Exercise 20(A)

1. The height of a circular cylinder is 20 cm and the radius of its base is 7 cm . Find:
(i) the volume
(ii) the total surface area.

Solution:
Given, a circular cylinder whose
Height, $\mathrm{h}=20 \mathrm{~cm}$ and base radius, $\mathrm{r}=7 \mathrm{~cm}$
(i) Volume of cylinder $=\pi r^{2} \mathrm{~h}=22 / 7 \times 7^{2} \times 20 \mathrm{~cm}^{3}$

$$
=3080 \mathrm{~cm}^{3}
$$

(ii) Total surface area of a cylinder $=2 \pi r(h+r)$

$$
\begin{aligned}
& =2 \times 22 / 7 \times 7(20+7) \mathrm{cm}^{2} \\
& =2 \times 22 \times 27 \mathrm{~cm}^{3} \\
& =1188 \mathrm{~cm}^{3}
\end{aligned}
$$

2. The inner radius of a pipe is 2.1 cm . How much water can 12 m of this pipe hold? Solution:

Given,
The inner radius of the pipe $=2.1 \mathrm{~cm}$
Length of the pipe $=12 \mathrm{~m}=1200 \mathrm{~cm}$
Volume of the pipe $=\pi r^{2} \mathrm{~h}=22 / 7 \times 2.1^{2} \times 1200$

$$
=16632 \mathrm{~cm}^{3}
$$

3. A cylinder of circumference 8 cm and length 21 cm rolls without sliding for $41 / 2$ seconds at the rate of 9 complete rounds per second. Find:
(i) distance travelled by the cylinder in $41 / 2$ seconds, and
(ii) the area covered by the cylinder in $41 / 2$ seconds

Solution:

Given,
Base circumference of cylinder (c) $=8 \mathrm{~cm}$
So, the radius $=c / 2 \pi=(8 \times 7) /(2 \times 22)=14 / 11 \mathrm{~cm}$
Length of the cylinder $(\mathrm{h})=21 \mathrm{~cm}$
(i) If distance covered in one revolution is 8 cm , then distance covered in 9 revolutions $=9 \times 8=72 \mathrm{~cm}$ or distance covered in 1 second $=72 \mathrm{~cm}$.
Thus, distance covered in $41 / 2$ seconds $=72 \times(9 / 2)=324 \mathrm{~cm}$
(ii) Curved surface area $=2 \pi \mathrm{rh}$

$$
\begin{aligned}
& =2 \times 22 / 7 \times 14 / 11 \times 21 \\
& =168 \mathrm{~cm}^{2}
\end{aligned}
$$

So, the area covered in one revolution $=168 \mathrm{~cm}^{2}$
Then,
The area covered in 9 revolutions $=168 \times 9=1512 \mathrm{~cm}^{2}$
Which is also the area covered in 1 second $=1512 \mathrm{~cm}^{2}$
Therefore, the area covered in $41 / 2$ seconds $=1512 \times 9 / 2=6804 \mathrm{~cm}^{2}$
4. How many cubic meters of earth must be dug out to make a well 28 m deep and 2.8 m in diameter? Also, find the cost of plastering its inner surface at Rs 4.50 per sq meter. Solution:

Given,
Radius of the well $=2.8 / 2=1.4 \mathrm{~m}$
Depth of the well $=28 \mathrm{~m}$
Hence, the volume of earth dug out $=\pi r^{2} h$

$$
\begin{aligned}
& =(22 / 7) \times 1.4 \times 1.4 \times 28 \\
& =17248 / 100=172.48 \mathrm{~m}^{3}
\end{aligned}
$$

Area of curved surface $=2 \pi r \mathrm{~h}$

$$
\begin{aligned}
& =2 \times 22 / 7 \times 1.4 \times 28 \\
& =246.40 \mathrm{~m}^{2}
\end{aligned}
$$

Now, the cost of plastering at the rate of Rs 4.50 per sq m
$=$ Rs 246.40×4.50
$=$ Rs 1108.80
5. What length of solid cylinder 2 cm in diameter must be taken to recast into a hollow cylinder of external diameter $20 \mathrm{~cm}, 0.25 \mathrm{~cm}$ thick and 15 cm long?

Solution:

Given,
External diameter of hollow cylinder $=20 \mathrm{~cm}$
So, it's radius $=10 \mathrm{~cm}=\mathrm{R}$
Thickness $=0.25 \mathrm{~cm}$
Hence, the internal radius $=(10-0.25)=9.75 \mathrm{~cm}=r$
Length of cylinder $(\mathrm{h})=15 \mathrm{~cm}$
Now,
Volume $=\pi \mathrm{h}\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)=\pi \times 15\left(10^{2}-9.75^{2}\right)=15 \pi(100-95.0625)$

$$
=15 \pi \times 4.9375 \mathrm{~cm}^{3}
$$

Now,
Diameter of the solid cylinder $=2 \mathrm{~cm}$
so, radius (r) $=1 \mathrm{~cm}$
Let h be the length of the solid cylinder,
Volume $=\pi \mathrm{r}^{2} \mathrm{~h}=\pi 1^{2} \mathrm{~h}=\pi \mathrm{h} \mathrm{cm}^{3}$
Then, according to given condition in the question
$\pi \mathrm{h}=15 \pi \times 4.9375$
$\mathrm{h}=15 \times 4.9375$
$\mathrm{h}=74.0625$
Thus, the length of solid cylinder $=74.0625 \mathrm{~cm}$
6. A cylinder has a diameter of 20 cm . The area of curved surface is 100 sq cm . Find:
(i) the height of the cylinder correct to one decimal place.
(ii) the volume of the cylinder correct to one decimal place.

Solution:

Given,
The diameter of the cylinder $=20 \mathrm{~cm}$
So, the radius (r) $=10 \mathrm{~cm}$
And the curved surface area $=100 \mathrm{~cm}^{2}$
Height $=\mathrm{h} \mathrm{cm}$
(i) Curved surface area $=2 \pi r \mathrm{~h}$

So,
$2 \pi \mathrm{rh}=100 \mathrm{~cm}^{2}$
$2 \times 22 / 7 \times 10 \times \mathrm{h}=100$
$\mathrm{h}=(100 \times 7) /(22 \times 10 \times 2)=35 / 22$
$\mathrm{h}=1.6 \mathrm{~cm}$
(ii) Volume of the cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =22 / 7 \times 10 \times 10 \times 1.6 \\
& =502.9 \mathrm{~cm}^{3}
\end{aligned}
$$

7. A metal pipe has a bore (inner diameter) of 5 cm . The pipe is 5 mm thick all round. Find the weight, in kilogram, of 2 metres of the pipe if $1 \mathrm{~cm}^{3}$ of the metal weights 7.7 g . Solution:

Given,
Inner radius of the pipe $=r=5 / 2=2.5 \mathrm{~cm}$
External radius of the pipe $=\mathrm{R}=$ Inner radius of the pipe + Thickness of the pipe

$$
=2.5 \mathrm{~cm}+0.5 \mathrm{~cm}=3 \mathrm{~cm}
$$

Length of the pipe $=\mathrm{h}=2 \mathrm{~m}=200 \mathrm{~cm}$
Volume of the pipe $=$ External Volume - Internal Volume

$$
\begin{aligned}
& =\pi R^{2} h-\pi r^{2} h \\
& =\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right) \mathrm{h} \\
& =\pi(\mathrm{R}+\mathrm{r})(\mathrm{R}-\mathrm{r}) \mathrm{h} \\
& =22 / 7(3-2.5)(3+2.5) \times 200 \\
& =22 / 7(0.5)(5.5) \times 200=1728.6 \mathrm{~cm}^{3}
\end{aligned}
$$

Since, $1 \mathrm{~cm}^{3}$ of the metal weight 7.7 g ,
Hence, weight of the pipe $=(1728.6 \times 7.7) \mathrm{g}=(1728.6 \times 7.7) / 1000 \mathrm{~kg}=13.31 \mathrm{~kg}$
8. A cylindrical container with diameter of base 42 cm contains sufficient water to submerge a rectangular solid of iron with dimensions $22 \mathrm{~cm} \times 14 \mathrm{~cm} \times 10.5 \mathrm{~cm}$. Find the rise in level of the
water when the solid is submerged.
Solution:
Given,
Diameter of cylindrical container $=42 \mathrm{~cm}$
So, it's radius (r) $=21 \mathrm{~cm}$
Dimensions of rectangular solid $=22 \mathrm{~cm} \times 14 \mathrm{~cm} \times 10.5 \mathrm{~cm}$
Hence,
The volume of solid $=22 \times 14 \times 10.5 \mathrm{~cm}^{3} \ldots \ldots$ (i)
Let the height of water $=h$
So, the volume of water in the container will be $=\pi r^{2} h$

$$
\begin{equation*}
=22 / 7 \times 21 \times 21 \times \mathrm{hcm}{ }^{3} \tag{ii}
\end{equation*}
$$

According to the question, from (i) and (ii) we have
$22 / 7 \times 21 \times 21 \times h=22 \times 14 \times 10.5$
$22 \times 3 \times 21 \times \mathrm{h}=22 \times 14 \times 10.5$
$\mathrm{h}=(22 \times 14 \times 10.5) /(22 \times 3 \times 21)$
$=7 / 3=2.33 \mathrm{~cm}$
Therefore, the water level will be raised to a level of 2.33 cm when the solid is submerged.
9. A cylindrical container with internal radius of its base 10 cm , contains water up to a height of 7 cm . Find the area of wetted surface of the cylinder.

Solution:

Given,
Internal radius of the cylindrical container $=10 \mathrm{~cm}=r$
Height of water $=7 \mathrm{~cm}=h$
So, the surface area of the wetted surface $=2 \pi r h+\pi r^{2}=\pi r(2 h+r)=22 / 7 \times 10 \times(2 \times 7+10)$

$$
\begin{aligned}
& =220 / 7 \times 24 \\
& =754.29 \mathrm{~cm}^{2}
\end{aligned}
$$

10. Find the total surface area of an open pipe of length 50 cm , external diameter 20 cm and internal diameter 6 cm .
Solution:
Given,
Length of the open pipe $=50 \mathrm{~cm}$
Its external diameter $=20 \mathrm{~cm}$
So, it's external radius $(\mathrm{R})=10 \mathrm{~cm}$
And, its internal diameter $=6 \mathrm{~cm}$
So, it's internal radius (r) $=3 \mathrm{~cm}$
Then.
Surface area of pipe open from both sides $=2 \pi \mathrm{Rh}+2 \pi \mathrm{rh}=2 \pi \mathrm{~h}(\mathrm{R}+\mathrm{r})$

$$
\begin{aligned}
& =2 \times 22 / 7 \times 50 \times(10+3) \\
& =4085.71 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of upper and lower part $=2 \pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)$

$$
=2 \times 22 / 7 \times\left(10^{2}-3^{2}\right)
$$

Selina Solutions For Class 10 Maths Unit 5 - Mensuration Chapter 20: Cylinder, Cone and Sphere (Surface Area and Volume)

$$
\begin{aligned}
& =2 \times 22 / 7 \times 91 \\
& =572 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the total surface area $=4085.71+572=4657.71 \mathrm{~cm}^{3}$
11. The height and the radius of the base of a cylinder are in the ratio $3: 1$. If its volume is 1029π $\mathrm{cm}^{\mathbf{3}}$; find its total surface area.

Solution:

Given,
The ratio between height and radius of a cylinder $=3: 1$
Volume $=1029 \pi \mathrm{~cm}^{3}$ \qquad
Let the radius of the base $=r$
Then, it's height will be $=3 \mathrm{r}$
Hence,
Volume $=\pi r^{2} h=\pi \times r^{2} \times 3 r=3 \pi r^{3}$
Equating (i) and (ii), we get
$3 \pi r^{3}=1029 \pi$
$\mathrm{r}^{3}=1029 \pi / 3 \pi$
$\mathrm{r}^{3}=343$
r $=7$
Thus, radius $=7 \mathrm{~cm}$ and height $=3 \times 7=21 \mathrm{~cm}$
Now,
Total surface area $=2 \pi \mathrm{r}(\mathrm{h}+\mathrm{r})=2 \times 22 / 7 \times 7 \times(21+7)$

$$
\begin{aligned}
& =2 \times 22 / 7 \times 7 \times 28 \\
& =44 \times 28 \\
& =1232 \mathrm{~cm}^{2}
\end{aligned}
$$

12. The radius of a solid right circular cylinder increases by $\mathbf{2 0 \%}$ and its height decreases by $\mathbf{2 0 \%}$. Find the percentage change in its volume.

Solution:

Let the radius of a solid right cylinder $(\mathrm{r})=100 \mathrm{~cm}$
And, let the height of a solid right circular cylinder $(\mathrm{h})=100 \mathrm{~cm}$
So, the volume (original) of a solid right circular cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\pi \times(100)^{2} \times 100 \\
& =10000 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Now, the new radius = $\mathrm{r}^{\prime}=120 \mathrm{~cm}$
New height $=$ h' $=80 \mathrm{~cm}$
So, the volume (new) of a solid right circular cylinder $=\pi r^{\prime}{ }^{2} h^{\prime}=\pi \times(120)^{2} \times 80$

$$
=1152000 \pi \mathrm{~cm}^{3}
$$

Thus, the increase in volume $=$ New volume - Original volume

$$
\begin{aligned}
& =1152000 \pi \mathrm{~cm}^{3}-1000000 \pi \mathrm{~cm}^{3} \\
& =152000 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Therefore, percentage change in volume $=$ Increase in volume/Original volume x 100%

$$
\begin{aligned}
& =152000 \pi \mathrm{~cm}^{3} / 1000000 \pi \mathrm{~cm}^{3} \times 100 \% \\
& =15.2 \%
\end{aligned}
$$

13. The radius of a solid right circular cylinder decreases by $\mathbf{2 0 \%}$ and its height increases by $\mathbf{1 0 \%}$. Find the percentage change in its:
(i) volume (ii) curved surface area

Solution:

Let the original dimensions of the solid right cylinder be radius (r) and height (h) in cm .
Then its volume $=\pi \mathrm{r}^{2} \mathrm{~h} \mathrm{~cm}^{3}$
And, curved surface area $=2 \pi$ rh
Now, after the changes the new dimensions are:
New radius (r^{\prime}) $=\mathrm{r}-0.2 \mathrm{r}=0.8 \mathrm{r}$ and
New height $\left(h^{\prime}\right)=h+0.1 h=1.1 h$
So,
The new volume $=\pi r^{\prime}{ }^{2} h^{\prime} \mathrm{cm}^{3}$

$$
\begin{aligned}
& =\pi(0.8 \mathrm{r})^{2}(1.1 \mathrm{~h}) \mathrm{cm}^{3} \\
& =0.704 \pi \mathrm{r}^{2} \mathrm{~h} \mathrm{~cm}
\end{aligned}
$$

And, the new curved surface area $=2 \pi \mathrm{r}^{\prime}{ }^{\prime}{ }^{\prime}=2 \pi(0.8 \mathrm{r})(1.1 \mathrm{~h})$

$$
=(0.88) 2 \pi \mathrm{rh}
$$

(i) Percentage change in its volume $=$ Decrease in volume/ original volume $\times 100 \%$

$$
\begin{aligned}
& =(\text { Original volume }- \text { new volume }) / \text { original volume } \times 100 \% \\
& =\left(\pi r^{2} h-0.704 \pi r^{2} h\right) / \pi r^{2} h \times 100 \\
& =0.296 \times 100=29.6 \%
\end{aligned}
$$

(ii) Percentage change in its curved surface area $=$ Decrease in CSA/ original CSA $\times 100 \%$
$=($ Original CSA - new CSA $) /$ original CSA x 100%
$=(2 \pi \mathrm{rh}-(0.88) 2 \pi \mathrm{rh}) / 2 \pi \mathrm{rh} \times 100$
$=0.12 \times 100=12 \%$
14. Find the minimum length in cm and correct to nearest whole number of the thin metal sheet required to make a hollow and closed cylindrical box of diameter 20 cm and height 35 cm . Given that the width of the metal sheet is 1 m . Also, find the cost of the sheet at the rate of Rs. $56 \mathrm{per} \mathbf{~ m}$. Find the area of metal sheet required, if 10% of it is wasted in cutting, overlapping, etc.

Solution:

Given,
Height of the cylinder box $=\mathrm{h}=35 \mathrm{~cm}$
Base radius of the cylinder box $=\mathrm{r}=10 \mathrm{~cm}$
Width of metal sheet $=1 \mathrm{~m}=100 \mathrm{~cm}$
Area of metal sheet required $=$ total surface area of the box
Length x width $=2 \pi \mathrm{r}(\mathrm{r}+\mathrm{h})$
Length $\times 100=2 \times 22 / 7 \times 10(10+35)$
Length $\mathrm{x} 100=22 \times 22 / 7 \times 10 \times 45$
Length $=(2 \times 22 \times 10 \times 45) /(100 \times 7)=28.28 \mathrm{~cm}=28 \mathrm{~cm}$ (correcting to the nearest whole number)
Thus,
Area of metal sheet $=$ length x width $=28 \times 100=2800 \mathrm{~cm}^{2}=0.28 \mathrm{~m}^{2}$
So, the cost of the sheet at the rate of Rs 56 per m${ }^{2}=$ Rs (56×0.28) $=$ Rs 15.68
Let the total sheet required be x .

Then, $\mathrm{x}-10 \%$ of $\mathrm{x}=2800 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& x-10 / 100 \times x=2800 \mathrm{~cm}^{2} \\
& 9 x=2800 \\
& x=3111 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, a metal sheet of area $3111 \mathrm{~cm}^{2}$ is required.

