Exercise 18(B) Page No: 283

1. (i) In the given figure, $3 \times CP = PD = 9 \text{ cm}$ and AP = 4.5 cm. Find BP.

(ii) In the given figure, $5 \times PA = 3 \times AB = 30 \text{ cm}$ and PC = 4 cm. Find CD.

(iii) In the given figure, tangent PT = 12.5 cm and PA = 10 cm; find AB.

Solution:

(i) As the two chords AB and CD intersect each other at P, we have

AP x PB = CP x PD

$$4.5 \times PB = 3 \times 9$$
 [3CP = 9 cm so, CP = 3 cm]
PB = $(3 \times 9)/4.5 = 6 \text{ cm}$

(ii) As the two chords AB and CD intersect each other at P, we have

$$AP \times PB = CP \times PD$$

But,
$$5 \times PA = 3 \times AB = 30 \text{ cm}$$

So,
$$PA = 30/5 = 6$$
 cm and $AB = 30/3 = 10$ cm

And,
$$BP = PA + AB = 6 + 10 = 16 \text{ cm}$$

Now, as

$$AP \times PB = CP \times PD$$

$$6 \times 16 = 4 \times PD$$

$$PD = (6 \times 16)/4 = 24 \text{ cm}$$

$$CD = PD - PC = 24 - 4 = 20 \text{ cm}$$

(iii) As PAB is the secant and PT is the tangent, we have $PT^2 = PA \times PB$

2. In the given figure, diameter AB and chord CD of a circle meet at P. PT is a tangent to the circle at T. CD = 7.8 cm, PD = 5 cm, PB = 4 cm.

Find

- (i) **AB**.
- (ii) the length of tangent PT. Solution:

(i)
$$PA = AB + BP = (AB + 4) cm$$

 $PC = PD + CD = 5 + 7.8 = 12.8 cm$
 $As PA \times PB = PC \times PD$
 $(AB + 4) \times 4 = 12.8 \times 5$
 $AB + 4 = (12.8 \times 5)/4$
 $AB + 4 = 16$
Hence, $AB = 12 cm$

- (ii) As we know, $PT^2 = PC \times PD$ $PT^2 = 12.8 \times 5 = 64$ Thus, PT = 8 cm
- 3. In the following figure, PQ is the tangent to the circle at A, DB is a diameter and O is the centre of the circle. If \angle ADB = 30° and \angle CBD = 60°; calculate:
- i) ∠QAB
- ii) ∠PAD
- iii) ∠CDB

Solution:

(i) Given, PAQ is a tangent and AB is the chord $\angle QAB = \angle ADB = 30^{\circ}$ [Angles in the alternate segment]

- (iii) As BD is the diameter, we have $\angle BCD = 90^{\circ}$ [Angle in a semi-circle] Now in $\triangle BCD$, $\angle CDB + \angle CBD + \angle BCD = 180^{\circ}$ $\angle CDB + 60^{\circ} + 90^{\circ} = 180^{\circ}$ Thus, $\angle CDB = 180^{\circ} 150^{\circ} = 30^{\circ}$
- 4. If PQ is a tangent to the circle at R; calculate:
- i) ∠PRS
- ii) ∠ROT

Given: O is the centre of the circle and $\angle TRQ = 30^{\circ}$ Solution:

(i) As PQ is the tangent and OR is the radius.

So, OR
$$\perp$$
 PQ

$$\angle ORT = 90^{\circ}$$

$$\angle TRQ = 90^{\circ} - 30^{\circ} = 60^{\circ}$$

But in
$$\triangle$$
OTR, we have

$$\angle$$
OTR = 60° or \angle STR = 60°

But,

$$\angle PRS = \angle STR = 60^{\circ}$$

[Angles in the alternate segment]

(ii) In ΔOTR,

$$\angle ORT = 60^{\circ}$$

$$\angle OTR = 60^{\circ}$$

Thus,

$$\angle ROT = 180^{\circ} - (60^{\circ} + 60^{\circ}) = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

5. AB is diameter and AC is a chord of a circle with centre O such that angle BAC=30 $^{\circ}$. The tangent to the circle at C intersects AB produced in D. Show that BC = BD. Solution:

Join OC.

 $\angle BCD = \angle BAC = 30^{\circ}$ [Angles in the alternate segment]

It's seen that, arc BC subtends ∠DOC at the center of the circle and ∠BAC at the remaining part of the circle.

So.
$$\angle BOC = 2\angle BAC = 2 \times 30^{\circ} = 60^{\circ}$$

Now, in $\triangle OCD$

 $\angle BOC$ or $\angle DOC = 60^{\circ}$

 $\angle OCD = 90^{\circ} [OC \perp CD]$

 $\angle DOC + \angle ODC = 90^{\circ}$

 $\angle ODC = 90^{\circ} - 60^{\circ} = 30^{\circ}$

Now, in $\triangle BCD$

As $\angle ODC$ or $\angle BDC = \angle BCD = 30^{\circ}$

Therefore, BC = BD

6. Tangent at P to the circumcircle of triangle PQR is drawn. If this tangent is parallel to side QR, show that triangle PQR is isosceles. Solution:

Let DE be the tangent to the circle at P.

And, DE || QR [Given]

 $\angle EPR = \angle PRQ$ [Alternate angles are equal]

 $\angle DPQ = \angle PQR$ [Alternate angles are equal] (i)

Let $\angle DPQ = x$ and $\angle EPR = y$

As the angle between a tangent and a chord through the point of contact is equal to the angle in the alternate segment, we have

$$\angle DPQ = \angle PRQ \dots$$
 (ii) [DE is tangent and PQ is chord]

So, from (i) and (ii),

 $\angle PQR = \angle PRQ$

PQ = PR

Therefore, triangle PQR is an isosceles triangle.

7. Two circles with centres O and O' are drawn to intersect each other at points A and B. Centre O of one circle lies on the circumference of the other circle and CD is drawn tangent to the circle with centre O' at A. Prove that OA bisects angle BAC.

Solution:

Join OA, OB, O'A, O'B and O'O.

CD is the tangent and AO is the chord.

 $\angle OAC = \angle OBA \dots (i)$ [Angles in alternate segment]

In $\triangle OAB$,

OA = OB [Radii of the same circle]

 $\angle OAB = \angle OBA \dots$ (ii)

From (i) and (ii), we have

 $\angle OAC = \angle OAB$

Thus, OA is the bisector of $\angle BAC$.

8. Two circles touch each other internally at a point P. A chord AB of the bigger circle intersects the other circle in C and D. Prove that: $\angle CPA = \angle DPB$

Solution:

Let's draw a tangent TS at P to the circles given.

As TPS is the tangent and PD is the chord, we have

 $\angle PAB = \angle BPS \dots (i)$ [Angles in alternate segment]

Similarly,

 $\angle PCD = \angle DPS \dots (ii)$

Now, subtracting (i) from (ii) we have

 $\angle PCD - \angle PAB = \angle DPS - \angle BPS$

But in $\triangle PAC$,

Ext. $\angle PCD = \angle PAB + \angle CPA$

 $\angle PAB + \angle CPA - \angle PAB = \angle DPS - \angle BPS$

Thus,

 $\angle CPA = \angle DPB$

