

EXERCISE 15.1

PAGE: 360

Find the mean deviation about the mean for the data in Exercises 1 and 2.

1. 4, 7, 8, 9, 10, 12, 13, 17

Solution:-

First we have to find (\overline{x}) of the given data

$$\bar{\mathbf{x}} = \frac{1}{8} \sum_{i=1}^{8} \mathbf{x}_i = \frac{80}{8} = 10$$

So, the respective values of the deviations from mean,

i.e., $x_i - \overline{x}$ are, 10 - 4 = 6, 10 - 7 = 3, 10 - 8 = 2, 10 - 10 = 0,

10 - 12 = - 2, 10 - 13 = - 3, 10 - 17 = - 7

6, 3, 2, 1, 0, -2, -3, -7

Now absolute values of the deviations,

6, 3, 2, 1, 0, 2, 3, 7

 $\therefore \sum_{i=1}^{8} |\mathbf{x}_i - \bar{\mathbf{x}}| = 24$

MD = sum of deviations/ number of observations

= 24/8

= 3

So, the mean deviation for the given data is 3.

2. 38, 70, 48, 40, 42, 55, 63, 46, 54, 44

Solution:-

First we have to find (\overline{x}) of the given data

$$\bar{\mathbf{x}} = \frac{1}{10} \sum_{i=1}^{10} \mathbf{x}_i = \frac{500}{10} = 50$$

So, the respective values of the deviations from mean,

i.e., $x_i - \overline{x}$ are, 50 - 38 = -12, 50 - 70 = -20, 50 - 48 = 2, 50 - 40 = 10, 50 - 42 = 8, 50 - 55 = -5, 50 - 63 = -13, 50 - 46 = 4, 50 - 54 = -4, 50 - 44 = 6-12, 20, -2, -10, -8, 5, 13, -4, 4, -6

Now absolute values of the deviations,

12, 20, 2, 10, 8, 5, 13, 4, 4, 6 $\therefore \sum_{i=1}^{10} |x_i - \bar{x}| = 84$

MD = sum of deviations/ number of observations

= 84/10

= 8.4

So, the mean deviation for the given data is 8.4.

Find the mean deviation about the median for the data in Exercises 3 and 4. 3. 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17 Solution:-

First we have to arrange the given observations into ascending order,

10, 11, 11, 12, 13, 13, 14, 16, 16, 17, 17, 18.

The number of observations is 12

Then,

Median = $((12/2)^{th}$ observation + $((12/2) + 1)^{th}$ observation)/2 (12/2)^{th} observation = 6^{th} = 13 (12/2) + 1)^{th} observation = 6 + 1 = 7^{th} = 14 Median = (13 + 14)/2

= 27/2 = 13.5

So, the absolute values of the respective deviations from the median, i.e.,
$$|x_i - M|$$
 are 3.5, 2.5, 2.5, 1.5, 0.5, 0.5, 0.5, 2.5, 2.5, 3.5, 3.5, 4.5

$$\therefore \sum_{i=1}^{12} |x_i - M| = 28$$

Mean Deviation,

M.D. (M) =
$$\frac{1}{12} \sum_{i=1}^{12} |x_i - M|$$

= (1/12) × 28
= 2.33

So, the mean deviation about the median for the given data is 2.33.

4. 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

Solution:-

First we have to arrange the given observations into ascending order, 36, 42, 45, 46, 46, 49, 51, 53, 60, 72. The number of observations is 10 Then, Median = $((10/2)^{\text{th}}$ observation + $((10/2)+1)^{\text{th}}$ observation)/2 $(10/2)^{\text{th}}$ observation = 5^{th} = 46 $(10/2)+1)^{\text{th}}$ observation = 5+1 $= 6^{\text{th}} = 49$ Median = (46 + 49)/2

https://byjus.com

= 95 = 47.5

So, the absolute values of the respective deviations from the median, i.e., $|x_i - M|$ are 11.5, 5.5, 2.5, 1.5, 1.5, 1.5, 3.5, 5.5, 12.5, 24.5

 $\therefore \sum_{i=1}^{10} |x_i - M| = 70$

Mean Deviation,

M.D. (M) =
$$\frac{1}{10} \sum_{i=1}^{10} |x_i - M|$$

= (1/10) × 70
= 7

So, the mean deviation about the median for the given data is 7.

Find the mean deviation about the mean for the data in Exercises 5 and 6.

5.								
Xi	5	10	15	20	25			
f _i	7	4	6	3	5			

Solution:-

Let us make the table of the given data and append other columns after calculations.

Xi	fi	f _i x _i	$ \mathbf{x}_i - \overline{\mathbf{x}} $	$f_i x_i - \overline{x} $
5	7	35	9	63
10	4	40	4	16
15	6	90	1	6
20	3	60	6	18
25	5	125	11	55
	25	350		158

The sum of calculated data,

N =
$$\sum_{i=1}^{5} f_i = 25$$
, $\sum_{i=1}^{5} f_i x_i = 350$

Now, we have to find (\overline{x}) by using the formula

$$\Rightarrow \overline{x} = \frac{1}{N} \sum_{i=1}^{5} f_i x_i = \frac{1}{25} \times 350 = 14$$

The absolute values of the deviations from the mean, i.e., $|x_i - \overline{x}|$, as shown in the table.

From the table, $\sum_{i=1}^{5} f_i |x_i - \bar{x}| = 158$ Therefore M.D. $(\bar{x}) = \frac{1}{N} \sum_{i=1}^{5} f_i |x_i - \bar{x}|$ $= (1/25) \times 158$ = 6.32

So, the mean deviation about the mean for the given data is 6.32.

6	
ο.	

f _i 4 24 28 16 8	Xi	10	30	50	70	90	- 1
	f _i	4	24	28	16	8	

Solution:-

Let us make the table of the given data and append other columns after calculations.

Xi	fi	f _i x _i	$ \mathbf{x}_i - \overline{\mathbf{x}} $	$f_i x_i - \overline{x} $
10	4	40	40	160
30	24	720	20	480
50	28	1400	0	0
70	16	1120	20	320
90	8	720	40	320
	80	4000		1280

The sum of calculated data,

$$N = \sum_{i=1}^{5} f_i = 80, \sum_{i=1}^{5} f_i x_i = 4000$$

Now, we have to find (\overline{x}) by using the formula

$$\Rightarrow \bar{x} = \frac{1}{N} \sum_{i=1}^{5} f_i x_i = \frac{1}{80} \times 4000 = 50$$

The absolute values of the deviations from the mean, i.e., $|x_i - \overline{x}|$, as shown in the table.

From the table, $\sum_{i=1}^{5} f_i |x_i - \bar{x}| = 1280$ Therefore M.D. $(\bar{x}) = \frac{1}{N} \sum_{i=1}^{5} f_i |x_i - \bar{x}|$ $= (1/80) \times 1280$ = 16

So, the mean deviation about the mean for the given data is 16.

Find the mean deviation about the median for the data in Exercises 7 and 8.

7.					100	
Xi	5	7	9	10	12	15
f _i	8	6	2	2	2	6

Solution:-

Let us make the table of the given data and append other columns after calculations.

Xi	fi	c.f.	x _i – M	$f_i x_i - M $
5	8	8	2	16
7	6	14	0	0
9	2	16	2	4
10	2	18	3	6
12	2	20	5	10
15	6	26	8	48

Now, N = 26, which is even.

Median is the mean of the 13th and 14th observations. Both of these observations lie in the cumulative frequency 14, for which the corresponding observation is 7. Then.

Median = $(13^{th} observation + 14^{th} observation)/2$

So, the absolute values of the respective deviations from the median, i.e., $|x_i - M|$ are shown in the table.

https://byjus.com

Therefore $\sum_{i=1}^{6} f_i = 26$ and $\sum_{i=1}^{6} f_i |x_i - M| = 84$

And $M.D.(M) = \frac{1}{N}\sum_{i=1}^{6} f_i |x_i - M|$

= (1/26) × 84 = 3.23

Hence, the mean deviation about the median for the given data is 3.23.

8.

Xi	15	21	27	30	35
f _i	3	5	6	7	8

Solution:-

Let us make the table of the given data and append other columns after calculations.

Xi	fi	c.f.	$ \mathbf{x}_i - \mathbf{M} $	$f_i x_i - M $
15	3	3	13.5	40.5
21	5	8	7.5	37.5
27	6	14	1.5	9
30	7	21	1.5	10.5
35	8	29	6.5	52

Now, N = 30, which is even.

Median is the mean of the 15th and 16th observations. Both of these observations lie in the cumulative frequency 21, for which the corresponding observation is 30. Then,

Median = $(15^{\text{th}} \text{ observation} + 16^{\text{th}} \text{ observation})/2$ = (30 + 30)/2

$$= (30 + 3)$$

= 60/2

So, the absolute values of the respective deviations from the median, i.e., $|x_i - M|$ are shown in the table.

Therefore $\sum_{i=1}^{5} f_i = 29$ and $\sum_{i=1}^{5} f_i |x_i - M| = 149.5$ And M.D. (M) $= \frac{1}{N} \sum_{i=1}^{6} f_i |x_i - M|$ $= (1/29) \times 149.5$ = 5.1

Hence, the mean deviation about the median for the given data is 5.1.

Find the mean deviation about the mean for the data in Exercises 9 and 10.

Income per day in ₹	0 - 100	100 - 200	200 - 300	300 - 400	400 - 500	500 - 600	600 – 700	700 - 800
Number of persons	4	8	9	10	7	50	4	3

Solution:-

Let us make the table of the given data and append other columns after calculations.

Income per Number of		Mid – points	f _i x _i	$ \mathbf{x}_i - \overline{\mathbf{x}} $	$f_i x_i - \overline{x} $
day in ₹	persons f _i	Xi			
0-100	4	50	200	308	1232
100 - 200	8	150	1200	208	1664
200 - 300	9	250	2250	108	972
300 - 400	10	350	3500	8	80
400 - 500	7	450	3150	92	644
500 - 600	5	550	2750	192	960
600 - 700	4	650	2600	292	1160
700 - 800	3	750	2250	392	1176
	50		17900		7896

The sum of calculated data,

N =
$$\sum_{i=1}^{8} f_i = 50$$
, $\sum_{i=1}^{8} f_i x_i = 17900$

Now, we have to find (\overline{x}) by using the formula

$$\Rightarrow \bar{x} = \frac{1}{N} \sum_{i=1}^{8} f_i x_i = \frac{1}{50} \times 17900 = 358$$

The absolute values of the deviations from the mean, i.e., $|x_i - \overline{x}|$, as shown in the table.

So, $\sum_{i=1}^{8} f_i |x_i - \bar{x}| = 7896$ And M. D. $(\bar{x}) = \frac{1}{N} \sum_{i=1}^{8} f_i |x_i - \bar{x}|$ $= (1/50) \times 7896$ = 157.92

Hence, the mean deviation about the mean for the given data is 157.92.

4	^	
-		

	1000	Accession in the				
Height	95 –	105 -	115 -	125 -	135 -	145 -
in cms	105	115	125	135	145	155
Number of boys	9	13	26	30	12	10

Solution:-

Let us make the table of the given data and append other columns after calculations.

Height in	Number of	Mid – points	f _i x _i	$ \mathbf{x}_i - \overline{\mathbf{x}} $	$f_i x_i - \overline{x} $
cms	boys f _i	Xi			
95 – 105	9	100	900	25.3	227.7
105 – 115	13	110	1430	15.3	198.9
115 – 125	26	120	3120	5.3	137.8
125 – 135	30	130	3900	4.7	141
135 – 145	12	140	1680	14.7	176.4
145 - 155	10	150	1500	24.7	247

	100		12530		1128.8
--	-----	--	-------	--	--------

The sum of calculated data,

$$N = \sum_{i=1}^{6} f_i = 100, \sum_{i=1}^{6} f_i x_i = 12530$$

Now, we have to find (\overline{x}) by using the formula

$$\Rightarrow \bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^{6} \mathbf{f}_i \mathbf{x}_i = \frac{1}{100} \times 12530 = 125.3$$

The absolute values of the deviations from the mean, i.e., $|x_i - \overline{x}|$, as shown in the table.

So
$$\sum_{i=1}^{6} f_i |x_i - \bar{x}| = 1128.8$$

And M. D. $(\bar{x}) = \frac{1}{N} \sum_{i=1}^{6} f_i |x_i - \bar{x}|$
 $= (1/100) \times 1128.8$
 $= 11.28$

Hence, the mean deviation about the mean for the given data is 11.28.

<u></u>										
Marks	0 -10	10 -20	20 – 30	30 - 40	40 - 50	50 - 60				
Number of girls	6	8	14	16	4	2				

11. Find the mean deviation about median for the following data:

Solution:-

Let us make the table of the given data and append other columns after calculations.

Marks	Number of Girls f _i	Cumulative frequency (c.f.)	Mid – points _{Xi}	x _i – Med	f _i x _i – Med
0-10	6	6	5	22.85	137.1
10 - 20	8	14	15	12.85	102.8
20 – 30	14	28	25	2.85	39.9

30 - 40	16	44	35	7.15	114.4
40 - 50	4	48	45	17.15	68.6
50 - 60	2	50	55	27.15	54.3
	50				517.1

The class interval containing Nth/2 or 25th item is 20-30 So, 20-30 is the median class. Then, Median = I + (((N/2) - c)/f) × h Where, I = 20, c = 14, f = 14, h = 10 and n = 50 Median = 20 + (((25 - 14))/14) × 10

= 27.85

The absolute values of the deviations from the median, i.e., $|x_i - Med|$, as shown in the table.

So
$$\sum_{i=1}^{6} f_i |x_i - Med.| = 517.1$$

And M.D. (M) $= \frac{1}{N} \sum_{i=1}^{6} f_i |x_i - Med.|$
 $= (1/50) \times 517.1$
 $= 10.34$

Hence, the mean deviation about the median for the given data is 10.34.

12. Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age	16 - 20	21 - 25	26 - 30	31 - 35	36 - 40	41 - 45	46 – 50	51 – 55
(in								
years)								
Number	5	6	12	14	26	12	16	9

[Hint Convert the given data into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval] Solution:-

The given data is converted into continuous frequency distribution by subtracting 0.5 from the lower limit and adding the 0.5 to the upper limit of each class intervals and append other columns after calculations.

Age	Number f _i	Cumulative	Mid – points	x _i – Med	f _i x _i – Med
		frequency	Xi		
		(c.f.)			
15.5 – 20.5	5	5	18	20	100
20.5 – 25.5	6	11	23	15	90
25.5 – 30.5	12	23	28	10	120
30.5 - 35.5	14	37	33	5	70
35.5 - 40.5	26	63	38	0	0
40.5 - 45.5	12	75	43	5	60
45.5 – 50.5	16	91	48	10	160
50.5 - 55.5	9	100	53	15	135
	100				735

The class interval containing $N^{th}/2$ or 50^{th} item is 35.5 - 40.5ing App

So, 35.5 - 40.5 is the median class.

Then,

 $Median = I + (((N/2) - c)/f) \times h$

Where, I = 35.5, c = 37, f = 26, h = 5 and N = 100

Median = 35.5 + (((50 - 37))/26) × 5

= 35.5 + 2.5

= 38

The absolute values of the deviations from the median, i.e., |x_i - Med|, as shown in the table.

 $So \sum_{i=1}^{8} f_i |x_i - Med.| = 735$ And M.D. (M) = $\frac{1}{N}\sum_{i=1}^{6} f_i |x_i - Med.|$ $= (1/100) \times 735$ = 7.35

Hence, the mean deviation about the median for the given data is 7.35.