EXERCISE 7.5

Integrate the rational functions in Exercises 1 to 21.
1.
$\frac{x}{(x+1)(x+2)}$
Solution:
Consider

$$
\frac{x}{(x+1)(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+2)}
$$

We get
$\mathrm{x}=\mathrm{A}(\mathrm{x}+2)+\mathrm{B}(\mathrm{x}+1)$
Now by equating the coefficients of x and constant term, we get
$A+B=1$
$2 \mathrm{~A}+\mathrm{B}=0$
By solving the equations we get
$A=-1$ and $B=2$
Substituting the values of A and B
$\frac{x}{(x+1)(x+2)}=\frac{-1}{(x+1)}+\frac{2}{(x+2)}$
By integrating both sides w.r.t x

$$
\int \frac{x}{(x+1)(x+2)} d x=\int \frac{-1}{(x+1)}+\frac{2}{(x+2)} d x
$$

So we get
$=-\log |x+1|+2 \log |x+2|+c$
We can write it as
$=\log (\mathrm{x}+2)^{2}-\log |\mathrm{x}+1|+\mathrm{c}$
$=\log \frac{(x+2)^{2}}{(x+1)}+C$
2. $\frac{1}{(x+3)(x-3)}$
Solution:

Consider
$\frac{1}{(x+3)(x-3)}=\frac{A}{(x+3)}+\frac{B}{(x-3)}$
We get
$1=A(x-3)+B(x+3)$
Now by equating the coefficients of x and constant term, we get
$\mathrm{A}+\mathrm{B}=1$
$-3 \mathrm{~A}+3 \mathrm{~B}=0$
By solving the equations we get
$A=-1 / 6$ and $B=1 / 6$
Substituting the values of A and B
$\frac{1}{(x+3)(x-3)}=\frac{-1}{6(x+3)}+\frac{1}{6(x-3)}$
By integrating both sides w.r.t x
$\int \frac{1}{\left(x^{2}-9\right)} d x=\int\left(\frac{-1}{6(x+3)}+\frac{1}{6(x-3)}\right) d x$
So we get
$=-\frac{1}{6} \log |x+3|+\frac{1}{6} \log |x-3|+\mathrm{C}$
We can write it as
$=\frac{1}{6} \log \left|\frac{(x-3)}{(x+3)}\right|+\mathrm{C}$
3.
$\frac{3 x-1}{(x-1)(x-2)(x-3)}$

Solution:

Consider
$\frac{3 x-1}{(x-1)(x-2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
We get
$3 x-1=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$

By substituting the value of x in equation (1), we get
$\mathrm{A}=1, \mathrm{~B}=-5$ and $\mathrm{C}=4$
Substituting the values of A, B and C
$\frac{3 x-1}{(x-1)(x-2)(x-3)}=\frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)}$
By integrating both sides w.r.t x

$$
\int \frac{3 x-1}{(x-1)(x-2)(x-3)} d x=\int\left\{\frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)}\right\} d x
$$

So we get
$=\log |x-1|-5 \log |x-2|+4 \log |x-3|+c$
4.
$\frac{x}{(x-1)(x-2)(x-3)}$

Solution:

Consider

$\frac{x}{(x-1)(x-2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
We get
$x=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2) \ldots \ldots(1)$
By substituting the value of x in equation (1), we get
$\mathrm{A}=1 / 2, \mathrm{~B}=-2$ and $\mathrm{C}=3 / 2$
Substituting the values of A, B and C

$$
\frac{x}{(x-1)(x-2)(x-3)}=\frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)}
$$

By integrating both sides w.r.t x

$$
\int \frac{x}{(x-1)(x-2)(x-3)} d x=\int\left\{\frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)}\right\} d x
$$

So we get

$$
=1 / 2 \log |x-1|-2 \log |x-2|+3 / 2 \log |x-3|+c
$$

5.

$$
\frac{2 x}{x^{2}+3 x+2}
$$

Solution:

Consider
$\frac{2 x}{x^{2}+3 x+2}=\frac{A}{(x+1)}+\frac{B}{(x+2)}$
We get
$2 \mathrm{x}=\mathrm{A}(\mathrm{x}+2)+\mathrm{B}(\mathrm{x}+1)$
By substituting the value of x in equation (1), we get
$A=-2$ and $B=4$
Substituting the values of A and B
$\frac{2 x}{(x+1)(x+2)}=\frac{-2}{(x+1)}+\frac{4}{(x+2)}$
By integrating both sides w.r.t x
$\int \frac{2 x}{(x+1)(x+2)} d x=\int\left\{\frac{4}{(x+2)}-\frac{2}{(x+1)}\right\} d x$
So we get
$=4 \log |x+2|-2 \log |x+1|+c$
6.
$\frac{1-x^{2}}{x(1-2 x)}$
Solution:
Consider
$\frac{1-x^{2}}{x(1-2 x)}=\frac{1}{2}+\frac{1}{2}\left(\frac{2-x}{x(1-2 x)}\right)$
We know that
$\frac{2-x}{x(1-2 x)}=\frac{A}{x}+\frac{B}{(1-2 x)}$
We get
$(2-x)=A(1-2 x)+B x$
By substituting the value of x in equation (1), we get
$\mathrm{A}=2$ and $\mathrm{B}=3$
Substituting the values of A and B
$\frac{2-x}{x(1-2 x)}=\frac{2}{x}+\frac{3}{1-2 x}$
We get
$\frac{1-x^{2}}{x(1-2 x)}=\frac{1}{2}+\frac{1}{2}\left\{\frac{2}{x}+\frac{3}{(1-2 x)}\right\}$
By integrating both sides w.r.t x
$\int \frac{1-x^{2}}{x(1-2 x)} d x=\int\left\{\frac{1}{2}+\frac{1}{2}\left(\frac{2}{x}+\frac{3}{1-2 x}\right)\right\} d x$
By further calculation
$=\frac{x}{2}+\log |x|+\frac{3}{2(-2)} \log |1-2 x|+\mathrm{C}$
So we get
$=\frac{x}{2}+\log |x|-\frac{3}{4} \log |1-2 x|+\mathrm{C}$
7.
$\frac{x}{\left(x^{2}+1\right)(x-1)}$
Solution:
We know that
$\frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C}{(x-1)}$
It can be written as
$x=(A x+B)(x-1)+C\left(x^{2}+1\right)$
By multiplying the terms
$\mathrm{x}=\mathrm{Ax}^{2}-\mathrm{Ax}+\mathrm{Bx}-\mathrm{B}+\mathrm{Cx}^{2}+\mathrm{C}$
Now by equating the coefficients of $\mathrm{x}^{2}, \mathrm{x}$ and constant terms we get
$\mathrm{A}+\mathrm{C}=0$
$-\mathrm{A}+\mathrm{B}=1$
$-\mathrm{B}+\mathrm{C}=0$
By solving the equations
$A=-1 / 2, B=1 / 2$ and $C=1 / 2$
Using equation (1)

$$
\frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{\left(-\frac{1}{2} x+\frac{1}{2}\right)}{x^{2}+1}+\frac{\frac{1}{2}}{(x-1)}
$$

By integrating both sides w.r.t. x

$$
\int \frac{x}{\left(x^{2}+1\right)(x-1)}=-\frac{1}{2} \int \frac{x}{x^{2}+1} d x+\frac{1}{2} \int \frac{1}{x^{2}+1} d x+\frac{1}{2} \int \frac{1}{x-1} d x
$$

We get

$$
=-\frac{1}{4} \int \frac{2 x}{x^{2}+1} d x+\frac{1}{2} \tan ^{-1} x+\frac{1}{2} \log |x-1|+\mathrm{C}
$$

Here

$\int \frac{2 x}{x^{2}+1} d x$, let $\left(x^{2}+1\right)=t$
We get
$2 \mathrm{xdx}=\mathrm{dt}$
Substituting the values
$\int \frac{2 x}{x^{2}+1} d x=\int \frac{d t}{t}$
By integrating w.r.t t
$=\log |t|$
Substituting the value of t
$=\log \left|\mathrm{x}^{2}+1\right|$
So we get
$\int \frac{x}{\left(x^{2}+1\right)(x-1)}=-\frac{1}{4} \log \left|x^{2}+1\right|+\frac{1}{2} \tan ^{-1} x+\frac{1}{2} \log |x-1|+\mathrm{C}$
We can write it as
$=\frac{1}{2} \log |x-1|-\frac{1}{4} \log \left|x^{2}+1\right|+\frac{1}{2} \tan ^{-1} x+C$
8.
$\frac{x}{(x-1)^{2}(x+2)}$
Solution:
We know that
$\frac{x}{(x-1)^{2}(x+2)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+2)}$
It can be written as
$\mathrm{x}=\mathrm{A}(\mathrm{x}-1)(\mathrm{x}+2)+\mathrm{B}(\mathrm{x}+2)+\mathrm{C}(\mathrm{x}-1)^{2}$
Taking $x=1$ we get
B $=1 / 3$

Now by equating the coefficients of x^{2} and constant terms we get
$\mathrm{A}+\mathrm{C}=0$
$-2 \mathrm{~A}+2 \mathrm{~B}+\mathrm{C}=0$
By solving the equations
$\mathrm{A}=2 / 9$ and $\mathrm{C}=-2 / 9$
We get
$\frac{x}{(x-1)^{2}(x+2)}=\frac{2}{9(x-1)}+\frac{1}{3(x-1)^{2}}-\frac{2}{9(x+2)}$
By integrating both sides w.r.t. x
$\int \frac{x}{(x-1)^{2}(x+2)} d x=\frac{2}{9} \int \frac{1}{(x-1)} d x+\frac{1}{3} \int \frac{1}{(x-1)^{2}} d x-\frac{2}{9} \int \frac{1}{(x+2)} d x$

Here
$=\frac{2}{9} \log |x-1|+\frac{1}{3}\left(\frac{-1}{x-1}\right)-\frac{2}{9} \log |x+2|+\mathrm{C}$
By further calculation
$=\frac{2}{9} \log \left|\frac{x-1}{x+2}\right|-\frac{1}{3(x-1)}+\mathrm{C}$
9.
$\frac{3 x+5}{x^{3}-x^{2}-x+1}$
Solution:
It is given that
$\frac{3 x+5}{x^{3}-x^{2}-x+1}=\frac{3 x+5}{(x-1)^{2}(x+1)}$
We know that
$\frac{3 x+5}{(x-1)^{2}(x+1)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+1)}$
It can be written as
$3 \mathrm{x}+5=\mathrm{A}(\mathrm{x}-1)(\mathrm{x}+1)+\mathrm{B}(\mathrm{x}+1)+\mathrm{C}(\mathrm{x}-1)^{2}$
We get
$3 \mathrm{x}+5=\mathrm{A}\left(\mathrm{x}^{2}-1\right)+\mathrm{B}(\mathrm{x}+1)+\mathrm{C}\left(\mathrm{x}^{2}+1-2 \mathrm{x}\right)$
By substituting the value of $x=1$ in equation (1)
$B=4$
Now by equating the coefficients of x^{2} and x we get
$\mathrm{A}+\mathrm{C}=0$
B $-2 \mathrm{C}=3$
By solving the equations
$\mathrm{A}=-1 / 2$ and $\mathrm{C}=1 / 2$
We get

$$
\frac{3 x+5}{(x-1)^{2}(x+1)}=\frac{-1}{2(x-1)}+\frac{4}{(x-1)^{2}}+\frac{1}{2(x+1)}
$$

By integrating both sides w.r.t. x
$\int \frac{3 x+5}{(x-1)^{2}(x+1)} d x=-\frac{1}{2} \int \frac{1}{x-1} d x+4 \int \frac{1}{(x-1)^{2}} d x+\frac{1}{2} \int \frac{1}{(x+1)} d x$
Here

$$
=-\frac{1}{2} \log |x-1|+4\left(\frac{-1}{x-1}\right)+\frac{1}{2} \log |x+1|+\mathrm{C}
$$

By further calculation
$=\frac{1}{2} \log \left|\frac{x+1}{x-1}\right|-\frac{4}{(x-1)}+\mathrm{C}$
10.
$\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}$

Solution:

It is given that
$\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}=\frac{2 x-3}{(x+1)(x-1)(2 x+3)}$
We know that
$\frac{2 x-3}{(x+1)(x-1)(2 x+3)}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{C}{(2 x+3)}$
It can be written as
$(2 \mathrm{x}-3)=\mathrm{A}(\mathrm{x}-1)(2 \mathrm{x}+3)+\mathrm{B}(\mathrm{x}+1)(2 \mathrm{x}+3)+\mathrm{C}(\mathrm{x}+1)(\mathrm{x}-1)$
$(2 x-3)=A\left(2 x^{2}+x-3\right)+B\left(2 x^{2}+5 x+3\right)+C\left(x^{2}-1\right)$
We get
$(2 \mathrm{x}-3)=(2 \mathrm{~A}+2 \mathrm{~B}+\mathrm{C}) \mathrm{x}^{2}+(\mathrm{A}+5 \mathrm{~B}) \mathrm{x}+(-3 \mathrm{~A}+3 \mathrm{~B}-\mathrm{C})$
Now by equating the coefficients of x^{2} and x we get
$B=-1 / 10, A=5 / 2$ and $C=-24 / 5$
We get
$\frac{2 x-3}{(x+1)(x-1)(2 x+3)}=\frac{5}{2(x+1)}-\frac{1}{10(x-1)}-\frac{24}{5(2 x+3)}$
By integrating both sides w.r.t. x
$\int \frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)} d x=\frac{5}{2} \int \frac{1}{(x+1)} d x-\frac{1}{10} \int \frac{1}{x-1} d x-\frac{24}{5} \int \frac{1}{(2 x+3)} d x$

Here

$=\frac{5}{2} \log |x+1|-\frac{1}{10} \log |x-1|-\frac{24}{5 \times 2} \log |2 x+3|$
By further calculation
$=\frac{5}{2} \log |x+1|-\frac{1}{10} \log |x-1|-\frac{12}{5} \log |2 x+3|+\mathrm{C}$
11.

$$
\frac{5 x}{(x+1)\left(x^{2}-4\right)}
$$

Solution:

It is given that

$$
\frac{5 x}{(x+1)\left(x^{2}-4\right)}=\frac{5 x}{(x+1)(x+2)(x-2)}
$$

We know that
$\frac{5 x}{(x+1)(x+2)(x-2)}=\frac{A}{(x+1)}+\frac{B}{(x+2)}+\frac{C}{(x-2)}$

It can be written as
$5 \mathrm{x}=\mathrm{A}(\mathrm{x}+2)(\mathrm{x}-2)+\mathrm{B}(\mathrm{x}+1)(\mathrm{x}-2)+\mathrm{C}(\mathrm{x}+1)(\mathrm{x}+2)$
By substituting $x=-1,-2$ and 2 in equation (1)
$\mathrm{A}=5 / 3, B=-5 / 2$ and $\mathrm{C}=5 / 6$
We get
$\frac{5 x}{(x+1)(x+2)(x-2)}=\frac{5}{3(x+1)}-\frac{5}{2(x+2)}+\frac{5}{6(x-2)}$
By integrating both sides w.r.t. x
$\int \frac{5 x}{(x+1)\left(x^{2}-4\right)} d x=\frac{5}{3} \int \frac{1}{(x+1)} d x-\frac{5}{2} \int \frac{1}{(x+2)} d x+\frac{5}{6} \int \frac{1}{(x-2)} d x$
By further calculation
$=\frac{5}{3} \log |x+1|-\frac{5}{2} \log |x+2|+\frac{5}{6} \log |x-2|+\mathrm{C}$
12.
$\frac{x^{3}+x+1}{x^{2}-1}$
Solution:
It is given that
$\frac{x^{3}+x+1}{x^{2}-1}=x+\frac{2 x+1}{x^{2}-1}$
We know that
$\frac{2 x+1}{x^{2}-1}=\frac{A}{(x+1)}+\frac{B}{(x-1)}$
It can be written as
$2 \mathrm{x}+1=\mathrm{A}(\mathrm{x}-1)+\mathrm{B}(\mathrm{x}+1)$
By substituting $x=1$ and -1 in equation (1)
$A=1 / 2$ and $B=3 / 2$
We get
$\frac{x^{3}+x+1}{x^{2}-1}=x+\frac{1}{2(x+1)}+\frac{3}{2(x-1)}$
By integrating both sides w.r.t. x

$$
\int \frac{x^{3}+x+1}{x^{2}-1} d x=\int x d x+\frac{1}{2} \int \frac{1}{(x+1)} d x+\frac{3}{2} \int \frac{1}{(x-1)} d x
$$

By further calculation
$=\frac{x^{2}}{2}+\frac{1}{2} \log |x+1|+\frac{3}{2} \log |x-1|+\mathrm{C}$
13.
$\frac{2}{(1-x)\left(1+x^{2}\right)}$

Solution:

We know that
$\frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{A}{(1-x)}+\frac{B x+C}{\left(1+x^{2}\right)}$
It can be written as
$2=A\left(1+x^{2}\right)+(B x+C)(1-x)$
$2=\mathrm{A}+\mathrm{Ax}^{2}+\mathrm{Bx}-\mathrm{Bx}^{2}+\mathrm{C}-\mathrm{Cx}$
Now by equating the coefficient of $\mathrm{x}^{2}, \mathrm{x}$ and constant terms
$\mathrm{A}-\mathrm{B}=0$
$\mathrm{B}-\mathrm{C}=0$
$\mathrm{A}+\mathrm{C}=2$
Solving the equations
$\mathrm{A}=1, \mathrm{~B}=1$ and $\mathrm{C}=1$
We get
$\frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{1}{1-x}+\frac{x+1}{1+x^{2}}$
By integrating both sides w.r.t. x
$\int \frac{2}{(1-x)\left(1+x^{2}\right)} d x=\int \frac{1}{1-x} d x+\int \frac{x}{1+x^{2}} d x+\int \frac{1}{1+x^{2}} d x$
Multiplying and dividing by 2 in the second term
$=-\int \frac{1}{x-1} d x+\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x+\int \frac{1}{1+x^{2}} d x$
By further calculation
$=-\log |x-1|+\frac{1}{2} \log \left|1+x^{2}\right|+\tan ^{-1} x+C$
14.
$\frac{3 x-1}{(x+2)^{2}}$
Solution:
We know that
$\frac{3 x-1}{(x+2)^{2}}=\frac{A}{(x+2)}+\frac{B}{(x+2)^{2}}$
It can be written as
$3 x-1=A(x+2)+B$

Now by equating the coefficient of x and constant terms
$\mathrm{A}=3$
$2 \mathrm{~A}+\mathrm{B}=-1$
Solving the equations
$B=-7$
We get
$\frac{3 x-1}{(x+2)^{2}}=\frac{3}{(x+2)}-\frac{7}{(x+2)^{2}}$
By integrating both sides w.r.t. x
$\int \frac{3 x-1}{(x+2)^{2}} d x=3 \int \frac{1}{(x+2)} d x-7 \int \frac{x}{(x+2)^{2}} d x$
So we get
$=3 \log |x+2|-7\left(\frac{-1}{(x+2)}\right)+\mathrm{C}$
By further calculation
$=3 \log |x+2|+\frac{7}{(x+2)}+\mathrm{C}$
15.
$\frac{1}{\left(x^{4}-1\right)}$

Solution:

It is given that
$\frac{1}{\left(x^{4}-1\right)}=\frac{1}{\left(x^{2}-1\right)\left(x^{2}+1\right)}=\frac{1}{(x+1)(x-1)\left(1+x^{2}\right)}$
We know that
$\frac{1}{(x+1)(x-1)\left(1+x^{2}\right)}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{C x+D}{\left(x^{2}+1\right)}$
So we get
$1=A(x-1)\left(x^{2}+1\right)+B(x+1)\left(x^{2}+1\right)+(C x+D)\left(x^{2}-1\right)$
By multiplying the terms
$1=A\left(x^{3}+x-x^{2}-1\right)+B\left(x^{3}+x+x^{2}+1\right)+C x^{3}+\mathrm{Dx}^{2}-C x-D$
It can be written as
$1=(A+B+C) x^{3}+(-A+B+D) x^{2}+(A+B-C) x+(-A+B-D)$
Now by equating the coefficient of $\mathrm{x}^{3}, \mathrm{x}^{2}, \mathrm{x}$ and constant terms
$\mathrm{A}+\mathrm{B}+\mathrm{C}=0$
$-\mathrm{A}+\mathrm{B}+\mathrm{D}=0$
$\mathrm{A}+\mathrm{B}-\mathrm{C}=0$
$-\mathrm{A}+\mathrm{B}-\mathrm{D}=1$

Solving the equations
$\mathrm{A}=-1 / 4, \mathrm{~B}=1 / 4, \mathrm{C}=0$ and $\mathrm{D}=-1 / 2$
We get
$\frac{1}{x^{4}-1}=\frac{-1}{4(x+1)}+\frac{1}{4(x-1)}-\frac{1}{2\left(x^{2}+1\right)}$
By integrating both sides w.r.t. x
$\int \frac{1}{x^{4}-1} d x=-\frac{1}{4} \log |x+1|+\frac{1}{4} \log |x-1|-\frac{1}{2} \tan ^{-1} x+\mathrm{C}$
So we get
$=\frac{1}{4} \log \left|\frac{x-1}{x+1}\right|-\frac{1}{2} \tan ^{-1} x+C$
16.

$$
\frac{1}{x\left(x^{n}+1\right)}
$$

Solution:

By multiplying both numerator and denominator by $\mathrm{x}^{\mathrm{n}-1}$

$$
\frac{1}{x\left(x^{n}+1\right)}=\frac{x^{n-1}}{x^{n-1} x\left(x^{n}+1\right)}=\frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)}
$$

Here $\mathrm{x}^{\mathrm{n}}=\mathrm{t}$ we get
$\mathrm{nx}{ }^{\mathrm{n}-1} \mathrm{dx}=\mathrm{dt}$
So we get
$\int \frac{1}{x\left(x^{n}+1\right)} d x=\int \frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)} d x=\frac{1}{n} \int \frac{1}{t(t+1)} d t$
We know that

$$
\begin{equation*}
\frac{1}{t(t+1)}=\frac{A}{t}+\frac{B}{(t+1)} \tag{1}
\end{equation*}
$$

It can be written as
$1=\mathrm{A}(1+\mathrm{t})+\mathrm{Bt}$
By substituting $\mathrm{t}=0,-1$ in equation (1)
$A=1$ and $B=-1$
We get
$\frac{1}{t(t+1)}=\frac{1}{t}-\frac{1}{(1+t)}$
By integrating both sides w.r.t. x
$\int \frac{1}{x\left(x^{n}+1\right)} d x=\frac{1}{n} \int\left\{\frac{1}{t}-\frac{1}{(t+1)}\right\} d x$
So we get
$=\frac{1}{n}[\log |t|-\log |t+1|]+\mathrm{C}$
Substituting the value of t
$=-\frac{1}{n}\left[\log \left|x^{n}\right|-\log \left|x^{n}+1\right|\right]+\mathrm{C}$
It can be written as
$=\frac{1}{n} \log \left|\frac{x^{n}}{x^{n}+1}\right|+\mathrm{C}$
17.
$\frac{\cos x}{(1-\sin x)(2-\sin x)}$

Solution:

It is given that
$\frac{\cos x}{(1-\sin x)(2-\sin x)}$
Consider
$\sin \mathrm{x}=\mathrm{t}$
By differentiating w.r.t t
$\cos \mathrm{xdx}=\mathrm{dt}$
Integrating w.r.t x

$$
\int \frac{\cos x}{(1-\sin x)(2-\sin x)} d x=\int \frac{d t}{(1-t)(2-t)}
$$

Here we can write it as
$\frac{1}{(1-t)(2-t)}=\frac{A}{(1-t)}+\frac{B}{(2-t)}$
We get
$1=\mathrm{A}(2-\mathrm{t})+\mathrm{B}(1-\mathrm{t})$
By substituting $\mathrm{t}=2$ and $\mathrm{t}=1$ in equation (1)
$A=1$ and $B=-1$
$\frac{1}{(1-t)(2-t)}=\frac{1}{(1-t)}-\frac{1}{(2-t)}$
Integrating w.r.t t
$\int \frac{\cos x}{(1-\sin x)(2-\sin x)} d x=\int\left\{\frac{1}{1-t}-\frac{1}{(2-t)}\right\} d t$

So we get
$=-\log |1-t|+\log |2-t|+C$
It can be written as
$=\log \left|\frac{2-t}{1-t}\right|+\mathrm{C}$
Substituting the value of t
$=\log \left|\frac{2-\sin x}{1-\sin x}\right|+C$
18.
$\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}$

Solution:

We know that
$\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=1-\frac{\left(4 x^{2}+10\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}$
It can be written as
$\frac{4 x^{2}+10}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=\frac{A x+B}{\left(x^{2}+3\right)}+\frac{C x+D}{\left(x^{2}+4\right)}$
So we get
$4 x^{2}+10=(A x+B)\left(x^{2}+4\right)+(C x+D)\left(x^{2}+3\right)$
Multiplying the terms
$4 \mathrm{x}^{2}+10=\mathrm{Ax}^{3}+4 \mathrm{Ax}+\mathrm{Bx}^{2}+4 \mathrm{~B}+\mathrm{Cx}^{3}+3 \mathrm{Cx}+\mathrm{Dx}^{2}+3 \mathrm{D}$
Grouping the terms
$4 x^{2}+10=(A+C) x^{3}+(B+D) x^{2}+(4 A+3 C) x+(4 B+3 D)$
Now by equating the coefficients of $\mathrm{x}^{3}, \mathrm{x}^{2}, \mathrm{x}$ and constant terms
$\mathrm{A}+\mathrm{C}=0$
$B+D=4$
$4 \mathrm{~A}+3 \mathrm{C}=0$
$4 B+3 D=10$
By solving these equations
$\mathrm{A}=0, \mathrm{~B}=-2, \mathrm{C}=0$ and $\mathrm{D}=6$
Substituting the values
$\frac{4 x^{2}+10}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=\frac{-2}{\left(x^{2}+3\right)}+\frac{6}{\left(x^{2}+4\right)}$
We can write it as
$\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=1-\left(\frac{-2}{\left(x^{2}+3\right)}+\frac{6}{\left(x^{2}+4\right)}\right)$

Integrating both sides w.r.t x
$\int \frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)} d x=\int\left\{1+\frac{2}{\left(x^{2}+3\right)}-\frac{6}{\left(x^{2}+4\right)}\right\} d x$
So we get
$=\int\left\{1+\frac{2}{x^{2}+(\sqrt{3})^{2}}-\frac{6}{x^{2}+2^{2}}\right\}$
Here
$=x+2\left(\frac{1}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}\right)-6\left(\frac{1}{2} \tan ^{-1} \frac{x}{2}\right)+\mathrm{C}$
By further calculation
$=x+\frac{2}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}-3 \tan ^{-1} \frac{x}{2}+C$
19.
$\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$

Solution:

It is given that
$\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$
Consider $\mathrm{x}^{2}=\mathrm{t}$
So we get
$2 \mathrm{xdx}=\mathrm{dt}$
Integrating both sides
$\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\int \frac{d t}{(t+1)(t+3)}$
We can write it as
$\frac{1}{(t+1)(t+3)}=\frac{A}{(t+1)}+\frac{B}{(t+3)}$
$1=A(t+3)+B(t+1) \ldots . .(1)$
Now by substituting $\mathrm{t}=-3$ and $\mathrm{t}=-1$ in equation (1)
$A=1 / 2$ and $B=-1 / 2$
Substituting the values
$\frac{1}{(t+1)(t+3)}=\frac{1}{2(t+1)}-\frac{1}{2(t+3)}$
Integrating w.r.t t
$\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\int\left\{\frac{1}{2(t+1)}-\frac{1}{2(t+3)}\right\} d t$
So we get
$=\frac{1}{2} \log |(t+1)|-\frac{1}{2} \log |t+3|+\mathrm{C}$
It can be written as
$=\frac{1}{2} \log \left|\frac{t+1}{t+3}\right|+\mathrm{C}$
Substituting the value of t
$=\frac{1}{2} \log \left|\frac{x^{2}+1}{x^{2}+3}\right|+\mathrm{C}$
20.
$\frac{1}{x\left(x^{4}-1\right)}$
Solution:
It is given that
$\frac{1}{x\left(x^{4}-1\right)}$
By multiplying both numerator and denominator by x^{3}
$\frac{1}{x\left(x^{4}-1\right)}=\frac{x^{3}}{x^{4}\left(x^{4}-1\right)}$
Integrating both sides
$\int \frac{1}{x\left(x^{4}-1\right)} d x=\int \frac{x^{3}}{x^{4}\left(x^{4}-1\right)} d x$
Consider $\mathrm{x}^{4}=\mathrm{t}$
So we get $4 x^{3} d x=d t$
We can write it as
$\int \frac{1}{x\left(x^{4}-1\right)} d x=\frac{1}{4} \int \frac{d t}{t(t-1)}$
So we get
$\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{(t-1)}$
$1=\mathrm{A}(\mathrm{t}-1)+\mathrm{Bt}$
Now by substituting $\mathrm{t}=0$ in equation (1)
$\mathrm{A}=-1$ and $\mathrm{B}=1$

Substituting the values
$\frac{1}{t(t+1)}=\frac{-1}{t}+\frac{1}{t-1}$
Integrating w.r.t t
$\int \frac{1}{x\left(x^{4}-1\right)} d x=\frac{1}{4} \int\left\{\frac{-1}{t}+\frac{1}{t-1}\right\} d t$
So we get
$=\frac{1}{4}[-\log |t|+\log |t-1|]+C$
It can be written as
$=\frac{1}{4} \log \left|\frac{t-1}{t}\right|+\mathrm{C}$
Substituting the value of t
$=\frac{1}{4} \log \left|\frac{x^{4}-1}{x^{4}}\right|+\mathrm{C}$
21.
$\frac{1}{\left(e^{x}-1\right)}$
Solution:
It is given that
$\frac{1}{\left(e^{x}-1\right)}$
Consider $\mathrm{e}^{\mathrm{x}}=\mathrm{t}$
So we get $e^{x} d x=d t$
We can write it as
$\int \frac{1}{e^{x}-1} d x=\int \frac{1}{t-1} \times \frac{d t}{t}=\int \frac{1}{t(t-1)} d t$
So we get
$\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1}$
$1=A(t-1)+B t$.
Now by substituting $t=1$ and $t=0$ in equation (1) $A=-1$ and $B=1$

Substituting the values
$\frac{1}{t(t+1)}=\frac{-1}{t}+\frac{1}{t-1}$

Integrating w.r.t t
$\int \frac{1}{t(t-1)} d t=\log \left|\frac{t-1}{t}\right|+\mathrm{C}$
Substituting the value of t
$=\log \left|\frac{e^{x}-1}{e^{x}}\right|+\mathrm{C}$
Choose the correct answer in each of the Exercises 22 and 23.
22. $\int \frac{x d x}{(x-1)(x-2)}$ equals
(A) $\log \left|\frac{(x-1)^{2}}{x-2}\right|+C$
(B) $\log \left|\frac{(x-2)^{2}}{x-1}\right|+C$
(C) $\log \left|\left(\frac{x-1}{x-2}\right)^{2}\right|+C$
$(D) \log |(x-1)(x-2)|+C$
Solution:
We know that
$\frac{x}{(x-1)(x-2)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}$
It can be written as
$\mathrm{x}=\mathrm{A}(\mathrm{x}-2)+\mathrm{B}(\mathrm{x}-1)$
Now by substituting $x=1$ and 2 in equation (1)
$\mathrm{A}=-1$ and $\mathrm{B}=2$
Substituting the value of A and B
$\frac{x}{(x-1)(x-2)}=-\frac{1}{(x-1)}+\frac{2}{(x-2)}$
Integrating both sides w.r.t x
$\int \frac{x}{(x-1)(x-2)} d x=\int\left\{\frac{-1}{(x-1)}+\frac{2}{(x-2)}\right\} d x$
We get
$=-\log |x-1|+2 \log |x-2|+C$
We can write it as
$=\log \left|\frac{(x-2)^{2}}{x-1}\right|+C$
Therefore, B is the correct answer.
23. $\int \frac{d x}{x\left(x^{2}+1\right)}$ equals
(A) $\log |x|-\frac{1}{2} \log \left(x^{2}+1\right)+C$
(B) $\log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+C$
$(C)-\log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+C$
(D) $\frac{1}{2} \log |x|+\log \left(x^{2}+1\right)+C$

Solution:
We know that

$$
\begin{equation*}
\frac{1}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1} \tag{1}
\end{equation*}
$$

It can be written as
$1=A\left(x^{2}+1\right)+(B x+C) x$
Now by equating the coefficients of x^{2}, x and constant terms
$\mathrm{A}+\mathrm{B}=0$
$\mathrm{C}=0$
$\mathrm{A}=1$
By solving the equations we get
$\mathrm{A}=1, \mathrm{~B}=-1$ and $\mathrm{C}=0$
Substituting the value of A and B
$\frac{1}{x\left(x^{2}+1\right)}=\frac{1}{x}+\frac{-x}{x^{2}+1}$
Integrating both sides w.r.t x
$\int \frac{1}{x\left(x^{2}+1\right)} d x=\int\left\{\frac{1}{x}-\frac{x}{x^{2}+1}\right\} d x$
We get
$=\log |x|-\frac{1}{2} \log \left|x^{2}+1\right|+\mathrm{C}$
Therefore, A is the correct answer.

