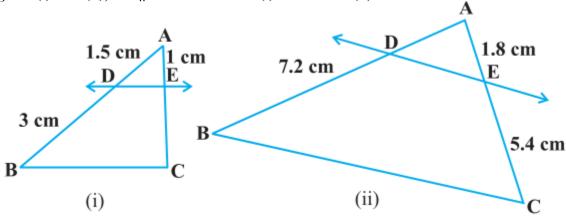


Exercise 6.2 Page: 128

1. In figure. (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).



Solution:

(i) Given, in \triangle ABC, DE||BC

(i) Given, in
$$\triangle$$
 ABC, DE BC

$$\frac{AD}{DB} = \frac{AE}{EC} \text{ [Using Basic proportionality theorem]}$$

$$\Rightarrow \frac{1.5}{3} = \frac{1}{EC}$$

$$\Rightarrow EC = \frac{3}{1.5}$$

$$EC = 3 \times \frac{10}{15} = 2 \text{ cm}$$

Hence, EC = 2 cm.

(ii) Given, in △ ABC, DE∥BC

$$\therefore \frac{AD}{DB} = \frac{AE}{EC}$$
 [Using Basic proportionality theorem]

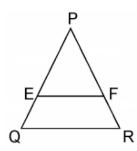
$$\Rightarrow \frac{AD}{7.2} = \frac{1.8}{5.4}$$

$$\Rightarrow AD = 1.8 \times \frac{7.2}{5.4} = \frac{18}{10} \times \frac{72}{10} \times \frac{10}{54} = \frac{24}{10}$$

$$\Rightarrow AD = 2.4$$
Hence, AD = 2.4 cm.

- 2. E and F are points on the sides PQ and PR respectively of a ΔPQR . For each of the following cases, state whether EF \parallel QR.
- (i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm
- (ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm
- (iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.63 cm

Solution: Given, in $\triangle PQR$, E and F are two points on side PQ and PR respectively. See the figure below;



(i) Given, PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm

Therefore, by using Basic proportionality theorem, we get,

$$\frac{PE}{EQ} = \frac{3.9}{3} = \frac{39}{30} = \frac{13}{10} = 1.3$$

And,
$$\frac{PF}{FR} = \frac{3.6}{2.4} = \frac{36}{24} = \frac{3}{2} = 1.5$$

So, we get, $\frac{PE}{EQ} \neq \frac{PF}{FR}$

So, we get,
$$\frac{PE}{EO} \neq \frac{PF}{FR}$$

Hence, EF is not parallel to QR.

(ii) Given, PE = 4 cm, QE = 4.5 cm, PF = 8cm and RF = 9cm

Therefore, by using Basic proportionality theorem, we get,

$$\frac{PE}{QE} = \frac{4}{4.5} = \frac{40}{45} = \frac{8}{9}$$

And,
$$\frac{PF}{RF} = \frac{8}{9}$$

So, we get here, $\frac{PE}{QE} = \frac{PF}{RF}$

$$\frac{PE}{QE} = \frac{PF}{RF}$$

Hence, EF is parallel to QR.

(iii) Given, PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm

From the figure,

$$EQ = PQ - PE = 1.28 - 0.18 = 1.10 \text{ cm}$$

And,
$$FR = PR - PF = 2.56 - 0.36 = 2.20$$
 cm

So,
$$\frac{PE}{EQ} = \frac{0.18}{1.10} = \frac{18}{110} = \frac{9}{55}$$
 (i)
And, $\frac{PE}{FR} = \frac{0.36}{2.20} = \frac{36}{220} = \frac{9}{55}$ (ii)

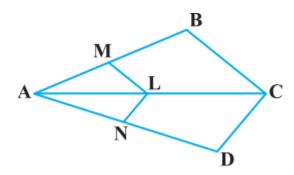
And,
$$\frac{PE}{FR} = \frac{0.36}{2.20} = \frac{36}{2.20} = \frac{9}{55}$$
.....(ii)

So, we get here,

$$\frac{PE}{EQ} = \frac{PF}{FR}$$

Hence, EF is parallel to QR.

3. In the figure, if LM \parallel CB and LN \parallel CD, prove that AM/MB = AN/AD



Solution: In the given figure, we can see, LM \parallel CB, By using basic proportionality theorem, we get,

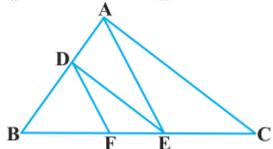
Similarly, given, LN || CD and using basic proportionality theorem,

From equation (i) and (ii), we get,

$$\frac{AM}{AB} = \frac{AN}{AD}$$

Hence, proved.

4. In the figure, DE||AC and DF||AE. Prove that BF/FE = BE/EC



Solution: In \triangle ABC, given as, DE || AC

Thus, by using Basic Proportionality Theorem, we get,

$$\therefore \frac{BD}{DA} = \frac{BE}{EC}$$
 (i)

In ΔABC , given as, DF \parallel AE

Thus, by using Basic Proportionality Theorem, we get,

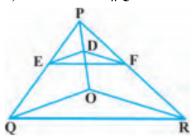
$$\therefore \frac{BD}{DA} = \frac{BF}{FE} \dots (ii)$$

From equation (i) and (ii), we get

$$\frac{BE}{EC} = \frac{BF}{FE}$$

Hence, proved.

5. In the figure, DE||OQ and DF||OR, show that EF||QR.



Solution: Given,

In ΔPQO , DE \parallel OQ

So by using Basic Proportionality Theorem,

$$\frac{PD}{DO} = \frac{PE}{EQ} \dots (i)$$

Again given, in ΔPQO , DE $\parallel OQ$,

So by using Basic Proportionality Theorem,

$$\frac{PD}{DO} = \frac{PF}{FR}$$
(ii)

From equation (i) and (ii), we get,

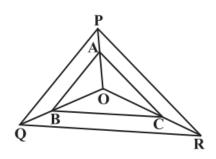
$$\frac{PE}{FO} = \frac{\dot{P}F}{FD}$$

$$\overline{EQ} = \overline{FR}$$

Therefore, by converse of Basic Proportionality Theorem,

EF \parallel QR, in \triangle PQR.

6. In the figure, A, B and C are points on OP, OQ and OR respectively such that AB \parallel PQ and AC \parallel PR. Show that BC \parallel QR.



Solution: Given here,

In $\triangle OPQ$, AB $\parallel PQ$

By using Basic Proportionality Theorem,

$$\frac{OA}{AP} = \frac{OB}{BQ}$$
.....(i)

Also given,

In $\triangle OPR$, $AC \parallel PR$

By using Basic Proportionality Theorem

$$\therefore \frac{OA}{AP} = \frac{OC}{CR} \dots (ii)$$

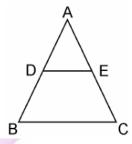
From equation (i) and (ii), we get,

$$\frac{OB}{BQ} = \frac{OC}{CR}$$

Therefore by conv

Therefore, by converse of Basic Proportionality Theorem, In ΔOQR , BC \parallel QR.

7. Using Basic proportionality theorem, prove that a line drawn through the mid-points of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).



Solution: Given, in $\triangle ABC$, D is the midpoint of AB such that AD=DB. A line parallel to BC intersects AC at E as shown in above figure such that DE \parallel BC.

We have to prove that E is the mid point of AC.

Since, D is the mid-point of AB.

$$\Rightarrow \frac{AD}{BD} = 1 \dots (i)$$

In $\triangle ABC$, $DE \parallel BC$,

By using Basic Proportionality Theorem,

Therefore,
$$\frac{AD}{DB} = \frac{AE}{EC}$$

From equation (i), we can write,

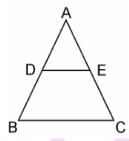
$$\Rightarrow 1 = \frac{AE}{EC}$$

$$\therefore$$
 AE = EC

Hence, proved, E is the midpoint of AC.

8. Using Converse of basic proportionality theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

Solution: Given, in $\triangle ABC$, D and E are the mid points of AB and AC respectively, such that, AD=BD and AE=EC.



We have to prove that: DE || BC.

Since, D is the midpoint of AB

$$\therefore AD = DB$$

$$\Rightarrow \frac{AD}{RD} = 1 \dots (i)$$

Also given, E is the mid-point of AC.

$$\Rightarrow \frac{AE}{EC} = 1$$

From equation (i) and (ii), we get,

$$\frac{AD}{BD} = \frac{AE}{EC}$$

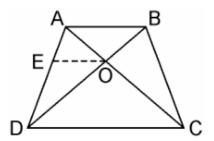
By converse of Basic Proportionality Theorem,

DE || BC

Hence, proved.

9. ABCD is a trapezium in which AB \parallel DC and its diagonals intersect each other at the point O. Show that AO/BO = CO/DO.

Solution: Given, ABCD is a trapezium where $AB \parallel DC$ and diagonals AC and BD intersect each other at O.



We have to prove, $\frac{AO}{BO} = \frac{CO}{DO}$

From the point O, draw a line EO touching AD at E, in such a way that, EO \parallel DC \parallel AB

In $\triangle ADC$, we have $OE \parallel DC$

Therefore, By using Basic Proportionality Theorem

$$\frac{AE}{ED} = \frac{AO}{CO} \qquad \qquad (i)$$

Now, In $\triangle ABD$, OE \parallel AB

Therefore, By using Basic Proportionality Theorem

$$\frac{DE}{EA} = \frac{DO}{RO}$$
(ii)

From equation (i) and (ii), we get,

$$\frac{AO}{CO} = \frac{BO}{DO}$$

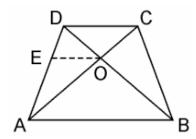
$$\Rightarrow \frac{AO}{BO} = \frac{CO}{DO}$$

Hence, proved.

10. The diagonals of a quadrilateral ABCD intersect each other at the point O such that AO/BO = CO/DO. Show that ABCD is a trapezium.

Solution: Given, Quadrilateral ABCD where AC and BD intersects each other at O such that, AO/BO = CO/DO.

NCERT Solutions Class 10 Maths Chapter 6 Triangles



We have to prove here, ABCD is a trapezium

From the point O, draw a line EO touching AD at E, in such a way that, EO \parallel DC \parallel AB

In ΔDAB , EO $\parallel AB$

Therefore, By using Basic Proportionality Theorem

$$\frac{DE}{EA} = \frac{DO}{OB} \dots (i)$$

Also, given,

$$\frac{AO}{BO} = \frac{CO}{DO}$$

$$\frac{AO}{BO} = \frac{BO}{DO}$$

$$\Rightarrow \frac{AO}{CO} = \frac{BO}{DO}$$

$$\Rightarrow \frac{CO}{AO} = \frac{BO}{DO}$$

$$\Rightarrow \frac{BO}{AO} = \frac{CO}{DO}$$

$$\Rightarrow \frac{BO}{AO} = \frac{CO}{DO}$$

$$\Rightarrow \frac{BO}{AO} = \frac{CO}{DO}$$

From equation (i) and (ii), we get

$$\frac{DE}{EA} = \frac{CO}{AO}$$

Therefore, By using converse of Basic Proportionality Theorem,

 $EO \parallel DC \ also \ EO \parallel AB$

$$\Rightarrow$$
 AB || DC.

Hence, quadrilateral ABCD is a trapezium with AB \parallel CD.