

EXERCISE 9.1 PAGE: 382

Determine order and degree (if defined) of differential equations given in Exercises 1 to 10

1.
$$\frac{d^4y}{dx^4} + \sin(y''') = 0$$

Solution:

The given differential equation is,

$$\frac{d^4y}{dx^4} + \sin(y''') = 0$$

$$\Rightarrow y'''' + \sin(y'''') = 0$$

The highest order derivative present in the differential equation is y"", so its order is three. Hence, the given differential equation is not a polynomial equation in its derivatives and so, its degree is not defined.

$$2. y' + 5y = 0$$

Solution:

The given differential equation is, y' + 5y = 0

The highest order derivative present in the differential equation is y', so its order is one. Therefore, the given differential equation is a polynomial equation in its derivatives. So, its degree is one.

$$3. \left(\frac{ds}{dt}\right)^4 + 3s \frac{d^2s}{dt^2} = 0$$

Solution:-

The given differential equation is,

$$\left(\frac{ds}{dt}\right)^4 + 3s\,\frac{d^2s}{dt^2} = 0$$

The highest order derivative present in the differential equation is $\overline{dt^2}$.

The order is two. Therefore, the given differential equation is a polynomial equation in $\underline{d^2s}$ and \underline{ds} .

$$dt^2$$
 dt

So, its degree is one.

$$4. \left(\frac{d^2 y}{dx^2}\right)^2 + \cos\left(\frac{dy}{dx}\right) = 0$$

Solution:-

The given differential equation is,

$$\left(\frac{d^2y}{dx^2}\right)^2 + \cos\left(\frac{dy}{dx}\right) = 0$$

The highest order derivative present in the differential equation is $\frac{d^2y}{dx^2}$.

The order is two. Therefore, the given differential equation is not a polynomial. So, its degree is not defined.

5.
$$\frac{d^2y}{dx^2} = \cos 3x + \sin 3x$$

Solution:-

The given differential equation is,

$$\frac{d^2y}{dx^2} = \cos 3x + \sin 3x$$

$$\Rightarrow \frac{d^2y}{dx^2} - \cos 3x - \sin 3x = 0$$

The highest order derivative present in the differential equation is $\frac{d^2y}{dx^2}$.

The order is two. Therefore, the given differential equation is a polynomial equation in $\frac{d^2y}{dx^2}$ and the power is 1.

Therefore, its degree is one.

6.
$$(y''')^2 + (y'')^3 + (y')^4 + y^5 = 0$$

NCERT Solutions For Class 12 Maths Chapter 9 Differential Equations

Solution:

The given differential equation is, $(y''')^2 + (y'')^3 + (y')^4 + y^5 = 0$

The highest order derivative present in the differential equation is y"".

The order is three. Therefore, the given differential equation is a polynomial equation in y''', y'' and y'.

Then the power raised to y''' is 2.

Therefore, its degree is two.

7.
$$y''' + 2y'' + y' = 0$$

Solution:

The given differential equation is, y''' + 2y'' + y' = 0

The highest order derivative present in the differential equation is y"".

The order is three. Therefore, the given differential equation is a polynomial equation in y''', y'' and y'.

Then the power raised to y''' is 1.

Therefore, its degree is one.

8.
$$y' + y = e^x$$

Solution:

The given differential equation is, $y' + y = e^x$

$$= y' + y - e^x = 0$$

The highest order derivative present in the differential equation is y'.

The order is one. Therefore, the given differential equation is a polynomial equation in y'.

Then the power raised to y' is 1.

Therefore, its degree is one.

9.
$$y''' + (y')^2 + 2y = 0$$

Solution:

The given differential equation is, $y''' + (y')^2 + 2y = 0$

The highest order derivative present in the differential equation is y".

The order is two. Therefore, the given differential equation is a polynomial equation in y'' and y'.

Then the power raised to y" is 1.

Therefore, its degree is one.

10.
$$y''' + 2y' + \sin y = 0$$

Solution:-

The given differential equation is, $y''' + 2y' + \sin y = 0$

The highest order derivative present in the differential equation is y''.

The order is two. Therefore, the given differential equation is a polynomial equation in y" and y'.

Then the power raised to y" is 1.

Therefore, its degree is one.

11. The degree of the differential equation.

$$\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0 \text{ is}$$

(A)3

(C) 1

(D) not defined

Solution:-

(D) not defined

The given differential equation is,

$$\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0$$

The highest order derivative present in the differential equation is $\frac{d^2y}{dx^2}$.

The order is three. Therefore, the given differential equation is not a polynomial. Therefore, its degree is not defined.

12. The order of the differential equation

$$2x^2 \frac{d^2 y}{dx^2} - 3 \frac{dy}{dx} + y = 0$$
 is

(A) 2

(C) 0

(D) not defined

Solution:-

(A) 2

The given differential equation is,

$$2x^2 \frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + y = 0$$

The highest order derivative present in the differential equation is $\frac{d^2y}{dx^2}$. Therefore, its order is two.