1. If $y=\sin x$ and x changes from $\pi / 2$ to $22 / 14$, what is the approximate change in y ?

Solution:

Given $\mathrm{y}=\sin \mathrm{x}$ and x changes from ${ }^{\frac{\pi}{2}}$ to $\frac{22}{14}$.
Let ${ }^{x}=\frac{\pi}{2}$ so that $\mathrm{x}+\Delta \mathrm{x}=\frac{22}{14}$
$\Rightarrow \frac{\pi}{2}+\Delta x=\frac{22}{14}$
$\therefore \Delta \mathrm{x}=\frac{22}{14}-\frac{\pi}{2}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}(\sin x)$
We know that $\frac{d}{d x}(\sin x)=\cos x$
$\therefore \frac{d y}{d x}=\cos x$
When $x=\frac{\pi}{2}$, we have $\frac{d y}{d x}=\cos \left(\frac{\pi}{2}\right)$.
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=\frac{\pi}{2}}=0$
We know that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{dy}}{\mathrm{dx}}=0$ and $\Delta \mathrm{x}=\frac{22}{14}-\frac{\pi}{2}$
$\Rightarrow \Delta y=(0)\left(\frac{22}{14}-\frac{\pi}{2}\right)$
$\therefore \Delta y=0$
Thus, there is approximately no change in y .
2. The radius of a sphere shrinks from 10 to 9.8 cm . Find approximately the decrease in its volume.

Solution:

Given the radius of a sphere changes from 10 cm to 9.8 cm .
Let x be the radius of the sphere and Δx be the change in the value of x.
Hence, we have $x=10$ and $x+\Delta x=9.8$
$\Rightarrow 10+\Delta x=9.8$
$\Rightarrow \Delta x=9.8-10$
$\therefore \Delta \mathrm{x}=-0.2$
The volume of a sphere of radius x is given by
$\mathrm{V}=\frac{4}{3} \pi \mathrm{x}^{3}$
On differentiating V with respect to x, we get
$\frac{d V}{d x}=\frac{d}{d x}\left(\frac{4}{3} \pi x^{3}\right)$
$\Rightarrow \frac{d V}{d x}=\frac{4 \pi}{3} \frac{d}{d x}\left(x^{3}\right)$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d V}{d x}=\frac{4 \pi}{3}\left(3 x^{2}\right)$
$\therefore \frac{d V}{d x}=4 \pi x^{2}$
When $x=10$, we have $\frac{\mathrm{dV}}{\mathrm{dx}}=4 \pi(10)^{2}$.
$\Rightarrow\left(\frac{d V}{d x}\right)_{x=10}=4 \pi \times 100$
$\Rightarrow\left(\frac{d V}{d x}\right)_{x=10}=400 \pi$
We know that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{dV}}{\mathrm{dx}}=400 \pi$ and $\Delta x=-0.2$
$\Rightarrow \Delta \mathrm{V}=(400 \pi)(-0.2)$
$\therefore \Delta \mathrm{V}=-80 \pi$
Thus, the approximate decrease in the volume of the sphere is $80 \pi \mathrm{~cm}^{3}$.
3. A circular metal plate expands under heating so that its radius increases by k\%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm .

Solution:

Given the radius of a circular plate initially is 10 cm and it increases by $\mathrm{k} \%$.
Let x be the radius of the circular plate, and $\Delta \mathrm{x}$ is the change in the value of x .
Hence, we have $\mathrm{x}=10$ and $\Delta \mathrm{x}=\frac{\mathrm{k}}{100} \times 10$
$\therefore \Delta \mathrm{x}=0.1 \mathrm{k}$
The area of a circular plate of radius x is given by
$\mathrm{A}=\pi \mathrm{x}^{2}$
On differentiating A with respect to x, we get
$\frac{d A}{d x}=\frac{d}{d x}\left(\pi x^{2}\right)$
$\Rightarrow \frac{d A}{d x}=\pi \frac{d}{d x}\left(x^{2}\right)$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{dA}}{\mathrm{dx}}=\pi(2 \mathrm{x})$
$\therefore \frac{\mathrm{dA}}{\mathrm{dx}}=2 \pi \mathrm{x}$
When $\mathrm{x}=10$, we have $\frac{\mathrm{dA}}{\mathrm{dx}}=2 \pi(10)$.
$\Rightarrow\left(\frac{\mathrm{dA}}{\mathrm{dx}}\right)_{\mathrm{x}=10}=20 \pi$
We know that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{dA}}{\mathrm{dx}}=20 \pi$ and $\Delta \mathrm{x}=0.1 \mathrm{k}$
$\Rightarrow \Delta \mathrm{A}=(20 \pi)(0.1 \mathrm{k})$
$\therefore \Delta \mathrm{A}=2 \mathrm{k} \pi$
Thus, the approximate increase in the area of the circular plate is $2 \mathrm{k} \pi \mathrm{cm}^{2}$.
4. Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of the edges of the cube.

Solution:

Given the error in the measurement of the edge of a cubical box is 1%.
Let x be the edge of the cubical box, and $\Delta \mathrm{x}$ is the error in the value of x .
Hence, we have $\Delta x=\frac{1}{100} \times x$
$\therefore \Delta \mathrm{x}=0.01 \mathrm{x}$
The surface area of a cubical box of radius x is given by
$S=6 x^{2}$
On differentiating A with respect to x, we get
$\frac{d S}{d x}=\frac{d}{d x}\left(6 x^{2}\right)$
$\Rightarrow \frac{\mathrm{dS}}{\mathrm{dx}}=6 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{n}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{dS}}{\mathrm{dx}}=6(2 \mathrm{x})$
$\therefore \frac{\mathrm{dS}}{\mathrm{dx}}=12 \mathrm{x}$
We know that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d \mathrm{~S}}{\mathrm{dx}}=12 \mathrm{x}$ and $\Delta \mathrm{x}=0.01 \mathrm{x}$
$\Rightarrow \Delta S=(12 x)(0.01 x)$
$\therefore \Delta \mathrm{S}=0.12 \mathrm{x}^{2}$
The percentage error is,
Error $=\frac{0.12 \mathrm{x}^{2}}{6 \mathrm{x}^{2}} \times 100 \%$
\Rightarrow Error $=0.02 \times 100 \%$
\therefore Error $=2 \%$
Thus, the error in calculating the surface area of the cubical box is 2%.
5. If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere.

Solution:

Given the error in the measurement of the radius of a sphere is 0.1%. Let x be the radius of the sphere and Δx be the error in the value of x.

Hence, we have $\Delta x=\frac{0.1}{100} \times x$
$\therefore \Delta \mathrm{x}=0.001 \mathrm{x}$
The volume of a sphere of radius x is given by
$\mathrm{V}=\frac{4}{3} \pi \mathrm{x}^{3}$
On differentiating V with respect to x, we get
$\frac{d V}{d x}=\frac{d}{d x}\left(\frac{4}{3} \pi x^{3}\right)$
$\Rightarrow \frac{d V}{d x}=\frac{4 \pi}{3} \frac{d}{d x}\left(x^{3}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{d V}{d x}=\frac{4 \pi}{3}\left(3 x^{2}\right)$
$\therefore \frac{d V}{d x}=4 \pi x^{2}$
We know that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{dV}}{\mathrm{dx}}=4 \pi \mathrm{x}^{2}$ and $\Delta \mathrm{x}=0.001 \mathrm{x}$
$\therefore \Delta \mathrm{V}=0.004 \pi \mathrm{x}^{3}$
The percentage error is,
Error $=\frac{0.004 \pi \mathrm{x}^{3}}{\frac{4}{3} \pi \mathrm{x}^{3}} \times 100 \%$
\Rightarrow Error $=\frac{0.004 \times 3}{4} \times 100 \%$
\Rightarrow Error $=0.003 \times 100 \%$
\therefore Error $=0.3 \%$
Thus, the error in calculating the volume of the sphere is 0.3%.
6. The pressure p and the volume v of a gas are connected by the relation $\mathrm{pv}^{1.4}=$ const. Find the percentage error in p corresponding to a decrease of $1 / 2 \%$ in v.

Solution:

Given $\mathrm{pv}^{1.4}=$ constant and the decrease in v is $1 / 2 \%$.
Hence, we have $\Delta \mathrm{v}=-\frac{\frac{1}{2}}{100} \times \mathrm{v}$
$\therefore \Delta \mathrm{v}=-0.005 \mathrm{v}$
We have $\mathrm{pv}^{1.4}=$ constant
Taking log on both sides, we get
$\log \left(p v^{1.4}\right)=\log$ (constant)
$\Rightarrow \log p+\log v^{1.4}=0[\because \log (a b)=\log a+\log b]$
$\Rightarrow \log p+1.4 \log v=0\left[\because \log \left(a^{m}\right)=m \log a\right]$
On differentiating both sides with respect to v, we get

$$
\frac{\mathrm{d}}{\mathrm{dp}}(\log p) \times \frac{\mathrm{dp}}{\mathrm{dv}}+\frac{\mathrm{d}}{\mathrm{dv}}(1.4 \log v)=0
$$

$\Rightarrow \frac{d}{d p}(\log p) \times \frac{d p}{d v}+1.4 \frac{d}{d v}(\log v)=0$
We know $\frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}}$
$\Rightarrow \frac{1}{\mathrm{p}} \times \frac{\mathrm{dp}}{\mathrm{dv}}+1.4 \times \frac{1}{\mathrm{v}}=0$
$\Rightarrow \frac{1}{\mathrm{p}} \frac{\mathrm{dp}}{\mathrm{dv}}+\frac{1.4}{\mathrm{v}}=0$
$\Rightarrow \frac{1}{\mathrm{p}} \frac{\mathrm{dp}}{\mathrm{dv}}=-\frac{1.4}{\mathrm{v}}$
$\therefore \frac{\mathrm{dp}}{\mathrm{dv}}=-\frac{1.4}{\mathrm{v}} \mathrm{p}$
We know that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d p}{d v}=-\frac{1.4}{v} p$ and $\Delta v=-0.005 v$
$\Rightarrow \Delta \mathrm{p}=\left(-\frac{1.4}{\mathrm{v}} \mathrm{p}\right)(-0.005 \mathrm{v})$
$\Rightarrow \Delta \mathrm{p}=(-1.4 \mathrm{p})(-0.005)$
$\therefore \Delta \mathrm{p}=0.007 \mathrm{p}$
The percentage error is,
Error $=\frac{0.007 \mathrm{p}}{\mathrm{p}} \times 100 \%$
\Rightarrow Error $=0.007 \times 100 \%$
\therefore Error $=0.7 \%$
Thus, the error in p corresponding to the decrease in v is 0.7%.
7. The height of a cone increases by k\%, its semi-vertical angle remaining the same. What is the approximate percentage increase in (i) in total surface area, and (ii) in the volume, assuming that k is small.

Solution:

Given the height of a cone increases by $k \%$. Let x be the height of the cone and Δx be the change in the value of x.
Hence, we have $\Delta \mathrm{x}=\frac{\mathrm{k}}{100} \times \mathrm{x}$
$\therefore \Delta \mathrm{x}=0.01 \mathrm{kx}$
Let us assume the radius, the slant height and the semi-vertical angle of the cone to be r, I and α respectively as shown in the figure below.

From the above figure, using trigonometry, we have
$\tan \alpha=\frac{O B}{O A}$
$\Rightarrow \tan \alpha=\frac{\mathrm{r}}{\mathrm{x}}$
$\therefore \mathrm{r}=\mathrm{x} \tan (\alpha)$
We also have
$\cos \alpha=\frac{\mathrm{OA}}{\mathrm{AB}}$
$\Rightarrow \cos \alpha=\frac{\mathrm{X}}{\mathrm{l}}$

$$
\Rightarrow l=\frac{x}{\cos \alpha}
$$

$\therefore \mathrm{I}=\mathrm{x} \sec (\alpha)$
(i) The total surface area of the cone is given by
$S=\pi r^{2}+\pi r \mid$
From above, we have $r=x \tan (\alpha)$ and $I=x \sec (\alpha)$.
$\Rightarrow S=\pi(x \tan (\alpha))^{2}+\pi(x \tan (\alpha))(x \sec (\alpha))$
$\Rightarrow S=\pi x^{2} \tan ^{2} \alpha+\pi x^{2} \tan (\alpha) \sec (\alpha)$
$\Rightarrow S=\pi x^{2} \tan (\alpha)[\tan (\alpha)+\sec (\alpha)]$
On differentiating S with respect to x, we get

$$
\begin{aligned}
& \frac{\mathrm{dS}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\pi \mathrm{x}^{2} \tan \alpha(\tan \alpha+\sec \alpha)\right] \\
& \Rightarrow \frac{\mathrm{dS}}{\mathrm{dx}}=\pi \tan \alpha(\tan \alpha+\sec \alpha) \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)
\end{aligned}
$$

We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{dS}}{\mathrm{dx}}=\pi \tan \alpha(\tan \alpha+\sec \alpha)(2 \mathrm{x})$
$\therefore \frac{\mathrm{dS}}{\mathrm{dx}}=2 \pi \mathrm{x} \tan \alpha(\tan \alpha+\sec \alpha)$
We know that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{dS}}{\mathrm{dx}}=2 \pi \mathrm{x} \tan \alpha(\tan \alpha+\sec \alpha)$ and $\Delta \mathrm{x}=0.01 \mathrm{kx}$
$\Rightarrow \Delta \mathrm{S}=(2 \pi \mathrm{x} \tan (\alpha)[\tan (\alpha)+\sec (\alpha)])(0.01 \mathrm{kx})$
$\therefore \Delta \mathrm{S}=0.02 \mathrm{k} \pi \mathrm{x}^{2} \tan (\alpha)[\tan (\alpha)+\sec (\alpha)]$

The percentage increase in S is,

$$
\begin{aligned}
& \text { Increase }=\frac{\Delta \mathrm{S}}{\mathrm{~S}} \times 100 \% \\
& \Rightarrow \text { Increase }=\frac{0.02 \mathrm{kmx}^{2} \tan \alpha(\tan \alpha+\sec \alpha)}{\pi \mathrm{x}^{2} \tan \alpha(\tan \alpha+\sec \alpha)} \times 100 \% \\
& \Rightarrow \text { Increase }=0.02 \mathrm{k} \times 100 \% \\
& \therefore \text { Increase }=2 \mathrm{k} \%
\end{aligned}
$$

Thus, the approximate increase in the total surface area of the cone is $2 \mathrm{k} \%$.
(ii) The volume of the cone is given by
$\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{x}$
From above, we have $r=x \tan (\alpha)$.
$\Rightarrow \mathrm{V}=\frac{1}{3} \pi(\mathrm{x} \tan \alpha)^{2} \mathrm{x}$
$\Rightarrow \mathrm{V}=\frac{1}{3} \pi\left(\mathrm{x}^{2} \tan ^{2} \alpha\right) \mathrm{x}$
$\Rightarrow \mathrm{V}=\frac{1}{3} \pi \mathrm{x}^{3} \tan ^{2} \alpha$
On differentiating V with respect to x, we get
$\frac{d V}{d x}=\frac{d}{d x}\left(\frac{1}{3} \pi x^{3} \tan ^{2} \alpha\right)$
$\Rightarrow \frac{d V}{d x}=\frac{1}{3} \pi \tan ^{2} \alpha \frac{d}{d x}\left(x^{3}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{d V}{d x}=\frac{1}{3} \pi \tan ^{2} \alpha\left(3 x^{2}\right)$
$\therefore \frac{\mathrm{dV}}{\mathrm{dx}}=\pi \mathrm{x}^{2} \tan ^{2} \alpha$

We know that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{dV}}{\mathrm{dx}}=\pi \mathrm{x}^{2} \tan ^{2} \alpha$ and $\Delta \mathrm{x}=0.01 \mathrm{kx}$
$\Rightarrow \Delta \mathrm{V}=\left(\pi \mathrm{x}^{2} \tan ^{2} \alpha\right)(0.01 \mathrm{kx})$
$\therefore \Delta \mathrm{V}=0.01 \mathrm{k} \pi \mathrm{x}^{3} \tan ^{2} \alpha$
The percentage increase in V is,
Increase $=\frac{\Delta \mathrm{V}}{\mathrm{V}} \times 100 \%$
\Rightarrow Increase $=\frac{0.01 \mathrm{k} \pi \mathrm{x}^{3} \tan ^{2} \alpha}{\frac{1}{3} \pi \mathrm{x}^{3} \tan ^{2} \alpha} \times 100 \%$
\Rightarrow Increase $=\frac{0.01 \mathrm{k}}{\frac{1}{3}} \times 100 \%$
\Rightarrow Increase $=0.03 \mathrm{k} \times 100 \%$
\therefore Increase $=3 \mathrm{k} \%$
Thus, the approximate increase in the volume of the cone is $3 \mathrm{k} \%$.
8. Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius.

Solution:

Let the error in measuring the radius of a sphere be $\mathrm{k} \%$.
Let x be the radius of the sphere and Δx be the error in the value of x
Hence, we have $\Delta \mathrm{x}=\frac{\mathrm{k}}{100} \times \mathrm{x}$
$\therefore \Delta \mathrm{x}=0.01 \mathrm{kx}$
The volume of a sphere of radius x is given by
$V=\frac{4}{3} \pi x^{3}$
On differentiating V with respect to x, we get
$\frac{d V}{d x}=\frac{d}{d x}\left(\frac{4}{3} \pi x^{3}\right)$
$\Rightarrow \frac{d V}{d x}=\frac{4 \pi}{3} \frac{d}{d x}\left(x^{3}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{d V}{d x}=\frac{4 \pi}{3}\left(3 x^{2}\right)$
$\therefore \frac{d V}{d x}=4 \pi \mathrm{x}^{2}$
We know that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d V}{d x}=4 \pi x^{2}$ and $\Delta x=0.01 \mathrm{kx}$
$\Rightarrow \Delta V=\left(4 \pi x^{2}\right)(0.01 k x)$
$\therefore \Delta \mathrm{V}=0.04 \mathrm{k} \pi \mathrm{x}^{3}$
The percentage error is,
Error $=\frac{0.04{\mathrm{k} \pi \mathrm{x}^{3}}^{\frac{4}{3} \pi \mathrm{x}^{3}} \times 100 \% ~}{\text {. }}$
\Rightarrow Error $=\frac{0.04 \mathrm{k} \times 3}{4} \times 100 \%$
\Rightarrow Error $=0.03 \mathrm{k} \times 100 \%$
\therefore Error $=3 \mathrm{k} \%$

