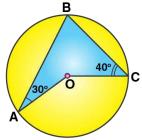
Exercise 17(A)

Page No: 257

В

40°

1. In the given figure, O is the center of the circle. $\angle OAB$ and $\angle OCB$ are 30° and 40° respectively. Find $\angle AOC$ Show your steps of working.



Solution:

Firstly, let's join AC.

And, let $\angle OAC = \angle OCA = x$ [Angles opposite to equal sides are equal]

So,
$$\angle AOC = 180^{\circ} - 2x$$

Also,

 $\angle BAC = 30^{\circ} + x$

$$\angle BCA = 40^{\circ} + x$$

Now, in $\triangle ABC$

$$\angle ABC = 180^{\circ} - \angle BAC - \angle BCA$$
 [Angles sum property of a

triangle]

$$= 180^{\circ} - (30^{\circ} + x) - (40^{\circ} + x)$$

$$= 110^{\circ} - 2x$$

And, $\angle AOC = 2\angle ABC$

[Angle at the center is double the angle at the circumference subtend by the same chord]

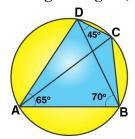
$$180^{\circ} - 2x = 2(110^{\circ} - 2x)$$

$$2x = 40^{\circ}$$

$$x = 20^{\circ}$$

Thus,
$$\angle AOC = 180^{\circ} - 2x20^{\circ} = 140^{\circ}$$

2. In the given figure, $\angle BAD = 65^{\circ}$, $\angle ABD = 70^{\circ}$, $\angle BDC = 45^{\circ}$



- (i) Prove that AC is a diameter of the circle.
- (ii) Find ∠ACB.

Solution:

(i) In
$$\triangle ABD$$
,
 $\angle DAB + \angle ABD + \angle ADB = 180^{\circ}$

 $65^{\circ} + 70^{\circ} + \angle ADB = 180^{\circ}$

 $135^{\circ} + \angle ADB = 180^{\circ}$

$$\angle ADB = 180^{\circ} - 135^{\circ} = 45^{\circ}$$

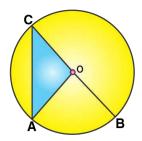
Now,

$$\angle ADC = \angle ADB + \angle BDC = 45^{\circ} + 45^{\circ} = 90^{\circ}$$

As ∠ADC is the angle of semi-circle for AC as the diameter of the circle.

(ii) $\angle ACB = \angle ADB$ [Angles in the same segment of a circle] Hence, $\angle ACB = 45^{\circ}$

3. Given O is the centre of the circle and $\angle AOB = 70^{\circ}$.



Calculate the value of:

(i) ∠OCA,

(ii) ∠OAC.

Solution:

Here, $\angle AOB = 2 \angle ACB$

[Angle at the center is double the angle at the circumference subtend by the same chord]

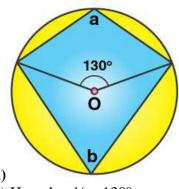
 $\angle ACB = 70^{\circ}/2 = 35^{\circ}$

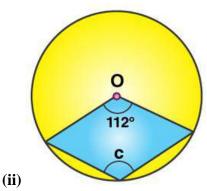
Now, OC = OA [Radii of same circle]

Thus,

 $\angle OCA = \angle OAC = 35^{\circ}$

4. In each of the following figures, O is the centre of the circle. Find the values of a, b and c. Solution:





(i) Here, $b = \frac{1}{2} \times 130^{\circ}$

[Angle at the center is double the angle at the circumference subtend by the same chord] Thus, $b = 65^{\circ}$

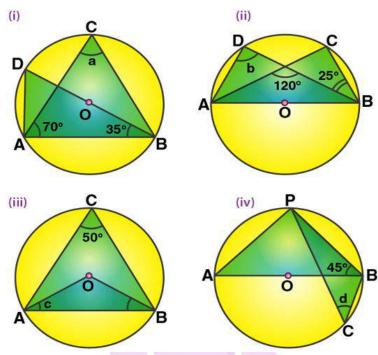
Now.

 $a+b=180^{\circ}$ [Opposite angles of a cyclic quadrilateral are supplementary] $a=180^{\circ}-65^{\circ}=115^{\circ}$

(ii) Here, $c = \frac{1}{2} \times \text{Reflex} (112^{\circ})$

[Angle at the center is double the angle at the circumference subtend by the same chord] Thus, $c = \frac{1}{2} \times (360^{\circ} - 112^{\circ}) = 124^{\circ}$

5. In each of the following figures, O is the center of the circle. Find the values of a, b, c and d.



Solution:

(i) Here,
$$\angle BAD = 90^{\circ}$$
 [Angle in a semi-circle]

So,
$$\angle BDA = 90^{\circ} - 35^{\circ} = 55^{\circ}$$

And.

$$a = \angle ACB = \angle BDA = 55^{\circ}$$

[Angles subtended by the same chord on the circle are equal]

(ii) Here,
$$\angle DAC = \angle CBD = 25^{\circ}$$

[Angles subtended by the same chord on the circle are equal]

And, we have

$$120^{\circ} = b + 25^{\circ}$$

[Exterior angle property of a triangle]

 $b = 95^{\circ}$

(iii)
$$\angle AOB = 2\angle AOB = 2 \times 50^{\circ} = 100^{\circ}$$

[Angle at the center is double the angle at the circumference subtend by the same chord] Also, OA = OB

$$\angle OBA = \angle OAB = c$$

 $c = (180^{\circ} - 100^{\circ})/2 = 40^{\circ}$

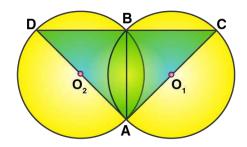
(iv) We have,
$$\angle APB = 90^{\circ}$$
 [Angle in a semicircle]

$$\angle BAP = 90^{\circ} - 45^{\circ} = 45^{\circ}$$

Now,
$$d = \angle BCP = \angle BAP = 45^{\circ}$$

[Angles subtended by the same chord on the circle are equal]

6. In the figure, AB is common chord of the two circles. If AC and AD are diameters; prove that D, B and C are in a straight line. O_1 and O_2 are the centers of two circles.



Solution:

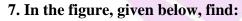
It's seen that,

$$\angle DBA = \angle CBA = 90^{\circ}$$
 [Angle in a semi-circle is a right angle]

So, adding both

$$\angle DBA + \angle CBA = 180^{\circ}$$

Thus, DBC is a straight line i.e. D, B and C form a straight line.

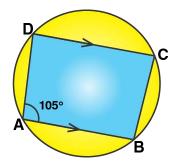


- (i) ∠BCD,
- (ii) ∠ADC,
- (iii) ∠ABC.

Show steps of your working.

Solution:

From the given fig, it's seen that In cyclic quadrilateral ABCD, DC \parallel AB And given, \angle DAB = 105°



- (i) So, $\angle BCD = 180^{\circ} - 105^{\circ} = 75^{\circ}$ [Sum of opposite angles in a cyclic quadrilateral is 180°]
- (ii) Now,∠ADC and ∠DAB are corresponding angles.

$$\angle ADC + \angle DAB = 180^{\circ}$$

$$\angle ADC = 180^{\circ} - 105^{\circ}$$

Thus,

$$\angle ADC = 75^{\circ}$$

(iii) We know that, the sum of angles in a quadrilateral is 360°

$$\angle ADC + \angle DAB + \angle BCD + \angle ABC = 360^{\circ}$$

$$75^{\circ} + 105^{\circ} + 75^{\circ} + \angle ABC = 360^{\circ}$$

$$\angle ABC = 360^{\circ} - 255^{\circ}$$

Thus.

 $\angle ABC = 105^{\circ}$

8. In the figure, given below, O is the centre of the circle. If $\angle AOB = 140^{\circ}$ and $\angle OAC = 50^{\circ}$; find:

 $(i) \angle ACB$,

- (ii) ∠OBC,
- (iii) ∠OAB,
- (iv) \angle CBA.
- **Solution:**
- Given, $\angle AOB = 140^{\circ}$ and $\angle OAC = 50^{\circ}$

(i) Now,

$$\angle ACB = \frac{1}{2} \text{ Reflex } (\angle AOB) = \frac{1}{2} (360^{\circ} - 140^{\circ}) = 110^{\circ}$$

[Angle at the center is double the angle at the circumference subtend by the same chord]

In quadrilateral OBCA, (ii)

$$\angle OBC + \angle ACB + \angle OCA + \angle AOB = 360^{\circ}$$

$$\angle OBC + 110^{\circ} + 50^{\circ} + 140^{\circ} = 360^{\circ}$$

Thus,
$$\angle OBC = 360^{\circ} - 300^{\circ} = 60^{\circ}$$

(iii) In $\triangle AOB$, we have

$$OA = OB$$
 (radii)

So,
$$\angle OBA = \angle OAB$$

Hence, by angle sum property of a triangle

$$\angle OBA + \angle OAB + \angle AOB = 180^{\circ}$$

$$2\angle OBA + 140^{\circ} = 180^{\circ}$$

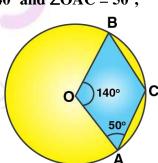
$$2 \angle OBA = 40^{\circ}$$

$$\angle OBA = 20^{\circ}$$

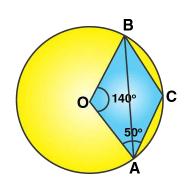
(iv) We already found, $\angle OBC = 60^{\circ}$

And,
$$\angle OBC = \angle CBA + \angle OBA$$

$$60^{\circ} = \angle CBA + 20^{\circ}$$



[Angle sum property of a quadrilateral]



Therefore, $\angle CBA = 40^{\circ}$

9. Calculate:

- (i) ∠CDB,
- (ii) ∠ABC,
- (iii) ∠ACB.

Solution:

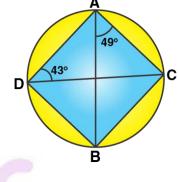
Here, we have

$$\angle$$
CDB = \angle BAC = 49°

$$\angle ABC = \angle ADC = 43^{\circ}$$

[Angles subtended by the same chord on the circle are equal] Now, by angle sum property of a triangle we have

$$\angle ACB = 180^{\circ} - 49^{\circ} - 43^{\circ} = 88^{\circ}$$

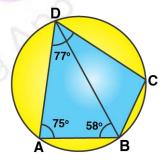


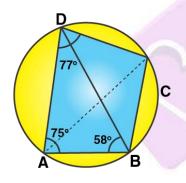
10. In the figure given below, ABCD is a cyclic quadrilateral in which $\angle BAD = 75^{\circ}$; $\angle ABD = 58^{\circ}$ and $\angle ADC = 77^{\circ}$.

Find:

- (i) ∠BDC,
- (ii) ∠BCD,
- (iii) ∠BCA.

Solution:





(i) By angle sum property of triangle ABD,

$$\angle ADB = 180^{\circ} - 75^{\circ} - 58^{\circ} = 47^{\circ}$$

Thus,
$$\angle BDC = \angle ADC - \angle ADB = 77^{\circ} - 47^{\circ} = 30^{\circ}$$

(ii)
$$\angle BAD + \angle BCD = 180^{\circ}$$

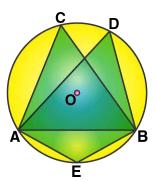
[Sum of opposite angles of a cyclic quadrilateral is 180°]

Thus,
$$\angle BCD = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

(iii)
$$\angle BCA = \angle ADB = 47^{\circ}$$

[Angles subtended by the same chord on the circle are equal]

11. In the figure given below, O is the centre of the circle and triangle ABC is equilateral.



Find:

(i) ∠ADB, (ii) ∠AEB

Solution:

(i) As, it's seen that ∠ACB and ∠ADB are in the same segment, So,

$$\angle ADB = 2 \angle ACB = 60^{\circ}$$

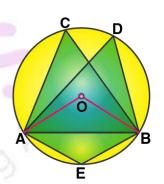
(ii) Now, join OA and OB.

And, we have

$$\angle AEB = \frac{1}{2} \text{ Reflex } (\angle AOB) = \frac{1}{2} (360^{\circ} - 120^{\circ}) = 120^{\circ}$$

[Angle at the center is double the angle at the

circumference subtend by the same chord]



12. Given: $\angle CAB = 75^{\circ}$ and $\angle CBA = 50^{\circ}$. Find the value of $\angle DAB + \angle ABD$. Solution:

Given,
$$\angle CAB = 75^{\circ}$$
 and $\angle CBA = 50^{\circ}$

In $\triangle ABC$, by angle sum property we have

$$\angle ACB = 180^{\circ} - (\angle CBA + \angle CAB)$$

= $180^{\circ} - (50^{\circ} + 75^{\circ}) = 180^{\circ} - 125^{\circ}$
= 55°

And,

$$\angle$$
ADB = \angle ACB = 55°

[Angles subtended by the same chord on the circle are

equal]

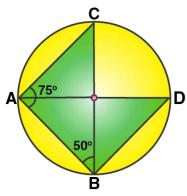
Now, taking ΔABD

$$\angle DAB + \angle ABD + \angle ADB = 180^{\circ}$$

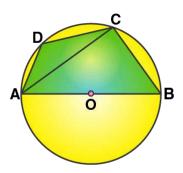
$$\angle DAB + \angle ABD + 55^{\circ} = 180^{\circ}$$

$$\angle DAB + \angle ABD = 180^{\circ} - 55^{\circ}$$

$$\angle DAB + \angle ABD = 125^{\circ}$$



13. ABCD is a cyclic quadrilateral in a circle with centre O. If $\angle ADC = 130^{\circ}$, find $\angle BAC$.



Solution:

From the fig. its seem that,

 $\angle ACB = 90^{\circ}$ [Angle in a semi-circle is 90°]

Also,

 $\angle ABC = 180^{\circ} - \angle ADC = 180^{\circ} - 130^{\circ} = 50^{\circ}$

[Pair of opposite angles in a cyclic quadrilateral are supplementary]

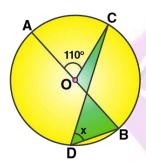
By angle sum property of the right triangle ACB, we have

 $\angle BAC = 90^{\circ} - \angle ABC$

 $=90^{\circ}-50^{\circ}$

Thus, $\angle BAC = 40^{\circ}$

14. In the figure given alongside, AOB is a diameter of the circle and $\angle AOC = 110^{\circ}$, find $\angle BDC$.



Solution:

Let's join AD first.

So, we have

$$\angle ADC = \frac{1}{2} \angle AOC = \frac{1}{2} \times 110^{\circ} = 55^{\circ}$$

[Angle at the centre is double the angle at the circumference subtended by the same chord]

Also, we know that

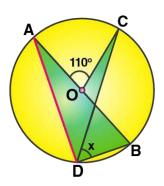
 $\angle ADB = 90^{\circ}$

[Angle in the semi-circle is a right angle]

Therefore,

$$\angle BDC = 90^{\circ} - \angle ADC = 90^{\circ} - 55^{\circ}$$

 $\angle BDC = 35^{\circ}$



15. In the following figure, O is the centre of the circle; $\angle AOB = 60^{\circ}$ and $\angle BDC = 100^{\circ}$, find $\angle OBC$.

Solution:

Form the figure, we have

$$\angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$$

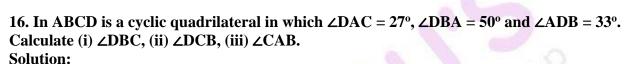
[Angle at the centre is double the angle at the circumference subtended by the same chord]

Now, by applying angle sum property in $\triangle BDC$,

$$\angle DBC = 180^{\circ} - 100^{\circ} - 30^{\circ} = 50^{\circ}$$

Therefore.

 $\angle OBC = 50^{\circ}$



(i) It's seen that,

$$\angle DBC = \angle DAC = 27^{\circ}$$

[Angles subtended by the same chord on the circle are equal]

(ii) It's seen that,

$$\angle ACB = \angle ADB = 33^{\circ}$$

And,

$$\angle ACD = \angle ABD = 50^{\circ}$$

[Angles subtended by the same chord on the circle are equal]

Thus,

$$\angle DCB = \angle ACD + \angle ACB = 50^{\circ} + 33^{\circ} = 83^{\circ}$$

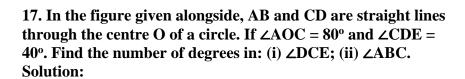
(iii) In quad. ABCD,

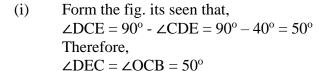
$$\angle DAB + \angle DCB = 180^{\circ}$$

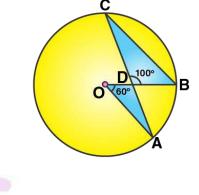
$$27^{\circ} + \angle CAB + 83^{\circ} = 180^{\circ}$$

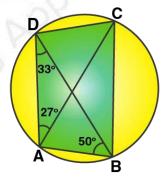
Thus,

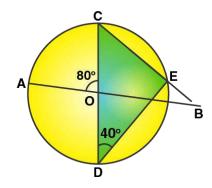
$$\angle CAB = 180^{\circ} - 110^{\circ} = 70^{\circ}$$











(ii) In $\triangle BOC$, we have

 $\angle AOC = \angle OCB + \angle OBC$

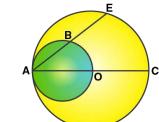
[Exterior angle property of a triangle]

 $\angle OBC = 80^{\circ} - 50^{\circ} = 30^{\circ}$

[Given $\angle AOC = 80^{\circ}$]

Therefore, $\angle ABC = 30^{\circ}$

18. In the figure given below, AC is a diameter of a circle, whose centre is O. A circle is described on AO as diameter. AE, a chord of the larger circle, intersects the smaller circle at B. Prove that AB = BE.



Solution:

Firstly, join OB.

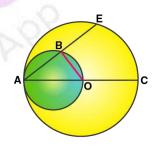
Then, $\angle OBA = 90^{\circ}$ [Angle in a semi-circle is a right angle]

That is, OB is perpendicular to AE.

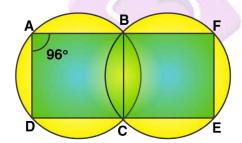
Now, we know that the perpendicular draw from the centre to a chord bisects the chord.

Therefore,

AB = BE



19. (a) In the following figure,



- (i) if $\angle BAD = 96^{\circ}$, find $\angle BCD$ and $\angle BFE$.
- (ii) Prove that AD is parallel to FE.
- (b) ABCD is a parallelogram. A circle Solution:
- (i) ABCD is a cyclic quadrilateral

So,
$$\angle BAD + \angle BCD = 180^{\circ}$$

[Pair of opposite angles in a cyclic quadrilateral are supplementary]

$$\angle BCD = 180^{\circ} - 96^{\circ} = 84^{\circ}$$

And, $\angle BCE = 180^{\circ} - 84^{\circ} = 96^{\circ}$

[Linear pair of angles]

Similarly, BCEF is a cyclic quadrilateral

So, $\angle BCE + \angle BFE = 180^{\circ}$

[Pair of opposite angles in a cyclic quadrilateral are supplementary]

 $\angle BFE = 180^{\circ} - 96^{\circ} = 84^{\circ}$

(ii) Now, $\angle BAD + \angle BFE = 96^{\circ} + 84^{\circ} = 180^{\circ}$

But these two are interior angles on the same side of a pair of lines AD and FE.

Therefore, AD || FE.

20. Prove that:

(i) the parallelogram, inscribed in a circle, is a rectangle.

(ii) the rhombus, inscribed in a circle, is a square.

Solution:

(i) Let's assume that ABCD is a parallelogram which is inscribed in a circle.

So, we have

 $\angle BAD = \angle BCD$ [Opposite angles of a parallelogram are equal]

And $\angle BAD + \angle BCD = 180^{\circ}$

[Pair of opposite angles in a cyclic

quadrilateral are supplementary]

So,
$$2\angle BAD = 180^{\circ}$$

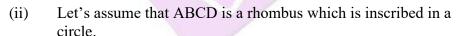
Thus,
$$\angle BAD = \angle BCD = 90^{\circ}$$

Similarly, the remaining two angles are 90° each and pair of opposite sides are equal.

Therefore,

ABCD is a rectangle.

- Hence Proved



So, we have

$$\angle BAD = \angle BCD$$
 [Opposite angles of a rhombus are equal]

And
$$\angle BAD + \angle BCD = 180^{\circ}$$

[Pair of opposite angles in a cyclic

quadrilateral are supplementary]

So,
$$2\angle BAD = 180^{\circ}$$

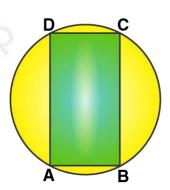
Thus,
$$\angle BAD = \angle BCD = 90^{\circ}$$

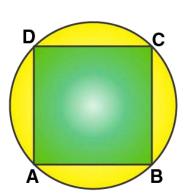
Similarly, the remaining two angles are 90° each and all the sides are equal.

Therefore,

ABCD is a square.

- Hence Proved





21. In the following figure, AB = AC. Prove that DECB is an isosceles trapezium.

Solution:

Give, AB = AC

So, $\angle B = \angle C \dots (1)$

[Angles opposite to equal sides are equal]

And, DECB is a cyclic quadrilateral.

So, $\angle B + \angle DEC = 180^{\circ}$

[Pair of opposite angles in a cyclic quadrilateral are supplementary]

 $\angle C + \angle DEC = 180^{\circ} \dots \text{ (Using 1)}$

But this is the sum of interior angles on one side of a transversal.

 $DE \parallel BC$.

But, $\angle ADE = \angle B$ and $\angle AED = \angle C$ [Corresponding angles]

Thus, $\angle ADE = \angle AED$

AD = AE

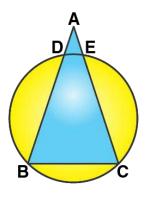
AB - AD = AC = AE [As AB = AC]

BD = CE

Hence, we have $DE \parallel BC$ and BD = CE

Therefore,

DECB is an isosceles trapezium.



22. Two circles intersect at P and Q. Through P diameters PA and PB of the two circles are drawn. Show that the points A, Q and B are collinear. Solution:

Let O and O' be the centres of two intersecting circles, where points of the intersection are P and Q and PA and PB are their diameters respectively.

Join PQ, AQ and QB.

Thus, $\angle AQP = 90^{\circ}$ and $\angle BQP = 90^{\circ}$

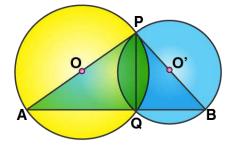
[Angle in a semicircle is a right angle]

Now, adding both these angles we get

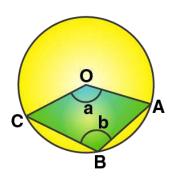
$$\angle AQP + \angle BQP = 180^{\circ}$$

$$\angle AQB = 180^{\circ}$$

Therefore, the points A, Q and B are collinear.



- 23. The figure given below, shows a circle with centre O. Given: $\angle AOC = a$ and $\angle ABC = b$.
- (i) Find the relationship between a and b
- (ii) Find the measure of angle OAB, if OABC is a parallelogram.



Solution:

(i) It's seen that,

 $\angle ABC = \frac{1}{2} \text{ Reflex } (\angle COA)$

[Angle at the centre is double the angle at the circumference subtended by the same

chord]

So, $b = \frac{1}{2} (360^{\circ} - a)$

 $a + 2b = 180^{\circ} \dots (1)$

(ii) As OABC is a parallelogram, the opposite angles are equal.

So, a = b

Now, using the above relationship in (1)

 $3a = 180^{\circ}$

 $a = 60^{\circ}$

Also, OC || BA

 $\angle COA + \angle OAB = 180^{\circ}$

 $60^{\circ} + \angle OAB = 180^{\circ}$

Therefore.

 $\angle OAB = 120^{\circ}$

24. Two chords AB and CD intersect at P inside the circle. Prove that the sum of the angles subtended by the arcs AC and BD as the center O is equal to twice the angle APC Solution:

Required to prove: $\angle AOC + \angle BOD = 2 \angle APC$

OA, OB, OC and OD are joined.

Also, AD is joined.

Now, it's seen that

 $\angle AOC = 2\angle ADC \dots (1)$

[Angle at the centre is double the angle at the circumference subtended by the same chord]

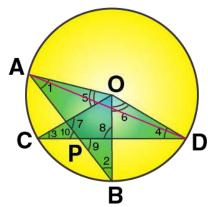
Similarly,

 $\angle BOD = 2\angle BAD \dots (2)$

Adding (1) and (2), we have

$$\angle AOC + \angle BOD = 2\angle ADC + 2\angle BAD$$

= $2(\angle ADC + \angle BAD) \dots (3)$



M

S

And in $\triangle PAD$,

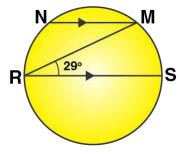
Ext.
$$\angle APC = \angle PAD + \angle ADC$$

= $\angle BAD + \angle ADC \dots (4)$

So, from (3) and (4) we have

 $\angle AOC + \angle BOD = 2\angle APC$

25. In the figure given RS is a diameter of the circle. NM is parallel to RS and \angle MRS = 29° Calculate: (i) ∠RNM; (ii) ∠NRM.



Solution:

(i) Join RN and MS

$$\sqrt{PMS} = 000$$

 $\angle RMS = 90^{\circ}$

[Angle in a semi-circle is a right

angle]

So, by angle sum property of Δ RMS

$$\angle RMS = 90^{\circ} - 29^{\circ} = 61^{\circ}$$

And,

$$\angle RNM = 180^{\circ} - \angle RSM = 180^{\circ} - 61^{\circ} = 119^{\circ}$$

[Pair of opposite angles in a cyclic

quadrilateral are supplementary]

(ii) Now as RS || NM,

$$\angle NMR = \angle MRS = 29^{\circ}$$
 [Alternate angles]

$$\angle NMS = 90^{\circ} + 29^{\circ} = 119^{\circ}$$

Also, we know that

$$\angle NRS + \angle NMS = 180^{\circ}$$

[Pair of opposite angles in a cyclic quadrilateral are supplementary]

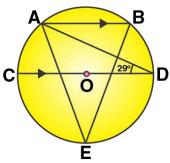
$$\angle NRM + 29^{\circ} + 119^{\circ} = 180^{\circ}$$

$$\angle NRM = 180^{\circ} - 148^{\circ}$$

Therefore,

 $\angle NRM = 32^{\circ}$

26. In the figure given alongside, AB || CD and O is the center of the circle. If \angle ADC = 25°; find the angle AEB. Give reasons in support of your answer.



Solution:

Join AC and BD.

So, we have

 $\angle CAD = 90^{\circ} \text{ and } \angle CBD = 90^{\circ}$

[Angle is a semicircle is a right angle]

And, AB || CD

So, $\angle BAD = \angle ADC = 25^{\circ}$ [Alternate angles]

 $\angle BAC = \angle BAD + \angle CAD = 25^{\circ} + 90^{\circ} = 115^{\circ}$

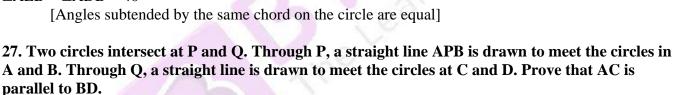
Thus,

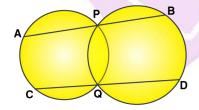
$$\angle ADB = 180^{\circ} - 25^{\circ} - \angle BAC = 180^{\circ} - 25^{\circ} - 115^{\circ} = 40^{\circ}$$

[Pair of opposite angles in a cyclic quadrilateral are supplementary]

Finally,

$$\angle AEB = \angle ADB = 40^{\circ}$$





Solution:

Let's join AC, PQ and BD.

As ACQP is a cyclic quadrilateral

$$\angle CAP + \angle PQC = 180^{\circ} \dots (i)$$

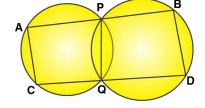
[Pair of opposite angles in a cyclic quadrilateral are supplementary]

Similarly, as PQDB is a cyclic quadrilateral

$$\angle PQD + \angle DBP = 180^{\circ} \dots (ii)$$

Again,
$$\angle PQC + \angle PQD = 180^{\circ}$$
 (iii) [Linear pair of angles]

Using (i), (ii) and (iii) we have



В

O

Ε

 $\angle CAP + \angle DBP = 180^{\circ}$

Or $\angle CAB + \angle DBA = 180^{\circ}$

We know that, if the sum of interior angles between two lines when intersected by a transversal are supplementary.

Then, AC || BD.

28. ABCD is a cyclic quadrilateral in which AB and DC on being produced, meet at P such that PA = PD. Prove that AD is parallel to BC. Solution:

Let's assume that ABCD be the given cyclic quadrilateral.

Also, PA = PD

[Given]

So, $\angle PAD = \angle PDA$ (1)

[Angles opposite to equal sides are equal]

And,

 $\angle BAD = 180^{\circ} - \angle PAD$

[Linear pair of angles]

Similarly,

 $\angle CDA = 180^{\circ} - \angle PDA = 180^{\circ} - \angle PAD$

[From (1)]

As the opposite angles of a cyclic quadrilateral are supplementary,

 $\angle ABC = 180^{\circ} - \angle CDA = 180^{\circ} - (180^{\circ} - \angle PAD) = \angle PAD$

And, $\angle DCB = 180^{\circ} - \angle BAD = 180^{\circ} - (180^{\circ} - \angle PAD) = \angle PAD$

Thus.

 $\angle ABC = \angle DCB = \angle PAD = \angle PDA$

Which is only possible when AD || BC.

