

EXERCISE 3.1

PAGE: 54

1. Find the radian measures corresponding to the following degree measures:

(i) 25° (ii) -47° 30' (iii) 240° (iv) 520°

Solution:

(i) 25°

Here $180^{\circ} = \pi$ radian

It can be written as

$$25^\circ = \frac{\pi}{180} \times 25$$
 radian

So we get

$$=\frac{5\pi}{36}$$
 radian

It can be written as

$$-47^{\circ} 30' = -47\frac{1}{2} \text{ degree}$$

So we get

$$=\frac{-95}{2}$$
 degree

Here $180^{\circ} = \pi$ radian

$$\frac{-95}{2}$$
 deg ree = $\frac{\pi}{180} \times \left(\frac{-95}{2}\right)$ radian

It can be written as

$$= \left(\frac{-19}{36 \times 2}\right) \pi \text{ radian} = \frac{-19}{72} \pi \text{ radian}$$

We get

$$-47^{\circ} 30' = \frac{-19}{72} \pi \text{ radian}$$

(iii) 240°

Here $180^{\circ} = \pi$ radian

It can be written as

$$240^{\circ} = \frac{\pi}{180} \times 240 \text{ radian}$$

So we get

$$=\frac{4}{3}\pi$$
 radian

(iv) 520°

Here $180^{\circ} = \pi$ radian

It can be written as

$$520^{\circ} = \frac{\pi}{180} \times 520$$
 radian

So we get

$$=\frac{26\pi}{9}$$
 radian

2. Find the degree measures corresponding to the following radian measures (Use $\pi = 22/7$)

- (i) 11/16
- (ii) -4
- (iii) $5\pi/3$
- (iv) $7\pi/6$

Solution:

(i) 11/16

Here π radian = 180°

$$\frac{11}{16} \text{ radain} = \frac{180}{\pi} \times \frac{11}{16} \text{ deg ree}$$

We can write it as

$$= \frac{45 \times 11}{\pi \times 4} \deg \operatorname{ree}$$

So we get

$$= \frac{45 \times 11 \times 7}{22 \times 4}$$
 deg ree

$$=\frac{315}{8}$$
 degree

$$=39\frac{3}{8}$$
 deg ree

$$=39^{\circ}+\frac{3\times60}{8} \quad min \ utes$$

We get

$$=39^{\circ} + 22' + \frac{1}{2}$$
 min utes

(ii) -4

Here π radian = 180°

$$-4 \text{ radian} = \frac{180}{\pi} \times (-4) \text{ deg ree}$$

We can write it as

$$= \frac{180 \times 7(-4)}{22} \text{ deg ree}$$

By further calculation

$$=\frac{-2520}{11}$$
 deg ree $=-229\frac{1}{11}$ deg ree

Take 1º = 60'

$$= -229^{\circ} + \frac{1 \times 60}{11} \quad min \ utes$$

So we get

$$=-229^{\circ}+5'+\frac{5}{11}$$
 min utes

(iii) $5\pi/3$

Here π radian = 180°

$$\frac{5\pi}{3}$$
 radian = $\frac{180}{\pi} \times \frac{5\pi}{3}$ deg ree

We get

$$= 300^{\circ}$$

(iv) $7\pi/6$

Here π radian = 180°

$$\frac{7\pi}{6} \text{ radian} = \frac{180}{\pi} \times \frac{7\pi}{6}$$

We get

$$= 210^{\circ}$$

3. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second? Solution:

It is given that

No. of revolutions made by the wheel in

1 minute = 360

1 second = 360/6 = 60

We know that

The wheel turns an angle of 2π radian in one complete revolution.

In 6 complete revolutions, it will turn an angle of $6 \times 2\pi$ radian = 12 π radian

Therefore, in one second, the wheel turns an angle of 12π radian.

4. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Use $\pi = 22/7$).

Solution:

Consider a circle of radius r unit with 1 unit as the arc length which subtends an angle θ radian at the centre

$$\theta = 1/r$$

Here
$$r = 100$$
 cm, $l = 22$ cm

$$\theta = \frac{22}{100} \text{ radian} = \frac{180}{\pi} \times \frac{22}{100} \text{ deg ree}$$

It can be written as

$$= \frac{180 \times 7 \times 22}{22 \times 100} \text{ deg ree}$$

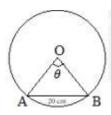
$$=\frac{126}{10}$$
 deg ree

So we get

$$=12\frac{3}{5}$$
 deg ree

Here
$$1^{\circ} = 60^{\circ}$$

Therefore, the required angle is 12° 36'.


5. In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord. Solution:

The dimensions of the circle are

Diameter = 40 cm

Radius = 40/2 = 20 cm

Consider AB be as the chord of the circle i.e. length = 20 cm

In $\triangle OAB$,

Radius of circle = OA = OB = 20 cm

Similarly AB = 20 cm

Hence, $\triangle OAB$ is an equilateral triangle.

 $\theta = 60^{\circ} = \pi/3 \text{ radian}$

In a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre

We get $\theta = 1/r$

$$\frac{\pi}{3} = \frac{\widehat{AB}}{20} \Rightarrow \widehat{AB} = \frac{20\pi}{3}$$
 cm

Therefore, the length of the minor arc of the chord is $20\pi/3$ cm.

6. If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Solution:

Consider r_1 and r_2 as the radii of the two circles.

Let an arc of length 1 subtend an angle of 60° at the centre of the circle of radius r₁ and an arc of length 1 subtend an angle of 75° at the centre of the circle of radius r₂.

Here $60^{\circ} = \pi/3$ radian and $75^{\circ} = 5\pi/12$ radian

In a circle of radius r unit, if an arc of length 1 unit subtends an angle θ radian at the centre

We get

 $\theta = 1/r$ or $1 = r\theta$

We know that

$$l = \frac{r_1 \pi}{3}$$
 and $l = \frac{r_2 5 \pi}{12}$

By equating both we get

$$\frac{r_1\pi}{3} = \frac{r_2 5\pi}{12}$$

On further calculation

$$r_1 = \frac{r_2 5}{4}$$

So we get

$$\frac{r_1}{r_2} = \frac{5}{4}$$

Therefore, the ratio of the radii is 5: 4.

7. Find the angle in radian though which a pendulum swings if its length is 75 cm and the tip describes an arc of length

(i) 10 cm (ii) 15 cm (iii) 21 cm

Solution:

In a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then $\theta = 1/r$ We know that r = 75 cm

(i) l = 10 cm

So we get

 $\theta = 10/75 \text{ radian}$

By further simplification

 $\theta = 2/15 \text{ radian}$

NCERT Solutions for Class 11 Maths Chapter 3 – Trigonometric Functions

(ii) 1 = 15 cm

So we get

 $\theta = 15/75 \text{ radian}$

By further simplification

 $\theta = 1/5 \text{ radian}$

(iii) 1 = 21 cm

So we get

 $\theta=21/75 \ radian$

By further simplification

 $\theta = 7/25 \text{ radian}$

