

EXERCISE 11.3

PAGE NO: 255

In each of the Exercises 1 to 9, find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

1. $x^2/36 + y^2/16 = 1$ Solution: Given: The equation is $x^2/36 + y^2/16 = 1$ Here, the denominator of $x^2/36$ is greater than the denominator of $y^2/16$. So, the major axis is along the x-axis, while the minor axis is along the y-axis. On comparing the given equation with $x^2/a^2 + y^2/b^2 = 1$, we get a = 6 and b = 4. $c = \sqrt{a^2 + b^2}$ $=\sqrt{(36-16)}$ $=\sqrt{20}$ $= 2\sqrt{5}$ Then. The coordinates of the foci are $(2\sqrt{5}, 0)$ and (-6, 0). The coordinates of the vertices are (6, 0) and (-6, 0)Length of major axis = 2a = 2 (6) = 12Length of minor axis = 2b = 2 (4) = 8Eccentricity, $e^{c/a} = 2\sqrt{5/6} = \sqrt{5/3}$ Length of latus rectum = $2b^2/a = (2 \times 16)/6 = 16/3$ 2. $x^2/4 + y^2/25 = 1$ Solution: Given: The equation is $x^2/4 + y^2/25 = 1$ Here, the denominator of $y^2/25$ is greater than the denominator of $x^2/4$. So, the major axis is along the x-axis, while the minor axis is along the y-axis. On comparing the given equation with $x^2/a^2 + y^2/b^2 = 1$, we get a = 5 and b = 2. $c = \sqrt{a^2 + b^2}$ $=\sqrt{(25-4)}$ $=\sqrt{21}$ Then. The coordinates of the foci are $(0, \sqrt{21})$ and $(0, -\sqrt{21})$.

https://byjus.com

The coordinates of the vertices are (0, 5) and (0, -5)Length of major axis = 2a = 2(5) = 10Length of minor axis = 2b = 2 (2) = 4Eccentricity, $e^{c/a} = \sqrt{21/5}$ Length of latus rectum = $2b^2/a = (2 \times 2^2)/5 = (2 \times 4)/5 = 8/5$

3. $x^2/16 + y^2/9 = 1$

Solution:

Given:

The equation is $x^2/16 + y^2/9 = 1$ or $x^2/4^2 + y^2/3^2 = 1$ Here, the denominator of $x^2/16$ is greater than the denominator of $y^2/9$.

So, the major axis is along the x-axis, while the minor axis is along the y-axis.

On comparing the given equation with $x^2/a^2 + y^2/b^2 = 1$, we get

a = 4 and b = 3. $c = \sqrt{a^2 + b^2}$ √(16-9)

$$= \sqrt{2}$$

 $= \sqrt{7}$

Then,

The coordinates of the foci are $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$. The coordinates of the vertices are $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$ Length of major axis = 2a = 2(4) = 8Length of minor axis = 2b = 2(3) = 6Eccentricity, $e^{c/a} = \sqrt{7/4}$ Length of latus rectum = $2b^2/a = (2 \times 3^2)/4 = (2 \times 9)/4 = 18/4 = 9/2$

4. $x^2/25 + y^2/100 = 1$ Solution:

Given:

The equation is $x^{2}/25 + y^{2}/100 = 1$

Here, the denominator of $y^2/100$ is greater than the denominator of $x^2/25$. So, the major axis is along the x-axis, while the minor axis is along the y-axis. On comparing the given equation with $x^2/a^2 + y^2/b^2 = 1$, we get b = 5 and a = 10.

$$c = \sqrt{a^2 + b^2}$$

$$=\sqrt{(100-25)}$$

 $=\sqrt{75}$

 $=5\sqrt{3}$

Then.

The coordinates of the foci are $(0, 5\sqrt{3})$ and $(0, -5\sqrt{3})$.

The coordinates of the vertices are $(0, \sqrt{10})$ and $(0, -\sqrt{10})$ Length of major axis = 2a = 2(10) = 20Length of minor axis = 2b = 2 (5) = 10Eccentricity, $e^{c/a} = 5\sqrt{3}/10 = \sqrt{3}/2$ Length of latus rectum = $2b^2/a = (2 \times 5^2)/10 = (2 \times 25)/10 = 5$ 5. $x^2/49 + y^2/36 = 1$ Solution: Given: The equation is $x^2/49 + y^2/36 = 1$ Here, the denominator of $x^2/49$ is greater than the denominator of $y^2/36$. So, the major axis is along the x-axis, while the minor axis is along the y-axis. On comparing the given equation with $x^2/a^2 + y^2/b^2 = 1$, we get b = 6 and a = 7 $c = \sqrt{a^2 + b^2}$ $=\sqrt{(49-36)}$ $=\sqrt{13}$ Then, The coordinates of the foci are $(\sqrt{13}, 0)$ and $(-\sqrt{3}, 0)$. The coordinates of the vertices are (7, 0) and (-7, 0)Length of major axis = 2a = 2(7) = 14Length of minor axis = 2b = 2 (6) = 12Eccentricity, $e^{c/a} = \sqrt{13/7}$ Length of latus rectum = $2b^2/a = (2 \times 6^2)/7 = (2 \times 36)/7 = 72/7$ 6. $x^2/100 + y^2/400 = 1$ Solution: Given: The equation is $x^2/100 + y^2/400 = 1$ Here, the denominator of $y^2/400$ is greater than the denominator of $x^2/100$. So, the major axis is along the x-axis, while the minor axis is along the y-axis. On comparing the given equation with $x^2/a^2 + y^2/b^2 = 1$, we get b = 10 and a = 20. $c = \sqrt{a^2 + b^2}$ $=\sqrt{(400-100)}$ $= \sqrt{300}$ $= 10\sqrt{3}$ Then.

The coordinates of the foci are $(0, 10\sqrt{3})$ and $(0, -10\sqrt{3})$.

The coordinates of the vertices are (0, 20) and (0, -20) Length of major axis = 2a = 2 (20) = 40 Length of minor axis = 2b = 2 (10) = 20 Eccentricity, $e^{c/a} = 10\sqrt{3}/20 = \sqrt{3}/2$ Length of latus rectum = $2b^2/a = (2 \times 10^2)/20 = (2 \times 100)/20 = 10$

7. $36x^2 + 4y^2 = 144$

Solution:

Given:

The equation is $36x^2 + 4y^2 = 144$ or $x^2/4 + y^2/36 = 1$ or $x^2/2^2 + y^2/6^2 = 1$ Here, the denominator of $y^2/6^2$ is greater than the denominator of $x^2/2^2$. So, the major axis is along the x-axis, while the minor axis is along the y-axis. On comparing the given equation with $x^2/a^2 + y^2/b^2 = 1$, we get b = 2 and a = 6. $c = \sqrt{(a^2 + b^2)}$ $= \sqrt{(36-4)}$ $= \sqrt{32}$ $= 4\sqrt{2}$.

Then,

The coordinates of the foci are $(0, 4\sqrt{2})$ and $(0, -4\sqrt{2})$. The coordinates of the vertices are (0, 6) and (0, -6)Length of major axis = 2a = 2 (6) = 12Length of minor axis = 2b = 2 (2) = 4Eccentricity, $e^{c/a} = 4\sqrt{2}/6 = 2\sqrt{2}/3$ Length of latus rectum = $2b^2/a = (2\times2^2)/6 = (2\times4)/6 = 4/3$

8. $16x^2 + y^2 = 16$ Solution:

Given:

The equation is $16x^2 + y^2 = 16$ or $x^2/1 + y^2/16 = 1$ or $x^2/1^2 + y^2/4^2 = 1$ Here, the denominator of $y^2/4^2$ is greater than the denominator of $x^2/1^2$. So, the major axis is along the x-axis, while the minor axis is along the y-axis. On comparing the given equation with $x^2/a^2 + y^2/b^2 = 1$, we get b = 1 and a = 4. $c = \sqrt{(a^2 + b^2)}$ $= \sqrt{(16-1)}$ $= \sqrt{15}$ Then,

The coordinates of the foci are $(0, \sqrt{15})$ and $(0, -\sqrt{15})$.

The coordinates of the vertices are (0, 4) and (0, -4)Length of major axis = 2a = 2 (4) = 8 Length of minor axis = 2b = 2 (1) = 2 Eccentricity, $e^{c/a} = \sqrt{15/4}$ Length of latus rectum = $2b^2/a = (2 \times 1^2)/4 = 2/4 = \frac{1}{2}$

9. $4x^2 + 9y^2 = 36$

Solution:

Given:

The equation is $4x^2 + 9y^2 = 36$ or $x^2/9 + y^2/4 = 1$ or $x^2/3^2 + y^2/2^2 = 1$ Here, the denominator of $x^2/3^2$ is greater than the denominator of $y^2/2^2$. So, the major axis is along the x-axis, while the minor axis is along the y-axis. On comparing the given equation with $x^2/a^2 + y^2/b^2 = 1$, we get a = 3 and b = 2. $c = \sqrt{a^2 + b^2} = \sqrt{9}$ $= \sqrt{9} + 4$ $= \sqrt{5}$ Then, The coordinates of the foci are ($\sqrt{5}$, 0) and ($-\sqrt{5}$, 0). The coordinates of the vertices are (3, 0) and (-3, 0) Length of major axis = 2a = 2 (3) = 6 Length of minor axis = 2b = 2 (2) = 4 Eccentricity, $e^{c/a} = \sqrt{5}/3$ Length of latus rectum = $2b^2/a = (2 \times 2^2)/3 = (2 \times 4)/3 = 8/3$

In each of the following Exercises 10 to 20, find the equation for the ellipse that satisfies the given conditions:

10. Vertices (± **5**, **0**), foci (± **4**, **0**) Solution:

Given:

Vertices $(\pm 5, 0)$ and foci $(\pm 4, 0)$

Here, the vertices are on the x-axis.

So, the equation of the ellipse will be of the form $x^2/a^2 + y^2/b^2 = 1$, where 'a' is the semimajor axis.

Then, a = 5 and c = 4. It is known that $a^2 = b^2 + c^2$. So, $5^2 = b^2 + 4^2$ $25 = b^2 + 16$

 $b^2 = 25 - 16$ $b = \sqrt{9}$ = 3 ∴ The equation of the ellipse is $x^2/5^2 + y^2/3^2 = 1$ or $x^2/25 + y^2/9 = 1$

11. Vertices $(0, \pm 13)$, foci $(0, \pm 5)$

Solution:

Given:

Vertices $(0, \pm 13)$ and foci $(0, \pm 5)$

Here, the vertices are on the x-axis.

So, the equation of the ellipse will be of the form $x^2/a^2 + y^2/b^2 = 1$, where 'a' is the semimajor axis.

Then, a =13 and c = 5.
It is known that
$$a^2 = b^2 + c^2$$
.
 $13^2 = b^2 + 5^2$
 $169 = b^2 + 15$
 $b^2 = 169 - 125$
 $b = \sqrt{144}$
= 12
. The equation of the ellipse is

: The equation of the ellipse is $x^2/12^2 + y^2/13^2 = 1$ or $x^2/144 + y^2/169 = 1$

12. Vertices $(\pm 6, 0)$, foci $(\pm 4, 0)$

Solution:

Given:

Vertices $(\pm 6, 0)$ and foci $(\pm 4, 0)$

Here, the vertices are on the x-axis.

So, the equation of the ellipse will be of the form $x^2/a^2 + y^2/b^2 = 1$, where 'a' is the semimajor axis.

Then, a = 6 and c = 4. It is known that $a^2 = b^2 + c^2$. $6^2 = b^2 + 4^2$ $36 = b^2 + 16$ $b^2 = 36 - 16$ $b = \sqrt{20}$

: The equation of the ellipse is $x^2/6^2 + y^2/(\sqrt{20})^2 = 1$ or $x^2/36 + y^2/20 = 1$

13. Ends of major axis $(\pm 3, 0)$, ends of minor axis $(0, \pm 2)$ Solution:

Given:

https://byjus.com

Ends of major axis $(\pm 3, 0)$ and ends of minor axis $(0, \pm 2)$

Here, the major axis is along the x-axis.

So, the equation of the ellipse will be of the form $x^2/a^2 + y^2/b^2 = 1$, where 'a' is the semimajor axis.

Then, a = 3 and b = 2.

: The equation for the ellipse $x^2/3^2 + y^2/2^2 = 1$ or $x^2/9 + y^2/4 = 1$

14. Ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $(\pm 1, 0)$ Solution:

Given:

Ends of major axis $(0, \pm \sqrt{5})$ and ends of minor axis $(\pm 1, 0)$

Here, the major axis is along the x-axis.

So, the equation of the ellipse will be of the form $x^2/a^2 + y^2/b^2 = 1$, where 'a' is the semimajor axis.

Then, $a = \sqrt{5}$ and b = 1.

: The equation for the ellipse $x^2/1^2 + y^2/(\sqrt{5})^2 = 1$ or $x^2/1 + y^2/5 = 1$

15. Length of major axis 26, foci (±5, 0)

Solution:

Given:

Length of major axis is 26 and foci $(\pm 5, 0)$

Since the foci are on the x-axis, the major axis is along the x-axis.

So, the equation of the ellipse will be of the form $x^2/a^2 + y^2/b^2 = 1$, where 'a' is the semimajor axis.

Then, 2a = 26 a = 13 and c = 5. It is known that $a^2 = b^2 + c^2$. $13^2 = b^2 + 4^2$ $169 = b^2 + 25$ $b^2 = 169 - 25$ $b = \sqrt{144}$ = 12

: The equation of the ellipse is $x^2/13^2 + y^2/12^2 = 1$ or $x^2/169 + y^2/144 = 1$

16. Length of minor axis 16, foci $(0, \pm 6)$. Solution:

Given:

Length of minor axis is 16 and foci $(0, \pm 6)$.

Since the foci are on the x-axis, the major axis is along the x-axis.

So, the equation of the ellipse will be of the form $x^2/a^2 + y^2/b^2 = 1$, where 'a' is the semimajor axis.

Then, 2b = 16 b = 8 and c = 6. It is known that $a^2 = b^2 + c^2$. $a^2 = 8^2 + 6^2$ = 64 + 36 = 100 $b = \sqrt{100}$ = 10 \therefore The equation of the ellipse is $x^2/8^2 + y^2/10^2 = 1$ or $x^2/64 + y^2/100 = 1$

17. Foci $(\pm 3, 0)$, a = 4

Solution:

Given:

Foci $(\pm 3, 0)$ and a = 4

Since the foci are on the x-axis, the major axis is along the x-axis.

So, the equation of the ellipse will be of the form $x^2/a^2 + y^2/b^2 = 1$, where 'a' is the semimajor axis.

Then, c = 3 and a = 4. It is known that $a^2 = b^2 + c^2$. $a^2 = 8^2 + 6^2$ = 64 + 36 = 100 $16 = b^2 + 9$ $b^2 = 16 - 9$ = 7

: The equation of the ellipse is $x^2/16 + y^2/7 = 1$

18. b = 3, c = 4, centre at the origin; foci on the x axis.

Solution:

Given:

b = 3, c = 4, centre at the origin and foci on the x axis.

Since the foci are on the x-axis, the major axis is along the x-axis.

So, the equation of the ellipse will be of the form $x^2/a^2 + y^2/b^2 = 1$, where 'a' is the semimajor axis.

Then, b = 3 and c = 4. It is known that $a^2 = b^2 + c^2$. $a^2 = 3^2 + 4^2$

= 9 + 16 =25 a = $\sqrt{25}$ = 5 ∴ The equation of the ellipse is $x^2/5^2 + y^2/3^2$ or $x^2/25 + y^2/9 = 1$

19. Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6).

Solution:

Given:

Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6). Since the centre is at (0, 0) and the major axis is on the y- axis, the equation of the ellipse will be of the form $x^2/a^2 + y^2/b^2 = 1$, where 'a' is the semi-major axis.

The ellipse passes through points (3, 2) and (1, 6).

So, by putting the values x = 3 and y = 2, we get, $3^2/b^2 + 2^2/a^2 = 1$ $9/b^2 + 4/a^2...(1)$

And by putting the values x = 1 and y = 6, we get,

 $1^{1}/b^{2} + 6^{2}/a^{2} = 1$

 $1/b^2 + 36/a^2 = 1 \dots (2)$ On solving equation (1) and (2), we get

 $b^2 = 10$ and $a^2 = 40$.

: The equation of the ellipse is $x^2/10 + y^2/40 = 1$ or $4x^2 + y^2 = 40$

20. Major axis on the x-axis and passes through the points (4,3) and (6,2). Solution:

Given:

Major axis on the x-axis and passes through the points (4, 3) and (6, 2). Since the major axis is on the x-axis, the equation of the ellipse will be the form $x^2/a^2 + y^2/b^2 = 1...$ (1) [Where 'a' is the semi-major axis.]

The ellipse passes through points (4, 3) and (6, 2). So by putting the values x = 4 and y = 3 in equation (1), we get, $16/a^2 + 9/b^2 = 1 \dots (2)$ Putting, x = 6 and y = 2 in equation (1), we get, $36/a^2 + 4/b^2 = 1 \dots (3)$ From equation (2) $16/a^2 = 1 - 9/b^2$ $1/a^2 = (1/16 (1 - 9/b^2)) \dots (4)$

https://byjus.com

Substituting the value of $1/a^2$ in equation (3) we get, $36/a^2 + 4/b^2 = 1$ $36(1/a^2) + 4/b^2 = 1$ $36[1/16(1-9/b^2)] + 4/b^2 = 1$ $36/16 (1 - 9/b^2) + 4/b^2 = 1$ $9/4 (1 - 9/b^2) + 4/b^2 = 1$ $9/4 - 81/4b^2 + 4/b^2 = 1$ $-81/4b^2 + 4/b^2 = 1 - 9/4$ $(-81+16)/4b^2 = (4-9)/4$ $-65/4b^2 = -5/4$ $-5/4(13/b^2) = -5/4$ $13/b^2 = 1$ $1/b^2 = 1/13$ $b^2 = 13$ Now substitute the value of b^2 in equation (4) we get, $1/a^2 = 1/16(1 - 9/b^2)$ = 1/16(1 - 9/13)= 1/16((13-9)/13)= 1/16(4/13)= 1/52 $a^2 = 52$ Equation of ellipse is $x^2/a^2 + y^2/b^2 = 1$ By substituting the values of a^2 and b^2 in above equation we get, $x^2/52 + y^2/13 = 1$