Constructions Introduction to Constructions

Linear Pair axiom

- If a ray stands on a line then the adjacent angles form a linear pair of angles.
- If two angles form a linear pair, then uncommon arms of both the angles form a straight line.

Angle Bisector

Construction of an Angle bisector

Suppose we want to draw the angle bisector of $\angle ABC$ we will do it as follows:

- Taking B as center and any radius, draw an arc to intersect AB and BC to intersect at D and E respectively.
- Taking D and E as centers and with radius more than $\frac{DE}{2}$, draw arcs to intersect each other at a point F.
- Draw the ray BF. This ray BF is the required bisector of the $\angle ABC$.

Construction of angle bisector

Perpendicular Bisector

Construction of a perpendicular bisector

Steps of construction of a perpendicular bisector on the line segment AB:

- Take A and B as centers and radius more than $\frac{AB}{2}$ draw arcs on both sides of the line.
- Arcs intersect at the points C and D. Join CD.
- CD intersects AB at M. CMD is the required perpendicular bisector of the line segment AB.

Proof of validity of construction of a perpendicular bisector

Proof of the validity of construction of the perpendicular bisector: ΔDAC and ΔDBC are congruent by SSS congruency. (:: AC = BC, AD = BD and CD = CD) $\angle ACM$ and $\angle BCM$ are equal (cpct) ΔAMC and ΔBMC are congruent by SAS congruency. ($: AC = BC, \angle ACM = \angle BCM$ and CM = CM) AM = BM and $\angle AMC = \angle BMC$ (cpct) $\angle AMC + \angle BMC = 180^{\circ}$ (Linear Pair Axiom) $:: \angle AMC = \angle BMC = 90^{\circ}$ Therefore, CMD is the perpendicular bisector.

AB

Constructing Angles

Construction of an Angle of 60 degrees

Steps of construction of an angle of 60 degrees:

- Draw a ray QR.
- Take Q as the center and some radius draw an arc of a circle, which intersects QR at a point Y.
- Take Y as the center with the same radius draw an arc intersecting the previously drawn arc at point X.
- Draw a ray QP passing through X
- $\angle PQR = 60^{\circ}$

Constructing 60 degrees.

Proof for validity of construction of an Angle of 60 degrees

Proof for the validity of construction of the 60° angle: Join XY XY = XQ = YQ (By construction) $\therefore \triangle XQY$ is an equilateral triangle. Therefore, $\angle XQY = \angle PQR = 60^{\circ}$

Triangle Constructions

Construction of triangles

At least three parts of a triangle have to be given for constructing it but not all combinations of three parts are sufficient for the purpose. Therefore a unique triangle can be constructed if the following parts of a triangle are given:

- two sides and the included angle is given.
 - three sides are given.
 - two angles and the included side is given.
 - In a right triangle, hypotenuse and one side is given.
 - If two sides and an angle (not the included angle) are given, then it is not always possible to construct such a triangle uniquely.

Given base, base angle and sum of other two sides

Steps for construction of a triangle given base, base angle, and the sum of other two sides:

- Draw the base BC and at point B make an angle say XBC equal to the given angle.
- Cut the line segment BD equal to AB + AC from ray BX.
- Join DC and make an angle DCY equal to $\angle BDC$.
- Let CY intersect BX at A.

• ABC is the required triangle.

Given base(BC), base angle(ABC) and AB-AC

Steps of construction of a triangle given base(BC), base angle(∠ABC) and difference of the other two sides(AB-AC):

- Draw base BC and with point B as the vertex make an angle XBC equal to the given angle.
- Cut the line segment BD equal to AB AC(AB > AC) on the ray BX.
- Join DC and draw the perpendicular bisector PQ of DC.
- Let it intersect BX at a point A. Join AC.
- Then $\triangle ABC$ is the required triangle.

Proof for validation for Construction of a triangle with given base, base angle and difference between two sides

Validation of the steps of construction of a triangle with given base, base angle and difference between two sides

- Base BC and $\angle B$ are drawn as given.
- Point A lies on the perpendicular bisector of DC. So, AD = AC.
- BD = AB AD = AB AC (:: AD = AC).
- Therefore ABC is the required triangle.

Given base(BC), base angle(ABC) and AC-AB

Steps of construction of a triangle given base(BC), base angle(∠ABC) and difference of the other two sides(AC-AB):

- Draw the base BC and at point B make an angle XBC equal to the given angle.
- Cut the line segment BD equal to AC AB from the line BX extended on opposite side of line segment BC.
- Join DC and draw the perpendicular bisector, say PQ of DC.
- Let PQ intersect BX at A. Join AC.
- $\triangle ABC$ is the required triangle.

Given perimeter and two base angles

Steps of construction of a triangle with given perimeter and two base angles.

- Draw a line segment, say GH equal to BC + CA + AB.
- Make angles XGH equal to $\angle B$ and YHG equal to $\angle C$, where angle B and C are the given base angles.
- Draw the angle bisector of $\angle XGH$ and $\angle YHG$. Let these bisectors intersect at a point A.
- Draw perpendicular bisectors PQ of AG and RS of AH.
- Let PQ intersect GH at B and RS intersect GH at C. Join AB and AC
- $\triangle ABC$ is the required triangle.

Proof for validation for Construction of a triangle with given perimeter and two base angles

Validating the steps of construction of a triangle with given perimeter and two base angles:

- B lies on the perpendicular bisector PQ of AG and C lies on the perpendicular bisector RS of AH. So,GB = AB and CH = AC.
- BC + CA + AB = BC + GB + CH = GH. (: GB = AB and CH = AC)
- $\angle BAG = \angle AGB$ (:: $\triangle AGB, AB = GB$)
- $\angle ABC = \angle BAG + \angle AGB = 2 \angle AGB = \angle XGH$
- Similarly, $\angle ACB = \angle YHG$

