EXERCISE 17.1

1. Evaluate the following:

(i) ${ }^{14} \mathrm{C}_{3}$
(ii) ${ }^{12} \mathrm{C}_{10}$
(iii) ${ }^{35} \mathrm{C}_{35}$
(iv) ${ }^{\mathrm{n}+1} \mathbf{C}_{\mathrm{n}}$
(v) $\sum_{\mathrm{r}=1}^{5}{ }^{5} \mathrm{C}_{\mathrm{r}}$

Solution:

(i) ${ }^{14} \mathrm{C}_{3}$

Let us use the formula,
${ }^{n} C_{r}=n!/ r!(n-r)!$
So now, value of $\mathrm{n}=14$ and $\mathrm{r}=3$

$$
\begin{aligned}
{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} & =\mathrm{n}!/ \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
{ }^{14} \mathrm{C}_{3} & =14!/ 3!(14-3)! \\
& =14!/(3!11!) \\
& =[14 \times 13 \times 12 \times 11!] /(3!11!) \\
& =[14 \times 13 \times 12] /(3 \times 2) \\
& =14 \times 13 \times 2 \\
& =364
\end{aligned}
$$

(ii) ${ }^{12} \mathrm{C}_{10}$

Let us use the formula,
${ }^{n} C_{r}=n!/ r!(n-r)!$
So now, value of $\mathrm{n}=12$ and $\mathrm{r}=10$

$$
\begin{aligned}
& \begin{aligned}
&{ }^{n} \mathrm{C}_{\mathrm{r}}=\mathrm{n}!/ \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
& \begin{aligned}
{ }^{2} \mathrm{C}_{10} & =12!/ 10!(12-10)! \\
& =12!/(10!2!) \\
& =[12 \times 11 \times 10!] /(10!2!) \\
& =[12 \times 11] /(2) \\
& =6 \times 11 \\
& =66
\end{aligned} \\
& \text { (iii) }{ }^{35} \mathrm{C}_{35}
\end{aligned}
\end{aligned}
$$

Let us use the formula,
${ }^{n} C_{r}=n!/ r!(n-r)!$
So now, value of $\mathrm{n}=35$ and $\mathrm{r}=35$

$$
\begin{aligned}
\begin{aligned}
{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} & =\mathrm{n}!/ \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
\mathrm{C}_{35} & =35!/ 35!(35-35)! \\
& =35!/(35!0!)[\text { Since, } 0!=1] \\
& =1
\end{aligned}
\end{aligned}
$$

(iv) ${ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{n}}$

Let us use the formula,
${ }^{n} C_{r}=n!/ r!(n-r)!$
So now, value of $\mathrm{n}=\mathrm{n}+1$ and $\mathrm{r}=\mathrm{n}$

$$
\begin{aligned}
& { }^{n} C_{r}=n!/ r!(n-r)! \\
& { }^{n+1} \mathrm{C}_{\mathrm{n}}=(\mathrm{n}+1)!/ \mathrm{n}!(\mathrm{n}+1-\mathrm{n})! \\
& =(n+1)!/ n!(1!) \\
& =(n+1) / 1 \\
& =n+1 \\
& \text { (v) } \sum_{r=1}^{5}{ }^{5} \mathrm{C}_{\mathrm{r}}
\end{aligned}
$$

Let us use the formula,

$$
\begin{aligned}
&{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\mathrm{n}!/ \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
& \begin{aligned}
\sum_{\mathrm{r}}^{5}=1
\end{aligned}{ }^{5} \mathrm{C}_{\mathrm{r}}={ }^{5} \mathrm{C}_{1}+{ }^{5} \mathrm{C}_{2}+{ }^{5} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{4}+{ }^{5} \mathrm{C}_{5} \\
&=\frac{5!}{(5-1)!1!}+\frac{5!}{(5-2)!2!}+\frac{5!}{(5-3)!3!}+\frac{5!}{(5-4)!4!}+\frac{5!}{(5-5)!5!} \\
&=\frac{5!}{4!1!}+\frac{5!}{3!2!}+\frac{5!}{2!3!}+\frac{5!}{1!4!}+\frac{5!}{0!5!} \\
&=\frac{5}{1}+\frac{5 \times 4}{2 \times 1}+\frac{5 \times 4}{2 \times 1}+\frac{5}{1}+\frac{1}{1} \\
&=5+10+10+5+1 \\
&=31
\end{aligned}
$$

2. If ${ }^{\mathrm{n}} \mathrm{C}_{12}={ }^{\mathrm{n}} \mathrm{C}_{5}$, find the value of n .

Solution:

We know that if ${ }^{n} C_{p}={ }^{n} C_{q}$, then one of the following conditions need to be satisfied:
(i) $\mathrm{p}=\mathrm{q}$
(ii) $\mathrm{n}=\mathrm{p}+\mathrm{q}$

So from the question ${ }^{n} C_{12}={ }^{n} C_{5}$, we can say that $12 \neq 5$
So, the condition (ii) must be satisfied,
$\mathrm{n}=12+5$
$\mathrm{n}=17$
\therefore The value of n is 17 .

3. If ${ }^{n} C_{4}={ }^{n} C_{6}$, find ${ }^{12} C_{n}$.

Solution:
We know that if ${ }^{n} C_{p}={ }^{n} C_{q}$, then one of the following conditions need to be satisfied:
(i) $p=q$
(ii) $\mathrm{n}=\mathrm{p}+\mathrm{q}$

So from the question ${ }^{n} \mathrm{C}_{4}={ }^{\mathrm{n}} \mathrm{C}_{6}$, we can say that $4 \neq 6$
So, the condition (ii) must be satisfied,
$\mathrm{n}=4+6$
$\mathrm{n}=10$
Now, we need to find ${ }^{12} \mathrm{C}_{\mathrm{n}}$,
We know the value of n so, ${ }^{12} \mathrm{C}_{\mathrm{n}}={ }^{12} \mathrm{C}_{10}$
Let us use the formula,

$$
{ }^{n} C_{r}=n!/ r!(n-r)!
$$

So now, value of $\mathrm{n}=12$ and $\mathrm{r}=10$

$$
\begin{aligned}
{ }^{n} \mathrm{C}_{\mathrm{r}} & =\mathrm{n}!/ \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
{ }^{12} \mathrm{C}_{10} & =12!/ 10!(12-10)! \\
& =12!/(10!2!) \\
& =[12 \times 11 \times 10!] /(10!2!) \\
& =[12 \times 11] /(2) \\
& =6 \times 11 \\
& =66
\end{aligned}
$$

\therefore The value of ${ }^{12} \mathrm{C}_{10}=66$.

4. If ${ }^{\mathrm{n}} \mathrm{C}_{10}={ }^{\mathrm{n}} \mathrm{C}_{12}$, find ${ }^{23} \mathrm{C}_{\mathrm{n}}$.

Solution:
We know that if ${ }^{n} C_{p}={ }^{n} C_{q}$, then one of the following conditions need to be satisfied:
(i) $p=q$
(ii) $\mathrm{n}=\mathrm{p}+\mathrm{q}$

So from the question ${ }^{\mathrm{n}} \mathrm{C}_{10}={ }^{\mathrm{n}} \mathrm{C}_{12}$, we can say that
$10 \neq 12$
So, the condition (ii) must be satisfied,
$\mathrm{n}=10+12$
$\mathrm{n}=22$
Now, we need to find ${ }^{23} \mathrm{C}_{\mathrm{n}}$,
We know the value of n so, ${ }^{23} \mathrm{C}_{\mathrm{n}}={ }^{23} \mathrm{C}_{22}$

Let us use the formula,
${ }^{n} C_{r}=n!/ r!(n-r)!$
So now, value of $\mathrm{n}=23$ and $\mathrm{r}=22$
${ }^{n} C_{r}=n!/ r!(n-r)!$
${ }^{23} \mathrm{C}_{22}=23!/ 22!(23-22)!$

$$
=23!/(22!1!)
$$

$$
=[23 \times 22!] /(22!)
$$

$$
=23
$$

\therefore The value of ${ }^{23} \mathrm{C}_{22}=23$.

5. If ${ }^{24} \mathrm{C}_{\mathrm{x}}={ }^{24} \mathrm{C}_{2 \mathrm{x}+3}$, find x .

Solution:

We know that if ${ }^{n} C_{p}={ }^{n} C_{q}$, then one of the following conditions need to be satisfied:
(i) $p=q$
(ii) $\mathrm{n}=\mathrm{p}+\mathrm{q}$

So from the question ${ }^{24} \mathrm{C}_{\mathrm{x}}={ }^{24} \mathrm{C}_{2 \mathrm{x}+3}$, we can say that
Let us check for condition (i)
$\mathrm{x}=2 \mathrm{x}+3$
$2 x-x=-3$
$\mathrm{x}=-3$
We know that for a combination ${ }^{n} C_{r}, r \geq 0$, r should be a positive integer which is not satisfied here,
So, the condition (ii) must be satisfied,
$24=x+2 x+3$
$3 \mathrm{x}=21$
$\mathrm{x}=21 / 3$
$\mathrm{x}=7$
\therefore The value of x is 7 .
6. If ${ }^{18} \mathrm{C}_{\mathrm{x}}={ }^{18} \mathrm{C}_{\mathrm{x}+2}$, find x .

Solution:
We know that if ${ }^{n} C_{p}={ }^{n} C_{q}$, then one of the following conditions need to be satisfied:
(i) $\mathrm{p}=\mathrm{q}$
(ii) $\mathrm{n}=\mathrm{p}+\mathrm{q}$

So from the question ${ }^{18} \mathrm{C}_{\mathrm{x}}={ }^{18} \mathrm{C}_{\mathrm{x}+2}$, we can say that
$\mathrm{x} \neq \mathrm{x}+2$
So, the condition (ii) must be satisfied,

$$
18=x+x+2
$$

$$
18=2 x+2
$$

$2 \mathrm{x}=18-2$
$2 \mathrm{x}=16$
$\mathrm{x}=16 / 2$
$=8$
\therefore The value of x is 8 .

7. If ${ }^{15} \mathrm{C}_{3 \mathrm{r}}={ }^{15} \mathrm{C}_{\mathrm{r}+3}$, find r .

Solution:

We know that if ${ }^{n} C_{p}={ }^{n} C_{q}$, then one of the following conditions need to be satisfied:
(i) $p=q$
(ii) $\mathrm{n}=\mathrm{p}+\mathrm{q}$

So from the question ${ }^{15} \mathrm{C}_{3 \mathrm{r}}={ }^{15} \mathrm{C}_{\mathrm{r}+3}$, we can say that
Let us check for condition (i)
$3 \mathrm{r}=\mathrm{r}+3$
$3 \mathrm{r}-\mathrm{r}=3$
$2 \mathrm{r}=3$
$r=3 / 2$
We know that for a combination ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}, \mathrm{r} \geq 0$, r should be a positive integer which is not satisfied here,
So, the condition (ii) must be satisfied,

$$
\begin{aligned}
& 15=3 r+r+3 \\
& 15-3=4 r \\
& 4 r=12 \\
& r=12 / 4 \\
& =3
\end{aligned}
$$

\therefore The value of r is 3 .

8. If ${ }^{8} \mathbf{C}_{\mathrm{r}}-{ }^{7} \mathbf{C}_{3}={ }^{7} \mathbf{C}_{2}$, find r .

Solution:

To find r , let us consider the given expression,
${ }^{8} \mathrm{C}_{\mathrm{r}}-{ }^{7} \mathrm{C}_{3}={ }^{7} \mathrm{C}_{2}$
${ }^{8} \mathrm{C}_{\mathrm{r}}={ }^{7} \mathrm{C}_{2}+{ }^{7} \mathrm{C}_{3}$
We know that ${ }^{n} C_{r}+{ }^{n} C_{r+1}={ }^{n+1} C_{r+1}$
${ }^{8} \mathrm{C}_{\mathrm{r}}={ }^{7+1} \mathrm{C}_{2+1}$
${ }^{8} \mathrm{C}_{\mathrm{r}}={ }^{8} \mathrm{C}_{3}$
Now, we know that if ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{p}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{q}}$, then one of the following conditions need to be satisfied:
(i) $\mathrm{p}=\mathrm{q}$
(ii) $\mathrm{n}=\mathrm{p}+\mathrm{q}$

So from the question ${ }^{8} \mathrm{C}_{\mathrm{r}}={ }^{8} \mathrm{C}_{3}$, we can say that

Let us check for condition (i)
r=3
Let us also check for condition (ii)
$8=3+r$
$\mathrm{r}=5$
\therefore The values of ' r ' are 3 and 5 .

9. If ${ }^{15} \mathrm{C}_{\mathrm{r}}:{ }^{15} \mathrm{C}_{\mathrm{r}-1}=11: 5$, find r .

Solution:

Given:

${ }^{15} \mathrm{C}_{\mathrm{r}}:{ }^{15} \mathrm{C}_{\mathrm{r}-1}=11: 5$
${ }^{15} \mathrm{C}_{\mathrm{r}} /{ }^{15} \mathrm{C}_{\mathrm{r}-1}=11 / 5$
Let us use the formula,
${ }^{n} C_{r}=n!/ r!(n-r)!$

$$
\begin{aligned}
& \frac{\frac{15!}{(15-r) \cdot \mathrm{r}!}}{\frac{15!}{(15-(\mathrm{r}-1)!(r-1)!}}=\frac{11}{5} \\
& \frac{(16-\mathrm{r})!}{(15-\mathrm{r})!\mathrm{r}}=\frac{11}{5} \\
& \frac{16-\mathrm{r}}{\mathrm{r}}=\frac{11}{5} \\
& 5(16-\mathrm{r})=11 \mathrm{r} \\
& 80-5 \mathrm{r}=11 \mathrm{r} \\
& 80=11 \mathrm{r}+5 \mathrm{r} \\
& 16 \mathrm{r}=80 \\
& \mathrm{r}=80 / 16 \\
& =5
\end{aligned}
$$

\therefore The value of r is 5 .

10. If ${ }^{\mathrm{n}+2} \mathrm{C}_{8}:{ }^{\mathrm{n}-2} \mathrm{P}_{4}=57$: 16 , find n .

Solution:

Given:

${ }^{\mathrm{n}+2} \mathrm{C}_{8}:{ }^{\mathrm{n}-2} \mathrm{P}_{4}=57: 16$
${ }^{\mathrm{n}+2} \mathrm{C}_{8} /{ }^{\mathrm{n}-2} \mathrm{P}_{4}=57 / 16$
Let us use the formula,
${ }^{n} C_{r}=n!/ r!(n-r)!$
$\frac{\frac{(\mathrm{n}+2)!}{(\mathrm{n}+2 \mathrm{~s})!!}}{\frac{(\mathrm{n}-2)!}{(\mathrm{n}-2-4)!}}=\frac{57}{16}$
$[(\mathrm{n}+2)!(\mathrm{n}-6)!] /[(\mathrm{n}-6)!(\mathrm{n}-2)!8!]=57 / 16$

$$
\begin{aligned}
& (\mathrm{n}+2)(\mathrm{n}+1)(\mathrm{n})(\mathrm{n}-1) / 8!=57 / 16 \\
& (\mathrm{n}+2)(\mathrm{n}+1)(\mathrm{n})(\mathrm{n}-1)=(57 \times 8!) / 16 \\
& (\mathrm{n}+2)(\mathrm{n}+1)(\mathrm{n})(\mathrm{n}-1)=[19 \times 3 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1] / 16 \\
& (\mathrm{n}+2)(\mathrm{n}+1)(\mathrm{n})(\mathrm{n}-1)=21 \times 20 \times 19 \times 18
\end{aligned}
$$

Equating the corresponding terms on both sides we get,
$\mathrm{n}=19$
\therefore The value of n is 19 .

EXERCISE 17.2

1. From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?

Solution:

Given:
Number of players $=15$
Number of players to be selected $=11$
By using the formula,

$$
\begin{aligned}
{ }^{{ }^{n} \mathrm{C}_{\mathrm{r}}}= & \mathrm{n}!/ \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
& =15!/ 11!(15-11)! \\
& =15!/(11!4!) \\
& =[15 \times 14 \times 13 \times 12 \times 11!] /(11!4!) \\
& =[15 \times 14 \times 13 \times 12] /(4 \times 3 \times 2 \times 1) \\
& =15 \times 7 \times 13 \\
& =1365
\end{aligned}
$$

\therefore The total number of ways of choosing 11 players out of 15 is 1365 ways.
2. How many different boat parties of 8 , consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?
Solution:
Given:
Total boys are $=25$
Total girls are $=10$
Boat party of 8 to be made from 25 boys and 10 girls, by selecting 5 boys and 3 girls.
So,
By using the formula,

$$
\begin{aligned}
&{ }^{n} \mathrm{C}_{\mathrm{r}}=\mathrm{n!} / / \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
&{ }^{25} \mathrm{C}_{5} \times{ }^{10} \mathrm{C}_{3}=25!/ 5!(25-5)!\times 10!/ 3!(10-3)! \\
&=25!/(5!20!) \times 10!/(3!7!) \\
&=[25 \times 24 \times 23 \times 22 \times 21 \times 20!] /(5!20!) \times[10 \times 9 \times 8 \times 7!] /(7!3!) \\
&=[25 \times 24 \times 23 \times 22 \times 21] / 5!\times[10 \times 9 \times 8] /(3!) \\
&=[25 \times 24 \times 23 \times 22 \times 21] /(5 \times 4 \times 3 \times 2 \times 1) \times[10 \times 9 \times 8] /(3 \times 2 \times 1) \\
&=5 \times 2 \times 23 \times 11 \times 21 \times 5 \times 3 \times 8 \\
&=53130 \times 120 \\
&=6375600
\end{aligned}
$$

\therefore The total number of different boat parties is 6375600 ways.
3. In how many ways can a student choose $\mathbf{5}$ courses out of $\mathbf{9}$ courses if $\mathbf{2}$ courses are

compulsory for every student?

Solution:

Given:
Total number of courses is 9
So out of 9 courses 2 courses are compulsory. Student can choose from 7(i.e., 5+2) courses only.
That too out of 5 courses student has to choose, 2 courses are compulsory.
So they have to choose 3 courses out of 7 courses.
This can be done in ${ }^{7} \mathrm{C}_{3}$ ways.
By using the formula,

$$
\begin{aligned}
{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} & =\mathrm{n}!/ \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
{ }^{7} \mathrm{C}_{3} & =7!/ 3!(7-3)! \\
& =7!/(3!4!) \\
& =[7 \times 6 \times 5 \times 4!] /(3!4!) \\
& =[7 \times 6 \times 5] /(3 \times 2 \times 1) \\
& =7 \times 5 \\
& =35
\end{aligned}
$$

\therefore The total number of ways of choosing 5 subjects out of 9 subjects in which 2 are compulsory is 35 ways.
4. In how many ways can a football team of 11 players be selected from 16 players? How many of these will (i) Include 2 particular players? (ii) Exclude 2 particular players?

Solution:

Given:
Total number of players $=16$
Number of players to be selected $=11$
So, the combination is ${ }^{16} \mathrm{C}_{11}$
By using the formula,

$$
\begin{aligned}
{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}= & \mathrm{n}!/ \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
{ }^{16} \mathrm{C}_{11} & =16!/ 11!(16-11)! \\
& =16!/(11!5!) \\
& =[16 \times 15 \times 14 \times 13 \times 12 \times 11!] /(11!5!) \\
& =[16 \times 15 \times 14 \times 13 \times 12] /(5 \times 4 \times 3 \times 2 \times 1) \\
& =4 \times 7 \times 13 \times 12 \\
& =4368
\end{aligned}
$$

(i) Include 2 particular players?

It is told that two players are always included.
Now, we have to select 9 players out of the remaining 14 players as 2 players are already
selected.
Number of ways $={ }^{14} \mathrm{C}_{9}$

$$
\begin{aligned}
{ }^{14} \mathrm{C}_{9} & =14!/ 9!(14-9)! \\
& =14!/(9!5!) \\
& =[14 \times 13 \times 12 \times 11 \times 10 \times 9!] /(9!5!) \\
& =[14 \times 13 \times 12 \times 11 \times 10] /(5 \times 4 \times 3 \times 2 \times 1) \\
& =7 \times 13 \times 11 \times 2 \\
& =2002
\end{aligned}
$$

(ii) Exclude 2 particular players?

It is told that two players are always excluded.
Now, we have to select 11 players out of the remaining 14 players as 2 players are already removed.
Number of ways $={ }^{14} \mathrm{C}_{9}$

$$
\begin{aligned}
{ }^{14} \mathrm{C}_{11} & =14!/ 11!(14-11)! \\
& =14!/(11!3!) \\
& =[14 \times 13 \times 12 \times 11!] /(11!3!) \\
& =[14 \times 13 \times 12] /(3 \times 2 \times 1) \\
& =14 \times 13 \times 2 \\
& =364
\end{aligned}
$$

\therefore The required no. of ways are $4368,2002,364$.
5. There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further, find in how many of these committees:
(i) a particular professor is included.
(ii) a particular student is included.
(iii) a particular student is excluded.

Solution:

Given:
Total number of professor $=10$
Total number of students $=20$
Number of ways $=($ choosing 2 professors out of 10 professors $) \times($ choosing 3 students out of 20 students)

$$
=\left({ }^{10} \mathrm{C}_{2}\right) \times\left({ }^{20} \mathrm{C}_{3}\right)
$$

By using the formula,

$$
\begin{aligned}
& \begin{array}{l}
{ }^{n} C_{r}=n!/ r!(n-r)! \\
{ }^{10} \mathrm{C}_{2} \times{ }^{20} \mathrm{C}_{3}
\end{array}=10!/ 2!(10-2)!\times 20!/ 3!(20-3)! \\
& \quad=10!/(2!8!) \times 20!/(3!17!)
\end{aligned}
$$

$$
\begin{aligned}
& =[10 \times 9 \times 8!] /(2!8!) \times[20 \times 19 \times 18 \times 17!] /(17!3!) \\
& =[10 \times 9] / 2!\times[20 \times 19 \times 18] /(3!) \\
& =[10 \times 9] /(2 \times 1) \times[20 \times 19 \times 18] /(3 \times 2 \times 1) \\
& =5 \times 9 \times 10 \times 19 \times 6 \\
& =45 \times 1140 \\
& =51300 \text { ways }
\end{aligned}
$$

(i) a particular professor is included.

Number of ways $=($ choosing 1 professor out of 9 professors $) \times($ choosing 3 students out of 20 students)

$$
={ }^{9} \mathrm{C}_{1} \times{ }^{20} \mathrm{C}_{3}
$$

By using the formula,
${ }^{n} C_{r}=n!/ r!(n-r)!$
${ }^{9} \mathrm{C}_{1} \times{ }^{20} \mathrm{C}_{3}=9!/ 1!(9-1)!\times 20!/ 3!(20-3)!$

$$
\begin{aligned}
& =9!/(1!8!) \times 20!/(3!17!) \\
& =[9 \times 8!] /(8!) \times[20 \times 19 \times 18 \times 17!] /(17!3!) \\
& =9 \times[20 \times 19 \times 18] /(3!) \\
& =9 \times[20 \times 19 \times 18] /(3 \times 2 \times 1) \\
& =9 \times 10 \times 19 \times 6 \\
& =10260 \text { ways }
\end{aligned}
$$

(ii) a particular student is included.

Number of ways $=($ choosing 2 professors out of 10 professors $) \times($ choosing 2 students out of 19 students)

$$
={ }^{10} \mathrm{C}_{2} \times{ }^{19} \mathrm{C}_{2}
$$

By using the formula,
${ }^{n} C_{r}=n!/ r!(n-r)!$
${ }^{10} \mathrm{C}_{2} \times{ }^{19} \mathrm{C}_{2}=10!/ 2!(10-2)!\times 19!/ 2!(19-2)!$
$=10!/(2!8!) \times 19!/(2!17!)$
$=[10 \times 9 \times 8!] /(2!8!) \times[19 \times 18 \times 17!] /(17!2!)$
$=[10 \times 9] / 2!\times[19 \times 18] /(2!)$
$=[10 \times 9] /(2 \times 1) \times[19 \times 18] /(2 \times 1)$
$=5 \times 9 \times 19 \times 9$
$=45 \times 171$
$=7695$ ways
(iii) a particular student is excluded.

Number of ways $=($ choosing 2 professors out of 10 professors $) \times($ choosing 3 students out of 19 students)

$$
={ }^{10} \mathrm{C}_{2} \times{ }^{19} \mathrm{C}_{3}
$$

By using the formula,

$$
\begin{aligned}
{ }^{n} \mathrm{C}_{\mathrm{r}}=\mathrm{n}!/ \mathrm{r}!(\mathrm{n} & -\mathrm{r})! \\
{ }^{10} \mathrm{C}_{2} \times{ }^{19} \mathrm{C}_{3} & =10!/ 2!(10-2)!\times 19!/ 3!(19-3)! \\
& =10!/(2!8!) \times 19!/(3!16!) \\
& =[10 \times 9 \times 8!] /(2!8!) \times[19 \times 18 \times 17 \times 16!] /(16!3!) \\
& =[10 \times 9] / 2!\times[19 \times 18 \times 17] /(3!) \\
& =[10 \times 9] /(2 \times 1) \times[19 \times 18 \times 17] /(3 \times 2 \times 1) \\
& =5 \times 9 \times 19 \times 3 \times 17 \\
& =45 \times 969 \\
& =43605 \text { ways }
\end{aligned}
$$

\therefore The required no. of ways are $51300,10260,7695,43605$.
6. How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7 , 11 (without repetition)?
Solution:
Given that we need to find the no. of ways of obtaining a product by multiplying two or more from the numbers $3,5,7,11$.
Number of ways $=($ no. of ways of multiplying two numbers $)+($ no. of ways of multiplying three numbers) + (no. of multiplying four numbers)

$$
={ }^{4} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{3}+{ }^{4} \mathrm{C}_{4}
$$

By using the formula,

$$
\begin{aligned}
& { }^{n} \mathrm{C}_{\mathrm{r}}=\mathrm{n}!/ \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
& { }^{4} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{3}+{ }^{4} \mathrm{C}_{4}
\end{aligned}=\left(\frac{4!}{(4-2)!2!}\right)+\left(\frac{4!}{(4-3)!3!}\right)+\left(\frac{4!}{(4-4)!4!}\right)
$$

\therefore The total number of ways of product is 11 ways.
7. From a class of 12 boys and 10 girls, 10 students are to be chosen for the competition, at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?

Solution:

Given:
Total number of boys $=12$

Total number of girls $=10$
Total number of girls for the competition $=10+2=12$
Number of ways $=$ (no. of ways of selecting 6 boys and 2 girls from remaining 12 boys and 8 girls) + (no. of ways of selecting 5 boys and 3 girls from remaining 12 boys and 8 girls) + (no. of ways of selecting 4 boys and 4 girls from remaining 12 boys and 8 girls) Since, two girls are already selected,

$$
=\left({ }^{12} \mathrm{C}_{6} \times{ }^{8} \mathrm{C}_{2}\right)+\left({ }^{12} \mathrm{C}_{5} \times{ }^{8} \mathrm{C}_{3}\right)+\left({ }^{12} \mathrm{C}_{4} \times{ }^{8} \mathrm{C}_{4}\right)
$$

By using the formula,
${ }^{n} C_{r}=n!/ r!(n-r)!$
$\left({ }^{12} \mathrm{C}_{6} \times{ }^{8} \mathrm{C}_{2}\right)+\left({ }^{12} \mathrm{C}_{5} \times{ }^{8} \mathrm{C}_{3}\right)+\left({ }^{12} \mathrm{C}_{4} \times{ }^{8} \mathrm{C}_{4}\right)$
$=\left(\left(\frac{12!}{(12-6)!6!}\right) \times\left(\frac{8!}{(8-2)!2!}\right)\right)+\left(\left(\frac{12!}{(12-5)!5!}\right) \times\left(\frac{8!}{(8-3)!3!}\right)\right)+\left(\left(\frac{12!}{(12-4)!4!}\right) \times\right.$
$\left.\left(\frac{8!}{(8-4)!4!}\right)\right)$
$=\left(\left(\frac{12!}{6!6!}\right) \times\left(\frac{8!}{6!2!}\right)\right)+\left(\left(\frac{12!}{7!5!}\right) \times\left(\frac{8!}{5!3!}\right)\right)+\left(\left(\frac{12!}{8!4!}\right) \times\left(\frac{8!}{4!4!}\right)\right)$
$=\left(\left(\frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{6 \times 5 \times 4 \times 32 \times 1}\right) \times\left(\frac{8 \times 7}{2 \times 1}\right)\right)+\left(\left(\frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2 \times 1}\right) \times\left(\frac{8 \times 7 \times 6}{3 \times 2 \times 1}\right)\right)+$
$\left(\left(\frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1}\right) \times\left(\frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}\right)\right)$
$=(924 \times 28)+(792 \times 56)+(495 \times 70)$
$=25872+44352+34650$
$=104874$
\therefore The total number of ways of product is 104874 ways.
8. How many different selections of $\mathbf{4}$ books can be made from 10 different books, if
(i) there is no restriction
(ii) two particular books are always selected
(iii) two particular books are never selected

Solution:
Given:
Total number of books $=10$
Total books to be selected $=4$
(i) there is no restriction

Number of ways $=$ choosing 4 books out of 10 books

$$
={ }^{10} \mathrm{C}_{4}
$$

By using the formula,

$$
\begin{aligned}
{ }^{n} C_{r} & =n!/ r!(\mathrm{n}-\mathrm{r})! \\
{ }^{10} \mathrm{C}_{4} & =10!/ 4!(10-4)! \\
& =10!/(4!6!) \\
& =[10 \times 9 \times 8 \times 7 \times 6!] /(4!6!) \\
& =[10 \times 9 \times 8 \times 7] /(4 \times 3 \times 2 \times 1) \\
& =10 \times 3 \times 7 \\
& =210 \text { ways }
\end{aligned}
$$

(ii) two particular books are always selected

Number of ways $=$ select 2 books out of the remaining 8 books as 2 books are already selected.

$$
={ }^{8} \mathrm{C}_{2}
$$

By using the formula,

$$
\begin{aligned}
{ }^{n} \mathrm{C}_{\mathrm{r}} & =\mathrm{n}!/ / \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
{ }^{8} \mathrm{C}_{2} & =8!/ 2!(8-2)! \\
& =8!/(2!6!) \\
& =[8 \times 7 \times 6!] /(2!6!) \\
& =[8 \times 7] /(2 \times 1) \\
& =4 \times 7 \\
& =28 \text { ways }
\end{aligned}
$$

(iii) two particular books are never selected

Number of ways $=$ select 4 books out of remaining 8 books as 2 books are already removed.

$$
={ }^{8} \mathrm{C}_{4}
$$

By using the formula,

$$
\begin{aligned}
{ }^{n} \mathrm{C}_{\mathrm{r}} & =\mathrm{n!} / \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
{ }^{8} \mathrm{C}_{4} & =8!/ 4!(8-4)! \\
& =8!/(4!4!) \\
& =[8 \times 7 \times 6 \times 5 \times 4!] /(4!4!) \\
& =[8 \times 7 \times 6 \times 5] /(4 \times 3 \times 2 \times 1) \\
& =7 \times 2 \times 5 \\
& =70 \text { ways }
\end{aligned}
$$

\therefore The required no. of ways are $210,28,70$.
9. From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer (ii) to include at least one officer?
Solution:
Given:

Total number of officers $=4$
Total number of jawans $=8$
Total number of selection to be made is 6
(i) to include exactly one officer

Number of ways $=($ no. of ways of choosing 1 officer from 4 officers $) \times$ (no. of ways of choosing 5 jawans from 8 jawans)

$$
=\left({ }^{4} \mathrm{C}_{1}\right) \times\left({ }^{8} \mathrm{C}_{5}\right)
$$

By using the formula,

$$
\begin{aligned}
& { }^{{ }^{n} C_{r}=n!/ r!(n-r)!} \\
& \begin{aligned}
\left({ }^{4} \mathrm{C}_{1}\right) \times\left({ }^{8} \mathrm{C}_{5}\right) & =\left(\frac{4!}{(4-1)!1!}\right) \times\left(\frac{8!}{(8-5)!5!}\right) \\
& =\left(\frac{4!}{3!!}\right) \times\left(\frac{8!}{3!5!}\right) \\
& =\left(\frac{4}{1}\right) \times\left(\frac{8 \times 7 \times 6}{3 \times 2 \times 1}\right) \\
& =4 \times 4 \times 7 \times 2 \\
& =224 \text { ways }
\end{aligned}
\end{aligned}
$$

(ii) to include at least one officer?

Number of ways $=$ (total no. of ways of choosing 6 persons from all 12 persons) - (no. of ways of choosing 6 persons without any officer)

$$
={ }^{12} \mathrm{C}_{6}-{ }^{8} \mathrm{C}_{6}
$$

By using the formula,

$$
\begin{aligned}
&{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\mathrm{n}!/ \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
& \begin{aligned}
{ }^{12} \mathrm{C}_{6}-{ }^{8} \mathrm{C}_{6} & =\frac{12!}{(12-6)!6!}-\frac{8!}{(8-6)!6!} \\
& =\frac{12!}{(12-6)!6!}-\frac{8!}{(8-6)!6!} \\
& =\frac{12!}{6!6!}-\frac{8!}{6!2!} \\
& =\left(\frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{6 \times 5 \times 4 \times 3 \times 2 \times 1}\right)-\left(\frac{8 \times 7}{2 \times 1}\right) \\
& =(11 \times 2 \times 3 \times 2 \times 7)-(4 \times 7) \\
& =924-28 \\
& =896 \text { ways }
\end{aligned}
\end{aligned}
$$

\therefore The required no. of ways are 224 and 896 .
10. A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?

Solution:

Given:
Total number of students in XI $=20$
Total number of students in XII $=20$
Total number of students to be selected in a team $=11$ (with atleast 5 from class XI and 5 from class XII)
Number of ways $=($ No. of ways of selecting 6 students from class XI and 5 students from class XII) + (No. of ways of selecting 5 students from class XI and 6 students from class XII)

$$
\begin{aligned}
& =\left({ }^{20} \mathrm{C}_{6} \times{ }^{20} \mathrm{C}_{5}\right)+\left({ }^{20} \mathrm{C}_{5} \times{ }^{20} \mathrm{C}_{6}\right) \\
& =2\left({ }^{20} \mathrm{C}_{6} \times{ }^{20} \mathrm{C}_{5}\right) \text { ways }
\end{aligned}
$$

11. A student has to answer 10 questions, choosing at least 4 from each of part A

 and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
Solution:

Given:

Total number of questions $=10$
Questions in part A=6
Questions in part $\mathrm{B}=7$
Number of ways $=($ No. of ways of answering 4 questions from part A and 6 from part B) $+($ No. of ways of answering 5 questions from part A and 5 questions from part B) + (No. of ways of answering 6 questions from part A and 4 from part B)

$$
=\left({ }^{6} \mathrm{C}_{4} \times{ }^{7} \mathrm{C}_{6}\right)+\left({ }^{6} \mathrm{C}_{5} \times{ }^{7} \mathrm{C}_{5}\right)+\left({ }^{6} \mathrm{C}_{6} \times{ }^{7} \mathrm{C}_{4}\right)
$$

By using the formula,

$$
\begin{aligned}
& { }^{n} \mathrm{C}_{r}=\mathrm{n!} / \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
& \left({ }^{6} \mathrm{C}_{4} \times{ }^{7} \mathrm{C}_{6}\right)+\left({ }^{6} \mathrm{C}_{5} \times{ }^{7} \mathrm{C}_{5}\right)+\left({ }^{6} \mathrm{C}_{6} \times{ }^{7} \mathrm{C}_{4}\right) \\
& =\left(\left(\frac{6!}{(6-4)!4!}\right) \times\left(\frac{7!}{(7-6)!6!}\right)\right)+\left(\left(\frac{6!}{(6-5)!5!}\right) \times\left(\frac{7!}{(7-5)!5!}\right)\right)+\left(\left(\frac{6!}{(6-6)!6!}\right) \times\right. \\
& \left.\left(\frac{7!}{(7-4)!4!}\right)\right) \\
& =\left(\left(\frac{6!}{2!4!}\right) \times\left(\frac{7!}{1!6!}\right)\right)+\left(\left(\frac{6!}{1!5!}\right) \times\left(\frac{7!}{2!5!}\right)\right)+\left(\left(\frac{6!}{0!6!}\right) \times\left(\frac{7!}{3!4!}\right)\right) \\
& =\left(\left(\frac{6 \times 5}{2 \times 1}\right) \times\left(\frac{7}{1}\right)\right)+\left(\left(\frac{6}{1}\right) \times\left(\frac{7 \times 6}{2 \times 1}\right)\right)+\left(\left(\frac{1}{1}\right) \times\left(\frac{7 \times 6 \times 5}{3 \times 2 \times 1}\right)\right) \\
& =(15 \times 7)+(6 \times 21)+(1 \times 35) \\
& =105+126+35 \\
& =266
\end{aligned}
$$

\therefore The total no. of ways of answering 10 questions is 266 ways.
12. In an examination, a student to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make a choice.
Solution:
Given:
Total number of questions $=5$
Total number of questions to be answered $=4$
Number of ways = we need to answer 2 questions out of the remaining 3 questions as 1 and 2 are compulsory.

$$
={ }^{3} \mathrm{C}_{2}
$$

By using the formula,
${ }^{n} C_{r}=n!/ r!(n-r)!$
${ }^{3} \mathrm{C}_{2}=3!/ 2!(3-2)!$
$=3!/(2!1$! $)$
$=[3 \times 2 \times 1] /(2 \times 1)$

$$
=3
$$

\therefore The no. of ways answering the questions is 3 .
13. A candidate is required to answer $\mathbf{7}$ questions out of $\mathbf{1 2}$ questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?

Solution:

Given:
Total number of questions $=12$
Total number of questions to be answered $=7$
Number of ways $=($ No. of ways of answering 5 questions from group 1 and 2 from group $2)+($ No. of ways of answering 4 questions from group 1 and 3 from group 2$)+($ No. of ways of answering 3 questions from group 1 and 4 from group 2) + (No. of ways of answering 2 questions from group 1 and 5 from group 2)

$$
=\left({ }^{6} \mathrm{C}_{5} \times{ }^{6} \mathrm{C}_{2}\right)+\left({ }^{6} \mathrm{C}_{4} \times{ }^{6} \mathrm{C}_{3}\right)+\left({ }^{6} \mathrm{C}_{3} \times{ }^{6} \mathrm{C}_{4}\right)+\left({ }^{6} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{5}\right)
$$

By using the formula,
${ }^{n} C_{r}=n!/ r!(n-r)!$
$\left({ }^{6} \mathrm{C}_{5} \times{ }^{6} \mathrm{C}_{2}\right)+\left({ }^{6} \mathrm{C}_{4} \times{ }^{6} \mathrm{C}_{3}\right)+\left({ }^{6} \mathrm{C}_{3} \times{ }^{6} \mathrm{C}_{4}\right)+\left({ }^{6} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{5}\right)$
$=\left(\left(\frac{6!}{(6-5)!5!}\right) \times\left(\frac{6}{(6-2)!2!}\right)\right)+\left(\left(\frac{6!}{(6-4)!4!}\right) \times\left(\frac{6!}{(6-3)!3!}\right)\right)+\left(\left(\frac{6!}{(6-3)!3!}\right) \times\right.$

$$
\begin{aligned}
& \left.\left(\frac{6!}{(6-4)!4!}\right)\right)+\left(\left(\frac{6}{(6-2)!2!}\right) \times\left(\frac{6!}{(6-5)!5!}\right)\right) \\
& =\left(\left(\frac{6!}{1!5!}\right) \times\left(\frac{6!}{2!4!}\right)\right)+\left(\left(\frac{6!}{2!4!}\right) \times\left(\frac{6!}{3!3!}\right)\right)+\left(\left(\frac{6!}{3!3!}\right) \times\left(\frac{6!}{2!4!}\right)\right)+ \\
& \left(\left(\frac{6!}{2!4!}\right) \times\left(\frac{6!}{1!5!}\right)\right) \\
& =\left(\left(\frac{6}{1}\right) \times\left(\frac{6 \times 5}{2 \times 1}\right)\right)+\left(\left(\frac{6 \times 5}{2 \times 1}\right) \times\left(\frac{6 \times 5 \times 4}{3 \times 2 \times 1}\right)\right)+\left(\left(\frac{6 \times 5 \times 4}{3 \times 2 \times 1}\right) \times\left(\frac{6 \times 5}{2 \times 1}\right)\right)+ \\
& \left(\left(\frac{6 \times 5}{2 \times 1}\right) \times\left(\frac{6}{1}\right)\right) \\
& =(6 \times 15)+(15 \times 20)+(20 \times 15)+(15 \times 6) \\
& =90+300+300+90 \\
& =780
\end{aligned}
$$

\therefore The total no. of ways of answering 7 questions is 780 ways.

14. There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.

Solution:

Given:
Total number of points $=10$
Number of collinear points $=4$
Number of lines formed $=$ (total no. of lines formed by all 10 points $)-($ no. of lines formed by collinear points) +1
Here, 1 is added because only 1 line can be formed by the four collinear points.

$$
={ }^{10} \mathrm{C}_{2}-{ }^{4} \mathrm{C}_{2}+1
$$

By using the formula,

$$
\begin{aligned}
&{ }^{n} \mathrm{C}_{\mathrm{r}}=\mathrm{n}!/ \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
&{ }^{10} \mathrm{C}_{2}-{ }^{4} \mathrm{C}_{2}+1=\left(\frac{10!}{(10-2)!2!}\right)-\left(\frac{4!}{(4-2)!2!}\right)+1 \\
&=\left(\frac{10!}{8!2!}\right)-\left(\frac{4!}{2!2!}\right)+1 \\
&=\left(\frac{10 \times 9}{2 \times 1}\right)-\left(\frac{4 \times 3}{2 \times 1}\right)+1 \\
&=90 / 2-12 / 2+1 \\
&=45-6+1 \\
&=40
\end{aligned}
$$

\therefore The total no. of ways of different lines formed are 40 .

15. Find the number of diagonals of

(i) a hexagon
(ii) a polygon of 16 sides

Solution:

(i) a hexagon

We know that a hexagon has 6 angular points. By joining those any two angular points we get a line which is either a side or a diagonal.
So number of lines formed $={ }^{6} \mathrm{C}_{2}$
By using the formula,

$$
\begin{aligned}
{ }^{n} \mathrm{C}_{\mathrm{r}} & =\mathrm{n}!/ \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
{ }^{6} \mathrm{C}_{2} & =6!/ 2!(6-2)! \\
& =6!/(2!4!) \\
& =[6 \times 5 \times 4!] /(2!4!) \\
& =[6 \times 5] /(2 \times 1) \\
& =3 \times 5 \\
& =15
\end{aligned}
$$

We know number of sides of hexagon is 6
So, number of diagonals $=15-6=9$
The total no. of diagonals formed is 9 .
(ii) a polygon of 16 sides

We know that a polygon of 16 sides has 16 angular points. By joining those any two angular points we get a line which is either a side or a diagonal.
So number of lines formed $={ }^{16} \mathrm{C}_{2}$
By using the formula,
${ }^{n} C_{r}=n!/ r!(n-r)!$
${ }^{16} \mathrm{C}_{2}=16!/ 2!(16-2)!$
$=16!/(2!14!)$
$=[16 \times 15 \times 14!] /(2!14!)$
$=[16 \times 15] /(2 \times 1)$
$=8 \times 15$
$=120$
We know number of sides of a polygon is 16
So, number of diagonals $=120-16=104$
The total no. of diagonals formed is 104 .

16. How many triangles can be obtained by joining 12 points, five of which are collinear?

Solution:

We know that 3 points are required to draw a triangle and the collinear points will lie on
the same line.
Number of triangles formed $=($ total no. of triangles formed by all 12 points $)-($ no. of triangles formed by collinear points)

$$
={ }^{12} \mathrm{C}_{3}-{ }^{5} \mathrm{C}_{3}
$$

By using the formula,

$$
{ }^{n} C_{r}=n!/ r!(n-r)!
$$

$$
\begin{aligned}
{ }^{12} \mathrm{C}_{3}-{ }^{5} \mathrm{C}_{3} & =\left(\frac{12!}{(12-3)!3!}\right)-\left(\frac{5!}{(5-3)!3!}\right) \\
& =\left(\frac{12!}{9!3!}\right)-\left(\frac{5!}{2!3!}\right) \\
& =\left(\frac{12 \times 11 \times 10}{3 \times 2 \times 1}\right)-\left(\frac{5 \times 4}{2 \times 1}\right) \\
& =(2 \times 11 \times 10)-(5 \times 2) \\
& =220-10 \\
& =210
\end{aligned}
$$

\therefore The total no. of triangles formed are 210 .

EXERCISE 17.3

PAGE NO: 17.23

1. How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?

Solution:

Given:
Total number of vowels $=5$
Total number of consonants $=17$
Number of ways $=($ No. of ways of choosing 2 vowels from 5 vowels $) \times($ No. of ways of choosing 3 consonants from 17 consonants)

$$
=\left({ }^{5} \mathrm{C}_{2}\right) \times\left({ }^{17} \mathrm{C}_{3}\right)
$$

By using the formula,

$$
\begin{aligned}
&{ }^{n} C_{r}=n!/ r!(n-r)! \\
&\left({ }^{5} C_{2}\right) \times\left({ }^{17} C_{3}\right)=\left(\frac{5!}{(5-2)!2!}\right) \times\left(\frac{17!}{(17-3)!3!}\right) \\
&=\left(\frac{5!}{3!2!}\right) \times\left(\frac{17!}{14!3!}\right) \\
&=\left(\frac{5 \times 4}{2 \times 1}\right) \times\left(\frac{17 \times 16 \times 15}{3 \times 2 \times 1}\right) \\
&=10 \times(17 \times 8 \times 5) \\
&=10 \times 680 \\
&=6800
\end{aligned}
$$

Now we need to find the no. of words that can be formed by 2 vowels and 3 consonants. The arrangement is similar to that of arranging n people in n places which are n ! Ways to arrange. So, the total no. of words that can be formed is 5 !

$$
\text { So, } \begin{aligned}
6800 \times 5! & =6800 \times(5 \times 4 \times 3 \times 2 \times 1) \\
& =6800 \times 120 \\
& =816000
\end{aligned}
$$

\therefore The no. of words that can be formed containing 2 vowels and 3 consonants are 816000 .
2. There are 10 persons named $P_{1}, P_{2}, P_{3} \ldots, P_{10}$. Out of 10 persons, 5 persons are to be arranged in a line such that is each arrangement P_{1} must occur whereas P_{4} and P_{5} do not occur. Find the number of such possible arrangements.
Solution:
Given:
Total persons $=10$
Number of persons to be selected $=5$ from 10 persons ($\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3} \ldots \mathrm{P}_{10}$)
It is also told that P_{1} should be present and P_{4} and P_{5} should not be present.
We have to choose 4 persons from remaining 7 persons as P_{1} is selected and P_{4} and P_{5} are
already removed.
Number of ways $=$ Selecting 4 persons from remaining 7 persons

$$
={ }^{7} \mathrm{C}_{4}
$$

By using the formula,

$$
\begin{aligned}
{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} & =\mathrm{n}!/ / \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
{ }^{7} \mathrm{C}_{4} & =7!/ 4!(7-4)! \\
& =7!/(4!3!) \\
& =[7 \times 6 \times 5 \times 4!] /(4!3!) \\
& =[7 \times 6 \times 5] /(3 \times 2 \times 1) \\
& =7 \times 5 \\
& =35
\end{aligned}
$$

Now we need to arrange the chosen 5 people. Since 1 person differs from other.
$35 \times 5!=35 \times(5 \times 4 \times 3 \times 2 \times 1)$

$$
=4200
$$

\therefore The total no. of possible arrangement can be done is 4200 .
3. How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if
(i) 4 letters are used at a time
(ii) all letters are used at a time
(iii) all letters are used but first letter is a vowel?

Solution:

Given:
The word 'MONDAY'
Total letters $=6$
(i) 4 letters are used at a time

Number of ways $=($ No. of ways of choosing 4 letters from MONDAY $)$

$$
=\left({ }^{6} \mathrm{C}_{4}\right)
$$

By using the formula,

$$
\begin{aligned}
{ }^{n} \mathrm{C}_{\mathrm{r}} & =\mathrm{n}!/ \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
{ }^{6} \mathrm{C}_{4} & =6!/ 4!(6-4)! \\
& =6!/(4!2!) \\
& =[6 \times 5 \times 4!] /(4!2!) \\
& =[6 \times 5] /(2 \times 1) \\
& =3 \times 5 \\
& =15
\end{aligned}
$$

Now we need to find the no. of words that can be formed by 4 letters.

$$
\begin{aligned}
15 \times 4! & =15 \times(4 \times 3 \times 2 \times 1) \\
& =15 \times 24
\end{aligned}
$$

$$
=360
$$

\therefore The no. of words that can be formed by 4 letters of MONDAY is 360 .
(ii) all letters are used at a time

Total number of letters in the word 'MONDAY' is 6
So, the total no. of words that can be formed is $6!=360$
\therefore The no. of words that can be formed by 6 letters of MONDAY is 360 .
(iii) all letters are used but first letter is a vowel?

In the word 'MONDAY' the vowels are O and A. We need to choose one vowel from these 2 vowels for the first place of the word.
So,
Number of ways $=($ No. of ways of choosing a vowel from 2 vowels $)$

$$
=\left({ }^{2} \mathrm{C}_{1}\right)
$$

By using the formula,
${ }^{n} C_{r}=n!/ r!(n-r)!$
${ }^{2} \mathrm{C}_{1}=2!/ 1!(2-1)$!
$=2!/(1!1!)$
$=(2 \times 1)$
$=2$
Now we need to find the no. of words that can be formed by remaining 5 letters.

$$
\begin{aligned}
2 \times 5! & =2 \times(5 \times 4 \times 3 \times 2 \times 1) \\
& =2 \times 120 \\
& =240
\end{aligned}
$$

\therefore The no. of words that can be formed by all letters of MONDAY in which the first letter is a vowel is 240 .

4. Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
 Solution:

Here, it is clear that 3 things are already selected and we need to choose $(r-3)$ things from the remaining $(\mathrm{n}-3)$ things.
Let us find the no. of ways of choosing $(\mathrm{r}-3)$ things.
Number of ways $=($ No. of ways of choosing $(r-3)$ things from remaining $(n-3)$ things $)$

$$
={ }^{n-3} C_{r-3}
$$

Now we need to find the no. of permutations than can be formed using 3 things which are together. So, the total no. of words that can be formed is 3 !

Now let us assume the together things as a single thing this gives us total ($\mathrm{r}-2$) things which were present now. So, the total no. of words that can be formed is $(r-2)$!

Total number of words formed is:
${ }^{\mathrm{n}-3} \mathrm{C}_{\mathrm{r}-3} \times 3!\times(\mathrm{r}-2)$!
\therefore The no. of permutations that can be formed by r things which are chosen from n things in which 3 things are always together is ${ }^{\mathrm{n}-3} \mathrm{C}_{\mathrm{r}-3} \times 3!\times(\mathrm{r}-2)$!

5. How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

Solution:

Given:
The word 'INVOLUTE'
Total number of letters $=8$
Total vowels are $=$ I, O, U, E
Total consonants = N, V, L, T
So number of ways to select 3 vowels is ${ }^{4} \mathrm{C}_{3}$
And numbre of ways to select 2 consonants is ${ }^{4} \mathrm{C}_{2}$
Then, number of ways to arrange these 5 letters $={ }^{4} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{2} \times 5$!
By using the formula,

$$
\begin{aligned}
{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} & =\mathrm{n}!/ \mathrm{r}!(\mathrm{n}-\mathrm{r})! \\
\mathrm{C}_{3} & =4!/ 3!(4-3)! \\
& =4!/(3!1!) \\
& =[4 \times 3!] / 3! \\
& =4
\end{aligned}
$$

$$
{ }^{4} \mathrm{C}_{2}=4!/ 2!(4-2)!
$$

$$
=4!/(2!2!)
$$

$$
=[4 \times 3 \times 2!] /(2!2!)
$$

$$
=[4 \times 3] /(2 \times 1)
$$

$$
=2 \times 3
$$

$$
=6
$$

So, by substituting the values we get

$$
\begin{aligned}
{ }^{4} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{2} \times 5! & =4 \times 6 \times 5! \\
& =4 \times 6 \times(5 \times 4 \times 3 \times 2 \times 1) \\
& =2880
\end{aligned}
$$

\therefore The no. of words that can be formed containing 3 vowels and 2 consonants chosen from 'INVOLUTE' is 2880 .

