} \log \mathrm{x}\right\}$
Differentiating with respect to x
$\Rightarrow \frac{d(\log \mathrm{~b})}{\mathrm{dx}}=\frac{\mathrm{d}\left(\frac{1}{\mathrm{x}} \log (\mathrm{x} \sin \mathrm{x})\right)}{\mathrm{dx}}$

Now by using product rule, we get
$\Rightarrow \frac{d(\log \mathrm{~b})}{\mathrm{dx}}=\frac{1}{\mathrm{x}} \times \frac{\mathrm{d}(\log (\mathrm{x} \sin \mathrm{x}))}{\mathrm{dx}}+\log (\mathrm{x} \sin \mathrm{x}) \times \frac{\mathrm{d}\left(\mathrm{x}^{-1}\right)}{\mathrm{dx}}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{1}{x} \times \frac{1}{x \sin x} \frac{d(x \sin x)}{d x}+\log (x \sin x)\left(-x^{-2}\right)$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{1}{x^{2} \sin x}\left(x \frac{d(\sin x)}{d x}+\sin x \frac{d x}{d x}\right)-\frac{\log (x \sin x)}{x^{2}}$
We know that $\frac{d(\sin x)}{d x}=\cos x$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}\left\{\frac{\mathrm{x} \cos \mathrm{x}+\sin \mathrm{x}}{\mathrm{x}^{2} \sin \mathrm{x}}-\frac{\log (\mathrm{x} \sin \mathrm{x})}{\mathrm{x}^{2}}\right\}$
Put the value of $b=(x \sin x)^{\frac{1}{\mathrm{x}}}$:
$\Rightarrow \frac{d b}{d x}=(x \sin x)^{\frac{1}{x}}\left\{\frac{\mathrm{x} \cos \mathrm{x}+\sin \mathrm{x}}{\mathrm{x}^{2} \sin \mathrm{x}}-\frac{\log (\mathrm{x} \sin \mathrm{x})}{\mathrm{x}^{2}}\right\}$
$\Rightarrow \frac{d b}{d x}=(x \sin x)^{\frac{1}{x}}\left\{\frac{x \cot x+1}{x^{2}}-\frac{\log (x \sin x)}{x^{2}}\right\}$
$\Rightarrow \frac{d \mathrm{~b}}{\mathrm{dx}}=(\mathrm{x} \sin \mathrm{x})^{\frac{1}{x}}\left\{\frac{\mathrm{x} \cot \mathrm{x}+1-\log (\mathrm{x} \sin \mathrm{x})}{\mathrm{x}^{2}}\right\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
Now by substituting all the values in above expression we get

$$
\begin{aligned}
\Rightarrow \frac{d y}{d x}= & (x \cos x)^{x}\{1-x \tan x+\log (x \cos x)\} \\
& +(x \sin x)^{\frac{1}{x}}\left\{\frac{x \cot x+1-\log (x \sin x)}{x^{2}}\right\}
\end{aligned}
$$

18.(v) $\left(x+\frac{1}{x}\right)^{x}+x^{\left(1+\frac{1}{x}\right)}$

Solution:

Let $y=\left(x+\frac{1}{x}\right)^{x}+x^{\left(1+\frac{1}{x}\right)}$
$\Rightarrow y=a+b$
where $a=\left(x+\frac{1}{x}\right)^{x} ; b=x^{\left(1+\frac{1}{x}\right)}$
Now we have to differentiate $y=a+b$ with respect to x
By using chain rule, we can write as
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$a=\left(x+\frac{1}{x}\right)^{x}$
Taking log both the sides, we get
$\Rightarrow \log a=\log \left(x+\frac{1}{x}\right)^{x}$
$\Rightarrow \log \mathrm{a}=\mathrm{x} \log \left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)\left\{\log \mathrm{x}^{\mathrm{a}}=\mathrm{a} \log \mathrm{x}\right\}$
Differentiating with respect to x
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d\left(x \log \left(x+\frac{1}{x}\right)\right)}{d x}$
Now by using product rule, we get
$\Rightarrow \frac{d(\log a)}{d x}=x \times \frac{d\left(\log \left(x+\frac{1}{x}\right)\right)}{d x}+\log \left(x+\frac{1}{x}\right) \times \frac{d x}{d x}$
Again we know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x}$.
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=x \times \frac{1}{x+\frac{1}{x}} \frac{d\left(x+\frac{1}{x}\right)}{d x}+\log \left(x+\frac{1}{x}\right)$

Again by using chain rule in the above expression we get
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{x}{\frac{x^{2}+1}{x}}\left\{\frac{d x}{d x}+\frac{d\left(\frac{1}{x}\right)}{d x}\right\}+\log \left(x+\frac{1}{x}\right)$
By using $\frac{d\left(u^{n}\right)}{d x}=n u^{n-1} \frac{d u}{d x}$.
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{x^{2}}{x^{2}+1}\left\{1+\left(-\frac{1}{x^{2}}\right)\right\}+\log \left(x+\frac{1}{x}\right)$
$\Rightarrow \frac{d a}{d x}=a\left\{\frac{x^{2}}{x^{2}+1}\left\{1-\frac{1}{x^{2}}\right\}+\log \left(x+\frac{1}{x}\right)\right\}$
Put the value of $a=\left(x+\frac{1}{x}\right)^{x}$:
$\Rightarrow \frac{d a}{d x}=\left(x+\frac{1}{x}\right)^{x}\left\{\frac{x^{2}}{x^{2}+1}\left\{1-\frac{1}{x^{2}}\right\}+\log \left(x+\frac{1}{x}\right)\right\}$
$\Rightarrow \frac{d a}{d x}=\left(x+\frac{1}{x}\right)^{x}\left\{\frac{x^{2}}{x^{2}+1}-\frac{1}{x^{2}+1}+\log \left(x+\frac{1}{x}\right)\right\}$
$\Rightarrow \frac{d a}{d x}=\left(x+\frac{1}{x}\right)^{x}\left\{\frac{x^{2}-1}{x^{2}+1}+\log \left(x+\frac{1}{x}\right)\right\}$
$\mathrm{b}=\mathrm{x}^{\left(1+\frac{1}{\mathrm{x}}\right)}$
Taking log both the sides
$\Rightarrow \log \mathrm{b}=\log \mathrm{x}^{\left(1+\frac{1}{\mathrm{x}}\right)}$
$\left.\Rightarrow \log \mathrm{b}=\left(1+\frac{1}{\mathrm{x}}\right) \log \mathrm{x} \operatorname{LLog}^{\mathrm{x}}=\mathrm{a} \log \mathrm{x}\right\}$
Differentiating with respect to x
$\Rightarrow \frac{d(\log \mathrm{~b})}{\mathrm{dx}}=\frac{\mathrm{d}\left(\left(1+\frac{1}{\mathrm{x}}\right) \log \mathrm{x}\right)}{\mathrm{dx}}$
Now by using product rule, we get
$\Rightarrow \frac{d(\log b)}{d x}=\left(1+\frac{1}{x}\right) \times \frac{d(\log x)}{d x}+\log x \times \frac{d\left(1+\frac{1}{x}\right)}{d x}$
Again for the above expression we have to apply chain rule,
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{x+1}{x} \times \frac{1}{x} \frac{d x}{d x}+\log x\left(\frac{d(1)}{d x}+\frac{d\left(\frac{1}{x}\right)}{d x}\right)$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{x+1}{x^{2}}+\log x\left(-\frac{1}{x^{2}}\right)$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}\left\{\frac{\mathrm{x}+1}{\mathrm{x}^{2}}-\frac{\log \mathrm{x}}{\mathrm{x}^{2}}\right\}$
$\Rightarrow \frac{d b}{d x}=b\left\{\frac{x+1-\log x}{x^{2}}\right\}$
Put the value of $b=x^{\left(1+\frac{1}{x}\right)}$:
$\Rightarrow \frac{d b}{d x}=x^{\left(1+\frac{1}{x}\right)}\left\{\frac{\mathrm{x}+1-\log \mathrm{x}}{\mathrm{x}^{2}}\right\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
Now by substituting the all the values in above expression we get
$\Rightarrow \frac{d y}{d x}=\left(x+\frac{1}{x}\right)^{x}\left\{\frac{x^{2}-1}{x^{2}+1}+\log \left(x+\frac{1}{x}\right)\right\}+x^{\left(1+\frac{1}{x}\right)}\left\{\frac{x+1-\log x}{x^{2}}\right\}$

18. (vi) $e^{\sin x}+(\tan x)^{x}$

Solution:

$$
\begin{aligned}
& \text { Let } \mathrm{y}=\mathrm{e}^{\sin \mathrm{x}}+(\tan \mathrm{x})^{\mathrm{x}} \\
& \Rightarrow \mathrm{y}=\mathrm{a}+\mathrm{b}
\end{aligned}
$$

Where $a=e^{\sin x} ; b=(\tan x)^{x}$
Now we have to differentiate $\mathrm{y}=\mathrm{a}+\mathrm{b}$ with respect to x

By using chain rule, we can write as

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x} \\
& a=e^{\sin x}
\end{aligned}
$$

Taking log both the sides, we get
$\Rightarrow \log \mathrm{a}=\log \mathrm{e}^{\sin \mathrm{x}}$
$\Rightarrow \log \mathrm{a}=\sin \mathrm{x} \log \mathrm{e}\left\{\log \mathrm{x}^{\mathrm{a}}=\mathrm{a} \log \mathrm{x}\right\}$
$\Rightarrow \log \mathrm{a}=\sin \mathrm{x}\{\log \mathrm{e}=1\}$
Differentiating with respect to x
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d(\sin x)}{d x}$
Again we have $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\sin x)}{d x}=\cos x$.
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\cos x$
$\Rightarrow \frac{\mathrm{da}}{\mathrm{dx}}=\mathrm{a}(\cos \mathrm{x})$
Put the value of $a=e^{\sin x}$
$\Rightarrow \frac{d a}{d x}=e^{\sin x} \cos x$
$\mathrm{b}=(\tan \mathrm{x})^{\mathrm{x}}$
Taking log both the sides:
$\Rightarrow \log \mathrm{b}=\log (\tan \mathrm{x})^{\mathrm{x}}$
$\Rightarrow \log \mathrm{b}=\mathrm{x} \log (\tan \mathrm{x})\left\{\log \mathrm{x}^{\mathrm{a}}=\mathrm{a} \log \mathrm{x}\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{b})}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \log (\tan \mathrm{x}))}{\mathrm{dx}}$

Again by using product rule,
$\Rightarrow \frac{d(\log b)}{d x}=x \times \frac{d(\log (\tan x))}{d x}+\log (\tan x) \times \frac{d x}{d x}$
We know that $\frac{d(\tan x)}{d x}=\sec ^{2} x$
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{x} \times \frac{1}{\tan \mathrm{x}} \frac{\mathrm{d}(\tan \mathrm{x})}{\mathrm{dx}}+\log (\tan \mathrm{x})$
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\frac{\mathrm{x}}{\tan \mathrm{x}}\left(\sec ^{2} \mathrm{x}\right)+\log (\tan \mathrm{x})$
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\frac{\mathrm{x} \cos \mathrm{x}}{\sin \mathrm{x}}\left(\frac{1}{\cos ^{2} \mathrm{x}}\right)+\log (\tan \mathrm{x})$
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\frac{\mathrm{x}}{\sin \mathrm{x}}\left(\frac{1}{\cos \mathrm{x}}\right)+\log (\tan \mathrm{x})$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}\left\{\frac{\mathrm{x}}{\sin \mathrm{x} \cos \mathrm{x}}+\log (\tan \mathrm{x})\right\}$
Put the value of $b=(\tan x)^{x}$
$\Rightarrow \frac{d b}{d x}=(\tan x)^{x}\left\{\frac{x}{\sin x \cos x}+\log (\tan x)\right\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=e^{\sin x} \cos x+(\tan x)^{x}\left\{\frac{x}{\sin x \cos x}+\log (\tan x)\right\}$
18. $(v i i)(\cos x)^{x}+(\sin x)^{1 / x}$

Solution:

Let $y=(\cos x)^{x}+(\sin x)^{\frac{1}{x}}$
$\Rightarrow \mathrm{y}=\mathrm{a}+\mathrm{b}$
where $\mathrm{a}=(\cos \mathrm{x})^{\mathrm{x}} ; \mathrm{b}=(\sin \mathrm{x})^{\frac{1}{\mathrm{x}}}$

Now we have to differentiate $\mathrm{y}=\mathrm{a}+\mathrm{b}$ with respect to x
By using chain rule, we can write as
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$a=(\cos x)^{x}$
Taking log both the sides
$\Rightarrow \log \mathrm{a}=\log (\cos \mathrm{x})^{\mathrm{x}}$
$\Rightarrow \log \mathrm{a}=\mathrm{x} \log (\cos \mathrm{x})\left\{\log \mathrm{x}^{\mathrm{a}}=\mathrm{a} \log \mathrm{x}\right\}$
Differentiating with respect to x
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \log (\cos \mathrm{x}))}{\mathrm{dx}}$
Now by using product rule, we have
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{a})}{\mathrm{dx}}=\mathrm{x} \times \frac{\mathrm{d}(\log (\cos \mathrm{x}))}{\mathrm{dx}}+\log (\cos \mathrm{x}) \times \frac{\mathrm{dx}}{\mathrm{dx}}$
Again we have $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=x \times \frac{1}{\cos x} \frac{d(\cos x)}{d x}+\log (\cos x)$
We know that $\frac{d(\cos x)}{d x}=-\sin x$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{x}{\cos x}(-\sin x)+\log (\cos x)$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{-x \sin x}{\cos x}+\log (\cos x)$
$\Rightarrow \frac{d a}{d x}=a\{-x \tan x+\log (\cos x)\}$

Put the value of $a=(\cos x)^{x}$
$\Rightarrow \frac{d a}{d x}=(\cos x)^{x}\{-x \tan x+\log (\cos x)\}$
$b=(\sin x)^{\frac{1}{x}}$
Taking log both the sides
$\Rightarrow \log \mathrm{b}=\log (\sin \mathrm{x})^{\frac{1}{\mathrm{x}}}$
$\Rightarrow \log \mathrm{b}=\frac{1}{\mathrm{x}} \log (\sin \mathrm{x})\left\{\log x^{\mathrm{a}}=\mathrm{a} \log \mathrm{x}\right\}$
Differentiating with respect to x
$\Rightarrow \frac{d(\log b)}{d x}=\frac{d\left(\frac{1}{x} \log (\sin x)\right)}{d x}$
Again by product rule we have
$\Rightarrow \frac{d(\log b)}{d x}=\frac{1}{x} \times \frac{d(\log (\sin x))}{d x}+\log (\sin x) \times \frac{d\left(x^{-1}\right)}{d x}$
We know that $\frac{d\left(u^{n}\right)}{d x}=n u^{n-1} \frac{d u}{d x}$.
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{1}{x} \times \frac{1}{\sin x} \frac{d(\sin x)}{d x}+\log (\sin x)\left(-x^{-2}\right)$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{1}{x \sin x}(\cos x)-\frac{\log (\sin x)}{x^{2}}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{\cos x}{x \sin x}-\frac{\log (\sin x)}{x^{2}}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}\left\{\frac{\cot \mathrm{x}}{\mathrm{x}}-\frac{\log (\sin \mathrm{x})}{\mathrm{x}^{2}}\right\}$
Put the value of $b=(\sin x)^{\frac{1}{x}}$:

$$
\begin{aligned}
& \Rightarrow \frac{d b}{d x}=(\sin x)^{\frac{1}{x}}\left\{\frac{\cot x}{x}-\frac{\log (\sin x)}{x^{2}}\right\} \\
& \frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x} \\
& \Rightarrow \frac{d y}{d x}=(\cos x)^{x}\{-x \tan x+\log (\cos x)\}+(\sin x)^{\frac{1}{x}}\left\{\frac{\cot x}{x}-\frac{\log (\sin x)}{x^{2}}\right\}
\end{aligned}
$$

18. (viii) $x^{x^{2}-3}+(x-3)^{x^{2}}$

Solution:

Let $y=x^{x^{2}-3}+(x-3)^{x^{2}}$
$\Rightarrow y=a+b$
where $a=x^{x^{2}-3} ; b=(x-3)^{x^{2}}$
Now we have to differentiate $\mathrm{y}=\mathrm{a}+\mathrm{b}$ with respect to x
By using chain rule, we can write as
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$a=x^{x^{2}-3}$
Taking log both the sides
$\Rightarrow \log \mathrm{a}=\log \mathrm{x}^{\mathrm{x}^{2}-3}$
$\Rightarrow \log \mathrm{a}=\left(\mathrm{x}^{2}-3\right) \log \mathrm{x}\left\{\log \mathrm{x}^{\mathrm{a}}=\mathrm{a} \log \mathrm{x}\right\}$
Differentiating with respect to x
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d\left(\left(x^{2}-3\right) \log x\right)}{d x}$
Now by using product rule,
$\Rightarrow \frac{d(\log a)}{d x}=\left(x^{2}-3\right) \times \frac{d(\log x)}{d x}+\log x \times \frac{d\left(x^{2}-3\right)}{d x}$

Again by using chain rule we get
$\Rightarrow \frac{1}{\mathrm{a}} \frac{\mathrm{da}}{\mathrm{dx}}=\left(\mathrm{x}^{2}-3\right) \times \frac{1}{\mathrm{x}} \frac{\mathrm{dx}}{\mathrm{dx}}+\log \mathrm{x} \times(2 \mathrm{x})$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{\left(x^{2}-3\right)}{x}+2 x \log x$
$\Rightarrow \frac{d a}{d x}=a\left\{\frac{\left(x^{2}-3\right)}{x}+2 x \log x\right\}$
Put the value of $a=x^{x^{2}-3}$:
$\Rightarrow \frac{d a}{d x}=x^{x^{2}-3}\left\{\frac{\left(x^{2}-3\right)}{x}+2 x \log x\right\}$
$b=(x-3)^{x^{2}}$
Taking log both the sides:

$$
\begin{aligned}
& \Rightarrow \log b=(x-3)^{x^{2}} \\
& \Rightarrow \log b=x^{2} \log (x-3)\left\{\log x^{a}=a \log x\right\}
\end{aligned}
$$

Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{b})}{\mathrm{dx}}=\frac{\mathrm{d}\left(\mathrm{x}^{2} \log (\mathrm{x}-3)\right)}{\mathrm{dx}}$
Again by using product rule, we get
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{b})}{\mathrm{dx}}=\mathrm{x}^{2} \times \frac{\mathrm{d}(\log (\mathrm{x}-3))}{\mathrm{dx}}+\log (\mathrm{x}-3) \times \frac{\mathrm{d}\left(\mathrm{x}^{2}\right)}{\mathrm{dx}}$
For the above expression now we have to use chain rule,
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{x}^{2} \times \frac{1}{(\mathrm{x}-3)} \frac{\mathrm{d}(\mathrm{x}-3)}{\mathrm{dx}}+\log (\mathrm{x}-3) \times(2 \mathrm{x})$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{x^{2}}{(x-3)}\left(\frac{d x}{d x}-\frac{d(3)}{d x}\right)+2 x \log (x-3)$
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\frac{\mathrm{x}^{2}}{(\mathrm{x}-3)}(1)+2 \mathrm{x} \log (\mathrm{x}-3)$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}\left\{\frac{\mathrm{x}^{2}}{(\mathrm{x}-3)}+2 \mathrm{x} \log (\mathrm{x}-3)\right\}$
Put the value of $b=(x-3)^{x^{2}}$:
$\Rightarrow \frac{d \mathrm{~b}}{\mathrm{dx}}=(\mathrm{x}-3)^{\mathrm{x}^{2}}\left\{\frac{\mathrm{x}^{2}}{(\mathrm{x}-3)}+2 \mathrm{x} \log (\mathrm{x}-3)\right\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=x^{x^{2}-3}\left\{\frac{\left(x^{2}-3\right)}{x}+2 x \log x\right\}+(x-3)^{x^{2}}\left\{\frac{x^{2}}{(x-3)}+2 x \log (x-3)\right\}$
19. $y=e^{x}+10^{x}+x^{x}$

Solution:

Let $\mathrm{y}=\mathrm{e}^{\mathrm{x}}+10^{\mathrm{x}}+\mathrm{x}^{\mathrm{x}}$
$\Rightarrow y=a+b+c$
Where $\mathrm{a}=\mathrm{e}^{\mathrm{x}} ; \mathrm{b}=10^{\mathrm{x}} ; \mathrm{c}=\mathrm{x}^{\mathrm{x}}$
Now we have to differentiate $\mathrm{y}=\mathrm{a}+\mathrm{b}+\mathrm{c}$ with respect to x
By using chain rule, we can write as
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}+\frac{d c}{d x}$
$a=e^{x}$
Taking log both the sides
$\Rightarrow \log \mathrm{a}=\log \mathrm{e}^{\mathrm{x}}$
$\Rightarrow \log \mathrm{a}=\mathrm{x} \log \mathrm{e}$
$\left\{\log x^{a}=a \log x\right\}$
$\Rightarrow \log \mathrm{a}=\mathrm{x}\{\log \mathrm{e}=1\}$
Differentiating with respect to x
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{dx}}{\mathrm{dx}}$
We know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x}$
$\Rightarrow \frac{1}{\mathrm{a}} \frac{\mathrm{da}}{\mathrm{dx}}=1$
$\Rightarrow \frac{\mathrm{da}}{\mathrm{dx}}=\mathrm{a}$
Put the value of $a=e^{x}$
$\Rightarrow \frac{\mathrm{da}}{\mathrm{dx}}=\mathrm{e}^{\mathrm{x}}$
$\mathrm{b}=10^{\mathrm{x}}$
Taking log both the sides:
$\Rightarrow \log \mathrm{b}=\log 10^{\mathrm{x}}$
$\Rightarrow \log \mathrm{b}=\mathrm{x} \log 10$
$\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{b})}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \log 10)}{\mathrm{dx}}$
Now by using chain rule,
$\Rightarrow \frac{d(\log b)}{d x}=\log 10 \times \frac{d x}{d x}$
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}(\log 10)$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}(\log 10)$
Put the value of $b=10^{x}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=10^{\mathrm{x}}(\log 10)$
$\mathrm{c}=\mathrm{x}^{\mathrm{x}}$
Taking log both the sides
$\Rightarrow \log C=\log x^{x}$
$\Rightarrow \log \mathrm{C}=\mathrm{x} \log \mathrm{x}$
$\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{c})}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \log \mathrm{x})}{\mathrm{dx}}$
By using product rule, we get
$\Rightarrow \frac{d(\log c)}{d x}=x \times \frac{d(\log x)}{d x}+\log x \times \frac{d x}{d x}$
$\Rightarrow \frac{1}{c} \frac{d c}{d x}=x \times \frac{1}{x} \frac{d x}{d x}+\log x$
$\Rightarrow \frac{1}{c} \frac{\mathrm{dc}}{\mathrm{dx}}=1+\log \mathrm{x}$
$\Rightarrow \frac{\mathrm{dc}}{\mathrm{dx}}=c\{1+\log \mathrm{x}\}$
Put the value of $c=x^{x}$
$\Rightarrow \frac{d c}{d x}=x^{x}\{1+\log x\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}+\frac{d c}{d x}$
$\Rightarrow \frac{d y}{d x}=e^{x}+10^{x}(\log 10)+x^{x}\{1+\log x\}$
20. $y=x^{n}+n^{x}+x^{x}+n^{n}$

Solution:

Let $\mathrm{y}=\mathrm{x}^{\mathrm{n}}+\mathrm{n}^{\mathrm{x}}+\mathrm{x}^{\mathrm{x}}+\mathrm{n}^{\mathrm{n}}$
$\Rightarrow y=a+b+c+m$
Where $a=x^{n} ; b=n^{x} ; c=x^{x} ; m=n^{n}$
Now we have to differentiate $\mathrm{y}=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{m}$ with respect to x
By using chain rule, we can write as
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}+\frac{d c}{d x}+\frac{d m}{d x}$
$a=x^{n}$
Taking log both the sides
$\Rightarrow \log a=\log x^{n}$
$\Rightarrow \log \mathrm{a}=\mathrm{n} \log \mathrm{x}$
$\left\{\log x^{a}=a \log x\right\}$
$\Rightarrow \log \mathrm{a}=\mathrm{n} \log \mathrm{x}\{\log \mathrm{e}=1\}$
Differentiating with respect to x
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d(n \log x)}{d x}$
Again by chain rule, we can write as
$\Rightarrow \frac{d(\log a)}{d x}=n \frac{d(\log x)}{d x}$
We know that $\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x}$
$\Rightarrow \frac{1}{\mathrm{a}} \frac{\mathrm{da}}{\mathrm{dx}}=\mathrm{n} \times \frac{1}{\mathrm{x}} \frac{\mathrm{dx}}{\mathrm{dx}}$
$\Rightarrow \frac{1}{\mathrm{a}} \frac{\mathrm{da}}{\mathrm{dx}}=\frac{\mathrm{n}}{\mathrm{x}}$
$\Rightarrow \frac{d a}{d x}=\frac{\mathrm{an}}{\mathrm{x}}$

Put the value of $a=x^{n}$

$$
\begin{aligned}
& \frac{d a}{d x}=\frac{n x^{n}}{x} \\
& \frac{d a}{d x}=n x^{n-1}
\end{aligned}
$$

$$
\mathrm{b}=\mathrm{n}^{\mathrm{x}}
$$

Taking log both the sides

$$
\begin{aligned}
& \Rightarrow \log b=\log n^{x} \\
& \Rightarrow \log b=x \log n\left\{\log x^{a}=a \log x\right\}
\end{aligned}
$$

Differentiating with respect to x using chain rule, we get
$\Rightarrow \frac{d(\log b)}{d x}=\log n \times \frac{d x}{d x}$
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}(\log \mathrm{n})$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}(\log \mathrm{n})$
Put the value of $b=n^{x}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{n}^{\mathrm{x}}(\log \mathrm{n})$
$\mathrm{c}=\mathrm{x}^{\mathrm{x}}$
Taking log both the sides
$\Rightarrow \log \mathrm{C}=\log \mathrm{x}^{\mathrm{x}}$
$\Rightarrow \log \mathrm{c}=\mathrm{x} \log \mathrm{x}$
$\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{c})}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \log \mathrm{x})}{\mathrm{dx}}$

Now by using product rule, we get

$$
\begin{aligned}
& \Rightarrow \frac{d(\log c)}{d x}=x \times \frac{d(\log x)}{d x}+\log x \times \frac{d x}{d x} \\
& \Rightarrow \frac{1}{c} \frac{d c}{d x}=x \times \frac{1}{x} \frac{d x}{d x}+\log x \\
& \Rightarrow \frac{1}{c} \frac{d c}{d x}=1+\log x \\
& \Rightarrow \frac{d c}{d x}=c\{1+\log x\}
\end{aligned}
$$

Put the value of $c=x^{x}$

$$
\begin{aligned}
& \Rightarrow \frac{d c}{d x}=x^{x}\{1+\log x\} \\
& m=n^{n} \\
& \Rightarrow \frac{d m}{d x}=\frac{d\left(n^{n}\right)}{d x} \\
& \Rightarrow \frac{d m}{d x}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}+\frac{d c}{d x}+\frac{d m}{d x} \\
& \Rightarrow \frac{d y}{d x}=n x^{n-1}+n^{x}(\log n)+x^{x}\{1+\log x\}+0 \\
& \Rightarrow \frac{d y}{d x}=n x^{n-1}+n^{x}(\log n)+x^{x}\{1+\log x\}
\end{aligned}
$$

1. If $y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots . t o \infty}}}$, prove that $\frac{d y}{d x}=\frac{1}{2 y-1}$.

Solution:

Given,
$y=\sqrt{x+\sqrt{x+\sqrt{x+\cdots \text { to } \infty}}}$
$y=\sqrt{x+y}$
Where $\mathrm{y}=\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\cdots \text { to } \infty}}$
On squaring both sides,
$y^{2}=x+y$
Differentiating both sides with respect to x ,
$2 y \frac{d y}{d x}=1+\frac{d y}{d x}$
$\frac{d y}{d x}(2 y-1)=1$
$\frac{d y}{d x}=\frac{1}{2 y-1}$
Hence proved.
2. If $y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x+\ldots . \text { to } \infty}}}$, prove that $\frac{d y}{d x}=\frac{\sin x}{1-2 y}$.

Solution:

Given,
$y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x+\cdots \text { to } \infty}}}$
$y=\sqrt{\cos x+y}$
Where $\mathrm{y}=\sqrt{\cos \mathrm{x}+\sqrt{\cos \mathrm{x}+\cdots \text { to } \infty}}$
Squaring on both sides,
$y^{2}=\cos x+y$
Differentiating both sides with respect to x ,
$2 y \frac{d y}{d x}=-\sin x+\frac{d y}{d x}$
$\frac{d y}{d x}(2 y-1)=-\sin x$
$\frac{d y}{d x}=-\frac{\sin x}{2 y-1}$
$\frac{d y}{d x}=\frac{\sin x}{1-2 y}$
Hence proved.
3. If $y=\sqrt{\log x+\sqrt{\log x+\sqrt{\log x+\ldots \ldots \text { to } \infty}}}$, prove that $(2 y-1) \frac{d y}{d x}=\frac{1}{x}$.

Solution:

Given
$y=\sqrt{\log x+\sqrt{\log x+\sqrt{\log x+\cdots \text { to } \infty}}}$
$y=\sqrt{\log x+y}$
Where $y=\sqrt{\log x+\sqrt{\log x+\cdots \text { to } \infty}}$
Squaring on both sides,

$$
y^{2}=\log x+y
$$

Differentiating both sides with respect to x ,
$2 y \frac{d y}{d x}=\frac{1}{x}+\frac{d y}{d x}$

$$
\frac{d y}{d x}(2 y-1)=\frac{1}{x}
$$

$\frac{d y}{d x}=\frac{1}{x(2 y-1)}$
Hence proved.
4. If $y=\sqrt{\tan x+\sqrt{\tan x+\sqrt{\tan x+\ldots . \operatorname{ta} \infty}}}$, prove that $\frac{d y}{d x}=\frac{\sec ^{2} x}{2 y-1}$.

Solution:

Given,

$$
\begin{aligned}
& y=\sqrt{\tan x+\sqrt{\tan x+\sqrt{\tan x+\cdots \operatorname{to~} \infty}}} \\
& y=\sqrt{\tan x+y}
\end{aligned}
$$

On squaring both sides,
$y^{2}=\tan x+y$
Differentiating both sides with respect to x ,
$2 y \frac{d y}{d x}=\sec ^{2} x+\frac{d y}{d x}$
$\frac{d y}{d x}(2 y-1)=\sec ^{2} x$
$\frac{d y}{d x}=\frac{\sec ^{2} x}{(2 y-1)}$
Hence proved.

Find $\mathrm{dy} / \mathrm{dx}$, when

1. $x=a t^{2}$ and $y=2$ at

Solution:

Given that $\mathrm{x}=\mathrm{at}{ }^{2}, \mathrm{y}=2 \mathrm{at}$
Now by differentiating $x=a t^{2}$ with respect to t we get

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{d}\left(\mathrm{at}^{2}\right)}{\mathrm{dt}}=2 \mathrm{at}
$$

Again by differentiating $\mathrm{y}=2$ at with respect to t we get

$$
\frac{d y}{d t}=\frac{d(2 a t)}{d t}=2 a
$$

Therefore,

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 a}{2 a t}=\frac{1}{t}
$$

2. $x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$

Solution:

Given that $\mathrm{x}=\mathrm{at}^{2}, \mathrm{y}=2 \mathrm{at}$
Now by differentiating $x=a t^{2}$ with respect to t we get
$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{d}\left(\mathrm{at}^{2}\right)}{\mathrm{dt}}=2 \mathrm{at}$
Again by differentiating $\mathrm{y}=2$ at with respect to t we get
$\frac{d y}{d t}=\frac{d(2 a t)}{d t}=2 a$
Therefore,
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d z}{d t}}=\frac{2 a}{2 a t}=\frac{1}{t}$
$x=a(\theta+\sin \theta)$
Differentiating it with respect to θ,
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}(1+\cos \theta)$
And,
$y=a(1-\cos \theta)$
Differentiating it with respect to θ,
$\frac{d y}{d \theta}=a(0+\sin \theta)$
$\frac{d y}{d \theta}=a \sin \theta$
Using equation (1) and (2),

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}
$$

$=\frac{a \sin \theta}{a(1-\cos \theta)}$
$=\frac{\frac{2 \sin \theta}{2} \frac{(\cos \theta)}{2}}{\frac{2 \sin ^{2} \theta}{2}}$,

$=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\tan \theta}{2}$
3. $x=a \cos \theta$ and $y=b \sin \theta$

Solution:

Given $\mathrm{x}=\mathrm{a} \cos \theta$ and $\mathrm{y}=\mathrm{b} \sin \theta$

Now by differentiating x with respect to θ we get,
$\frac{d x}{d \theta}=\frac{d(a \cos \theta)}{d \theta}=-a \sin \theta$
Again by differentiating y with respect to θ we get,
$\frac{d y}{d \theta}=\frac{d(b \sin \theta)}{d \theta}=b \cos \theta$
$\therefore \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{b \cos \theta}{-a \sin \theta}=-\frac{b}{a} \cot \theta$
4. $x=a e^{\theta}(\sin \theta-\cos \theta), y=a e^{\theta}(\sin \theta+\cos \theta)$

Solution:

Given that $\mathrm{x}=\mathrm{a} \mathrm{e}^{\theta}(\sin \theta-\cos \theta)$
Differentiating it with respect to θ

$$
\begin{align*}
& \frac{d x}{d \theta}=a\left[e^{\theta} \frac{d(\sin \theta-\cos \theta)}{d \theta}+(\sin \theta-\cos \theta) \frac{d\left(e^{\theta}\right)}{d \theta}\right] \\
& =a\left[e^{\theta}(\cos \theta+\sin \theta)+(\sin \theta-\cos \theta) e^{\theta}\right] \\
& \frac{d x}{d \theta}=a\left[2 e^{\theta} \sin \theta\right] \ldots . . .(1) \tag{1}
\end{align*}
$$

And also given that, $\mathrm{y}=\mathrm{a} \mathrm{e}^{\theta}(\sin \theta+\cos \theta)$
Differentiating it with respect to θ,

$$
\begin{align*}
& \frac{d y}{d \theta}=a\left[e^{\theta} \frac{d(\sin \theta+\cos \theta)}{d \theta}+(\sin \theta+\cos \theta) \frac{d\left(e^{\theta}\right)}{d \theta}\right] \\
& =a\left[e^{\theta}(\cos \theta-\sin \theta)+(\sin \theta+\cos \theta) e^{\theta}\right] \\
& \frac{d y}{d \theta}=a\left[2 e^{\theta} \cos \theta\right] \ldots . . .(2) \tag{2}
\end{align*}
$$

Dividing equation (2) by equation (1),

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{a\left(2 e^{\theta} \cos \theta\right)}{a\left(2 e^{\theta} \sin \theta\right)} \\
& \frac{d y}{d x}=\cot \theta
\end{aligned}
$$

5. $x=b \sin ^{2} \theta$ and $y=a \cos ^{2} \theta$

Solution:

Given that $x=b \sin ^{2} \theta$
Now by differentiating above equation with respect to θ, we get
$\frac{d x}{d \theta}=\frac{d\left(b \sin ^{2} \theta\right)}{d \theta}=2 b \sin \theta \cos \theta$
And also given that $y=a \cos ^{2} \theta$
Now by differentiating above equation with respect to θ, we get
$\frac{d y}{d \theta}=d\left(a \cos ^{2} \theta\right)=-2 a \cos \theta \sin \theta$
$\therefore \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=-\frac{2 a \cos \theta \sin \theta}{2 b \sin \theta \cos \theta}=-\frac{a}{b}$
6. $x=a(1-\cos \theta)$ and $y=a(\theta+\sin \theta)$ at $\theta=\pi / 2$

Solution:

Given $x=a(1-\cos \theta)$
Differentiate x with respect to θ, we get
$\frac{d x}{d \theta}=\frac{d[a(1-\cos \theta)]}{d \theta}=a(\sin \theta)$
And also given that $\mathrm{y}=\mathrm{a}(\theta+\sin \theta)$
Differentiate x with respect to θ, we get

$$
\begin{aligned}
& \frac{d y}{d \theta}=\frac{d(\theta+\sin \theta)}{d \theta}=a(1+\cos \theta) \\
& \left.\therefore \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a(1+\cos \theta)}{a(\sin \theta)} \right\rvert\,\left(\theta=\frac{\pi}{2}\right) \\
& =\frac{a(1+0)}{a}=1
\end{aligned}
$$

7. $x=\frac{e^{t}+e^{-t}}{2}$ and $y=\frac{e^{t}-e^{-t}}{2}$

Solution:
Given $x=\frac{e^{t}+e^{-t}}{2}$
Differentiating above equation with respect to t
$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{1}{2}\left[\frac{\mathrm{~d}\left(\mathrm{e}^{\mathrm{t}}\right)}{\mathrm{dt}}+\frac{\mathrm{d}\left(\mathrm{e}^{-\mathrm{t}}\right)}{\mathrm{dt}}\right]$
$=\frac{1}{2}\left[e^{t}+e^{-t} \frac{d(-t)}{d t}\right]$
$\frac{d x}{d t}=\frac{1}{2}\left(e^{t}-e^{-t}\right)=y$
And also given that $y=\frac{e^{t}-e^{-t}}{2}$
Differentiating above equation with respect to t,

$$
\begin{aligned}
& \frac{d y}{d t}=\frac{1}{2}\left[\frac{d\left(e^{t}\right)}{d t}-\frac{d\left(e^{-t}\right)}{d t}\right] \\
& =\frac{1}{2}\left[e^{t-}-e^{-t} \frac{d(-t)}{d t}\right]
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{2}\left(\mathrm{e}^{\mathrm{t}}-\mathrm{e}^{-\mathrm{t}}(-1)\right) \\
& \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{e}^{\theta}+\mathrm{e}^{\theta}}{2}=\mathrm{x} \tag{2}
\end{align*}
$$

Dividing equation (2) by (1),

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{x}{y} \\
& \frac{d y}{d x}=\frac{x}{y}
\end{aligned}
$$

8. $x=\frac{3 a t}{1+t^{2}}$ and $y=\frac{3 a t^{2}}{1+t^{2}}$

Solution:

Given $\mathrm{X}=\frac{3 \text { at }}{1+\mathrm{t}^{2}}$
Differentiating above equation with respect to t using quotient rule,

$$
\begin{align*}
& \frac{d x}{d t}=\left[\frac{\left(\left(1+t^{2}\right) \frac{d(3 a t)}{d t}-3 a t \frac{d\left(1+t^{2}\right)}{d t}\right)}{\left(1+t^{2}\right)^{2}}\right] \\
& =\left[\frac{\left(1+t^{2}\right)(3 a)-3 a t(2 t)}{\left(1+t^{2}\right)^{2}}\right] \\
& =\left[\frac{(3 a)+3 a t^{2}-6 a t^{2}}{\left(1+t^{2}\right)^{2}}\right] \\
& =\left[\frac{3 a-3 a t^{2}}{\left(1+t^{2}\right)^{2}}\right] \\
& \frac{d x}{d t}=\frac{3 a\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}} \ldots . . . \text { (1) } \tag{1}
\end{align*}
$$

And also given that $\mathrm{y}=\frac{3 \mathrm{at}^{2}}{1+\mathrm{t}^{2}}$
Differentiating above equation with respect to t using quotient rule

$$
\begin{align*}
& \frac{d y}{d x}=\left[\frac{\left(1+t^{2}\right) \frac{d\left(3 a t^{2}\right)}{d t}-3 a t^{2} \frac{d\left(1+t^{2}\right)}{d t}}{\left(1+t^{2}\right)^{2}}\right] \\
& \frac{d y}{d t}=\left[\frac{\left(1+t^{2}\right)(6 a t)-\left(3 a t^{2}\right)(2 t)}{\left(1+t^{2}\right)^{2}}\right] \\
& =\left[\frac{6 a t+6 a t^{3}-6 a t^{3}}{\left(1+t^{2}\right)^{2}}\right] \\
& \frac{d y}{d t}=\frac{6 \mathrm{at}}{\left(1+t^{2}\right)^{2}} \ldots . . \tag{2}
\end{align*}
$$

Dividing equation (2) by (1),

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{6 a t}{\left(1+t^{2}\right)^{2}} \times \frac{3 a\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}} \\
& \frac{d y}{d x}=\frac{2 t}{1-t^{2}}
\end{aligned}
$$

9. $x=a(\cos \theta+\theta \sin \theta)$ and $y=a(\sin \theta-\theta \cos \theta)$

Solution:

Given $\mathrm{x}=\mathrm{a}(\cos \theta+\theta \sin \theta)$
Now differentiating x with respect to θ

$$
\begin{aligned}
& \frac{\mathrm{dx}}{\mathrm{~d} \theta}=\mathrm{a}\left[\frac{\mathrm{~d}}{\mathrm{~d} \theta} \cos \theta+\frac{\mathrm{d}}{\mathrm{~d} \mathrm{\theta}}(\theta \sin \theta)\right] \\
& =\mathrm{a}\left[-\sin \theta+\frac{\theta d}{d \theta}(\sin \theta)+\sin \theta \frac{d}{d \theta}(\theta)\right] \\
& =\mathrm{a}[-\sin \theta+\theta \cos \theta+\sin \theta]=\mathrm{a} \theta \cos \theta
\end{aligned}
$$

And also given $\mathrm{y}=\mathrm{a}(\sin \theta-\cos \theta)$,

Now differentiating x with respect to θ

$$
\begin{aligned}
& \frac{d y}{d \theta}=a\left[\frac{d}{d \theta}(\sin \theta)-\frac{d}{d \theta}(\theta \cos \theta)\right] \\
& =a\left[\cos \theta-\left\{\frac{\theta d}{d \theta}(\cos \theta)+\cos \theta \frac{d}{d \theta}(\theta)\right\}\right] \\
& =a[\cos \theta+\theta \sin \theta-\cos \theta] \\
& =a \theta \sin \theta \\
& \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a \theta \sin \theta}{a \theta \cos \theta}=\tan \theta
\end{aligned}
$$

10. $x=e^{\theta}\left(\theta+\frac{1}{\theta}\right)$ and $y=e^{-\theta}\left(\theta-\frac{1}{\theta}\right)$

Solution:

Given ${ }^{x}=e^{\theta}\left(\theta+\frac{1}{\theta}\right)$
Differentiating x with respect to θ using the product rule,

$$
\begin{aligned}
& \frac{d x}{d \theta}=e^{\theta} \frac{d}{d \theta}\left(\theta+\frac{1}{\theta}\right)+\left(\theta+\frac{1}{\theta}\right) \frac{d}{d \theta}\left(e^{\theta}\right) \\
& =e^{\theta}\left(1-\frac{1}{\theta^{2}}\right)+\frac{\theta^{2}+1}{\theta}\left(e^{\theta}\right) \\
& =e^{\theta}\left(1-\frac{1}{\theta^{2}}+\frac{\theta^{2}+1}{\theta}\right) \\
& =e^{\theta}\left(\frac{\theta^{2}-1+\theta^{3}+\theta}{\theta^{2}}\right)
\end{aligned}
$$

$\frac{d x}{d \theta}=e^{\theta}\left(\frac{\theta^{3}+\theta^{2}+\theta-1}{\theta^{2}}\right)$
And also given that, $\mathrm{y}=\mathrm{e}^{-\theta}\left(\theta-\frac{1}{\theta}\right)$
Differentiating y with respect to θ using the product rule,

$$
\begin{align*}
& \frac{d y}{d \theta}=e^{-\theta} \frac{d}{d \theta}\left(\theta-\frac{1}{\theta}\right)+\left(\theta-\frac{1}{\theta}\right) \frac{d}{d \theta}\left(e^{-\theta}\right) \\
& =e^{-\theta}\left(1+\frac{1}{\theta^{2}}\right)+\left(\theta-\frac{1}{\theta}\right) e^{-\theta} \frac{d}{d \theta}(-\theta) \\
& =e^{-\theta}\left(1+\frac{1}{\theta^{2}}\right)+\left(\theta-\frac{1}{\theta}\right) e^{-\theta}(-1) \\
& \frac{d y}{d \theta}=e^{-\theta}\left(1+\frac{1}{\theta^{2}}-\theta+\frac{1}{\theta}\right) \\
& =e^{-\theta}\left(\frac{\theta^{2}+1-\theta^{3}+\theta}{\theta^{2}}\right) \\
& \frac{d y}{d \theta}=e^{-\theta}\left(\frac{-\theta^{3}+\theta^{2}+\theta+1}{\theta^{2}}\right) \tag{2}
\end{align*}
$$

Divide equation (2) by (1)

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=e^{-\theta}\left(\frac{-\theta^{3}+\theta^{2}+\theta+1}{\theta^{2}}\right) \times \frac{1}{e^{\theta}\left(\frac{\theta^{3}+\theta^{2}+\theta-1}{\theta^{2}}\right)} \\
& =e^{-2 \theta}\left(\frac{-\theta^{3}+\theta^{2}+\theta+1}{\theta^{3}+\theta^{2}+\theta-1}\right)
\end{aligned}
$$

11. $x=\frac{2 t}{1+t^{2}}$ and $y=\frac{1-t^{2}}{1+t^{2}}$

Solution:

Given, $\mathrm{x}=\frac{2 \mathrm{t}}{1+\mathrm{t}^{2}}$
Differentiating x with respect to t using quotient rule,
$\frac{d x}{d t}=\left[\frac{\left(1+t^{2}\right) \frac{d}{d t}(2 t)-2 t \frac{d}{d t}\left(1+t^{2}\right)}{\left(1+t^{2}\right)^{2}}\right]$
$=\left[\frac{\left(1+\mathrm{t}^{2}\right)(2)-2 \mathrm{t}(2 \mathrm{t})}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
$=\left[\frac{2+2 \mathrm{t}^{2}-4 \mathrm{t}^{2}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
$=\left[\frac{2-2 \mathrm{t}^{2}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\left[\frac{2-2 \mathrm{t}^{2}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
And also given that,, $\mathrm{y}=\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}}$
Differentiating y with respect to t using quotient rule,
$\frac{d y}{d t}=\left[\frac{\left(1+t^{2}\right) \frac{d}{d t}\left(1-t^{2}\right)-\left(1-t^{2}\right) \frac{d}{d t}\left(1+t^{2}\right)}{\left(1+t^{2}\right)^{2}}\right]$
$=\left[\frac{\left(1+\mathrm{t}^{2}\right)(-2 \mathrm{t})-\left(1-\mathrm{t}^{2}\right)(2 \mathrm{t})}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
$=\left[\frac{-2 \mathrm{t}-2 \mathrm{t}^{3}-2 \mathrm{t}+2 \mathrm{t}^{3}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
$\frac{\mathrm{dy}}{\mathrm{dt}}=\left[\frac{-4 \mathrm{t}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
Dividing equation (2) by (1),

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\left[\frac{-4 t}{\left(1+t^{2}\right)^{2}}\right] \times \frac{1}{\left[\frac{2-2 t^{2}}{\left(1+t^{2}\right)^{2}}\right]} \\
& =-\frac{2 t}{1-t^{2}}
\end{aligned}
$$

$$
\frac{d y}{d x}=-\frac{x}{y}\left[\text { since }, \frac{x}{y}=\frac{2 t}{1+t^{2}} \times \frac{1+t^{2}}{1-t^{2}}=\frac{2 t}{1-t^{2}}\right]
$$

12. $x=\cos ^{-1} \frac{1}{\sqrt{1+t^{2}}}$ and $y=\sin ^{-1} \frac{1}{\sqrt{1+t^{2}}}, t \epsilon R$

Solution:

Given $\mathrm{x}=\cos ^{-1} \frac{1}{\sqrt{1+\mathrm{t}^{2}}}$
Differentiating x with respect to t using chain rule,

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=-\frac{1}{\sqrt{1-\left(\frac{1}{\sqrt{1+\mathrm{t}^{2}}}\right)^{2}}} \frac{\mathrm{~d}}{\mathrm{dt}}\left(\frac{1}{\sqrt{1+\mathrm{t}^{2}}}\right)
$$

$=-\frac{1}{\sqrt{1-\frac{1}{1+t^{2}}}}\left\{-\frac{1}{2\left(1+t^{2}\right)^{\frac{3}{2}}}\right\} \frac{d}{d t}\left(1+\mathrm{t}^{2}\right)$
$=-\frac{\left(1+t^{2}\right)^{\frac{1}{2}}}{\sqrt{\left(1+t^{2}-1\right)}}\left\{-\frac{1}{2\left(1+t^{2}\right)^{\frac{3}{2}}}\right\}(2 t)$
$=-\frac{\mathrm{t}}{\sqrt{\mathrm{t}^{2}} \times\left(1+\mathrm{t}^{2}\right)}$
$\frac{\mathrm{dx}}{\mathrm{dt}}=-\frac{1}{1+\mathrm{t}^{2}}$
Also given that, ${ }^{\mathrm{y}}=\sin ^{-1} \frac{1}{\sqrt{1+\mathrm{t}^{2}}}$
Differentiating y with respect to t using chain rule,

$$
\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{1}{\sqrt{1-\left(\frac{1}{\sqrt{1+\mathrm{t}^{2}}}\right)^{2}}} \frac{\mathrm{~d}}{\mathrm{dt}}\left(\frac{1}{\sqrt{1+\mathrm{t}^{2}}}\right)
$$

$$
\begin{align*}
& =\frac{1}{\sqrt{1-\frac{1}{1+t^{2}}}}\left\{-\frac{1}{2\left(1+t^{2}\right)^{\frac{3}{2}}}\right\} \frac{d}{d t}\left(1+t^{2}\right) \\
& =\frac{\left(1+t^{2}\right)^{\frac{1}{2}}}{\sqrt{\left(1+t^{2}-1\right)}}\left\{-\frac{1}{2\left(1+t^{2}\right)^{\frac{3}{2}}}\right\}(2 t) \\
& =\frac{t}{\sqrt{t^{2}} \times\left(1+t^{2}\right)} \\
& \frac{d y}{d t}=-\frac{1}{1+t^{2}} \ldots \ldots \text { (2) } \tag{2}
\end{align*}
$$

Dividing equation (2) by (1),

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=-\frac{1}{1+t^{2}} \times-\frac{1+t^{2}}{1} \\
& \frac{d y}{d x}=1
\end{aligned}
$$

13. $x=\frac{1-t^{2}}{1+t^{2}}$ and $y=\frac{2 t}{1+t^{2}}$

Solution:

Given $\mathrm{x}=\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}}$
Differentiating x with respect to t using quotient rule,
$\frac{d x}{d t}=\left[\frac{\left(1+t^{2}\right) \frac{d}{d t}\left(1-t^{2}\right)-\left(1-t^{2}\right) \frac{d}{d t}\left(1+t^{2}\right)}{\left(1+t^{2}\right)^{2}}\right]$
$=\left[\frac{\left(1+t^{2}\right)(-2 t)-\left(1-t^{2}\right)(2 t)}{\left(1+t^{2}\right)^{2}}\right]$
$=\left[\frac{-2 t-2 t^{3}-2 t+2 t^{3}}{\left(1+t^{2}\right)^{2}}\right]$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\left[\frac{-4 \mathrm{t}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
And also given that, $\mathrm{y}=\frac{2 \mathrm{t}}{1+\mathrm{t}^{2}}$
Differentiating y with respect to t using quotient rule,
$\frac{d y}{d t}=\left[\frac{\left(1+t^{2}\right) \frac{d}{d t}(2 t)-(2 t) \frac{d}{d t}\left(1+t^{2}\right)}{\left(1+t^{2}\right)^{2}}\right]$
$=\left[\frac{\left(1+t^{2}\right)(2)-(2 \mathrm{t})(2 \mathrm{t})}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
$=\left[\frac{2+2 \mathrm{t}^{2}-4 \mathrm{t}^{2}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
$\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{2\left(1-\mathrm{t}^{2}\right)}{\left(1+\mathrm{t}^{2}\right)^{2}}$
Divide equation (2) by (1) so,
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}} \times \frac{1}{\frac{-4 t}{\left(1+t^{2}\right)^{2}}}$
$\frac{d y}{d x}=\frac{2\left(1-t^{2}\right)}{-4 t}$
14. If $x=2 \cos \theta-\cos 2 \theta$ and $y=2 \sin \theta-\sin 2 \theta$, prove that $\frac{d y}{d x}=\tan \left(\frac{3 \theta}{2}\right)$.

Solution:
Given $x=2 \cos \theta-\cos 2 \theta$
Differentiating x with respect to θ using chain rule,

$$
\begin{align*}
& \frac{\mathrm{dx}}{\mathrm{~d} \theta}=2(-\sin \theta)-(-\sin 2 \theta) \frac{\mathrm{d}}{\mathrm{~d} \theta}(2 \theta) \\
& =-2 \sin \theta+2 \sin 2 \theta \\
& \frac{\mathrm{dx}}{\mathrm{~d} \theta}=2(\sin 2 \theta-\sin \theta) \tag{1}
\end{align*}
$$

And also given that, $\mathrm{y}=2 \sin \theta-\sin 2 \theta$
Differentiating y with respect to θ using chain rule,
$\frac{d y}{d \theta}=2 \cos \theta-\cos 2 \theta \frac{d}{d \theta}(2 \theta)$
$=2 \cos \theta-\cos 2 \theta(2)$
$=2 \cos \theta-2 \cos 2 \theta$
$\frac{d y}{d \theta}=2(\cos \theta-\cos 2 \theta)$
Dividing equation (2) by equation (1),
$\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{2(\cos \theta-\cos 2 \theta)}{2(\sin 2 \theta-\sin \theta)}$
$=\frac{(\cos \theta-\cos 2 \theta)}{(\sin 2 \theta-\sin \theta)}$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-2 \sin \left(\frac{\theta+2 \theta}{2}\right) \sin \left(\frac{\theta-2 \theta}{2}\right)}{2 \cos \left(\frac{\theta+2 \theta}{2}\right) \sin \left(\frac{2 \theta-\theta}{2}\right)}$
$\left[\cos a-\cos b=-2 \sin \left(\frac{a+b}{2}\right) \sin \left(\frac{a-b}{2}\right)\right]$
$=-\frac{\sin \left(\frac{3 \theta}{2}\right)\left(\sin \left(-\frac{\theta}{2}\right)\right)}{\cos \left(\frac{3 \theta}{2}\right) \sin \left(\frac{\theta}{2}\right)}$

$$
\begin{aligned}
& =-\frac{\sin \left(\frac{3 \theta}{2}\right)\left(-\sin \frac{\theta}{2}\right)}{\cos \left(\frac{3 \theta}{2}\right) \sin \left(\frac{\theta}{2}\right)} \\
& =\frac{\sin \left(\frac{3 \theta}{2}\right)}{\cos \left(\frac{3 \theta}{2}\right)} \\
& \frac{d y}{d x}=\tan \left(\frac{3 \theta}{2}\right)
\end{aligned}
$$

1. Differentiate x^{2} with respect to x^{3}.

Solution:

$$
\text { Let } u=x^{2} \text { and } v=x^{3} \text {. }
$$

We have to differentiate u with respect to v that is find $\frac{\mathrm{du}}{\mathrm{dv}}$.
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(x^{2}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \mathrm{x}^{2-1}$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=2 \mathrm{x}$
Now, on differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\mathrm{x}^{3}\right)$
$\Rightarrow \frac{\mathrm{dv}}{\mathrm{dx}}=3 \mathrm{x}^{3-1}$
$\therefore \frac{d v}{d x}=3 x^{2}$
We have ${ }^{\frac{d u}{d v}}=\frac{\frac{d u}{d x}}{d v}$
$\Rightarrow \frac{d u}{d v}=\frac{2 \mathrm{x}}{3 \mathrm{x}^{2}}$
$\therefore \frac{d u}{d v}=\frac{2}{3 x}$

Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=\frac{2}{3 \mathrm{x}}$

2. Differentiate $\log \left(1+x^{2}\right)$ with respect to $\tan ^{-1} x$.

Solution:

$$
\text { Let } u=\log \left(1+x^{2}\right) \text { and } v=\tan ^{-1} x \text {. }
$$

We have to differentiate u with respect to v that is find $\frac{d u}{d v}$.
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left[\log \left(1+x^{2}\right)\right]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}} \frac{\mathrm{~d}}{\mathrm{dx}}\left(1+\mathrm{x}^{2}\right)$
Now by using chain rule, we get
$\Rightarrow \frac{d u}{d x}=\frac{1}{1+x^{2}}\left[\frac{d}{d x}(1)+\frac{d}{d x}\left(x^{2}\right)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{n}^{\mathrm{n}-1}$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}}\left[0+2 \mathrm{x}^{2-1}\right]$
$\Rightarrow \frac{d u}{d x}=\frac{1}{1+x^{2}}[2 x]$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}$
Now, on differentiating v with respect to x, we get
$\therefore \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}}$

We have ${ }^{\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}}$

$$
\begin{aligned}
& \Rightarrow \frac{d u}{d v}=\frac{\frac{2 x}{1+x^{2}}}{\frac{1}{1+x^{2}}} \\
& \Rightarrow \frac{d u}{d v}=\frac{2 x}{1+x^{2}} \times\left(1+x^{2}\right) \\
& \therefore \frac{d u}{d v}=2 x
\end{aligned}
$$

Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=2 \mathrm{x}$

3. Differentiate $(\log x)^{x}$ with respect to $\log x$.

Solution:

Let $\mathrm{u}=(\log \mathrm{x})^{\mathrm{x}}$ and $\mathrm{v}=\log \mathrm{x}$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $u=(\log x)^{x}$
Taking log on both sides, we get
$\log u=\log (\log x)^{x}$
$\Rightarrow \log u=x \times \log (\log x)\left[\because \log a^{m}=m \times \log a\right]$
On differentiating both the sides with respect to x, we get
$\frac{d}{d u}(\log u) \times \frac{d u}{d x}=\frac{d}{d x}[x \times \log (\log x)]$
We know that $(u v)^{\prime}=v u^{\prime}+u v^{\prime}$
$\Rightarrow \frac{d}{d u}(\log u) \times \frac{d u}{d x}=\log (\log x) \frac{d}{d x}(x)+x \frac{d}{d x}[\log (\log x)]$

We know $\frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}}$ and $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$

$$
\begin{aligned}
& \Rightarrow \frac{1}{u} \times \frac{d u}{d x}=\log (\log x) \times 1+x\left[\frac{1}{\log x} \frac{d}{d x}(\log x)\right] \\
& \Rightarrow \frac{1}{u} \frac{d u}{d x}=\log (\log x)+\frac{x}{\log x} \frac{d}{d x}(\log x)
\end{aligned}
$$

But, $\mathrm{u}=(\log \mathrm{x})^{\mathrm{x}}$ and $\frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{(\log x)^{x}} \frac{d u}{d x}=\log (\log x)+\frac{x}{\log x} \times \frac{1}{x} \\
& \Rightarrow \frac{1}{(\log x)^{x}} \frac{d u}{d x}=\log (\log x)+\frac{1}{\log x} \\
& \therefore \frac{d u}{d x}=(\log x)^{x}\left[\log (\log x)+\frac{1}{\log x}\right]
\end{aligned}
$$

Now, on differentiating v with respect to x, we get

$$
\begin{aligned}
& \frac{d v}{d x}=\frac{d}{d x}(\log x) \\
& \therefore \frac{d v}{d x}=\frac{1}{x}
\end{aligned}
$$

We have ${ }^{\frac{d u}{d v}}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$

$$
\begin{aligned}
& \Rightarrow \frac{d u}{d v}=\frac{(\log x)^{x}\left[\log (\log x)+\frac{1}{\log x}\right]}{\frac{1}{x}} \\
& \Rightarrow \frac{d u}{d v}=x(\log x)^{x}\left[\log (\log x)+\frac{1}{\log x}\right] \\
& \Rightarrow \frac{d u}{d v}=x(\log x)^{x}\left[\frac{\log (\log x) \log x+1}{\log x}\right]
\end{aligned}
$$

$\Rightarrow \frac{d u}{d v}=\frac{x(\log x)^{x}}{\log x}[\log (\log x) \log x+1]$
$\therefore \frac{\mathrm{du}}{\mathrm{dv}}=\mathrm{x}(\log \mathrm{x})^{\mathrm{x}-1}[1+\log \mathrm{x} \log (\log \mathrm{x})]$
Thus, $\frac{d u}{d v}=x(\log x)^{x-1}[1+\log x \log (\log x)]$

4. Differentiate $\sin ^{-1} V\left(1-x^{2}\right)$ with respect to $\cos ^{-1} x$, if

(i) $x \in(0,1)$
(ii) $x \in(-1,0)$

Solution:

(i) Given $\sin ^{-1} V\left(1-x^{2}\right)$

$$
\text { Let } \mathrm{u}=\sin ^{-1} \sqrt{1-\mathrm{x}^{2}} \text { and } \mathrm{v}=\cos ^{-1} \mathrm{x} \text {. }
$$

We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $\mathrm{u}=\sin ^{-1} \sqrt{1-\mathrm{x}^{2}}$
By substituting $x=\cos \theta$, we have
$u=\sin ^{-1} \sqrt{1-(\cos \theta)^{2}}$
$\Rightarrow \mathrm{u}=\sin ^{-1} \sqrt{1-\cos ^{2} \theta}$
$\Rightarrow \mathrm{u}=\sin ^{-1} \sqrt{\sin ^{2} \theta}\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}(\sin \theta)$
Given $x \in(0,1)$
However, $x=\cos \theta$.
$\Rightarrow \operatorname{Cos} \theta \in(0,1)$
$\Rightarrow \theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $u=\sin ^{-1}(\sin \theta)=\theta$.
$\Rightarrow \mathrm{u}=\cos ^{-1} \mathrm{x}$
On differentiating u with respect to x , we get
$\frac{d u}{d x}=\frac{d}{d x}\left(\cos ^{-1} x\right)$
We know $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
Now, on differentiating v with respect to x, we get $\frac{d v}{d x}=\frac{d}{d x}\left(\cos ^{-1} x\right)$
$\therefore \frac{\mathrm{dv}}{\mathrm{dx}}=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$

$\Rightarrow \frac{d u}{d v}=\frac{-\frac{1}{\sqrt{1-x^{2}}}}{-\frac{1}{\sqrt{1-x^{2}}}}$
$\Rightarrow \frac{d u}{d v}=-\frac{1}{\sqrt{1-x^{2}}} \times\left(-\sqrt{1-\mathrm{x}^{2}}\right)$
$\therefore \frac{\mathrm{du}}{\mathrm{dv}}=1$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=1$
(ii) Given $\sin ^{-1} V\left(1-x^{2}\right)$

Let $\mathrm{u}=\sin ^{-1} \sqrt{1-\mathrm{x}^{2}}$ and $\mathrm{v}=\cos ^{-1} \mathrm{x}$.

Now we have to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $\mathrm{u}=\sin ^{-1} \sqrt{1-\mathrm{x}^{2}}$
By substituting $x=\cos \theta$, we get
$\mathrm{u}=\sin ^{-1} \sqrt{1-(\cos \theta)^{2}}$
$\Rightarrow \mathrm{u}=\sin ^{-1} \sqrt{1-\cos ^{2} \theta}$
$\Rightarrow u=\sin ^{-1} \sqrt{\sin ^{2} \theta}\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}(\sin \theta)$
Given $x \in(-1,0)$
However, $x=\cos \theta$.
$\Rightarrow \operatorname{Cos} \theta \in(-1,0)$
$\Rightarrow \theta \in\left(\frac{\pi}{2}, \pi\right)$
Hence, $u=\sin ^{-1}(\sin \theta)=\pi-\theta$.
$\Rightarrow \mathrm{u}=\pi-\cos ^{-1} \mathrm{x}$
On differentiating u with respect to x, we get

$$
\frac{d u}{d x}=\frac{d}{d x}\left(\pi-\cos ^{-1} x\right)
$$

$\Rightarrow \frac{d u}{d x}=\frac{d}{d x}(\pi)-\frac{d}{d x}\left(\cos ^{-1} x\right)$
We know $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d u}{d x}=0-\left(-\frac{1}{\sqrt{1-x^{2}}}\right)$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$

Now, on differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\cos ^{-1} x\right)$
$\therefore \frac{d v}{d x}=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
We have ${ }^{\frac{d u}{d v}}=\frac{\frac{d u}{d x}}{d \mathrm{v}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{1}{\sqrt{1-x^{2}}}}{-\frac{1}{\sqrt{1-x^{2}}}}$
$\Rightarrow \frac{d u}{d v}=\frac{1}{\sqrt{1-x^{2}}} \times\left(-\sqrt{1-x^{2}}\right)$
$\therefore \frac{d u}{d v}=-1$
Thus, $\frac{d u}{d v}=-1$
5. Differentiate $\sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right)$ with respect to $\sqrt{1-4 x^{2}}$ if,
(i) $x \epsilon\left(-\frac{1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}\right)$
(ii) $x \epsilon\left(\frac{1}{2 \sqrt{2}}, \frac{1}{2}\right)$
(iii) $x \epsilon\left(-\frac{1}{2},-\frac{1}{2 \sqrt{2}}\right)$

Solution:

(i) Let
$\mathrm{u}=\sin ^{-1}\left(4 \mathrm{x} \sqrt{1-4 \mathrm{x}^{2}}\right)$ And $\mathrm{v}=\sqrt{1-4 \mathrm{x}^{2}}$.
We need to differentiate u with respect to v that is find $\frac{\mathrm{du}}{\mathrm{dv}}$.

We have $\mathrm{u}=\sin ^{-1}\left(4 \mathrm{x} \sqrt{1-4 \mathrm{x}^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(4 \mathrm{x} \sqrt{1-(2 \mathrm{x})^{2}}\right)$
By substituting $2 x=\cos \theta$, we have
$\mathrm{u}=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right)$
$\Rightarrow u=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right)$
$\Rightarrow u=\sin ^{-1}\left(2 \cos \theta \sqrt{\sin ^{2} \theta}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}(2 \cos \theta \sin \theta)$
$\Rightarrow \mathrm{u}=\sin ^{-1}(\sin 2 \theta)$
Given $x \in\left(-\frac{1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}\right)$
However, $2 x=\cos \theta \Rightarrow x=\frac{\cos \theta}{2}$
$\Rightarrow \frac{\cos \theta}{2} \in\left(-\frac{1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}\right)$
$\Rightarrow \cos \theta \in\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$\Rightarrow \theta \in\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$
$\Rightarrow 2 \theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
Hence, $u=\sin ^{-1}(\sin 2 \theta)=\pi-2 \theta$.
$\Rightarrow \mathrm{u}=\pi-2 \cos ^{-1}(2 \mathrm{x})$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left[\pi-2 \cos ^{-1}(2 x)\right]$
$\Rightarrow \frac{d u}{d x}=\frac{d}{d x}(\pi)-\frac{d}{d x}\left[2 \cos ^{-1}(2 x)\right]$
$\Rightarrow \frac{d u}{d x}=\frac{d}{d x}(\pi)-2 \frac{d}{d x}\left[\cos ^{-1}(2 x)\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right)=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=0-2\left[-\frac{1}{\sqrt{1-(2 \mathrm{x})^{2}}} \frac{\mathrm{~d}}{\mathrm{dx}}(2 \mathrm{x})\right]$
$\Rightarrow \frac{d u}{d x}=\frac{2}{\sqrt{1-4 x^{2}}}\left[\frac{d}{d x}(2 x)\right]$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{2}{\sqrt{1-4 \mathrm{x}^{2}}}\left[2 \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x})\right]$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{4}{\sqrt{1-4 \mathrm{x}^{2}}} \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x})$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d u}{d x}=\frac{4}{\sqrt{1-4 x^{2}}} \times 1$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=\frac{4}{\sqrt{1-4 \mathrm{x}^{2}}}$
Now, we have $\mathrm{v}=\sqrt{1-4 \mathrm{x}^{2}}$
On differentiating v with respect to x , we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\sqrt{1-4 x^{2}}\right)$
$\Rightarrow \frac{d v}{d x}=\frac{d}{d x}\left(1-4 x^{2}\right)^{\frac{1}{2}}$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{n}^{\mathrm{n}-1}$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2}\left(1-4 x^{2}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(1-4 x^{2}\right)$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2}\left(1-4 x^{2}\right)^{-\frac{1}{2}}\left[\frac{d}{d x}(1)-\frac{d}{d x}\left(4 x^{2}\right)\right]$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1-4 x^{2}}}\left[\frac{d}{d x}(1)-4 \frac{d}{d x}\left(x^{2}\right)\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1}{2 \sqrt{1-4 \mathrm{x}^{2}}}\left[0-4\left(2 \mathrm{x}^{2-1}\right)\right]$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1-4 x^{2}}}[-8 x]$
$\therefore \frac{d v}{d x}=-\frac{4 x}{\sqrt{1-4 x^{2}}}$
We have ${ }^{\frac{d u}{d v}}=\frac{\frac{d u}{d x}}{d v}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{4}{\sqrt{1-4 x^{2}}}}{-\frac{4 \mathrm{x}}{\sqrt{1-4 x^{2}}}}$
$\Rightarrow \frac{d u}{d v}=\frac{4}{\sqrt{1-4 x^{2}}} \times\left(-\frac{\sqrt{1-x^{2}}}{4 x}\right)$
$\therefore \frac{\mathrm{du}}{\mathrm{dv}}=-\frac{1}{\mathrm{x}}$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=-\frac{1}{\mathrm{x}}$
(ii) Let
$\mathrm{u}=\sin ^{-1}\left(4 \mathrm{x} \sqrt{1-4 \mathrm{x}^{2}}\right)$ and $\mathrm{v}=\sqrt{1-4 \mathrm{x}^{2}}$.

We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have ${ }^{u}=\sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(4 \mathrm{x} \sqrt{1-(2 \mathrm{x})^{2}}\right)$
By substituting $2 x=\cos \theta$, we have
$\mathrm{u}=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \cos \theta \sqrt{\sin ^{2} \theta}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}(2 \cos \theta \sin \theta)$
$\Rightarrow \mathrm{u}=\sin ^{-1}(\sin 2 \theta)$
Given $\mathrm{x} \in\left(\frac{1}{2 \sqrt{2}}, \frac{1}{2}\right)$
However, $2 \mathrm{x}=\cos \theta \Rightarrow \mathrm{x}=\frac{\cos \theta}{2}$
$\Rightarrow \frac{\cos \theta}{2} \in\left(\frac{1}{2 \sqrt{2}}, \frac{1}{2}\right)$
$\Rightarrow \cos \theta \in\left(\frac{1}{\sqrt{2}}, 1\right)$
$\Rightarrow \theta \in\left(0, \frac{\pi}{4}\right)$
$\Rightarrow 2 \theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $u=\sin ^{-1}(\sin 2 \theta)=2 \theta$.
$\Rightarrow \mathrm{u}=2 \cos ^{-1}(2 \mathrm{x})$
On differentiating u with respect to x , we get

$$
\frac{d u}{d x}=\frac{d}{d x}\left[2 \cos ^{-1}(2 x)\right]
$$

$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \frac{\mathrm{~d}}{\mathrm{dx}}\left[\cos ^{-1}(2 \mathrm{x})\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right)=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2\left[-\frac{1}{\sqrt{1-(2 \mathrm{x})^{2}}} \frac{\mathrm{~d}}{\mathrm{dx}}(2 \mathrm{x})\right]$
$\Rightarrow \frac{d u}{d x}=-\frac{2}{\sqrt{1-4 x^{2}}}\left[\frac{d}{d x}(2 x)\right]$
$\Rightarrow \frac{d u}{d x}=-\frac{2}{\sqrt{1-4 x^{2}}}\left[2 \frac{d}{d x}(x)\right]$
$\Rightarrow \frac{d u}{d x}=-\frac{4}{\sqrt{1-4 x^{2}}} \frac{d}{d x}(x)$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d u}{d x}=-\frac{4}{\sqrt{1-4 x^{2}}} \times 1$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=-\frac{4}{\sqrt{1-4 \mathrm{x}^{2}}}$
We have $\frac{\mathrm{dv}}{\mathrm{dx}}=-\frac{4 \mathrm{x}}{\sqrt{1-4 \mathrm{x}^{2}}}$
We know that ${ }^{\frac{d u}{d v}}=\frac{\frac{d u}{d x}}{d \mathrm{v}}$
$\Rightarrow \frac{d u}{d v}=\frac{-\frac{4}{\sqrt{1-4 x^{2}}}}{-\frac{4 \mathrm{x}}{\sqrt{1-4 \mathrm{x}^{2}}}}$
$\Rightarrow \frac{d u}{d v}=-\frac{4}{\sqrt{1-4 x^{2}}} \times\left(-\frac{\sqrt{1-x^{2}}}{4 x}\right)$
$\therefore \frac{d u}{d v}=\frac{1}{x}$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=\frac{1}{\mathrm{x}}$
(iii) Let
$\mathrm{u}=\sin ^{-1}\left(4 \mathrm{x} \sqrt{1-4 \mathrm{x}^{2}}\right)$ And $\mathrm{v}=\sqrt{1-4 \mathrm{x}^{2}}$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $u=\sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right)$
$\Rightarrow u=\sin ^{-1}\left(4 x \sqrt{1-(2 x)^{2}}\right)$
By substituting $2 x=\cos \theta$, we have
$\mathrm{u}=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right)$
$\Rightarrow u=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right)$
$\Rightarrow u=\sin ^{-1}\left(2 \cos \theta \sqrt{\sin ^{2} \theta}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}(2 \cos \theta \sin \theta)$
$\Rightarrow \mathrm{u}=\sin ^{-1}(\sin 2 \theta)$
Given $x \in\left(-\frac{1}{2},-\frac{1}{2 \sqrt{2}}\right)$
However, $2 x=\cos \theta \Rightarrow x=\frac{\cos \theta}{2}$
$\Rightarrow \frac{\cos \theta}{2} \in\left(-\frac{1}{2},-\frac{1}{2 \sqrt{2}}\right)$
$\Rightarrow \cos \theta \in\left(-1,-\frac{1}{\sqrt{2}}\right)$
$\Rightarrow \theta \in\left(\frac{3 \pi}{4}, \pi\right)$
$\Rightarrow 2 \theta \in\left(\frac{3 \pi}{2}, 2 \pi\right)$
Hence, $\mathrm{u}=\sin ^{-1}(\sin 2 \theta)=2 \pi-2 \theta$.
$\Rightarrow u=2 \pi-2 \cos ^{-1}(2 x)$
On differentiating u with respect to x, we get

$$
\frac{d u}{d x}=\frac{d}{d x}\left[2 \pi-2 \cos ^{-1}(2 x)\right]
$$

$\Rightarrow \frac{d u}{d x}=\frac{d}{d x}(2 \pi)-\frac{d}{d x}\left[2 \cos ^{-1}(2 x)\right]$
$\Rightarrow \frac{d u}{d x}=2 \frac{d}{d x}(\pi)-2 \frac{d}{d x}\left[\cos ^{-1}(2 x)\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right)=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=0-2\left[-\frac{1}{\sqrt{1-(2 \mathrm{x})^{2}}} \frac{\mathrm{~d}}{\mathrm{dx}}(2 \mathrm{x})\right]$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{2}{\sqrt{1-4 \mathrm{x}^{2}}}\left[\frac{\mathrm{~d}}{\mathrm{dx}}(2 \mathrm{x})\right]$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{2}{\sqrt{1-4 \mathrm{x}^{2}}}\left[2 \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x})\right]$
$\Rightarrow \frac{d u}{d x}=\frac{4}{\sqrt{1-4 x^{2}}} \frac{d}{d x}(x)$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d u}{d x}=\frac{4}{\sqrt{1-4 x^{2}}} \times 1$
$\therefore \frac{d u}{d x}=\frac{4}{\sqrt{1-4 x^{2}}}$
We have $\frac{d v}{d x}=-\frac{4 x}{\sqrt{1-4 x^{2}}}$
We know that ${ }^{\frac{d u}{d v}}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{4}{\sqrt{1-4 x^{2}}}}{-\frac{4 x}{\sqrt{1-4 x^{2}}}}$
$\Rightarrow \frac{d u}{d v}=\frac{4}{\sqrt{1-4 x^{2}}} \times\left(-\frac{\sqrt{1-x^{2}}}{4 x}\right)$
$\therefore \frac{d u}{d v}=-\frac{1}{x}$
Thus, $\frac{d u}{d v}=-\frac{1}{x}$
6. Differentiate $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ with respect $\operatorname{tos}^{-1}\left(\frac{2 x}{1+x^{2}}\right)$, if $-1<x<1, x \neq 0$.

Solution:

Let $\mathrm{u}=\tan ^{-1}\left(\frac{\sqrt{1+\mathrm{x}^{2}}-1}{\mathrm{x}}\right)$ and $\mathrm{v}=\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $\mathrm{u}=\tan ^{-1}\left(\frac{\sqrt{1+\mathrm{x}^{2}}-1}{\mathrm{x}}\right)$
By substituting $x=\tan \theta$, we have
$\mathrm{u}=\tan ^{-1}\left(\frac{\sqrt{1+(\tan \theta)^{2}}-1}{\tan \theta}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{\sqrt{\sec ^{2} \theta}-1}{\tan \theta}\right)\left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right]$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{\frac{1}{\cos \theta}-1}{\frac{\sin \theta}{\cos \theta}}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right)$
$\Rightarrow u=\tan ^{-1}\left(\frac{1-\cos \left(2 \times \frac{\theta}{2}\right)}{\sin \left(2 \times \frac{\theta}{2}\right)}\right)$
But, $\cos 2 \theta=1-2 \sin ^{2} \theta$ and $\sin 2 \theta=2 \sin \theta \cos \theta$.
$\Rightarrow u=\tan ^{-1}\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right)$
$\Rightarrow u=\tan ^{-1}\left(\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\tan \frac{\theta}{2}\right)$
Given $-1<x<1 \Rightarrow x \in(-1,1)$
However, $x=\tan \theta$
$\Rightarrow \operatorname{Tan} \theta \in(-1,1)$
$\Rightarrow \theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
$\Rightarrow \frac{\theta}{2} \in\left(-\frac{\pi}{8}, \frac{\pi}{8}\right)$
Hence, $\mathrm{u}=\tan ^{-1}\left(\tan \frac{\theta}{2}\right)=\frac{\theta}{2}$
$\Rightarrow \mathrm{u}=\frac{1}{2} \tan ^{-1} \mathrm{x}$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(\frac{1}{2} \tan ^{-1} x\right)$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{1}{2} \times \frac{1}{1+\mathrm{x}^{2}}$
$\therefore \frac{d u}{d x}=\frac{1}{2\left(1+\mathrm{x}^{2}\right)}$
Now, we have $\mathrm{v}=\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)$
By substituting $x=\tan \theta$, we have

$$
\begin{aligned}
& \mathrm{v}=\sin ^{-1}\left(\frac{2 \tan \theta}{1+(\tan \theta)^{2}}\right) \\
& \Rightarrow \mathrm{v}=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right) \\
& \Rightarrow \mathrm{v}=\sin ^{-1}\left(\frac{2 \tan \theta}{\sec ^{2} \theta}\right)\left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right]
\end{aligned}
$$

$\Rightarrow \mathrm{v}=\sin ^{-1}\left(\frac{2 \times \frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos ^{2} \theta}}\right)$
$\Rightarrow \mathrm{v}=\sin ^{-1}\left(2 \times \frac{\sin \theta}{\cos \theta} \times \cos ^{2} \theta\right)$
$\Rightarrow \mathrm{v}=\sin ^{-1}(2 \sin \theta \cos \theta)$
But, $\sin 2 \theta=2 \sin \theta \cos \theta$
$\Rightarrow \mathrm{v}=\sin ^{-1}(\sin 2 \theta)$
However, $\theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \Rightarrow 2 \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Hence, $v=\sin ^{-1}(\sin 2 \theta)=2 \theta$
$\Rightarrow \mathrm{v}=2 \tan ^{-1} \mathrm{x}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} x\right)$
$\Rightarrow \frac{\mathrm{dv}}{\mathrm{dx}}=2 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{d v}{d x}=2 \times \frac{1}{1+x^{2}}$
$\therefore \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{2}{1+\mathrm{x}^{2}}$
We have ${ }^{\frac{d u}{d v}}=\frac{\frac{d u}{d x}}{d \mathrm{v}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{1}{2\left(1+x^{2}\right)}}{\frac{2}{1+x^{2}}}$
$\Rightarrow \frac{d u}{d v}=\frac{1}{2\left(1+x^{2}\right)} \times \frac{1+x^{2}}{2}$
$\therefore \frac{d u}{d v}=\frac{1}{4}$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=\frac{1}{4}$
7. Differentiate $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$ with respect to $\sec ^{-1}\left(\frac{1}{\sqrt{1-x^{2}}}\right)$, if ,
(i) $x \in(0,1 / \sqrt{ } 2)$
(ii) $x \in(1 / \sqrt{ } 2,1)$

Solution:

(i) Let

$$
\mathrm{u}=\sin ^{-1}\left(2 \mathrm{x} \sqrt{1-\mathrm{x}^{2}}\right)_{\text {And }} \mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\right) .
$$

We have to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have ${ }^{\mathrm{u}=\sin ^{-1}\left(2 \mathrm{x} \sqrt{1-\mathrm{x}^{2}}\right)}$
By substituting $x=\sin \theta$, we have

$$
\begin{aligned}
& \mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-(\sin \theta)^{2}}\right) \\
& \Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right) \\
& \Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{\cos ^{2} \theta}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right] \\
& \Rightarrow \mathrm{u}=\sin ^{-1}(2 \sin \theta \cos \theta) \\
& \Rightarrow \mathrm{u}=\sin ^{-1}(\sin 2 \theta)
\end{aligned}
$$

Now, we have $\mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\right)$
By substituting $x=\sin \theta$, we have
$\mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{1-(\sin \theta)^{2}}}\right)$
$\Rightarrow \mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{1-\sin ^{2} \theta}}\right)$
$\Rightarrow \mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{\cos ^{2} \theta}}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow \mathrm{v}=\sec ^{-1}\left(\frac{1}{\cos \theta}\right)$
$\Rightarrow \mathrm{v}=\sec ^{-1}(\sec \theta)$
Given $x \in\left(0, \frac{1}{\sqrt{2}}\right)$
However, $x=\sin \theta$
$\Rightarrow \sin \theta \in\left(0, \frac{1}{\sqrt{2}}\right)$
$\Rightarrow \theta \in\left(0, \frac{\pi}{4}\right)$
$\Rightarrow 2 \theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $\mathrm{u}=\sin ^{-1}(\sin 2 \theta)=2 \theta$.
$\Rightarrow \mathrm{u}=2 \sin ^{-1}(\mathrm{x})$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(2 \sin ^{-1} x\right)$
$\Rightarrow \frac{d u}{d x}=2 \frac{d}{d x}\left(\sin ^{-1} x\right)$
We know $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \times \frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=\frac{2}{\sqrt{1-\mathrm{x}^{2}}}$

We have $\theta \in\left(0, \frac{\pi}{4}\right)$
Hence, $v=\sec ^{-1}(\sec \theta)=\theta$
$\Rightarrow \mathrm{v}=\sin ^{-1} \mathrm{x}$
On differentiating v with respect to x, we get $\frac{d v}{d x}=\frac{d}{d x}\left(\sin ^{-1} x\right)$

We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\sin ^{-1} \mathrm{x}\right)=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
$\therefore \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
We have ${ }^{\frac{d u}{d v}=\frac{\frac{d u}{d x}}{d v}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{2}{\sqrt{1-x^{2}}}}{\frac{1}{\sqrt{1-x^{2}}}}$
$\Rightarrow \frac{d u}{d v}=\frac{2}{\sqrt{1-x^{2}}} \times \sqrt{1-x^{2}}$
$\therefore \frac{\mathrm{du}}{\mathrm{dv}}=2$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=2$
(ii) Let

$$
\mathrm{u}=\sin ^{-1}\left(2 \mathrm{x} \sqrt{1-\mathrm{x}^{2}}\right) \text { And }^{\mathrm{v}}=\sec ^{-1}\left(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\right) .
$$

We have to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have ${ }^{\mathrm{u}=\sin ^{-1}\left(2 \mathrm{x} \sqrt{1-\mathrm{x}^{2}}\right)}$

By substituting $x=\sin \theta$, we have
$\mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-(\sin \theta)^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{\cos ^{2} \theta}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}(2 \sin \theta \cos \theta)$
$\Rightarrow \mathrm{u}=\sin ^{-1}(\sin 2 \theta)$
Now, we have $\mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\right)$
By substituting $x=\sin \theta$, we have
$\mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{1-(\sin \theta)^{2}}}\right)$
$\Rightarrow \mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{1-\sin ^{2} \theta}}\right)$
$\Rightarrow \mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{\cos ^{2} \theta}}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow \mathrm{v}=\sec ^{-1}\left(\frac{1}{\cos \theta}\right)$
$\Rightarrow \mathrm{v}=\sec ^{-1}(\sec \theta)$
Given $\mathrm{x} \in\left(\frac{1}{\sqrt{2}}, 1\right)$
However, $x=\sin \theta$
$\Rightarrow \sin \theta \in\left(\frac{1}{\sqrt{2}}, 1\right)$
$\Rightarrow \theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
$\Rightarrow 2 \theta \in\left(\frac{\pi}{2}, \pi\right)$

Hence, $u=\sin ^{-1}(\sin 2 \theta)=\pi-2 \theta$.
$\Rightarrow \mathrm{u}=\pi-2 \sin ^{-1}(\mathrm{x})$
On differentiating u with respect to x , we get
$\frac{d u}{d x}=\frac{d}{d x}\left(\pi-2 \sin ^{-1} x\right)$
$\Rightarrow \frac{d u}{d x}=\frac{d}{d x}(\pi)-\frac{d}{d x}\left(2 \sin ^{-1} x\right)$
$\Rightarrow \frac{d u}{d x}=\frac{d}{d x}(\pi)-2 \frac{d}{d x}\left(\sin ^{-1} x\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\sin ^{-1} \mathrm{x}\right)=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=0-2 \times \frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=\frac{-2}{\sqrt{1-\mathrm{x}^{2}}}$
We have $\theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
Hence, $v=\sec ^{-1}(\sec \theta)=\theta$
$\Rightarrow \mathrm{v}=\sin ^{-1} \mathrm{x}$
On differentiating v with respect to x, we get

$$
\frac{d v}{d x}=\frac{d}{d x}\left(\sin ^{-1} x\right)
$$

We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\sin ^{-1} \mathrm{x}\right)=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
$\therefore \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
We have ${ }^{\frac{d u}{d v}}=\frac{\frac{d u}{d x}}{d \mathrm{dv}}$

$$
\begin{aligned}
& \Rightarrow \frac{d u}{d v}=\frac{-\frac{2}{\sqrt{1-x^{2}}}}{\frac{1}{\sqrt{1-x^{2}}}} \\
& \Rightarrow \frac{d u}{d v}=-\frac{2}{\sqrt{1-x^{2}}} \times \sqrt{1-x^{2}} \\
& \therefore \frac{d u}{d v}=-2 \\
& \text { Thus, } \frac{d u}{d v}=-2
\end{aligned}
$$

8. Differentiate $(\cos x)^{\sin x}$ with respect to $(\sin x)^{\cos x}$.

Solution:

Let $u=(\cos x)^{\sin x}$ and $v=(\sin x)^{\cos x}$.
We have to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $u=(\cos x)^{\sin x}$
Taking log on both sides, we get
$\log u=\log (\cos x)^{\sin x}$
$\Rightarrow \log u=(\sin x) \times \log (\cos x)\left[\because \log a^{m}=m \times \log a\right]$
On differentiating both the sides with respect to x, we get
$\frac{d}{d u}(\log u) \times \frac{d u}{d x}=\frac{d}{d x}[\sin x \times \log (\cos x)]$
We know that $(u v)^{\prime}=v u^{\prime}+u v^{\prime}$
$\Rightarrow \frac{d}{d u}(\log u) \times \frac{d u}{d x}=\log (\cos x) \frac{d}{d x}(\sin x)+\sin x \frac{d}{d x}[\log (\cos x)]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$ and $\frac{d}{d x}(\sin x)=\cos x$

$$
\begin{aligned}
& \Rightarrow \frac{1}{u} \times \frac{d u}{d x}=\log (\cos x) \times \cos x+\sin x\left[\frac{1}{\cos x} \frac{d}{d x}(\cos x)\right] \\
& \Rightarrow \frac{1}{u} \frac{d u}{d x}=\cos x \log (\cos x)+\frac{\sin x}{\cos x} \frac{d}{d x}(\cos x) \\
& \Rightarrow \frac{1}{u} \frac{d u}{d x}=\cos x \log (\cos x)+\tan x \frac{d}{d x}(\cos x)
\end{aligned}
$$

We know $\frac{d}{d x}(\cos x)=-\sin x$
$\Rightarrow \frac{1}{u} \frac{d u}{d x}=\cos x \log (\cos x)+\tan x(-\sin x)$
$\Rightarrow \frac{1}{u} \frac{d u}{d x}=\cos x \log (\cos x)-\tan x \sin x$
But, $u=(\cos x)^{\sin x}$
$\Rightarrow \frac{1}{(\cos x)^{\sin x}} \frac{d u}{d x}=\cos x \log (\cos x)-\tan x \sin x$
$\therefore \frac{d u}{d x}=(\cos x)^{\sin x}[\cos x \log (\cos x)-\tan x \sin x]$
Now, we have $v=(\sin x)^{\cos x}$
Taking log on both sides, we get
$\log \mathrm{v}=\log (\sin \mathrm{x})^{\cos \mathrm{x}}$
$\Rightarrow \log v=(\cos x) \times \log (\sin x)\left[\because \log a^{m}=m \times \log a\right]$
On differentiating both the sides with respect to x , we get
$\frac{d}{d v}(\log v) \times \frac{d v}{d x}=\frac{d}{d x}[\cos x \times \log (\sin x)]$
We know that (uv)' $=\mathrm{vu}^{\prime}+\mathrm{uv}{ }^{\prime}$ (product rule)
$\Rightarrow \frac{d}{d u}(\log u) \times \frac{d v}{d x}=\log (\sin x) \frac{d}{d x}(\cos x)+\cos x \frac{d}{d x}[\log (\sin x)]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$ and $\frac{d}{d x}(\cos x)=-\sin x$
$\Rightarrow \frac{1}{v} \times \frac{d v}{d x}=\log (\sin x) \times(-\sin x)+\cos x\left[\frac{1}{\sin x} \frac{d}{d x}(\sin x)\right]$
$\Rightarrow \frac{1}{v} \frac{d v}{d x}=-\sin x \log (\sin x)+\frac{\cos x}{\sin x} \frac{d}{d x}(\sin x)$
$\Rightarrow \frac{1}{v} \frac{d v}{d x}=-\sin x \log (\sin x)+\cot x \frac{d}{d x}(\sin x)$
We know $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{1}{v} \frac{d v}{d x}=-\sin x \log (\sin x)+\cot x \times(\cos x)$
$\Rightarrow \frac{1}{\mathrm{v}} \frac{\mathrm{dv}}{\mathrm{dx}}=-\sin \mathrm{x} \log (\sin \mathrm{x})+\cot \mathrm{x} \cos \mathrm{x}$
But, $\mathrm{v}=(\sin \mathrm{x})^{\cos \mathrm{x}}$
$\Rightarrow \frac{1}{(\sin x)^{\cos x}} \frac{d v}{d x}=-\sin x \log (\sin x)+\cot x \cos x$
$\therefore \frac{d v}{d x}=(\sin x)^{\cos x}[-\sin x \log (\sin x)+\cot x \cos x]$
We have ${ }^{\frac{d u}{d v}}=\frac{\frac{d u}{d x}}{d \mathrm{v}}$
$\Rightarrow \frac{d u}{d v}=\frac{(\cos x)^{\sin x}[\cos x \log (\cos x)-\tan x \sin x]}{(\sin x)^{\cos x}[-\sin x \log (\sin x)+\cot x \cos x]}$
$\therefore \frac{d u}{d v}=\frac{(\cos x)^{\sin x}[\cos x \log (\cos x)-\tan x \sin x]}{(\sin x)^{\cos x}[\cot x \cos x-\sin x \log (\sin x)]}$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=\frac{(\cos x)^{\sin \mathrm{x}}[\cos x \log (\cos x)-\tan x \sin x]}{(\sin \mathrm{x})^{\cos \mathrm{x}}[\cot x \cos x-\sin x \log (\sin \mathrm{x})]}$
9. Differentiate $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ with respect to $\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$, if $0<x<1$.

Solution:

Let $\mathrm{u}=\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)$ and $\mathrm{v}=\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $\mathrm{u}=\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)$
By substituting $x=\tan \theta$, we have
$\mathrm{u}=\sin ^{-1}\left(\frac{2 \tan \theta}{1+(\tan \theta)^{2}}\right)$
$\Rightarrow u=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(\frac{2 \tan \theta}{\sec ^{2} \theta}\right)\left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}\left(\frac{2 \times \frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos ^{2} \theta}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \times \frac{\sin \theta}{\cos \theta} \times \cos ^{2} \theta\right)$
$\Rightarrow u=\sin ^{-1}(2 \sin \theta \cos \theta)$
But, $\sin 2 \theta=2 \sin \theta \cos \theta$
$\Rightarrow \mathrm{u}=\sin ^{-1}(\sin 2 \theta)$
Given $0<x<1 \Rightarrow x \in(0,1)$
However, $x=\tan \theta$
$\Rightarrow \tan \theta \in(0,1)$
$\Rightarrow \theta \in\left(0, \frac{\pi}{4}\right)$
$\Rightarrow 2 \theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $\mathrm{u}=\sin ^{-1}(\sin 2 \theta)=2 \theta$
$\Rightarrow \mathrm{u}=2 \tan ^{-1} \mathrm{x}$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} x\right)$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \times \frac{1}{1+\mathrm{x}^{2}}$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=\frac{2}{1+\mathrm{x}^{2}}$
Now, we have $\mathrm{v}=\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)$
By substituting $x=\tan \theta$, we have
$\mathrm{v}=\cos ^{-1}\left(\frac{1-(\tan \theta)^{2}}{1+(\tan \theta)^{2}}\right)$
$\Rightarrow \mathrm{v}=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)$
$\Rightarrow \mathrm{v}=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{\sec ^{2} \theta}\right)\left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right]$
$\Rightarrow \mathrm{v}=\cos ^{-1}\left(\frac{1}{\sec ^{2} \theta}-\frac{\tan ^{2} \theta}{\sec ^{2} \theta}\right)$
$\Rightarrow \mathrm{v}=\cos ^{-1}\left(\frac{1}{\frac{1}{\cos ^{2} \theta}}-\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{1}{\cos ^{2} \theta}}\right)$
$\Rightarrow \mathrm{v}=\cos ^{-1}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$
But, $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$\Rightarrow \mathrm{v}=\cos ^{-1}(\cos 2 \theta)$
However, $\theta \in\left(0, \frac{\pi}{4}\right) \Rightarrow 2 \theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $v=\cos ^{-1}(\cos 2 \theta)=2 \theta$
$\Rightarrow \mathrm{v}=2 \tan ^{-1} \mathrm{x}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} x\right)$
$\Rightarrow \frac{\mathrm{dv}}{\mathrm{dx}}=2 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{\mathrm{dv}}{\mathrm{dx}}=2 \times \frac{1}{1+\mathrm{x}^{2}}$
$\therefore \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{2}{1+\mathrm{x}^{2}}$
We have ${ }^{\frac{d u}{d v}}=\frac{\frac{d u}{d x}}{d \mathrm{v}}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dv}}=\frac{\frac{2}{1+\mathrm{x}^{2}}}{\frac{2}{1+\mathrm{x}^{2}}}$
$\Rightarrow \frac{d u}{d v}=\frac{2}{1+x^{2}} \times \frac{1+x^{2}}{2}$
$\therefore \frac{\mathrm{du}}{\mathrm{dv}}=1$
Thus, $\frac{d u}{d v}=1$
10. Differentiate $\tan ^{-1}\left(\frac{1+a x}{1-a x}\right)$ with respect to $\sqrt{1+a^{2} x^{2}}$.

Solution:

Let ${ }^{\mathrm{u}}=\tan ^{-1}\left(\frac{1+\mathrm{ax}}{1-a \mathrm{x}}\right)$ and $\mathrm{v}=\sqrt{1+\mathrm{a}^{2} \mathrm{x}^{2}}$.
We have to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have ${ }^{\mathrm{u}=\tan ^{-1}\left(\frac{1+\mathrm{ax}}{1-\mathrm{ax}}\right)}$
By substituting $a x=\tan \theta$, we have
$\mathrm{u}=\tan ^{-1}\left(\frac{1+\tan \theta}{1-\tan \theta}\right)$
$\Rightarrow u=\tan ^{-1}\left(\frac{\tan \frac{\pi}{4}+\tan \theta}{1-\tan \frac{\pi}{4} \tan \theta}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}+\theta\right)\right)\left[\because \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}\right]$
$\Rightarrow \mathrm{u}=\frac{\pi}{4}+\theta$
$\Rightarrow \mathrm{u}=\frac{\pi}{4}+\tan ^{-1}(\mathrm{ax})$
On differentiating u with respect to x, we get
$\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\frac{\pi}{4}+\tan ^{-1}(\mathrm{ax})\right]$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\pi}{4}\right)+\frac{\mathrm{d}}{\mathrm{dx}}\left[\tan ^{-1}(\mathrm{ax})\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=0+\frac{1}{1+(\mathrm{ax})^{2}} \frac{\mathrm{~d}}{\mathrm{dx}}$ (ax)
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=0+\frac{1}{1+(\mathrm{ax})^{2}} \frac{\mathrm{~d}}{\mathrm{dx}}$ (ax)
$\Rightarrow \frac{d u}{d x}=\frac{1}{1+a^{2} x^{2}}\left[a \frac{d}{d x}(x)\right]$
$\Rightarrow \frac{d u}{d x}=\frac{a}{1+a^{2} x^{2}} \frac{d}{d x}(x)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d u}{d x}=\frac{a}{1+a^{2} x^{2}} \times 1$
$\therefore \frac{d u}{d x}=\frac{a}{1+a^{2} x^{2}}$
Now, we have $\mathrm{v}=\sqrt{1+\mathrm{a}^{2} \mathrm{x}^{2}}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\sqrt{1+\mathrm{a}^{2} \mathrm{x}^{2}}\right)$
$\Rightarrow \frac{d v}{d x}=\frac{d}{d x}\left(1+a^{2} x^{2}\right)^{\frac{1}{2}}$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{n}^{\mathrm{n}-1}$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2}\left(1+a^{2} x^{2}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(1+a^{2} x^{2}\right)$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2}\left(1+a^{2} x^{2}\right)^{-\frac{1}{2}}\left[\frac{d}{d x}(1)+\frac{d}{d x}\left(a^{2} x^{2}\right)\right]$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1+a^{2} x^{2}}}\left[\frac{d}{d x}(1)+a^{2} \frac{d}{d x}\left(x^{2}\right)\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1+a^{2} x^{2}}}\left[0+a^{2}\left(2 x^{2-1}\right)\right]$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1+a^{2} x^{2}}}\left[2 a^{2} x\right]$
$\therefore \frac{d v}{d x}=\frac{a^{2} \mathrm{x}}{\sqrt{1+\mathrm{a}^{2} \mathrm{x}^{2}}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{a}{1+a^{2} x^{2}}}{\frac{a^{2} x}{\sqrt{1+a^{2} x^{2}}}}$
$\Rightarrow \frac{d u}{d v}=\frac{a}{1+a^{2} x^{2}} \times \frac{\sqrt{1+a^{2} x^{2}}}{a^{2} x}$
$\therefore \frac{d u}{d v}=\frac{1}{a x \sqrt{1+a^{2} x^{2}}}$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=\frac{1}{\mathrm{ax} \sqrt{1+\mathrm{a}^{2} \mathrm{x}^{2}}}$

