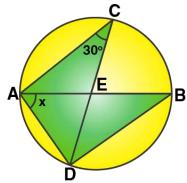
Exercise 17(C) Page No: 265

1. In the given circle with diameter AB, find the value of x.



Solution:

Now,

 $\angle ABD = \angle ACD = 30^{\circ}$ [Angles in the same segment]

In \triangle ADB, by angle sum property we have

 $\angle BAD + \angle ADB + \angle ABD = 180^{\circ}$

But, we know that angle in a semi-circle is 90°

 $\angle ADB = 90^{\circ}$

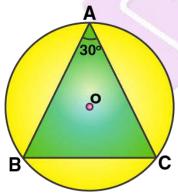
So,

 $x + 90^{\circ} + 30^{\circ} = 180^{\circ}$

 $x = 180^{\circ} - 120^{\circ}$

Hence, $x = 60^{\circ}$

2. In the given figure, ABC is a triangle in which $\angle BAC = 30^{\circ}$. Show that BC is equal to the radius of the circum-circle of the triangle ABC, whose center is O.



Solution:

Firstly, join OB and OC.

Proof:

 $\angle BOC = 2\angle BAC = 2 \times 30^{\circ} = 60^{\circ}$

Now, in $\triangle OBC$

OB = OC [Radii of same circle]

So, $\angle OBC = \angle OCB$ [Angles opposite to equal sides]

And in $\triangle OBC$, by angle sum property we have

 $\angle OBC + \angle OCB + \angle BOC = 180^{\circ}$

 $\angle OBC + \angle OBC + 60^{\circ} = 180^{\circ}$

 $2 \angle OBC = 180^{\circ} - 60^{\circ} = 120^{\circ}$

 $\angle OBC = 120^{\circ} / 2 = 60^{\circ}$

So, $\angle OBC = \angle OCB = \angle BOC = 60^{\circ}$

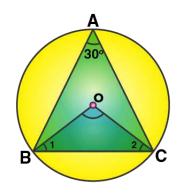
Thus, \triangle OBC is an equilateral triangle.

So,

BC = OB = OC

But, OB and OC are the radii of the circum-circle.

Therefore, BC is also the radius of the circum-circle.



3. Prove that the circle drawn on any one of the equal sides of an isosceles triangle as diameter bisects the base.

Solution:

Let's consider $\triangle ABC$, AB = AC and circle with AB as diameter is drawn which intersects the side BC and D.

And, join AD

Proof:

It's seen that,

 $\angle ADB = 90^{\circ}$ [Angle in a semi-circle]

And,

 $\angle ADC + \angle ADB = 180^{\circ}$ [Linear pair]

Thus, $\angle ADC = 90^{\circ}$

Now, in right \triangle ABD and \triangle ACD

AB = AC [Given]

AD = AD [Common]

 $\angle ADB = \angle ADC = 90^{\circ}$

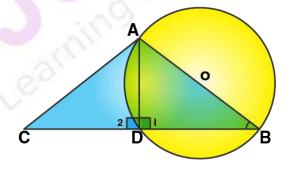
Hence, by R.H.S criterion of congruence.

 $\triangle ABD \cong \triangle ACD$

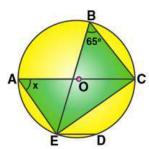
Now, by CPCT

BD = DC

Therefore, D is the mid-point of BC.



4. In the given figure, chord ED is parallel to diameter AC of the circle. Given $\angle CBE = 65^{\circ}$, calculate $\angle DEC$.



Solution:

Join OE.

Arc EC subtends ∠EOC at the centre and ∠EBC at the remaining part of the circle.

$$\angle EOC = 2\angle EBC = 2 \times 65^{\circ} = 130^{\circ}$$

Now, in $\triangle OEC$

OE = OC [Radii of the same circle]

So, $\angle OEC = \angle OCE$

But, in $\triangle EOC$ by angle sum property

$$\angle OEC + \angle OCE + \angle EOC = 180^{\circ}$$
 [Angles of a triangle]

$$\angle OCE + \angle OCE + \angle EOC = 180^{\circ}$$

 $2 \angle OCE + 130^{\circ} = 180^{\circ}$

 $2 \angle OCE = 180^{\circ} - 130^{\circ}$

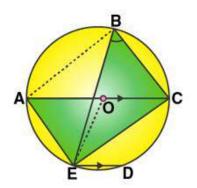
 $\angle OCE = 50^{\circ}/2 = 25^{\circ}$

And, AC || ED [Given]

 $\angle DEC = \angle OCE$ [Alternate angles]

Thus,

 $\angle DEC = 25^{\circ}$



5. The quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic. Prove it. Solution:

Let ABCD be a cyclic quadrilateral and PQRS be the quadrilateral formed by the angle bisectors of angle $\angle A$, $\angle B$, $\angle C$ and $\angle D$.

Required to prove: PQRS is a cyclic quadrilateral.

Proof:

By angle sum property of a triangle

In $\triangle APD$,

$$\angle PAD + \angle ADP + \angle APD = 180^{\circ} \dots (i)$$

And, in $\triangle BQC$

$$\angle QBC + \angle BCQ + \angle BQC = 180^{\circ} \dots$$
 (ii)

Adding (i) and (ii), we get

$$\angle PAD + \angle ADP + \angle APD + \angle QBC + \angle BCQ + \angle BQC = 180^{\circ} + 180^{\circ} = 360^{\circ}$$

..... (iii)

But,

$$\angle PAD + \angle ADP + \angle QBC + \angle BCQ = \frac{1}{2} \left[\angle A + \angle B + \angle C + \angle D \right]$$

= $\frac{1}{2} \times 360^{\circ} = 180^{\circ}$

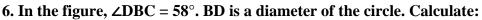
Therefore,

$$\angle APD + \angle BQC = 360^{\circ} - 180^{\circ} = 180^{\circ}$$
 [From (iii)]

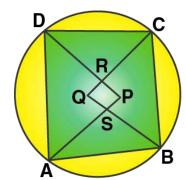
But, these are the sum of opposite angles of quadrilateral PRQS.

Therefore,

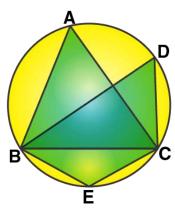
Quadrilateral PQRS is also a cyclic quadrilateral.



(i) ∠BDC



- (ii) ∠BEC
- (iii) ∠BAC



Solution:

(i) Given that BD is a diameter of the circle.

And, the angle in a semicircle is a right angle.

So,
$$\angle BCD = 90^{\circ}$$

Also given that,

$$\angle DBC = 58^{\circ}$$

In $\triangle BDC$,

$$\angle DBC + \angle BCD + \angle BDC = 180^{\circ}$$

$$58^{\circ} + 90^{\circ} + \angle BDC = 180^{\circ}$$

$$148^{\circ} + \angle BDC = 180^{\circ}$$

$$\angle BDC = 180^{\circ} - 148^{\circ}$$

Thus,
$$\angle BDC = 32^{\circ}$$

(ii) We know that, the opposite angles of a cyclic quadrilateral are supplementary.

So, in cyclic quadrilateral BECD

$$\angle BEC + \angle BDC = 180^{\circ}$$

$$\angle BEC + 32^{\circ} = 180^{\circ}$$

$$\angle BEC = 148^{\circ}$$

(iii) In cyclic quadrilateral ABEC,

$$\angle BAC + \angle BEC = 180^{\circ}$$

[Opposite angles of a cyclic quadrilateral are supplementary]

$$\angle BAC + 148^{\circ} = 180^{\circ}$$

$$\angle BAC = 180^{\circ} - 148^{\circ}$$

Thus,
$$\angle BAC = 32^{\circ}$$

7. D and E are points on equal sides AB and AC of an isosceles triangle ABC such that AD = AE. Prove that the points B, C, E and D are concyclic. Solution:

Given,

 \triangle ABC, AB = AC and D and E are points on AB and AC such that AD = AE.

And, DE is joined.

Required to prove: Points B, C, E and D are concyclic

Proof:

In $\triangle ABC$,

AB = AC [Given]

So, $\angle B = \angle C$ [Angles opposite to equal sides]

Similarly, In \triangle ADE,

AD = AE [Given]

So, $\angle ADE = \angle AED$ [Angles opposite to equal sides]

Now, in $\triangle ABC$ we have

AD/AB = AE/AC

Hence, DE || BC [Converse of BPT]

So,

 $\angle ADE = \angle B$ [Corresponding angles]

 $(180^{\circ} - \angle EDB) = \angle B$

 $\angle B + \angle EDB = 180^{\circ}$

But, it's proved above that

 $\angle B = \angle C$

So.

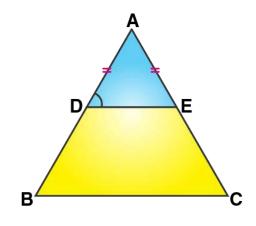
 $\angle C + \angle EDB = 180^{\circ}$

Thus, opposite angles are supplementary.

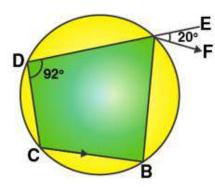
Similarly,

 $\angle B + \angle CED = 180^{\circ}$

Hence, B, C, E and D are concyclic.



8. In the given figure, ABCD is a cyclic quadrilateral. AF is drawn parallel to CB and DA is produced to point E. If $\angle ADC = 92^{\circ}$, $\angle FAE = 20^{\circ}$; determine $\angle BCD$. Given reason in support of your answer.



Solution:

Given,

In cyclic quad. ABCD

AF || CB and DA is produced to E such that $\angle ADC = 92^{\circ}$ and $\angle FAE = 20^{\circ}$

So.

 $\angle B + \angle D = 180^{\circ}$

$$\angle B + 92^{\circ} = 180^{\circ}$$

$$\angle B = 88^{\circ}$$

As AF
$$\parallel$$
 CB, \angle FAB = \angle B = 88°

But,
$$\angle FAD = 20^{\circ}$$
 [Given]

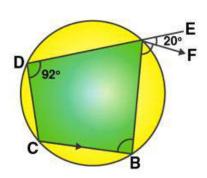
Ext.
$$\angle BAE = \angle BAF + \angle FAE$$

= $88^{\circ} + 22^{\circ} = 108^{\circ}$

But, Ext.
$$\angle BAE = \angle BCD$$

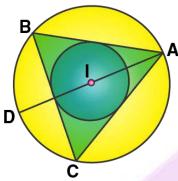
Therefore,

$$\angle BCD = 108^{\circ}$$



9. If I is the incentre of triangle ABC and AI when produced meets the circumcircle of triangle ABC in point D. If $\angle BAC = 66^{\circ}$ and $\angle ABC = 80^{\circ}$. Calculate:

- (i) $\angle DBC$,
- (ii) ∠IBC,
- (iii) ∠BIC

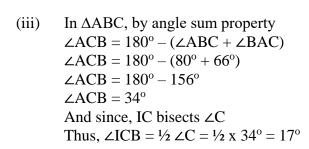


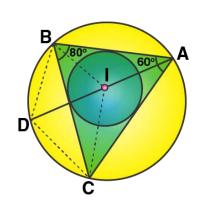
Solution:

Join DB and DC, IB and IC.

Given, if $\angle BAC = 66^{\circ}$ and $\angle ABC = 80^{\circ}$, I is the incentre of the $\triangle ABC$.

- (i) As it's seen that $\angle DBC$ and $\angle DAC$ are in the same segment, So, $\angle DBC = \angle DAC$ But, $\angle DAC = \frac{1}{2} \angle BAC = \frac{1}{2} \times 66^{\circ} = 33^{\circ}$ Thus, $\angle DBC = 33^{\circ}$
- (ii) And, as I is the incentre of $\triangle ABC$, IB bisects $\angle ABC$. Therefore, $\angle IBC = \frac{1}{2} \angle ABC = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$

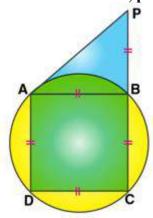




Now, in $\triangle IBC$ $\angle IBC + \angle ICB + \angle BIC = 180^{\circ}$ $40^{\circ} + 17^{\circ} + \angle BIC = 180^{\circ}$ $57^{\circ} + \angle BIC = 180^{\circ}$ $\angle BIC = 180^{\circ} - 57^{\circ}$ Therefore, $\angle BIC = 123^{\circ}$

10. In the given figure, AB = AD = DC = PB and $\angle DBC = x^{\circ}$. Determine, in terms of x: (i) $\angle ABD$, (ii) $\angle APB$.

Hence or otherwise, prove that AP is parallel to DB.



Solution:

Given, AB = AD = DC = PB and $\angle DBC = x^{\circ}$

Join AC and BD.

Proof:

 $\angle DAC = \angle DBC = x^{\circ}$ [Angles in the same segment]

And, $\angle DCA = \angle DAC = x^{\circ}$ [As AD = DC]

Also, we have

 $\angle ABD = \angle DAC$ [Angles in the same segment]

And, in $\triangle ABP$

Ext. $\angle ABD = \angle BAP + \angle APB$

But, $\angle BAP = \angle APB$ [Since, AB = BP]

 $2 x^{o} = \angle APB + \angle APB = 2\angle APB$

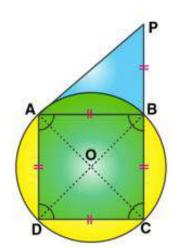
 $2\angle APB = 2x^{o}$

So, $\angle APB = x^o$

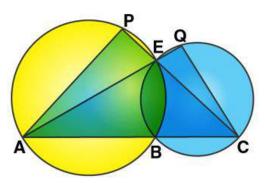
Thus, $\angle APB = \angle DBC = x^{\circ}$

But these are corresponding angles,

Therefore, AP || DB.



11. In the given figure; ABC, AEQ and CEP are straight lines. Show that \angle APE and \angle CQE are supplementary.



Solution:

Join EB.

Then, in cyclic quad.ABEP

 $\angle APE + \angle ABE = 180^{\circ} \dots$ (i)

[Opposite angles of a cyclic

quad. are supplementary]

Similarly, in cyclic quad.BCQE

 $\angle CQE + \angle CBE = 180^{\circ} \dots$ (ii)

[Opposite angles of a cyclic

quad. are supplementary]

Adding (i) and (ii), we have

 $\angle APE + \angle ABE + \angle CQE + \angle CBE = 180^{\circ} + 180^{\circ} = 360^{\circ}$

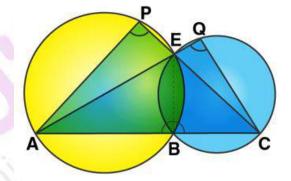
 $\angle APE + \angle ABE + \angle CQE + \angle CBE = 360^{\circ}$

But, $\angle ABE + \angle CBE = 180^{\circ}$ [Linear pair]

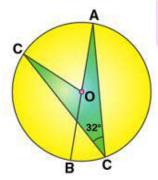
 $\angle APE + \angle CQE + 180^{\circ} = 360^{\circ}$

 $\angle APE + \angle CQE = 180^{\circ}$

Therefore, ∠APE and ∠CQE are supplementary.



12. In the given, AB is the diameter of the circle with centre O. If $\angle ADC = 32^{\circ}$, find angle BOC.



Solution:

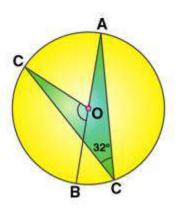
Arc AC subtends \angle AOC at the centre and \angle ADC at the remaining part of the circle.

Thus, $\angle AOC = 2\angle ADC$

 $\angle AOC = 2 \times 32^{\circ} = 64^{\circ}$

As ∠AOC and ∠BOC are linear pair, we have

 $\angle AOC + \angle BOC = 180^{\circ}$



 $64^{\circ} + \angle BOC = 180^{\circ}$ $\angle BOC = 180^{\circ} - 64^{\circ}$ Therefore, $\angle BOC = 116^{\circ}$

