Exercise 18(B)

1. (i) In the given figure, $3 \times C P=P D=9 \mathrm{~cm}$ and $A P=4.5 \mathrm{~cm}$. Find $B P$.

(ii) In the given figure, $5 \times P A=3 \times A B=30 \mathrm{~cm}$ and $P C=4 \mathrm{~cm}$. Find $C D$.

(iii) In the given figure, tangent $P T=12.5 \mathrm{~cm}$ and $P A=10 \mathrm{~cm}$; find $A B$.

Solution:

(i) As the two chords AB and CD intersect each other at P , we have

$$
\mathrm{AP} \times \mathrm{PB}=\mathrm{CP} \times \mathrm{PD}
$$

$$
4.5 \times \mathrm{PB}=3 \times 9 \quad[3 \mathrm{CP}=9 \mathrm{~cm} \mathrm{so}, \mathrm{CP}=3 \mathrm{~cm}]
$$

$$
\mathrm{PB}=(3 \times 9) / 4.5=6 \mathrm{~cm}
$$

(ii) As the two chords AB and CD intersect each other at P , we have

$$
\mathrm{AP} \times \mathrm{PB}=\mathrm{CP} \times \mathrm{PD}
$$

But, $5 \times \mathrm{PA}=3 \times \mathrm{AB}=30 \mathrm{~cm}$
So, $\mathrm{PA}=30 / 5=6 \mathrm{~cm}$ and $\mathrm{AB}=30 / 3=10 \mathrm{~cm}$
And, $\mathrm{BP}=\mathrm{PA}+\mathrm{AB}=6+10=16 \mathrm{~cm}$
Now, as
$\mathrm{AP} \times \mathrm{PB}=\mathrm{CP} \times \mathrm{PD}$
$6 \times 16=4 \times$ PD
$\mathrm{PD}=(6 \times 16) / 4=24 \mathrm{~cm}$
$\mathrm{CD}=\mathrm{PD}-\mathrm{PC}=24-4=20 \mathrm{~cm}$
(iii) As PAB is the secant and PT is the tangent, we have $\mathrm{PT}^{2}=\mathrm{PA} \times \mathrm{PB}$
$12.5^{2}=10 \times$ PB
$\mathrm{PB}=(12.5 \times 12.5) / 10=15.625 \mathrm{~cm}$
$\mathrm{AB}=\mathrm{PB}-\mathrm{PA}=15.625-10=5.625 \mathrm{~cm}$
2. In the given figure, diameter $A B$ and chord $C D$ of a circle meet at P. PT is a tangent to the circle at $\mathrm{T} . \mathrm{CD}=7.8 \mathrm{~cm}, \mathrm{PD}=5 \mathrm{~cm}, \mathrm{~PB}=4 \mathrm{~cm}$.

Find
(i) AB.
(ii) the length of tangent PT.

Solution:
(i) $\mathrm{PA}=\mathrm{AB}+\mathrm{BP}=(\mathrm{AB}+4) \mathrm{cm}$

$$
\mathrm{PC}=\mathrm{PD}+\mathrm{CD}=5+7.8=12.8 \mathrm{~cm}
$$

$$
\text { As } \mathrm{PA} \times \mathrm{PB}=\mathrm{PC} \times \mathrm{PD}
$$

$$
(\mathrm{AB}+4) \times 4=12.8 \times 5
$$

$$
\mathrm{AB}+4=(12.8 \times 5) / 4
$$

$$
\mathrm{AB}+4=16
$$

Hence, $\mathrm{AB}=12 \mathrm{~cm}$
(ii) As we know,
$\mathrm{PT}^{2}=\mathrm{PC} \times \mathrm{PD}$
$\mathrm{PT}^{2}=12.8 \times 5=64$
Thus, $\mathrm{PT}=8 \mathrm{~cm}$
3. In the following figure, $P Q$ is the tangent to the circle at $A, D B$ is a diameter and O is the centre of the circle. If $\angle \mathrm{ADB}=30^{\circ}$ and $\angle \mathrm{CBD}=60^{\circ}$; calculate:
i) $\angle \mathrm{QAB}$
ii) $\angle P A D$
iii) $\angle \mathrm{CDB}$

Solution:

(i) Given, PAQ is a tangent and AB is the chord
$\angle \mathrm{QAB}=\angle \mathrm{ADB}=30^{\circ} \quad$ [Angles in the alternate segment]
(ii) $\mathrm{OA}=\mathrm{OD}$
[radii of the same circle]
So, $\angle \mathrm{OAD}=\angle \mathrm{ODA}=30^{\circ}$
But, as $\mathrm{OA} \perp \mathrm{PQ}$
$\angle \mathrm{PAD}=\angle \mathrm{OAP}-\angle \mathrm{OAD}=90^{\circ}-30^{\circ}=60^{\circ}$

(iii) As BD is the diameter, we have $\angle \mathrm{BCD}=90^{\circ} \quad$ [Angle in a semi-circle]
Now in $\triangle \mathrm{BCD}$,
$\angle \mathrm{CDB}+\angle \mathrm{CBD}+\angle \mathrm{BCD}=180^{\circ}$
$\angle \mathrm{CDB}+60^{\circ}+90^{\circ}=180^{\circ}$
Thus, $\angle \mathrm{CDB}=180^{\circ}-150^{\circ}=30^{\circ}$
4. If $P Q$ is a tangent to the circle at R; calculate:
i) $\angle \mathrm{PRS}$
ii) \angle ROT

Given: \mathbf{O} is the centre of the circle and $\angle \mathrm{TRQ}=30^{\circ}$

Solution:

(i) As PQ is the tangent and OR is the radius.
$\mathrm{So}, \mathrm{OR} \perp \mathrm{PQ}$
$\angle \mathrm{ORT}=90^{\circ}$
$\angle \mathrm{TRQ}=90^{\circ}-30^{\circ}=60^{\circ}$
But in \triangle OTR, we have
OT $=$ OR [Radii of same circle]
$\angle \mathrm{OTR}=60^{\circ}$ or $\angle \mathrm{STR}=60^{\circ}$
But,
$\angle \mathrm{PRS}=\angle \mathrm{STR}=60^{\circ} \quad$ [Angles in the alternate segment]
(ii) $\operatorname{In} \triangle \mathrm{OTR}$,

$$
\angle \mathrm{ORT}=60^{\circ}
$$

$\angle \mathrm{OTR}=60^{\circ}$
Thus,

$$
\angle \mathrm{ROT}=180^{\circ}-\left(60^{\circ}+60^{\circ}\right)=180^{\circ}-120^{\circ}=60^{\circ}
$$

5. $A B$ is diameter and $A C$ is a chord of a circle with centre O such that angle $B A C=30^{\circ}$. The tangent to the circle at C intersects $A B$ produced in D. Show that $B C=B D$.
Solution:
Join OC.

Selina Solutions For Class 10 Maths Unit 4 - Geometry Chapter 18: Tangents and Intersecting Chords

$\angle \mathrm{BCD}=\angle \mathrm{BAC}=30^{\circ}$
[Angles in the alternate segment] It's seen that, arc BC subtends $\angle \mathrm{DOC}$ at the center of the circle and $\angle \mathrm{BAC}$ at the remaining part of the circle.
So, $\angle B O C=2 \angle B A C=2 \times 30^{\circ}=60^{\circ}$
Now, in $\triangle \mathrm{OCD}$
$\angle \mathrm{BOC}$ or $\angle \mathrm{DOC}=60^{\circ}$
$\angle \mathrm{OCD}=90^{\circ} \quad[\mathrm{OC} \perp \mathrm{CD}]$
$\angle \mathrm{DOC}+\angle \mathrm{ODC}=90^{\circ}$
$\angle \mathrm{ODC}=90^{\circ}-60^{\circ}=30^{\circ}$

Now, in $\triangle B C D$
As $\angle \mathrm{ODC}$ or $\angle \mathrm{BDC}=\angle \mathrm{BCD}=30^{\circ}$
Therefore, $\mathrm{BC}=\mathrm{BD}$
6. Tangent at P to the circumcircle of triangle $P Q R$ is drawn. If this tangent is parallel to side $Q R$, show that triangle PQR is isosceles.

Solution:

Let DE be the tangent to the circle at P .
And, $\mathrm{DE} \| \mathrm{QR}$ [Given]
$\angle \mathrm{EPR}=\angle \mathrm{PRQ} \quad$ [Alternate angles are equal]
$\angle \mathrm{DPQ}=\angle \mathrm{PQR} \quad$ [Alternate angles are equal]
Let $\angle \mathrm{DPQ}=\mathrm{x}$ and $\angle \mathrm{EPR}=\mathrm{y}$
As the angle between a tangent and a chord through the point of contact is equal to the angle in the alternate segment, we have $\angle \mathrm{DPQ}=\angle \mathrm{PRQ}$ [DE is tangent and PQ is chord]
So, from (i) and (ii),

$\angle \mathrm{PQR}=\angle \mathrm{PRQ}$
$P Q=P R$
Therefore, triangle PQR is an isosceles triangle.
7. Two circles with centres O and O^{\prime} are drawn to intersect each other at points A and B. Centre O of one circle lies on the circumference of the other circle and $C D$ is drawn tangent to the circle with centre O^{\prime} at A. Prove that OA bisects angle BAC.

Solution:

Join OA, OB, O'A, O'B and O'O.

Selina Solutions For Class 10 Maths Unit 4 - Geometry Chapter 18: Tangents and Intersecting Chords

CD is the tangent and AO is the chord.
$\angle \mathrm{OAC}=\angle \mathrm{OBA} \ldots$ (i) \quad [Angles in alternate segment]
In $\triangle \mathrm{OAB}$,
$\mathrm{OA}=\mathrm{OB} \quad$ [Radii of the same circle]
$\angle \mathrm{OAB}=\angle \mathrm{OBA} \ldots .$. (ii)
From (i) and (ii), we have
$\angle \mathrm{OAC}=\angle \mathrm{OAB}$
Thus, OA is the bisector of $\angle \mathrm{BAC}$.
8. Two circles touch each other internally at a point P. A chord $A B$ of the bigger circle intersects the other circle in C and D. Prove that: $\angle \mathrm{CPA}=\angle \mathrm{DPB}$

Solution:

Let's draw a tangent TS at P to the circles given.
As TPS is the tangent and PD is the chord, we have $\angle \mathrm{PAB}=\angle \mathrm{BPS} \ldots$. (i)
[Angles in alternate segment]
Similarly,
$\angle \mathrm{PCD}=\angle \mathrm{DPS}$
Now, subtracting (i) from (ii) we have
$\angle \mathrm{PCD}-\angle \mathrm{PAB}=\angle \mathrm{DPS}-\angle \mathrm{BPS}$
But in $\triangle \mathrm{PAC}$,
Ext. $\angle \mathrm{PCD}=\angle \mathrm{PAB}+\angle \mathrm{CPA}$
$\angle \mathrm{PAB}+\angle \mathrm{CPA}-\angle \mathrm{PAB}=\angle \mathrm{DPS}-\angle \mathrm{BPS}$
Thus,

$\angle \mathrm{CPA}=\angle \mathrm{DPB}$

