Area of a Triangle

The plane closed figure, with three sides and three angles is called as a triangle.

Types of triangles:
Based on sides - a) Equilateral b) Isosceles c) Scalene
Based on angles - a) Acute angled triangle b) Right-angled triangle c) Obtuse angled triangle

Area of a triangle

\[\text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \]

In case of equilateral and isosceles triangles, if the length of the sides of triangles are given then, we use Pythagoras theorem in order to find the height of a triangle.

Area of an equilateral triangle

Consider an equilateral \(\Delta ABC \), with each side as \(a \) units. Let AO be perpendicular bisector of BC. In order to derive the formula for the area of equilateral triangle, we need to find height AO.

Using Pythagoras theorem,
\[AC^2 = OA^2 + OC^2 \]
\[OA^2 = AC^2 - OC^2 \]
Substitute \(AC = a, OC = \frac{a}{2} \) to find OA
We know the area of triangle is
\[A = \frac{1}{2} \times \text{base} \times \text{height}, \]
\[A = \frac{1}{2} \times a \times \frac{\sqrt{3}a}{2} \]

\[\therefore \text{Area of Equilateral triangle} = \frac{\sqrt{3}a^2}{4} \]

Area of an isosceles triangle

Consider an isosceles \(\triangle ABC \) with equal sides as \(a \) units and base as \(b \) unit.

The height of the triangle can be found by Pythagoras' Theorem:
\[CD^2 = AC^2 - AD^2 \]
\[\Rightarrow h = a^2 - \frac{b^2}{4} = \frac{4a^2 - b^2}{4} \]
\[\Rightarrow h = \frac{1}{2} \sqrt{4a^2 - b^2} \]

Area of triangle is \(A = \frac{1}{2}bh \)
\[\therefore A = \frac{1}{2} \times b \times \frac{1}{2} \sqrt{4a^2 - b^2} \]
\[\therefore A = \frac{1}{4} \times b \times \sqrt{4a^2 - b^2} \]

Area of a triangle - By Heron's formula

Area of a \(\triangle ABC \), given sides \(a, b, c \) by Heron's formula (Also known as Hero's Formula):

\[\text{Area} = \sqrt{s(s-a)(s-b)(s-c)} \]

\[s = \frac{a + b + c}{2} \]
Find semi perimeter \((s) = \frac{a+b+c}{2}\)

\[\text{Area} = \sqrt{s(s-a)(s-b)(s-c)}\]

This formula is helpful to find area of a scalene triangle, given the lengths of all its sides.

Area of any polygon - By Heron’s formula

Area of a quadrilateral whose sides and one diagonal are given, can be calculated by dividing the quadrilateral into two triangles and using the Heron’s formula.

Example: A park, in the shape of a quadrilateral \(ABCD\), has \(\angle C = 90^\circ\), \(AB = 9\) m, \(BC = 12\) m, \(CD = 5\) m and \(AD = 8\) m. How much area does it occupy?

⇒ We draw the figure according to the information given.

The figure can be split into 2 triangles \(\Delta BCD\) and \(\Delta ABD\)

From \(\Delta BCD\), we can find \(BD\) (Using Pythagoras’ Theorem)

\[BD^2 = 12^2 + 5^2 = 169\]

\[BD = 13\text{ cm}\]

Semi-perimeter for \(\Delta BCD\) \(S_1 = \frac{12 + 5 + 13}{2} = 15\)

Semi-perimeter \(\Delta ABD\) \(S_2 = \frac{9 + 8 + 13}{2} = 15\)

Using Heron’s formula we find \(A_1\) and \(A_2\)

\[A_1 = \sqrt{15(15 - 12)(15 - 5)(15 - 13)} = \sqrt{15 \times 3 \times 10 \times 2}\]
\[A_1 = \sqrt{900} = 30\text{cm}^2 \]

Similarly we find \(A_2 \) to be 35.49\(\text{cm}^2 \).

The area of the quadrilateral \(ABCD = A_1 + A_2 = 65.49\text{ cm}^2 \)