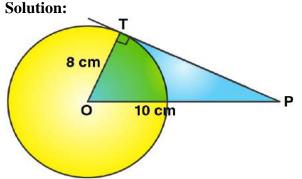


Exercise 18(A)

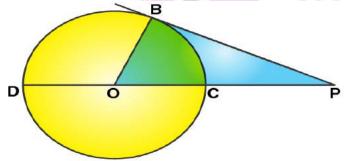
Page No: 274

1. The radius of a circle is 8cm. Calculate the length of a tangent drawn to this circle from a point at a distance of 10cm from its centre.



Given, a circle with centre O and radius 8 cm. An external point P from where a tangent is drawn to meet the circle at T. OP = 10 cm; radius OT = 8 cmAs $OT \perp PT$ In right $\triangle OTP$, we have $OP^2 = OT^2 + PT^2$ [By Pythagoras Theorem] $10^2 = 8^2 + PT^2$ $PT^2 = 100 - 64 = 36$ So, PT = 6Therefore, length of tangent = 6 cm.

2. In the given figure, O is the centre of the circle and AB is a tangent to the circle at B. If AB = 15 cm and AC = 7.5 cm, calculate the radius of the circle.

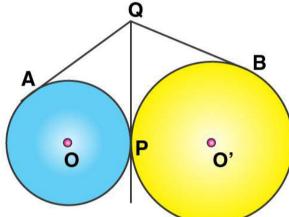


Solution:

Given, AB = 15 cm, AC = 7.5 cm Let's assume the radius of the circle to be 'r'. So, AO = AC + OC = 7.5 + rIn right $\triangle AOB$, we have $AO^2 = AB^2 + OB^2$ [By Pythagoras Theorem] $(7.5 + r)^2 = 15^2 + r^2$ $56.25 + r^2 + 15r = 225 + r^2$ 15r = 225 - 56.25

r = 168.75/ 15 Thus, r = 11.25 cm

3. Two circles touch each other externally at point P. Q is a point on the common tangent through P. Prove that the tangents QA and QB are equal.

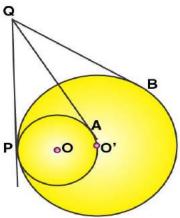


Solution:

Let Q be the point from which, QA and QP are two tangents to the circle with centre O So, $QA = QP \dots (a)$ Similarly, from point Q, QB and QP are two tangents to the circle with centre O' So, $QB = QP \dots (b)$ From (a) and (b), we have QA = QBTherefore, tangents QA and QB are equal. - Hence Proved

4. Two circles touch each other internally. Show that the tangents drawn to the two circles from any point on the common tangent are equal in length. Solution:

Let Q be the point on the common tangent from which, two tangents QA and QP are drawn to the circle with centre O. So, QA = QP (1) Similarly, from point Q, QB and QP are two tangents to the circle with centre O' So, QB = QP (2) From (1) and (2), we have QA = QBTherefore, tangents QA and QB are equal. - Hence Proved



5. Two circles of radii 5 cm and 3 cm are concentric. Calculate the length of a chord of the outer circle which touches the inner. Solution:

Given, OS = 5 cm and OT = 3 cmIn right triangle OST, we have $ST^2 = OS^2 - OT^2$ = 25 - 9 = 16So, ST = 4 cmAs we know, OT is perpendicular to SP and OT bisects chord SP Hence, SP = 2 x ST = 8 cm



6. Three circles touch each other externally. A triangle is formed when the centers of these circles are joined together. Find the radii of the circles, if the sides of the triangle formed are 6 cm, 8 cm and 9 cm.

Solution:

Let ABC be the triangle formed when centres of 3 circles are joined.

Given, AB = 6 cm, AC = 8 cm and BC = 9 cm

And let the radii of the circles having centres A, B and C be r₁, r₂ and r₃ respectively.

So, we have $r_1 + r_3 = 8$ $r_3 + r_2 = 9$ $r_2 + r_1 = 6$ Adding all the above equations, we get $r_1 + r_3 + r_3 + r_2 + r_2 + r_1 = 8 + 9 + 6$ $2(r_1 + r_2 + r_3) = 23$ So, $r_1 + r_2 + r_3 = 11.5$ cm Now, $r_1 + 9 = 11.5$ (As $r_2 + r_3 = 9$) $r_1 = 2.5$ cm

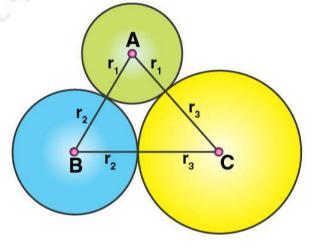
 $r_2 + 6 = 11.5$ (As $r_1 + r_3 = 6$)

Lastly, $r_3 + 8 = 11.5$ (As $r_2 + r_1 = 8$)

And.

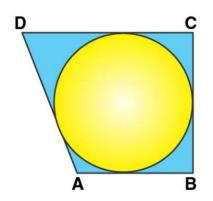
 $r_2 = 5.5 \text{ cm}$

 $r_3 = 3.5 \text{ cm}$

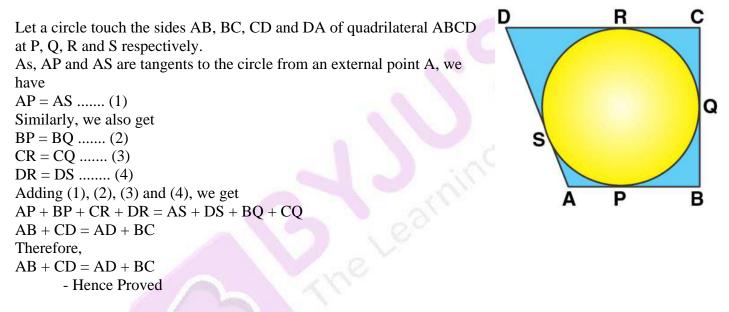


Therefore, the radii of the circles are $r_1 = 2.5$ cm, $r_2 = 5.5$ cm and $r_3 = 3.5$ cm.

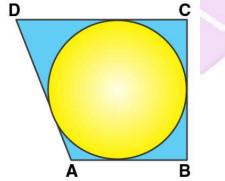
7. If the sides of a quadrilateral ABCD touch a circle, prove that AB + CD = BC + AD.



Solution:



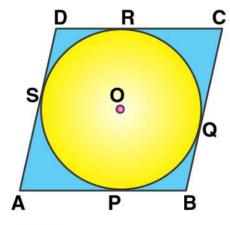
8. If the sides of a parallelogram touch a circle, prove that the parallelogram is a rhombus.



Solution:

Let a circle touch the sides AB, BC, CD and DA of parallelogram ABCD at P, Q, R and S respectively. Now, from point A, AP and AS are tangents to the circle. So, AP = AS......(1)Similarly, we also have BP = BQ(2)

CR = CQ(3) DR = DS(4) Adding (1), (2), (3) and (4), we get AP + BP + CR + DR = AS + DS + BQ + CQAB + CD = AD + BCTherefore, AB + CD = AD + BCBut AB = CD and BC = AD......(5) [Opposite sides of a parallelogram] Hence, AB + AB = BC + BC2AB = 2 BCAB = BC (6) From (5) and (6), we conclude that AB = BC = CD = DAThus, ABCD is a rhombus.



P

°c

Q

C

9. From the given figure prove that: AP + BQ + CR = BP + CQ + AR.

Also, show that $AP + BQ + CR = \frac{1}{2}x$ perimeter of triangle ABC. Solution:

As from point B, BQ and BP are the tangents to the circle We have, BQ = BP(1) Similarly, we also get AP = AR(2) And, CR = CQ(3) Adding (1), (2) and (3) we get, AP + BQ + CR = BP + CQ + AR(4) Now, adding AP + BQ + CR to both sides in (4), we get 2(AP + BQ + CR) = AP + PQ + CQ + QB + AR + CR2(AP + BQ + CR) = AB + BC + CATherefore, we get $AP + BQ + CR = \frac{1}{2}x$ (AB + BC + CA) i.e. $AP + BQ + CR = \frac{1}{2}x$ perimeter of triangle ABC

10. In the figure, if AB = AC then prove that BQ = CQ. Solution:

As, from point A AP and AR are the tangents to the circle So, we have AP = ARSimilarly, we also have BP = BQ and CR = CQ [From points B and C]

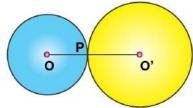
Now adding the above equations, we get AP + BP + CQ = AR + BQ + CR (AP + BP) + CQ = (AR + CR) + BQ $AB + CQ = AC + BQ \dots$ (i) But, as AB = AC [Given] Therefore, from (i) CQ = BQ or BQ = CQ

11. Radii of two circles are 6.3 cm and 3.6 cm. State the distance between their centers if - i) they touch each other externally.ii) they touch each other internally.

Solution:

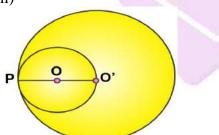
Given,

Radius of bigger circle = 6.3 cm and of smaller circle = 3.6 cm i)



When the two circles touch each other at P externally. O and O' are the centers of the circles. Join OP and O'P.

So, OP = 6.3 cm, O'P = 3.6 cm Hence, the distance between their centres (OO') is given by OO' = OP + O'P = 6.3 + 3.6 = 9.9 cm



When the two circles touch each other at P internally. O and O' are the centers of the circles. Join OP and O'P

So, OP = 6.3 cm, O'P = 3.6 cm Hence, the distance between their centres (OO') is given by OO' = OP - O'P = 6.3 - 3.6 = 2.7 cm

12. From a point P outside the circle, with centre O, tangents PA and PB are drawn. Prove that:
i) ∠AOP = ∠BOP
ii) OP is the ⊥ bisector of chord AB.
Solution:

- i) In $\triangle AOP$ and $\triangle BOP$, we have AP = BP [Tangents from P to the circle] OP = OP [Common] OA = OB [Radii of the same circle] Hence, by SAS criterion of congruence $\triangle AOP \cong \triangle BOP$ So, by C.P.C.T we have $\angle AOP = \angle BOP$
- ii) In $\triangle OAM$ and $\triangle OBM$, we have OA = OB[Radii of the same circle] $\angle AOM = \angle BOM$ [Proved $\angle AOP = \angle BOP$] OM = OM[Common] Hence, by SAS criterion of congruence $\Delta OAM \cong \Delta OBM$ So, by C.P.C.T we have AM = MBAnd $\angle OMA = \angle OMB$ But, $\angle OMA + \angle OMB = 180^{\circ}$ Thus, $\angle OMA = \angle OMB = 90^{\circ}$ Therefore, OM or OP is the perpendicular bisector of chord AB. - Hence Proved

