

SSLC EXAMINATION, MARCH - 2019 **MATHEMATICS**

(English)

Total Score: 80

Time: 21/2 Hours

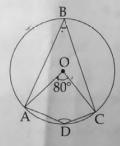
INSTRUCTIONS:

Read each question carefully before writing the answer.

Give explanations wherever necessary.

First 15 minutes is Cool-off time. You may use the time to read the questions and plan your answers.

No need to simplify irrationals like $\sqrt{2}$, $\sqrt{3}$, π etc., using approximations unless you are asked to

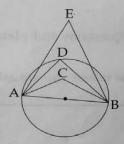

Score

Answer any three questions from 1 to 4. Each question carries 2 score.

3x2 = 6

In the figure O is the centre of the circle. $\angle AOC = 80^{\circ}$

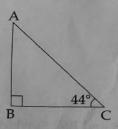
- What is the measure of ∠ABC? (a)
- What is the measure of ∠ADC? (b)


- Write the first integer term of the arithmetic sequence $\frac{1}{7}$, $\frac{2}{7}$, $\frac{3}{7}$ (a)
- What is the sum of the first 7 terms of this sequence? (b)
- If C(-1, k) is a point on the line passing through the points A(2, 4) and B(4, 8) which (a)
- What is the relation between the x coordinate and the y coordinate of any point on this (b)
- Find P(1) if P(x) = $x^2 + 2x + 5$. (a)
- If (x-1) is a factor of $x^2 + 2x + k$, What number is k? (b)

Answer any five questions from 5 to 11. Each question carries 3 score.

- 5
- (a) What is the remainder on dividing the terms of the arithmetic sequence 100, 107, 114 by 7?
- (b) Write the sequence of all three digit numbers. Which leaves remainder 3 on division by 7? Which is the last term of this sequence?

AB is the diameter of the circle. D is a point on the circle.



 \angle ACB + \angle ADB + \angle AEB = 270°. Measure of one among \angle ACB, \angle ADB, \angle AEB is 110°. Write the measures of \angle ADB, \angle ACB, and \angle AEB.

7. If x is a natural number

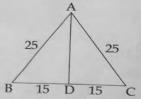
- (a) What number is to be added to $x^2 + 6x$ to get a perfect square?
- (b) If $x^2 + ax + 16$ is a perfect square which number is 'a'?
- (c) If $x^2 + ax + b$ is a perfect square prove that $a^2 = 4b$.
- 8.

In the figure $\angle B = 90^{\circ}$, $\angle C = 44^{\circ}$

- (a) What is the measure of $\angle A$?
- (b) Which among the following is tan 44°?

$$\left(\frac{AB}{BC}, \frac{AB}{AC}, \frac{BC}{AB}, \frac{BC}{AC}\right)$$

(c) Prove that $\tan 44^{\circ} \times \tan 46^{\circ} = 1$.


Draw a circle of radius 3 centimetres. Mark a point P at a distance 6 centimetres from the centre of the circle. Draw tangents from P to the circle.

- Find the coordinates of the point on x axis, which is at a distance 4 units from (3, 4).
 - Find the coordinates of the points on x axis at a distance 5 units from (3, 4).

The given figure is the lateral face of a square pyramid. AB = AC = 25 centimetres and BD = DC = 15 centimetres.

- (a) What is the length of its base edge?
- Find the lateral surface area of the pyramid.

Answer any 7 questions from 12 to 21. Each question carries 4 score.

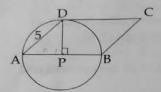
7x4 = 28

12. In triangle ABC, $\angle A = 30^{\circ}$, $\angle B = 80^{\circ}$, circumradius of the triangle is 4 centimetres. Draw the triangle. Measure and write the length of its smallest side.

Find the following sums:

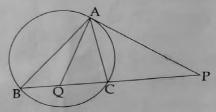
- 1+2+3+.....+100(a)
- (b) 1+3+5+.....+99
- (c) 2+4+6+.....+100
- (d) 3+7+11+.....+199

A box contains some green and blue balls. 7 red balls are put into it. Now the probability of getting a red ball from the box is $\frac{7}{24}$ and that of a blue ball is $\frac{1}{6}$


- How many balls are there in the box? (a)
- (b) How many of them are blue?
- What is the probability of getting a green ball from the box? (c)

Land is acquired for road widening from a square ground, as shown in the figure. The width of the acquired land is 2 metres. Area of the remaining ground is 440 square metres.

- What is the shape of the remaining ground? (a)
- What is the length of the remaining ground? (b)


In the figure P is the centre of the circle. A,B and D are points on the circle. $\angle P = 90^{\circ}$, AD = 5 centimetres.

- What is the measure of ∠A? (a)
- What is the area of triangle APD? (b)
- Find the area of the parallelogram ABCD. (c)

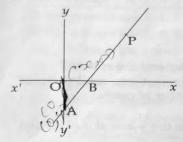
- (a) Draw the coordinate axes and mark the points A(1, 1), B(7, 1).
- (b) Draw an isosceles right triangle ABC with AB as hypotenuse.
- Write the coordinates of C. (c)
- In the figure chord BC is extended to P. Tangent from P to the circle is PA. AQ is the bisector of ZBAC.

- (a) Write one pair of equal angles from the figure.
- (b) If $\angle PAC = x$ and $\angle PCA = y$ prove that $\angle BAC = y - x$
- Prove that $\angle PAQ = \frac{y+x}{2}$. (c)

If x-1 is a factor of the second degree polynomial $P(x) = ax^2 + bx + c$ and P(0)

- (a) What is the value of c?
- Prove that a+b=5. (b)
- (c) Write a second degree polynomial whose one factor is x-1.

A circular sheet of paper is divided into two sectors. Central angle of one of them is 160°.


- What is the central angle of the remaining sector? (a)
- These sectors are bent into cones of maximum volume. If the radius of the small cone is 8 centimetres, what is the radius of the other?
- What is the slant height of the cones? (c)

21

Equation of the line AB is 3x-2y=6. P is a point on the line. The line intersects the y-axis at A and the x-axis at B.

- (a) What is the x coordinate of A?
- (b) What is the length of OA?
- (c) What is the length of OB?
- (d) The x coordinate and the y coordinate of P are same. Find the coordinates of P.

Answer any five questions from 22 to 28. Each question carries 5 score.

5x5 = 25

2.

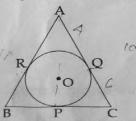
If the terms of the arithmetic sequence $\frac{2}{9}$, $\frac{3}{9}$, $\frac{4}{9}$, $\frac{5}{9}$ are represented as x_1 , x_2 , x_3

then

- (a) $x_1 + x_2 + x_3 = \dots$
- (b) $x_4^1 + x_5^2 + x_6^3 = \dots$
- (c) Find the sum of first 9 terms.
- (d) What is the sum of first 300 terms?

3

Draw a rectangle of area 12 square centimetres. Draw a square having the same area.

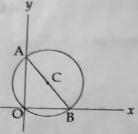

3

A boy standing at one bank of a river sees the top of a tree on the other bank directly opposite to the boy at an elevation of 60°. Stepping 40 metres back, he sees the top at an elevation of 30°.

- (a) Draw a rough figure and find the height of the tree.
- (b) What is the width of the river?

4

Circle with centre O touches the sides of the triangle at P, Q and R, AB = AC, AQ = 4 centimetres and CQ = 6 centimetres.


- (a) What is the length of CP?
- (b) Find the perimeter and the area of the triangle.
- (c) What is the radius of the circle?

Radius of a cylinder is equal to its height. If the radius is taken as r, volume of the cylinder is $\pi r^2 \times r = \pi r^3$. Like this find the volumes of the solids, with the following measures.

Solids	Measures	Volume
Cone	radius = height = r	
Hemisphere	radius = r	
Sphere	radius = r	

- What is the ratio of the volumes of cone, hemisphere, cylinder and the sphere?
- A solid metal sphere of radius 6 centimetres is melted and recast into solid cones of radius 6 centimetres and height 6 centimetres. Find the number of cones.

C is the centre of the circle passing through the origin. Circle cuts the y-axis at A(0, 4) and the x-axis at B(4, 0).

- Write coordinates of C. (a)
- (b) Write the equation of the circle.
- (0, 0) is a point on the circle. There is one more point on the circle with x and y coordinates equal. Which is that point?

The table below shows the number of children in a class, sorted according to their heights.

Height (Centimetres)	Number of Children				
130 -140	7				
140 - 150	9				
150 -160	10				
160 -170	10				
170 -180	9				

If the students are directed to stand in a line according to the order of their heights starting

- The height of the child at what position is taken as the median?
- What is the assumed height of the child in the 17th position?
- (c) Find the median height.

Read the following. Understand the Mathematical concepts in it and answer the questions 6x1=6

The remainders obtained on dividing the powers of two by 7 have an interesting property. We can understand it from the table given below.

Number	21	2 ²	2 ³	24	2 ⁵	2 ⁶	2	
Remainder	2	4	1	2	4	1	2	

If the powers are 1, 4, 7, the remainder is 2

If the powers are 3, 6, 9, the remainder is 1

- (a) What is the remainder on dividing 2^8 by 7?
- (b) Write the sequence of powers of 2 leaving remainder 1 on division by 7.
- (c) Check whether 2019 is a term of the arithmetic sequence 3, 6, 9,
- (d) What is the remainder on dividing 2^{2019} by 7?
- (e) Write the algebraic form of the arithmetic sequence 1, 4, 7,
- (f) Write the algebraic form of the sequence 2^1 , 2^4 , 2^7 , (powers of two leaving remainder 2 on division by 7).