

EXERCISE 17.1

PAGE NO: 17.10

1. Prove that the function $f(x) = \log_e x$ is increasing on $(0, \infty)$.

Solution:

Let $x_1, x_2 \in (0, \infty)$ We have, $x_1 < x_2$ $\Rightarrow \log_e x_1 < \log_e x_2$ $\Rightarrow f(x_1) < f(x_2)$ So, f(x) is increasing in $(0, \infty)$

2. Prove that the function $f(x) = \log_a x$ is increasing on $(0, \infty)$ if a > 1 and decreasing on $(0, \infty)$, if 0 < a < 1.

Solution:

Case I

When a > 1

Let $x_1, x_2 \in (0, \infty)$

We have, $x_1 < x_2$

$$\Rightarrow \log_e x_1 < \log_e x_2$$

$$\Rightarrow$$
 f (x₁) < f (x₂)

So, f(x) is increasing in $(0, \infty)$

Case II

When 0 < a < 1

$$f(x) = \log_a x = \frac{\log x}{\log a}$$

When $a < 1 \Rightarrow \log a < 0$

Let x₁ < x₂

$$\Rightarrow \log x_1 < \log x_2$$

$$\Rightarrow \frac{\log x_1}{\log a} > \frac{\log x_2}{\log a} \quad [\because \log a < 0]$$

$$\Rightarrow f(x_1) > f(x_2)$$
So, $f(x)$ is decreasing in $(0, \infty)$

3. Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R.

Solution:

Given, f(x) = ax + b, a > 0Let $x_1, x_2 \in R$ and $x_1 > x_2$ $\Rightarrow ax_1 > ax_2$ for some a > 0 $\Rightarrow ax_1 + b > ax_2 + b$ for some b $\Rightarrow f(x_1) > f(x_2)$ Hence, $x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$ So, f(x) is increasing function of R

4. Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R.

Solution:

Given,

$$f(x) = ax + b$$
, $a < 0$
Let $x_1, x_2 \in R$ and $x_1 > x_2$
 $\Rightarrow ax_1 < ax_2$ for some $a > 0$
 $\Rightarrow ax_1 + b < ax_2 + b$ for some b
 $\Rightarrow f(x_1) < f(x_2)$
Hence, $x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$
So, $f(x)$ is decreasing function of R