

EXERCISE 7.2

PAGE NO: 7.34

Find the inverse of the following matrices by using elementary row transformations:

 $1. \begin{bmatrix} 7 & 1 \\ 4 & -3 \end{bmatrix}$

Solution:

For row transformation we have

A = IA $\begin{bmatrix} 7 & 1 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$ Applying $r_1 \rightarrow \frac{1}{7}r_1$ $\begin{bmatrix} 1 & \frac{1}{7} \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} \frac{1}{7} & 0 \\ 0 & 1 \end{bmatrix} A$ Applying $r_2 \rightarrow r_2 - 4r_1$ $\begin{bmatrix} 1 & \frac{1}{7} \\ 0 & \frac{-25}{7} \end{bmatrix} = \begin{bmatrix} \frac{1}{7} & 0 \\ -\frac{4}{7} & 1 \end{bmatrix} A$ Applying $r_2 \rightarrow -\frac{7}{25}r_2$ $\begin{bmatrix} 1 & \frac{1}{7} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{7} & 0 \\ \frac{4}{75} & -\frac{7}{75} \end{bmatrix} A$ Applying $r_1 \rightarrow r_1 - \frac{1}{7}r_2$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{21}{175} & \frac{1}{25} \\ \frac{4}{25} & -\frac{7}{25} \end{bmatrix} A$

So, as we know that

$$I = A^{-1}A$$

Therefore

$$A^{-1} = \begin{bmatrix} \frac{21}{175} & \frac{1}{25} \\ \frac{4}{25} & -\frac{7}{25} \end{bmatrix}$$

2.
$$\begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$$

Solution:

For row transformation we have,

A = IA $\Rightarrow \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$ $Applying \stackrel{r_1 \rightarrow \frac{1}{5}r_1}{= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$ $Applying \stackrel{r_2 \rightarrow \frac{1}{5}r_1}{= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$ $Applying \stackrel{r_2 \rightarrow r_2 - 2r_1}{= \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{5} \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & 0 \\ -\frac{2}{5} & 1 \end{bmatrix} A$ $Applying \stackrel{r_2 \rightarrow 5r_2}{= \begin{bmatrix} 1 & 0 \\ -\frac{2}{5} & 1 \end{bmatrix} A$

Applying
$$r_1 \rightarrow r_1 - \frac{2}{5}r_2$$

 $\underset{\Rightarrow}{\rightarrow} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix} \mathbf{A}$

So, as we know that

$$\mathsf{I}=\mathsf{A}^{\text{-1}}\mathsf{A}$$

Therefore

$$\Rightarrow A^{-1} = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}$$

$$3. \begin{bmatrix} 1 & 6 \\ -3 & 5 \end{bmatrix}$$

Solution:

For row transformation we have

A = IA

$$= \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{A}$$
Applying $r_2 \to r_2 - 2r_1$

$$= \begin{bmatrix} 1 & 2 \\ 0 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} A$$

Applying $r_2 \rightarrow -\frac{1}{5}r_2$

$$\Rightarrow \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{2}{5} & -\frac{1}{5} \end{bmatrix} A$$

Applying $r_1 \rightarrow r_1 - 2r_2$

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{1}{5} \end{bmatrix} A$$

So, as we know that

$$I = A^{-1}A$$

Therefore

$$A^{-1} = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{1}{5} \end{bmatrix}$$

$$4.\begin{bmatrix}2&5\\1&3\end{bmatrix}$$

Solution:

nele For elementary row operation we have

A = IA

$$\Rightarrow \begin{bmatrix} 2 & 5\\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} A$$

Applying $r_1 \rightarrow \frac{1}{2}r_1$

$$\Rightarrow \begin{bmatrix} 1 & \frac{5}{2} \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{bmatrix} A$$

Applying $r_2 \rightarrow r_2 - r_1$

$$\Rightarrow \begin{bmatrix} 1 & \frac{5}{2} \\ 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{1}{2} & 1 \end{bmatrix} A$$

Applying $r_2 \rightarrow 2r_2$

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix

$$\Rightarrow \begin{bmatrix} 1 & \frac{5}{2} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ -1 & 2 \end{bmatrix} A$$

Applying $r_1 \rightarrow r_1 - \frac{5}{2}r_2$

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} A$$

So, as we know that

$$\mathsf{I}=\mathsf{A}^{\text{-1}}\mathsf{A}$$

Therefore

$$\Rightarrow A^{-1} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$$

$$5. \begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}$$

Solution:

For elementary row operation we have

$$\Rightarrow \begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Applying $r_1 \rightarrow \frac{1}{3}r_1$

$$\Rightarrow \begin{bmatrix} 1 & \frac{10}{3} \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{bmatrix} A$$

Applying $r_2 \rightarrow r_2 - 2r_1$

$$\Rightarrow \begin{bmatrix} 1 & \frac{10}{3} \\ 0 & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 \\ -\frac{2}{3} & 1 \end{bmatrix} A$$

Applying $r_2 \rightarrow 3r_2$

 $\Rightarrow \begin{bmatrix} 1 & \frac{10}{3} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 \\ -2 & 3 \end{bmatrix} A$

Applying $r_1 \rightarrow r_1 - \frac{10}{3}r_2$

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -10 \\ -2 & 3 \end{bmatrix} A$$

$$I = A^{-1}A$$

Therefore

 $\Rightarrow A^{-1} = \begin{bmatrix} 7 & -10 \\ -2 & 3 \end{bmatrix}$

 $6. \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$

Solution:

For elementary row operation we have,

A = IA

	0	1	2]	[1	0	0]
	1	2	3 =	0	1	0 A
⇒	L3	1	1	Lo	0	1

Applying $r_1 \leftrightarrow r_2$

	[1	2	3]		[0]	1	0	
	0	1	2	=	1	0	0	A
⇒	L3	1	1		Lo	0	1	

Applying $r_3 \rightarrow r_3 - 3r_1$

$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} A$
$\Rightarrow \begin{bmatrix} 0 & 1 & 2 \\ 0 & -5 & -8 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix}^{1}$
Applying $r_1 \rightarrow r_1 - 2r_2$ and $r_3 \rightarrow r_3 + 5r_2$
$ = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 5 & -3 & 1 \end{bmatrix} A $
Applying $r_3 \rightarrow \frac{1}{2}r_3$
$\Rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2} \end{bmatrix} A$
Applying $r_1 \rightarrow r_1 + r_3$ and $r_2 \rightarrow r_2 - 2r_3$
$ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & 1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix} A $
So, as we know that
I = A ⁻¹ A Therefore
$A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & 1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$
$7. \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$

Solution:

For elementary row operation we have,

A = IA $= \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$ Applying $r_1 \rightarrow \frac{1}{2}r_1$ $\begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 5 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$ Applying $r_2 \rightarrow r_2 - 5r_1$ $\begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$ Applying $r_3 \rightarrow r_3 - r_2$ $\begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ \frac{1}{2} & -1 & 1 \end{bmatrix} A$ Applying $r_3 \rightarrow 2r_3$ $\begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ r & 0 & 0 \end{bmatrix} A$ Applying $r_1 \rightarrow r_1 + \frac{1}{2}r_3$ and $r_2 \rightarrow r_2 - \frac{5}{2}r_3$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} A$$

So, as we know that

$$I = A^{-1}A$$

Therefore

$$A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$

	$\left[2\right]$	3	1
8.	2	4	1
	3	7	2

Solution:

For row transformation we have

A = IA

	2	3	1]		[1	0	0	
	2	4	1	=	0	1	0	A
⇒	13	7	2		lo	0	1	

Applying $r_1 \rightarrow \frac{1}{2}r_1$

	1	3 2	$\frac{1}{2}$		$\left[\frac{1}{2}\right]$	0	0	
	2	4	1	=	Ō	1	0	A
⇒	L3	7	2		Lo	0	1	

Applying $r_2 \rightarrow r_2 - 2r_1$ and $r_3 \rightarrow r_3 - 3r_1$

1	3 2	$\frac{1}{2}$	$\left[\frac{1}{2}\right]$	0	0	
0	1	0 =	-1	1	0	Α
[0	5 2	$\frac{1}{2}$	$-\frac{3}{2}$	0	1	

Applying
$$r_1 \rightarrow r_1 - \frac{3}{2}r_2$$
 and $r_3 \rightarrow r_3 - \frac{5}{2}r_2$

$$\begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 2 & -\frac{3}{2} & 0 \\ -1 & 1 & 0 \\ 1 & -\frac{5}{2} & 1 \end{bmatrix} A$$
Applying $r_3 \rightarrow 2r_3$

$$\begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -\frac{3}{2} & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 2 \end{bmatrix} A$$
Applying $r_1 \rightarrow r_1 - \frac{1}{2}r_3$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 0 \\ 2 & -5 & 2 \end{bmatrix} A$$
So, as we know that
$$I = A^{-1}A$$

Therefore

A⁻¹ = B

$$A^{-1} = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 0 \\ 2 & -5 & 2 \end{bmatrix}$$

