

EXERCISE 7.1

PAGE NO: 7.22

1. Find the adjoint of each of the following matrices:

 $\begin{array}{c} (i) \begin{bmatrix} -3 & 5 \\ 2 & 4 \end{bmatrix} \\ (ii) \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ (iii) \begin{bmatrix} \cos\alpha & \sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} \\ (iv) \begin{bmatrix} 1 & \tan\frac{\alpha}{2} \\ -\tan\frac{\alpha}{2} & 1 \end{bmatrix} \end{array}$

Verify that (adj A) A = |A| | = A (adj A) for the above matrices.

Solution:

(i) Let $A = \begin{bmatrix} -3 & 5 \\ 2 & 4 \end{bmatrix}$ Cofactors of A are C₁₁ = 4 $C_{12} = -2$ $C_{21} = -5$ $C_{22} = -3$ Since, adj A = $\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}^{T}$ $(adj A) = \begin{bmatrix} 4 & -2 \\ -5 & -3 \end{bmatrix}^T$ $\begin{bmatrix} 4 & -5 \\ -2 & -3 \end{bmatrix}$ Now, (adj A) A = $\begin{bmatrix} 4 & -5 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} -3 & 5 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} -12 - 10 & 20 - 20 \\ 6 - 6 & -10 - 12 \end{bmatrix}$ $(adj A)A = \begin{bmatrix} -22 & 0\\ 0 & -22 \end{bmatrix}$ And, $|A| = \begin{vmatrix} -3 & 5 \\ 2 & 4 \end{vmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = (-22) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -22 & 0 \\ 0 & -22 \end{bmatrix}$

https://byjus.com

Also, A (adj A) = $\begin{bmatrix} -3 & 5\\ 2 & 4 \end{bmatrix} \begin{bmatrix} 4 & -5\\ -2 & -3 \end{bmatrix} = \begin{bmatrix} -12 - 10 & 20 - 20\\ 6 - 6 & -10 - 12 \end{bmatrix}$ A (adj A) = $\begin{bmatrix} -22 & 0\\ 0 & -22 \end{bmatrix}$ Hence, (adj A) A = |A|I = A (adj A) (ii) Let A = $\begin{bmatrix} a & b\\ c & d \end{bmatrix}$ Therefore cofactors of A are C₁₁ = d C₁₂ = -c C₂₁ = -b C₂₂ = a We know that, adj A = $\begin{bmatrix} C_{11} & C_{12}\\ C_{21} & C_{22} \end{bmatrix}^T$

Therefore by substituting these values we get,

$$(adj A) = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}^{T}$$

$$= \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
Now, $(adj A) A = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ad - bc & bd - bd \\ -ac + ac & -bc + ad \end{bmatrix}$

$$(adj A)A = \begin{bmatrix} ad - bc & 0 \\ 0 & ad - bc \end{bmatrix}$$
And, $|A|.I = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = (ad - bc) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} ad - bc & 0 \\ 0 & ad - bc \end{bmatrix}$

Also,

$$A (adj A) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} ad - bc & 0 \\ 0 & ad - bc \end{bmatrix}$$

Hence, $(adj A) A = |A| | = A (adj A)$
(iii) Let
$$\begin{bmatrix} \cos \alpha & \sin \alpha \\ A = \begin{bmatrix} \sin \alpha & \cos \alpha \end{bmatrix}$$

Therefore cofactors of A are
$$C_{11} = \cos \alpha$$

$$C_{21} = -\sin \alpha$$

$$C_{22} = \cos \alpha$$

We know that, adj $A = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}^{T}$
(adj A) = $\begin{bmatrix} \cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}^{T}$
= $\begin{bmatrix} \cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}^{T}$
Now, $(adj A) A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$
= $\begin{bmatrix} -\sin^{2} \alpha + \cos^{2} \alpha & \cos \alpha & \sin \alpha - \sin \alpha & \cos \alpha \\ -\cos \alpha \sin \alpha + \sin \alpha \cos \alpha & -\sin^{2} \alpha + \cos^{2} \alpha \end{bmatrix}$
(adj A) $A = \begin{bmatrix} \cos 2\alpha & 0 \\ 0 & \cos 2\alpha \end{bmatrix}$
(adj A) $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ 0 & \cos^{2} \alpha \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
= $\begin{bmatrix} \cos^{2} \alpha - \sin^{2} \alpha \\ 0 & \cos^{2} \alpha - \sin^{2} \alpha \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

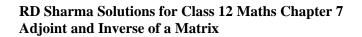
 $\begin{bmatrix} \cos 2\alpha & 0 \\ 0 & \cos 2\alpha \end{bmatrix}$ Also, A (adj A) $= \begin{bmatrix} \cos\alpha & \sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} \cos\alpha & -\sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} = \begin{bmatrix} \cos^2\alpha - \sin^2\alpha & 0 \\ 0 & \cos^2\alpha - \sin^2\alpha \end{bmatrix}$ $\begin{bmatrix} \cos 2\alpha & 0 \\ 0 & \cos 2\alpha \end{bmatrix}$ Hence, (adj A) A = |A|I = A (adj A)(iv) Let $\begin{bmatrix} 1 & \tan\frac{\alpha}{2} \\ -\tan\frac{\alpha}{2} & 1 \end{bmatrix}$ Therefore cofactors of A are $C_{11} = 1$ $C_{12} = \tan \alpha/2$ C_{21} = - tan $\alpha/2$ $C_{22} = 1$ We know that, adj A = $\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}^{T}$ $(\text{adj A}) = \begin{bmatrix} 1 & \tan\frac{\alpha}{2} \\ -\tan\frac{\alpha}{2} & 1 \end{bmatrix}^{T}$ $\begin{bmatrix} 1 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 1 \end{bmatrix}$ Now, (adj A) A = $\begin{bmatrix} 1 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\frac{\alpha}{2} \\ -\tan\frac{\alpha}{2} & 1 \end{bmatrix}$

 $\begin{bmatrix} 1 + \tan^2 \frac{\alpha}{2} & \tan \frac{\alpha}{2} - \tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} - \tan \frac{\alpha}{2} & 1 + \tan^2 \frac{\alpha}{2} \end{bmatrix}$ $(\text{adj A})A = \begin{bmatrix} 1 + \tan^2 \frac{\alpha}{2} & 0\\ 0 & 1 + \tan^2 \frac{\alpha}{2} \end{bmatrix}$ And, $|A| \cdot I = \begin{vmatrix} 1 & \tan\frac{\alpha}{2} \\ -\tan\frac{\alpha}{2} & 1 \end{vmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \left(1 + \tan^2\frac{\alpha}{2}\right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 + \tan^2 \frac{\alpha}{2} & 0 \\ 0 & 1 + \tan^2 \frac{\alpha}{2} \end{bmatrix}$ Also, A (adj A) = $\begin{bmatrix} 1 & \tan\frac{\alpha}{2} \\ -\tan\frac{\alpha}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 1 \end{bmatrix}$ $\begin{bmatrix} 1 + \tan^2 \frac{\alpha}{2} & \tan \frac{\alpha}{2} - \tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} - \tan \frac{\alpha}{2} & 1 + \tan^2 \frac{\alpha}{2} \end{bmatrix}$ $\begin{bmatrix} 1 + \tan^2 \frac{\alpha}{2} & 0 \\ 0 & 1 + \tan^2 \frac{\alpha}{2} \end{bmatrix}$

Hence, (adj A) A = |A|I = A (adj A)

2. Compute the adjoint of each of the following matrices.

$$\begin{array}{c} (i) \\ [1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \\ \\ (ii) \\ [1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \\ \end{array}$$



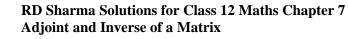
$$(iii) \begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1 \end{bmatrix}$$
$$(iv) \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix}$$

Solution:

(i) Let

$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ Therefore cofactors of A are
$C_{11} = -3$
$C_{11} = -3$ $C_{21} = 2$
$C_{21} = 2$ $C_{31} = 2$
$C_{31} = 2$ $C_{12} = 2$
$C_{12} = 2$ $C_{22} = -3$
$C_{23} = 2$
$C_{13} = 2$
$C_{23} = 2$
$C_{33} = -3$
$adj A = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$
$\begin{bmatrix} -3 & 2 & 2\\ 2 & -3 & 2\\ 2 & 2 & -3 \end{bmatrix}$
Now, (adj A) A = $\begin{bmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$
$ \begin{bmatrix} -3 + 4 + 4 & -6 + 2 + 4 & -6 + 4 + 2 \\ 2 - 3 + 4 & 4 - 3 + 4 & 4 - 6 + 2 \\ 2 + 4 - 6 & 4 + 2 - 6 & 4 + 4 - 3 \end{bmatrix} $

[5 0 0] 0 5 0 0 0 5] $Also, |A|| = \begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{vmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (-3+4+4) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 5 0 0 0 5 0 lo o 51 Then, A (adj A) = $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{bmatrix}$ $\begin{bmatrix} -3+4+4 & -6+2+4 & -6+4+2\\ 2-3+4 & 4-3+4 & 4-6+2\\ 2+4-6 & 4+2-6 & 4+4-3 \end{bmatrix}$ $\begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$ Since, (adj A) A = |A|I = A (adj A)(ii) Let 1 2 5] 3 1 2 A = L - 11 1 Cofactors of A C₁₁ = 2 C₂₁ = 3 $C_{31} = -13$ $C_{12} = -3$ C₂₂ = 6 C₃₂ = 9 C₁₃ = 5 $C_{23} = -3$ $C_{33} = -1$



$adj A = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$
$\begin{bmatrix} 2 & -3 & 5 \\ 3 & 6 & -3 \\ -13 & 9 & -1 \end{bmatrix}^{\mathrm{T}}$
$adj A = \begin{bmatrix} 2 & 3 & -13 \\ -3 & 6 & 9 \\ 5 & -3 & -1 \end{bmatrix}$
Now, (adj A) A = $\begin{bmatrix} 2 & 3 & -13 \\ -3 & 6 & 9 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}$
$ \begin{bmatrix} 2+6+13 & 4+9-13 & 10+3-13 \\ -3+12-9 & -6+18+9 & -15+6+9 \\ 5-6+1 & 10-9-1 & 25-3-1 \end{bmatrix} $
$\begin{bmatrix} 21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21 \end{bmatrix}$
Also, $ A I = \begin{vmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{vmatrix} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ [1 0 0]
$= [1(3-1) - 2(2+1) + 5(2+3)] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$= 21 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$\begin{bmatrix} 21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21 \end{bmatrix}$

Then, A (adj A) = $\begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & -13 \\ -3 & 6 & 9 \\ 5 & -3 & -1 \end{bmatrix}$
$ \begin{bmatrix} 2-6+25 & 3+12-15 & -13+18-5 \\ 4-9+5 & 6+18-3 & -26+27-1 \\ -2-3+5 & -3+6-3 & 13+9-1 \end{bmatrix} $
$\begin{bmatrix} 21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21 \end{bmatrix}$
Hence, (adj A) A = A I = A (adj A)
(iii) Let $ \begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1 \end{bmatrix} $ Therefore cofactors of A C ₁₁ = -22 C ₂₁ = 11 C ₃₁ = -11 C ₁₂ = 4 C ₂₂ = -2 C ₃₂ = 2 C ₁₃ = 16 C ₂₃ = -8 C ₃₃ = 8 We know that adj A = $ \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T} $
We know that adj A = $\begin{bmatrix} C_{31} & C_{32} & C_{33} \end{bmatrix}$

Now by substituting the values in above matrix we get,

	[-22	4	16]	Т
	11	-2	-8	
=	l-11	2	8]	

 $adj A = \begin{bmatrix} -22 & 11 & -11 \\ 4 & -2 & 2 \\ 16 & -8 & 8 \end{bmatrix}$ Now, (adj A) A = $\begin{bmatrix} -22 & 11 & -11 \\ 4 & -2 & 2 \\ 16 & -8 & 8 \end{bmatrix} \begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1 \end{bmatrix}$ $\begin{bmatrix} -44 + 44 + 0 & 22 + 22 - 44 & -66 + 55 + 11 \\ 8 - 8 + 0 & -4 - 4 + 8 & 12 - 10 - 2 \\ 32 - 32 + 0 & -16 - 16 + 32 & 48 - 40 - -8 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Now, $|A|I = \begin{vmatrix} 2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1 \end{vmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ $= [2(-2-20) + 1(-4-0) + 3(16-0)] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= (-44 - 4 + 48) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Then, A (adj A) = $\begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & -1 \end{bmatrix} \begin{bmatrix} -22 & 11 & -11 \\ 4 & -2 & 2 \\ 16 & -8 & 8 \end{bmatrix}$ $\begin{bmatrix} -44 - 4 + 48 & 22 + 2 - 24 & -22 - 2 + 24 \\ -88 + 8 + 80 & 44 - 4 - 40 & -44 + 4 + 40 \\ 0 + 16 - 16 & 0 - 8 + 8 & 0 + 8 - 8 \end{bmatrix}$

 $= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Hence, (adj A) A = |A|I = A (adj A)(iv) Let $A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix}$ Therefore cofactors of A C₁₁ = 3 $C_{21} = -1$ $C_{31} = -1$ C₁₂ = - 15 C₂₂ = 7 $C_{32} = -5$ $C_{13} = 4$ $C_{23} = -2$ $C_{33} = 2$ $adj A = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$ $\begin{bmatrix} 3 & -15 & 4 \\ -3 & 7 & -2 \\ 1 & -5 & 2 \end{bmatrix}^{\mathrm{T}}$ $adj A = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 7 & -5 \\ 4 & -2 & 2 \end{bmatrix}$ Now, (adj A) A = $\begin{bmatrix} 3 & -1 & 1 \\ -15 & 7 & -5 \\ 4 & -2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix}$

$$\begin{bmatrix} 6-5+1 & 0-1+1 & -3+0+3 \\ -30+35-5 & 0+7-5 & 15-0-15 \\ 8-10+2 & 0-2+2 & -4-0+6 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2(3-0)+0(15-0)-1(5-1) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
Then, A (adj A) = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & -1 & 1 \\ -15 & 7 & -5 \\ 4 & -2 & 2 \end{bmatrix}
$$= \begin{bmatrix} 6+0-4 & -2+0+2 & 2-0-2 \\ 15-15+0 & -5+7+0 & 5-5+0 \\ 3-15+12 & -1+7-6 & 1-5+6 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Hence, (adj A) A = |A|I = A (adj A)

3. For the matrix
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 3 & 0 \\ 18 & 2 & 10 \end{bmatrix}$$
, show that $A(adjA) = 0$

https://byjus.com

Solution:

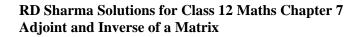
Give	n	
	1	_

	1	$^{-1}$	1				
	1 2 18	3	0				
A =	18	2	10				
Ther	efore	cofa	ctor	s of A	A		
C ₁₁ =	= 30						
C ₂₁ =	= 12						
C ₃₁ =	= – 3						
C ₁₂ =	- 20						
C ₂₂ =	= - 8						
C ₃₂ =	= 2						
C ₁₃ =	- 50						
C ₂₃ =	- 20						
					$\begin{bmatrix} C_{11} \\ C_{21} \end{bmatrix}$	C ₁₂ C ₂₂	$\begin{bmatrix} C_{13} \\ C_{23} \\ C_{33} \end{bmatrix}^{T}$
W	e knov	w tha	at ac	lj A =	LC ₃₁	C ₃₂	C ³³ 1

4 1

By substituting these values in above matrix we get,

 $\begin{bmatrix} 30 & -20 & -50 \\ 12 & -8 & -20 \\ -3 & 2 & 5 \end{bmatrix}^{T}$ So, adj (A) = $\begin{bmatrix} 30 & 12 & -3 \\ -20 & -8 & 2 \\ -50 & -20 & 5 \end{bmatrix}$ Now, A (adj A) = $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 3 & 0 \\ 18 & 2 & 10 \end{bmatrix} \begin{bmatrix} 30 & 12 & -3 \\ -20 & -8 & 2 \\ -50 & -20 & 5 \end{bmatrix}$ $\begin{bmatrix} 30 + 20 - 50 & 12 + 8 - 20 & -3 - 2 + 5 \\ 60 - 60 + 0 & 24 - 24 + 0 & -6 + 6 + 0 \\ 540 - 40 - 500 & 216 - 16 - 200 & -54 + 4 + 50 \end{bmatrix}$



 $= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Hence, A (adj A) = 0

4. If
$$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
, show that $adjA = A$

Solution:
Given

$$\begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
Cofactors of A
Cofactors of A
C₁₁ = -4
C₂₁ = -3
C₁₂ = 1
C₂₂ = 0
C₃₂ = 1
C₁₃ = 4
C₂₃ = 4
C₃₃ = 3
We know that adj A =
$$\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$$
We know that adj A =
$$\begin{bmatrix} -4 & 1 & 4 \\ -3 & 0 & 4 \\ -3 & 1 & 3 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} -4 & 1 & 4 \\ -3 & 0 & 4 \\ -3 & 1 & 3 \end{bmatrix}^{T}$$
So, adj A =
$$\begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
Hence, adj A = A

5. If
$$A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$
, show that $adjA = 3A^T$.

Solution:

Given
$A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$
Cofactors of A are
C ₁₁ = - 3
C ₂₁ = 6
C ₃₁ = 6
$C_{12} = -6$
C ₂₂ = 3
$C_{32} = -6$
$C_{13} = -6$
$C_{23} = -6$
C ₃₃ = 3
$adj A = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$
$\begin{bmatrix} -3 & -6 & -6 \\ 6 & 3 & -6 \\ 6 & -6 & 3 \end{bmatrix}^{\mathrm{T}}$
So, adj A = $\begin{bmatrix} -3 & 6 & 6 \\ -6 & 3 & -6 \\ -6 & -6 & 3 \end{bmatrix}$
Now, $3A^{T} = 3\begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 6 & 6 \\ -6 & 3 & -6 \\ -6 & -6 & 3 \end{bmatrix}$
Hence, $adj A = 3.A^T$

6. Find A(adjA) for the matrix
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & -1 \\ -4 & 5 & 2 \end{bmatrix}$$

Solution:

Given $\begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & -1 \\ -4 & 5 & 2 \end{bmatrix}$ L-4A = Cofactors of A are C₁₁ = 9 C₂₁ = 19 $C_{31} = -4$ C₁₂ = 4 C₂₂ = 14 C₃₂ = 1 C₁₃ = 8 C₂₃ = 3 C₃₃ = 2 We know that adj A = $\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$ $\begin{bmatrix} 9 & 4 & 8 \\ 19 & 14 & 3 \end{bmatrix}^{\mathrm{T}}$ 1 So, adj A = $\begin{bmatrix} 9 & 19 & -4 \\ 4 & 14 & 1 \\ 8 & 3 & 2 \end{bmatrix}$ Now, A adj A = $\begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & -1 \\ -4 & 5 & 2 \end{bmatrix} \begin{bmatrix} 9 & 19 & -4 \\ 4 & 14 & 1 \\ 8 & 3 & 2 \end{bmatrix}$ $\begin{bmatrix} 9-8+24 & 19-28+9 & -4-2+6 \\ 0+8-8 & 0+28-3 & 0+2-2 \\ -36+20+16 & -76+70+6 & 16+5+4 \end{bmatrix}$

https://byjus.com

	25	0	0]
	0	25	0 25
=	lο	0	25

Hence, A adj A = 25 I₃

7. Find the inverse of each of the following matrices:

<i>(i)</i>	$\cos heta \ -\sin heta$	sin heta
(")		$cos \theta$
(ii)	1 - v	
(iii)	$\begin{bmatrix} a & b \\ c & \frac{1+}{a} \end{bmatrix}$	$\frac{bc}{bc}$
(iv)	$\begin{bmatrix} 2 & 5 \\ -3 & 1 \end{bmatrix}$	

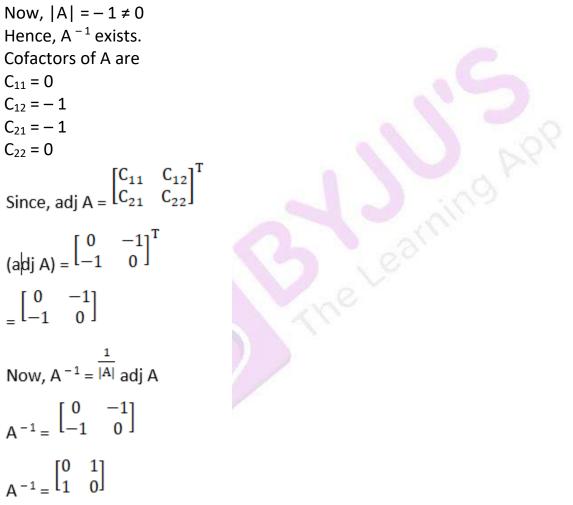
Solution:

(i) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

Now, $|A| = \cos \theta (\cos \theta) + \sin \theta (\sin \theta)$ = 1 Hence, A^{-1} exists. Cofactors of A are $C_{11} = \cos \theta$ $C_{12} = \sin \theta$ $C_{21} = -\sin \theta$ $C_{22} = \cos \theta$ Since, adj $A = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}^{T}$ $(adj A) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}^{T}$ $= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ Now, $A^{-1} = \frac{1}{|A|}$.adj A

$$A^{-1} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$A^{-1} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

(ii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

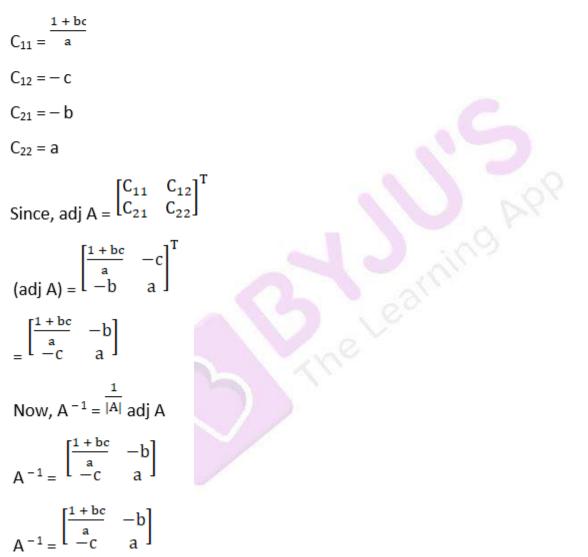


(iii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

Now,
$$|A| = \frac{a + abc}{a} - \frac{bc}{bc} = \frac{a + abc - abc}{a} = 1 \neq 0$$

Hence, A⁻¹ exists.

Cofactors of A are



(iv) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

Now, |A| = 2 + 15 = 17Hence, A^{-1} exists. Cofactors of A are $C_{11} = 1$

$$C_{12} = 3$$

$$C_{21} = -5$$

$$C_{22} = 2$$
Since, adj A =
$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}^{T}$$

$$(adj A) = \begin{bmatrix} 1 & 3 \\ -5 & 2 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} 0 & -5 \\ 3 & 2 \end{bmatrix}$$
Now, A⁻¹ =
$$\begin{bmatrix} 1 \\ -5 & 2 \end{bmatrix}^{T}$$
Now, A⁻¹ =
$$\begin{bmatrix} 1 \\ -5 & 2 \end{bmatrix}^{T}$$

$$A^{-1} = \begin{bmatrix} 1 \\ 17 \end{bmatrix} \begin{bmatrix} 0 & -5 \\ 3 & 2 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 1 \\ 17 \end{bmatrix} \begin{bmatrix} 0 & -5 \\ 3 & 2 \end{bmatrix}$$

8. Find the inverse of each of the following matrices.

$$\begin{array}{c} (i) \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} \\ (ii) \begin{bmatrix} 1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1 \end{bmatrix} \\ (iii) \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \\ (iv) \begin{bmatrix} 2 & 0 & -1 \\ 1 & -1 & 2 \end{bmatrix} \\ (iv) \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} \\ (v) \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$$

$$\begin{array}{c} (vi) \begin{bmatrix} 0 & 0 & -1 \\ 3 & 4 & 5 \\ -2 & -4 & -7 \end{bmatrix} \\ (vii) \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & \sin\alpha & -\cos\alpha \end{bmatrix}$$

Solution:

(i) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

$$|A| = 1 \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} - 2 \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} + 3 \begin{vmatrix} 2 & 3 \\ 3 & 1 \end{vmatrix}$$

= 1(6 - 1) - 2(4 - 3) + 3(2 - 9)
= 5 - 2 - 21
= - 18
Hence, A⁻¹ exists
Cofactors of A are
C₁₁ = 5
C₂₁ = -1
C₃₁ = -7
C₁₂ = -1
C₂₂ = -7
C₃₂ = 5
C₁₃ = -7
C₂₃ = 5
C₃₃ = -1
$$\begin{bmatrix}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$$

We know that adj A =
$$\begin{bmatrix}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$$

$$= \begin{bmatrix}5 & -1 & -7 \\ -1 & -7 & 5 \\ -7 & 5 & -1 \end{bmatrix}^{T}$$

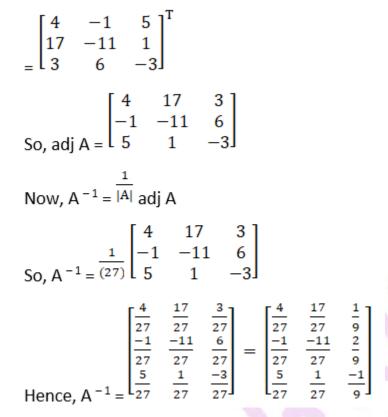
So, adj A =
$$\begin{bmatrix}5 & -1 & -7 \\ -1 & -7 & 5 \\ -7 & 5 & -1 \end{bmatrix}$$

Now, $A^{-1} = \frac{1}{|A|} adj A$

So, $A^{-1} = \frac{1}{(-18)}$	5 -1 -7	-1 -7 5	-7 5 -1
	$\left\lceil \frac{-5}{18} \right\rceil$		$\left[\frac{7}{18}\right]$
$A^{-1} =$	$\frac{1}{18}$	$\frac{7}{18}$	$\frac{-5}{18}$
Hence,	$\frac{7}{18}$	$\frac{-5}{18}$	$\frac{1}{18}$

(ii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

```
1\begin{vmatrix} -1 & -1 \\ 3 & -1 \end{vmatrix} - 2\begin{vmatrix} 1 & -1 \\ 2 & -1 \end{vmatrix} + 5\begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix}
|A| =
= 1 (1 + 3) - 2 (-1 + 2) + 5 (3 + 2)
= 4 - 2 + 25
= 27
Hence, A^{-1} exists
Cofactors of A are
C<sub>11</sub> = 4
C<sub>21</sub> = 17
C<sub>31</sub> = 3
C_{12} = -1
C<sub>22</sub> = - 11
C_{32} = 6
C<sub>13</sub> = 5
C_{23} = 1
C_{33} = -3
adj A = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}
```

(iii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

```
2\begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} + 1\begin{vmatrix} -1 & -1 \\ 1 & 2 \end{vmatrix} + 1\begin{vmatrix} -1 & 2 \\ 1 & -1 \end{vmatrix}
= 2(4 - 1) + 1(-2 + 1) + 1(1 - 2)
= 6 - 2
= -4
Hence, A<sup>-1</sup> exists
Cofactors of A are
C<sub>11</sub> = 3
C<sub>21</sub> = 1
C<sub>31</sub> = -1
C<sub>12</sub> = + 1
C<sub>22</sub> = 3
C<sub>32</sub> = 1
C<sub>13</sub> = -1
C<sub>13</sub> = -1
C<sub>23</sub> = 1
```


C₃₃ = 3

We know that adj
$$A = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$$

$$= \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}^{T}$$
So, adj $A = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$
Now, $A^{-1} = \frac{1}{|A|}$ adj A
So, $A^{-1} = \frac{1}{|A|} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$
Hence, $A^{-1} = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$

(iv) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

$$\begin{vmatrix} 2 & 1 & 0 \\ 1 & 3 & -0 & 5 & 0 \\ 0 & 3 & -1 & 0 & 1 \end{vmatrix}$$

= 2(3-0) - 0 - 1(5)
= 6 - 5
= 1
Hence, A⁻¹ exists
Cofactors of A are
C₁₁ = 3
C₂₁ = -1
C₃₁ = 1
C₁₂ = -15

C₂₂ = 6 $C_{32} = -5$ $C_{13} = -5$ $C_{23} = -2$ C₃₃ = 2 We know that adj A = $\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$ $\begin{bmatrix} 3 & -15 & 5 \\ -1 & 6 & -2 \\ 1 & -5 & 2 \end{bmatrix}^{\mathrm{T}}$ So, adj A = $\begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$ Now, $A^{-1} = \frac{1}{|A|}$ adj A $\begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$ Hence, $A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$

(v) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

$$\begin{array}{c}
0 & \begin{vmatrix} -3 & 0 \\ -3 & 4 \end{vmatrix} - 1 \begin{vmatrix} 4 & 4 \\ 3 & 4 \end{vmatrix} - 1 \begin{vmatrix} 4 & -3 \\ 3 & -3 \end{vmatrix} \\
= 0 - 1 (16 - 12) - 1 (-12 + 9) \\
= -4 + 3 \\
= -1 \\
\text{Hence, } A^{-1} \text{ exists} \\
\text{Cofactors of } A \text{ are} \\
C_{11} = 0 \\
C_{21} = -1
\end{array}$$

https://byjus.com

C₃₁ = 1 $C_{12} = -4$ C₂₂ = 3 $C_{32} = -4$ $C_{13} = -3$ C₂₃ = 3 $C_{33} = -4$ We know that adj A = $\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$ $\begin{bmatrix} 0 & -4 & -3 \\ -1 & 3 & 3 \\ 1 & -4 & -4 \end{bmatrix}^{\mathrm{T}}$ So, adj A = $\begin{bmatrix} 0 & -1 & 1 \\ -4 & 3 & -4 \\ -3 & 3 & -4 \end{bmatrix}$ Now, $A^{-1} = \frac{1}{|A|} \operatorname{adj} A$ $\begin{array}{ccc} 0 & -1 & 1 \\ -4 & 3 & -4 \\ -3 & 3 & -4 \end{array}$ Hence, $A^{-1} = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$

(vi) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

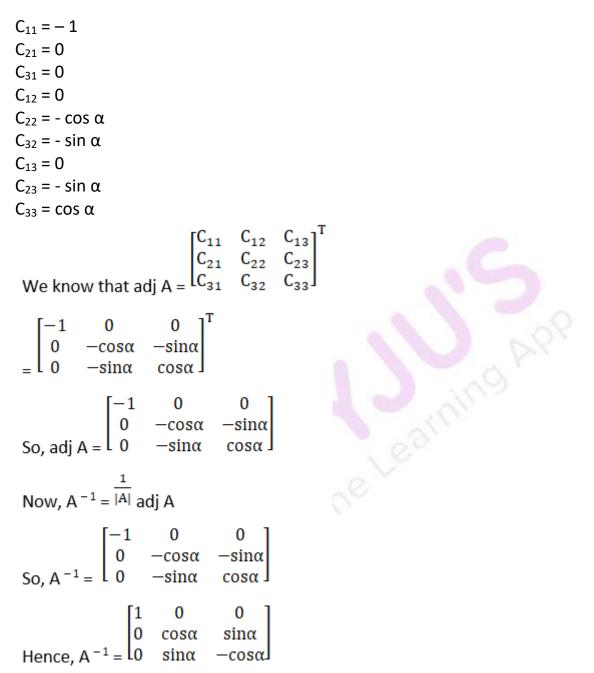
$$\begin{array}{c|c} 0 & 4 & 5 \\ |A| = & 0 & -4 & -7 \\ = & 0 - & 0 - & 1 \\ = & 0 - & 0 - & 1 \\ = & 4 \\ \text{Hence, } A^{-1} \text{ exists} \\ \text{Cofactors of } A \text{ are} \\ C_{11} = & -8 \end{array}$$

C₂₁ = 4 C₃₁ = 4 C₁₂ = 11 $C_{22} = -2$ $C_{32} = -3$ $C_{13} = -4$ $C_{23} = 0$ $C_{33} = 0$ We know that adj A = $\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$ $\begin{bmatrix} 8 & 11 & -4 \\ 4 & -2 & 0 \\ 4 & -3 & 0 \end{bmatrix}^{\mathrm{T}}$ So, adj A = $\begin{bmatrix} 8 & 4 & 4 \\ 11 & -2 & -3 \\ -4 & 0 & 0 \end{bmatrix}$ Now, $A^{-1} = \frac{1}{|A|} \operatorname{adj} A$ $\begin{array}{c} 8 & 4 & 4 \\ 11 & -2 & -3 \\ -4 & 0 & 0 \end{array}$ Hence, $A^{-1} = \begin{bmatrix} 2 & 1 & 1 \\ \frac{11}{4} & \frac{-1}{2} & \frac{-3}{4} \\ -1 & 0 & 0 \end{bmatrix}$

(vii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

$$|A| = \frac{1 \begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{vmatrix}}{-0 + 0}$$

= - (cos² \alpha - sin² \alpha)
= - 1
Hence, A⁻¹ exists
Cofactors of A are



9. Find the inverse of each of the following matrices and verify that $A^{-1}A = I_3$.

 $(i) \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ $(ii) \begin{bmatrix} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2 \end{bmatrix}$

Solution: (i) We have $\begin{vmatrix} A \end{vmatrix} = \begin{bmatrix} 1 & 4 & 3 \\ 3 & 4 \end{bmatrix} - 3 \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} + 3 \begin{vmatrix} 1 & 4 \\ 1 & 3 \end{vmatrix}$ = 1(16 - 9) - 3(4 - 3) + 3(3 - 4)= 7 - 3 - 3= 1 Hence, A⁻¹ exists Cofactors of A are C₁₁ = 7 $C_{21} = -3$ $C_{31} = -3$ $C_{12} = -1$ $C_{22} = -1$ $C_{32} = 0$ $C_{13} = -1$ $C_{23} = 0$ C₃₃ = 1 We know that adj A = $\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{32} \end{bmatrix}^{T}$ $\begin{bmatrix} 7 & -1 & -1 \\ -3 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}^{\mathrm{T}}$ So, adj A = $\begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ Now, $A^{-1} = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ $Also, A^{-1}A = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$

 $\begin{bmatrix} 7-3-3 & 21-12-9 & 21-9-12 \\ -1+1+0 & -3+4+0 & -3+3+0 \\ -1+0+1 & -3+0+3 & -3+0+4 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Hence, $A^{-1}A = I_3$ (ii) We have $\begin{vmatrix} 2 & 4 & 1 \\ 7 & 2 & -3 & 3 & 1 \\ 3 & 2 & +1 & 3 & 4 \\ 3 & 7 & -1 & -3 & -3 & -1 \\ 3 & 7 & -1 & -3 & -1 \\ 3 & 7 & -1 & -3 & -1 \\ 3 & 7 & -1 & -3 & -3 & -3 \\ 3 & 2 & -3 & -3 & -3 & -3 \\ 3 & 2 & -3 & -3 & -3 & -3 \\ 3 & 2 & -3 & -3 & -3 & -3 \\ 3 & 2 & -3 & -3 & -3 & -3 \\ 3 & 2 & -3 & -3 & -3 & -3 \\ 3 & 2 & -3 & -3 & -3 & -3 \\ 3 & 2 & -3 & -3 & -3 & -3 \\ 3 & 2 & -3 & -3 & -3 & -3 \\ 3 & 2 & -3 & -3 & -3 & -3 \\ 3 & 2 & -3 & -3 & -3 & -3 \\ 3 & 2 & -3 & -3 & -3 & -3 \\ 3 & 2 & -3 & -3 & -3 & -3 \\ 3 & 2 & -3 & -3 & -3 & -3 \\ 3 & 2 & -3$ = 2(8-7) - 3(6-3) + 1(21-12)= 2 - 9 + 9= 2 Hence, A⁻¹ exists Cofactors of A are C₁₁ = 1 C₂₁ = 1 $C_{31} = -1$ $C_{12} = -3$ C₂₂ = 1 C₃₂ = 1 C₁₃ = 9 $C_{23} = -5$ $C_{33} = -1$ $\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^T$ We know that adj A = $\begin{bmatrix} 1 & -3 & 9 \\ 1 & 1 & -5 \\ -1 & 1 & -1 \end{bmatrix}^{\mathsf{T}}$ So, adj A = $\begin{bmatrix} 1 & 1 & -1 \\ -3 & 1 & 1 \\ 9 & -5 & -1 \end{bmatrix}$

Now,
$$A^{-1} = \begin{bmatrix} 1 & 1 & -1 \\ -3 & 1 & 1 \\ 9 & -5 & -1 \end{bmatrix}$$

$$\begin{array}{c} \begin{array}{c} 1 & 1 & -1 \\ -3 & 1 & 1 \\ 9 & -5 & -1 \end{array} \begin{vmatrix} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2 \end{vmatrix} \\ \begin{array}{c} \text{Also, } A^{-1}.A = \begin{array}{c} 2 + 3 - 3 & 3 + 4 - 7 & 1 + 1 - 2 \\ -6 + 3 + 3 & -9 + 4 + 7 & -3 + 1 + 2 \\ 18 - 15 - 3 & 27 - 20 - 7 & 9 - 5 - 2 \\ \end{array} \end{vmatrix}$$

$$\begin{bmatrix} \frac{1}{2} & 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Hence, $A^{-1}A = I_3$

10. For the following pair of matrices verify that $(AB)^{-1} = B^{-1}A^{-1}$.

$$(i)A = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix} and B = \begin{bmatrix} 4 & 6 \\ 3 & 2 \end{bmatrix}$$
$$(ii)A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} and B = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$$

Solution:

(i) Given

$$A = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix}$$

Then, adj A =
$$\begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix}$$

A⁻¹ = $\frac{\text{adj A}}{|A|} = \frac{1}{1} \begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix}$
B = $\begin{bmatrix} 4 & 6 \\ 3 & 2 \end{bmatrix}$,
|B| = -10

Then, adj B = $\begin{bmatrix} 2 & -6 \\ -3 & 4 \end{bmatrix}$ $B^{-1} = -\frac{1}{10} \begin{bmatrix} 2 & -6 \\ -3 & 4 \end{bmatrix}$ Also, A.B = $\begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix} \begin{bmatrix} 4 & 6 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 12 + 6 & 18 + 4 \\ 28 + 15 & 42 + 10 \end{bmatrix}$ $AB = \begin{bmatrix} 18 & 22 \\ 43 & 52 \end{bmatrix}$ |AB| = 936 - 946 = -10 Adj (AB) = $\begin{bmatrix} 52 & -22 \\ -43 & 18 \end{bmatrix}$ $(AB)^{-1} = \frac{1}{-10} \begin{bmatrix} 52 & -22 \\ -43 & 18 \end{bmatrix} = \begin{bmatrix} -52 & 22 \\ 43 & -18 \end{bmatrix}$ Now B⁻¹A⁻¹ = $\frac{1}{-10}\begin{bmatrix} 2 & -6 \\ -3 & 4 \end{bmatrix}\begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix}$ $\frac{1}{10} \begin{bmatrix} 10 + 42 & -4 - 18 \\ -15 - 28 & 6 + 12 \end{bmatrix}$ $\frac{1}{10}\begin{bmatrix} -52 & 22\\ 43 & -18 \end{bmatrix}$ Hence, (AB) $^{-1}$ = $B^{-1}A^{-1}$ (ii) Given |A| = 1 $\operatorname{Adj}_{A = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}}$ $A^{-1} = \frac{\frac{adj A}{|A|}}{|A|} = \frac{1}{1} \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$

|B| = -1 $B^{-1} = \frac{adj A}{|A|} = \frac{1}{-1} \begin{bmatrix} 4 & -5 \\ -3 & 4 \end{bmatrix}$ Also, AB = $\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$ $\begin{bmatrix} 11 & 14 \\ 29 & 37 \end{bmatrix}$ |AB| = 407 - 406 = 1And, adj (AB) = $\begin{bmatrix} 37 & -14 \\ -29 & 11 \end{bmatrix}$ $(AB)^{-1} = \frac{\frac{adj AB}{|AB|}}{|AB|}$ $\begin{bmatrix} 37 & -14 \\ -29 & 11 \end{bmatrix}$ Now, $B^{-1}A^{-1} \begin{bmatrix} 4 & -5 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$ $\begin{bmatrix} 37 & -14 \\ -29 & 11 \end{bmatrix}$ Hence, (AB) -1= B-1A-1 11. Let $A = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$. $Find(AB)^{-1}$ Solution: Given $A = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix}$

|A| = 15 – 14 = 1

Therefore adj A = $\begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix}$

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix

$$\begin{array}{l} \underset{A^{-1} = \left[A^{-1} = \frac{1}{|A|} = \frac{1}{1} \begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix} \\ \underset{B}{=} \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix} \\ B = 54 - 56 = -2 \text{ adj } \underset{B}{=} = \begin{bmatrix} 9 & -7 \\ -8 & 6 \end{bmatrix} \\ \underset{B^{-1} = \frac{1}{|B|} = \frac{1}{-2} \begin{bmatrix} 9 & -7 \\ -8 & 6 \end{bmatrix} \\ \underset{B^{-1} = \frac{1}{|B|} = \frac{1}{-2} \begin{bmatrix} -9 & -7 \\ -8 & 6 \end{bmatrix} \\ Now, (AB)^{-1} = B^{-1}A^{-1} \\ \underset{B^{-1} = \frac{1}{-2} \begin{bmatrix} -9 & -7 \\ -8 & 6 \end{bmatrix} \begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix} \\ \underset{AB}{=} \frac{1}{-2} \begin{bmatrix} -47 & \frac{39}{2} \\ -40 - 42 & 16 + 18 \end{bmatrix} \\ \underset{AB}{=} \frac{1}{-2} \begin{bmatrix} -47 & \frac{39}{2} \\ -41 & -17 \end{bmatrix} \\ 12. \ Given \ A = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix}, \ compute \ A^{-1} \ and \ show \ that \ 2A^{-1} = 9I - A. \\ \begin{array}{c} \text{Solution:} \\ \\ \text{Given} \\ A_{-1} \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix} \\ |A| = 14 - 12 = 2 \ adj \ A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix} \\ A^{-1*\frac{1}{2}} \begin{bmatrix} 7 & 3 \\ 4 \end{bmatrix} \end{array}$$

To Show: $2A^{-1} = 9I - A$

We have

$$\begin{array}{c} \frac{1}{2} \begin{bmatrix} 7 & 3\\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 3\\ 4 & 2 \end{bmatrix} \\ \text{R.H.S} = 2A^{-1} = 2, \begin{array}{c} \frac{1}{2} \begin{bmatrix} 7 & 3\\ 4 & 2 \end{bmatrix} \\ \begin{bmatrix} 9 & 0\\ 0 & 9 \end{bmatrix} - \begin{bmatrix} 2 & -3\\ -4 & 7 \end{bmatrix} \\ = \begin{bmatrix} 7 & 3\\ 4 & 2 \end{bmatrix}$$

Hence, $2A^{-1} = 9I - A$

13. If
$$A = \begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix}$$
, then show that $A - 3I = 2(I + 3A^{-1})$.

Solution:

Given

 $A = \begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix}$ $|A| = 4 - 10 = -6 \text{ adj } A = \begin{bmatrix} 1 & -5 \\ -2 & 4 \end{bmatrix}$ $A^{-1} = \frac{1}{-6} \begin{bmatrix} 1 & -5 \\ -2 & 4 \end{bmatrix}$ To Show: $A - 3I = 2 (I + 3A^{-1})$ We have LHS = A - 3I $= \begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix} - 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 5 \\ 2 & -2 \end{bmatrix}$ R.H.S = 2 (I + 3A^{-1}) = 2I + 6A^{-1}

$${}_{=} {}^{2} { \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + 6 \frac{1}{6} { \begin{bmatrix} -1 & 5 \\ 2 & -4 \end{bmatrix} }$$

$${}_{=} { \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} + { \begin{bmatrix} -1 & 5 \\ 2 & -4 \end{bmatrix} }$$

$${}_{=} { \begin{bmatrix} 1 & 5 \\ 2 & -4 \end{bmatrix} }$$

Hence, $A - 3I = 2(I + 3A^{-1})$

14. Find the inverse of the matrix $A = \begin{bmatrix} a & b \\ c & \frac{1+bc}{a} \end{bmatrix}$, and show that $aA^{-1} = (a^2 + bc + 1)I - aA$.

Learnir

Solution:

 $A = \begin{bmatrix} a & b \\ c & \frac{1+bc}{a} \end{bmatrix}$

Now,
$$|A| = \frac{a + abc}{a} - \frac{bc}{bc} = \frac{a + abc - abc}{a} = 1 \neq 0$$

Hence, A⁻¹ exists.

Cofactors of A are

$$C_{11} = \frac{1 + bc}{a}$$

$$C_{12} = -c$$

$$C_{21} = -b$$

$$C_{22} = a$$
Since, adj A =
$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}^{T}$$

$$Adj A = \begin{bmatrix} \frac{1 + bc}{a} & -c \\ -b & a \end{bmatrix}^{T}$$

r1 + bc

$$\begin{bmatrix} \frac{1+bc}{a} & -b \\ -c & a \end{bmatrix}$$

Now, $A^{-1} = \frac{1}{|A|}$.adj A
 $A^{-1} = \begin{bmatrix} \frac{1+bc}{a} & -b \\ -c & a \end{bmatrix}$

$$A^{-1} = \begin{bmatrix} \frac{1+bc}{a} & -b \\ -c & a \end{bmatrix}$$

To show a $A^{-1} = (a^2 + bc + 1) I - aA$.

LHS = $a A^{-1}$

 $= a \begin{bmatrix} \frac{1+bc}{a} & -b \\ -c & a \end{bmatrix}$ $\begin{bmatrix} 1 + bc & -ab \\ -ac & a^2 \end{bmatrix}$

 $RHS = (a^2 + bc + 1) I - a A$

$$\begin{bmatrix} a^{2} + bc + 1 & 0 \\ 0 & a^{2} + bc + 1 \end{bmatrix} - \begin{bmatrix} a^{2} & ab \\ ac & 1 + bc \end{bmatrix} = \begin{bmatrix} 1 + bc & -ab \\ -ac & a^{2} \end{bmatrix}$$

Hence, LHS = RHS

15. Given
$$A = \begin{bmatrix} 5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
, $B^{-1} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$. Compute $(AB)^{-1}$

Solution:

Given $A = \begin{bmatrix} 5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix} and B^{-1} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ Here, (AB) $^{-1}$ = B $^{-1}$ A $^{-1}$ |A| = -5 + 4 = -1

Cofactors of A are $C_{11} = -1$ C₂₁ = 8 C₃₁ = - 12 $C_{12} = 0$ C₂₂ = 1 $C_{32} = -2$ C₁₃ = 1 $C_{23} = -10$ $C_{33} = 15$ $Adj A = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$ $\begin{bmatrix} -1 & 0 & 1 \\ 8 & 1 & -10 \\ -12 & -2 & 15 \end{bmatrix}^{\mathrm{T}}$ So, adj A = $\begin{bmatrix} -1 & 8 & -12 \\ 0 & 1 & -2 \\ 1 & -10 & 15 \end{bmatrix}$ Now, $\underline{A}^{-1} = \begin{bmatrix} -1 & 8 & -12 \\ 0 & 1 & -2 \\ 1 & -10 & 15 \end{bmatrix}$ (AB) -1 = B -1 A -1 $= \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & -8 & 12 \\ 0 & -1 & 2 \\ -1 & 10 & -15 \end{bmatrix}$ $\begin{bmatrix} 1 + 0 - 3 & -8 - 3 + 30 & 12 + 6 - 45 \\ 1 + 0 - 3 & -8 - 4 + 30 & 12 + 8 - 45 \\ 1 + 0 - 4 & -8 - 3 + 40 & 12 + 6 - 60 \end{bmatrix}$ $\begin{bmatrix} -2 & 19 & -27 \\ -2 & 18 & -25 \\ -3 & 29 & 42 \end{bmatrix}$ Hence, =

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix BYJU'S

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix

16. Let
$$F(\alpha) = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0\\ \sin\alpha & \cos\alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$$
 and $G(\beta) = \begin{bmatrix} \cos\beta & 0 & \sin\beta\\ 0 & 1 & 0\\ -\sin\beta & 0 & \cos\beta \end{bmatrix}$. Show that
(i) [F(\alpha)]^{-1} = F(-\alpha)
(ii) [G(\beta)]^{-1} = G(-\beta)
(iii) [F(\alpha) G(\beta)]^{-1} = G(-\beta) F(-\alpha)
Solution:
(i) Given

$$\begin{bmatrix} \cos\alpha & -\sin\alpha & 0\\ \sin\alpha & \cos\alpha & 0\\ 1\\ F(\alpha) = & 0 & 0 & 1 \end{bmatrix}$$

$$F(\alpha) = \cos^{2}\alpha + \sin^{2}\alpha = 1$$
Cofactors of A are
C₁₁ = cos α
C₂₁ = cos α
C₂₂ = cos α
C₂₃ = 0
C₃₃ = 1

$$Adj F(\alpha) = \begin{bmatrix} C_{11} & C_{12} & C_{13}\\ C_{21} & C_{22} & C_{23}\\ C_{31} & C_{32} & C_{32} \end{bmatrix}^{T}$$

$$= \begin{bmatrix} \cos\alpha & -\sin\alpha & 0\\ C_{12} - c_{13} & C_{13} & C_{13} \\ C_{21} & C_{22} & C_{23} \end{bmatrix}^{T}$$

$$So, adj F(\alpha) = \begin{bmatrix} \cos\alpha & \sin\alpha & 0\\ -\sin\alpha & \cos\alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$$
Now, $[F(\alpha)]^{-1} = \begin{bmatrix} \cos\alpha & \sin\alpha & 0\\ -\sin\alpha & \cos\alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$

 $\begin{bmatrix} \cos(-\alpha) & \sin(-\alpha) & 0\\ \sin(-\alpha) & \cos(-\alpha) & 0\\ 0 & 0 & 1 \end{bmatrix}$ And, F $(-\alpha) =$ (ii) $\sin \alpha 0$ cosα $\cos \alpha 0$ - sinα 0 0 Hence, $[F(\alpha)]^{-1} = F(-\alpha)$ (ii) We have $|G(\beta)| = \cos^2 \beta + \sin^2 \beta = 1$ Cofactors of A are $C_{11} = \cos \beta$ $C_{21} = \sin \alpha$ $C_{31} = \sin \beta$ C₁₂ = 0 C₂₂ = 1 $C_{32} = 0$ $C_{13} = \sin \beta$ $C_{23} = 0$ $C_{33} = \cos \beta$ Adj G (β) = $\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$ $\begin{bmatrix} \cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ -\sin\beta & 0 & \cos\beta \end{bmatrix}^T$ [cosβ $-\sin\beta$ 0 1 0 0 0 cosβ J (j) So, adj G (β) = ^l sinβ $\frac{1}{1}\begin{bmatrix}\cos\beta & 0 & -\sin\beta\\0 & 1 & 0\\\sin\beta & 0 & \cos\beta\end{bmatrix}$ cosβ Now, [G (β)]⁻¹ = Lsinβ

 $[\cos\beta \ 0 - \sin\beta]$ 0 1 0 So, adj G (β) = Lsinβ 0 cosβ] (j) −sinβ] 0 [cosβ $\frac{1}{1}$ 0 1 0 Now, [G (β)]⁻¹ = $\ln |\sin\beta|$ 0 cosβ And, G (- β) = $\begin{bmatrix} \cos(-\beta) & 0 & \sin(-\beta) \\ 0 & 1 & 0 \\ \sin(-\beta) & 0 & \cos(-\beta) \end{bmatrix}$ [cos β -sinβ] 0 1 0 0 = L sin β 0 cosβ Hence, $[G(\beta)]^{-1} = G - \beta$ (iii) Now we have to show that $[F(\alpha) G(\beta)]^{-1} = G(-\beta) F(-\alpha)$ We have already know that $[G (\beta)]^{-1} = G (-\beta)$ $[F(\alpha)]^{-1} = F(-\alpha)$ And LHS = [F (α) G (β)]⁻¹ = $[G(\beta)]^{-1} [F(\alpha)]^{-1}$ $= G(-\beta) F(-\alpha)$ Hence = RHS

17. If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$
 verify that $A^2 - 4A + I = 0$, where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Hence find A^{-1} .

Solution:

Consider,

 $4A = 4\begin{bmatrix} 2 & 3\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 12\\ 4 & 8 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Now, $A^2 - 4A + I = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} - \begin{bmatrix} 8 & 12 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 7-8+1 & 12-2+0 \\ 4-4+0 & 7-8+1 \end{bmatrix}$ Hence, = $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ Now, $A^2 - 4A + I = 0$ A.A - 4A = -1Multiply by A⁻¹ both sides we get $A.A(A^{-1}) - 4AA^{-1} = -IA^{-1}$ $AI - 4I = -A^{-1}$ $\mathbf{A}^{-1} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ $A^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$

18. Show that $A = \begin{bmatrix} -8 & 5 \\ 2 & 4 \end{bmatrix}$ satisfies the equation $A^2 + 4A - 42I = 0$. Hence find A^{-1} .

Solution:

Given

 $A = \begin{bmatrix} -8 & 5 \\ 2 & 4 \end{bmatrix}$ $A^{2} = \begin{bmatrix} -8 & 5 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} -8 & 5 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} -8 & 5 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 64 + 10 & -40 + 20 \\ -16 + 8 & 10 + 16 \end{bmatrix}$

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix

$$A^{2} = \begin{bmatrix} -8 & 5 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} -8 & 5 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 64 + 10 & -40 + 20 \\ -16 + 8 & 10 + 16 \end{bmatrix}$$

$$= \begin{bmatrix} 74 & -20 \\ -8 & 26 \end{bmatrix}$$

$$4A = 4 \begin{bmatrix} -8 & 5 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} -32 & 20 \\ 8 & 16 \end{bmatrix}$$

$$42I = 42 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 42 & 0 \\ 0 & 42 \end{bmatrix}$$
Now,
$$A^{2} + 4A - 42I = \begin{bmatrix} 74 & -20 \\ -8 & 26 \end{bmatrix} + \begin{bmatrix} -32 & 20 \\ 8 & 16 \end{bmatrix} - \begin{bmatrix} 42 & 0 \\ 0 & 42 \end{bmatrix}$$

$$= \begin{bmatrix} 74 - 74 & -20 + 20 \\ -8 + 8 & 42 - 42 \end{bmatrix}$$
Hence,
$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
Now,
$$A^{2} + 4A - 42I = 0$$

$$= A^{-1}A \cdot A + 4A^{-1}A - 42A^{-1}I = 0$$

$$= 42A^{-1} = A + 4I$$

$$= A^{-1} = \frac{1}{42} \begin{bmatrix} A + 4I \end{bmatrix}$$

 $\begin{bmatrix} \frac{1}{42} \begin{bmatrix} -8 & 5\\ 2 & 4 \end{bmatrix} + \begin{bmatrix} 4 & 0\\ 0 & 4 \end{bmatrix} \end{bmatrix}$

 $A^{-1} \begin{bmatrix} -4 & 5\\ 2 & 8 \end{bmatrix}$

https://byjus.com

19. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ show that $A^2 - 5A + 7I = 0$. Hence find A^{-1} .

Solution:

Given
$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 9-1 & 3+2 \\ -3-2 & -1+4 \end{bmatrix}$
$\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$
Now, $A^2 - 5A + 7I = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - 5\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} + 7\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
$ \begin{bmatrix} 8 - 15 + 7 & 5 - 5 + 0 \\ -5 + 5 + 0 & 3 - 10 + 7 \end{bmatrix} $
$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
So, $A^2 - 5A + 7I = 0$
Multiply by A ⁻¹ both sides
= A.A A^{-1} - 5A. A^{-1} + 7I. A^{-1} = 0
$A - 5I + 7 A^{-1} = 0$
$A^{-1} = \frac{1}{7} [5I - A]$
$A^{-1} = \frac{1}{7} \cdot \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$
$A^{-1} = \frac{1}{7} \cdot \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$

